
J Comput Virol (2013) 9:49–58
DOI 10.1007/s11416-012-0174-z

ORIGINAL PAPER

Metamorphic worm that carries its own morphing engine

Sudarshan Madenur Sridhara · Mark Stamp

Received: 14 June 2012 / Accepted: 5 October 2012 / Published online: 25 October 2012
© Springer-Verlag France 2012

Abstract Metamorphic malware changes its internal
structure across generations, but its functionality remains
unchanged. Well-designed metamorphic malware will evade
signature detection. Recent research has revealed techniques
based on hidden Markov models (HMMs) for detecting many
types of metamorphic malware, as well as techniques for
evading such detection. A worm is a type of malware that
actively spreads across a network to other host systems. In
this project we design and implement a prototype metamor-
phic worm that carries its own morphing engine. This is
challenging, since the morphing engine itself must be mor-
phed across replications, which imposes restrictions on the
structure of the worm. Our design employs previously devel-
oped techniques to evade detection. We provide test results to
confirm that this worm effectively evades signature and
HMM-based detection, and we consider possible detection
strategies. This worm provides a concrete example that
should prove useful for additional metamorphic detection
research.

1 Introduction

Metamorphism is the process of transforming a piece of
software into unique instances [22]. In metamorphic soft-
ware, copies of the software are functionally equivalent but
their internal structure differs. Metamorphism is used by
virus writers to avoid detection by antivirus software, which
primarily use signature-based techniques [3].

Metamorphism provides virus writers the opportunity
to develop malware that is undetectable, with respect to

S. Madenur Sridhara · M. Stamp (B)
Department of Computer Science,
San Jose State University, San Jose, CA, USA
e-mail: stamp@cs.sjsu.edu

signature detection [7,11]. Therefore, it is natural to expect
an increase in volume as well as complexity of metamorphic
viruses in the future.

Although metamorphic viruses have been extensively
studied [2,9,13,20,25,26,28], a metamorphic worm
presents significant challenges. Metamorphic viruses do not
need to carry their own morphing engine. For nearly all highly
metamorphic viruses, such as NGVCK [21], the metamor-
phic generator is separate from the virus body.

Examples of hacker-produced metamorphic malware that
carry their own morphing engine do exist, but most are
trivial, and none has proven difficult to detect in practice.
Relatively sophisticated examples of the genre include Lex-
otan32 [19] and MetaPHOR (also known as W32.Simile and
W32.Etap) [15]. MetaPHOR, for example, is large and com-
plex, consisting of more than 14,000 lines of assembly code,
with more than 90 % of its code dedicated solely to morph-
ing. The author of MetaPHOR has described its development
and workings in [15], which is a rarity for hacker-produced
malware, but it still extremely opaque, poorly documented,
and very difficult to work with. In fact, our attempts to work
with MetaPHOR convinced us that an alternative was needed
for our planned research in this field.

Unlike viruses, worms are self-propagating [3], and there-
fore a metamorphic worm would, almost certainly, need to
carry its own morphing engine. Since the morphing engine
itself can act as a signature, such a worm must morph its
morphing engine—as well as the actual worm body—across
replications. This presents a significant complication and
imposes some restrictions on the structure of the morphing
engine.

In this paper, we develop and analyze a worm that car-
ries its own morphing engine. That is, the morphing engine
morphs itself and the worm body across replications. The
resulting metamorphic worms are evaluated based on the

123



50 S. Madenur Sridhara, M. Stamp

Fig. 1 n-gram similarity for
two NGVCK viruses [28]

lack of similarity between successive generations [17] and
their ability to evade detection [28].

This paper is organized as follows. In Sect. 2, we briefly
cover relevant background information on malware, meta-
morphism, similarity measures, and hidden Markov models.
Then in Sect. 3 we outline the design of our metamorphic
worm. Section 4 contains experimental results that measure
the degree of metamorphism achieved by our worm, as well
as its success at evading detection. Finally, Sect. 5 gives our
conclusions and suggestions for future work.

2 Background

In this section, we briefly discuss metamorphic techniques,
methods for measuring binary similarity, and hidden Markov
models. These topics are relevant to the work presented in
the remainder of the paper.

2.1 Metamorphic techniques

The metamorphic worm described in this paper makes use of
several morphing techniques. Here, we briefly discuss meta-
morphic techniques; for more details see [3] and [4].

Register swapping is one of the simplest metamorphic
techniques. Swapping operand registers can change signa-
tures. However, opcode sequences remain unchanged when
using this technique.

Another simple morphing technique is reordering subrou-
tines. More generally, we can transpose any instructions that
do not have any inter-dependency.

Garbage code instructions can be of two types, namely,
instructions that are not executed and instructions that are
executed, but have no effect. When we want to distinguish
between these two cases, we refer to instructions that are

not executed as “dead code,” while code that has no effect is
“do-nothing” code.

In contrast to garbage code insertion, instruction substi-
tution consists of replacing existing code with different—
but equivalent—instructions. For example, MOV R1, R2
is equivalent to PUSH R2 followed by POP R1.

Formal grammar mutation can be viewed as a generalized
morphing technique [4,10,29]. A morphing engine can be
viewed as a non-deterministic automata, where transitions
are possible from instructions to other instructions [29]. We
can then apply formal grammar rules to easily create viral
copies with great variation; see [29] for some elementary
examples.

2.2 Binary similarity

To evade signature detection, it is necessary that our meta-
morphic worm produce variants that are significantly differ-
ent from each other. Ideally, two morphed viruses should be
about as different as two randomly selected executable files.
Consequently, to evaluate a metamorphic generator, we need
a way to measure the degree of metamorphism. That is, we
need a measure of “distance” between executable files.

Many binary similarity measures have been studied. In
Sect. 4, we employ two such measures, namely, n-gram sim-
ilarity [17] and opcode graph similarity [20]. Here, we briefly
summarize these two techniques.

The n-gram similarity measure developed in [17] com-
pares subsequences of instructions in two assembly pro-
gram files and yields a score that measures the percentage
of similarity between the two files. This measure has been
used in subsequent research to measure the effectiveness of
metamorphic generators [13,28]. For example, a comparison
between two NGVCK metamorphic viruses [21], is presented
in [28] and reproduced here in Fig. 1. The left part of the graph

123



Metamorphic worm that carries its own morphing engine 51

shows matching subsequences prior to noise removal, while
the right half shows matching subsequences retained after
eliminating noise. The final similarity score in this particular
instance is 21 %.

A method for measuring similarity between executable
files using opcode graphs is developed and applied to meta-
morphic viruses in [20]. This method involves creating
weighted directed graphs based on opcodes extracted from
executable files. More precisely, each extracted opcode cor-
responds to a node in the directed graph. A directed edge
is inserted from a node to every successor node that occurs
in the file, that is, each edge represents a pair of consecu-
tive opcodes. Edge weights represent transition probabilities
to successor nodes. A score is obtained by comparing the
resulting directed graphs. Other graph-based similarity mea-
sures have appeared in the literature; see, for example [1]
and [5,6].

2.3 Hidden Markov models and metamorphic detection

Recently, there has been research focused on the use of
machine learning techniques for malware detection. In par-
ticular, hidden Markov models (HMMs) have been used for
analysis and detection of metamorphic viruses [2,9,13,20,
25,26,28]. A method is presented in [28] in which an HMM
is trained to detect metamorphic malware. We use this HMM-
based technique in Sect. 4 to measure the effectiveness of
the detection-evading strategy employed by our metamor-
phic worm. In the remainder of this section, we briefly dis-
cuss HMMs and how they are applied to the metamorphic
detection problem.

A hidden Markov model (HMM) is a statistical model of a
Markov process where the states are unknown [23]. A trained
HMM can be viewed as a representation of the data on which
it was trained.

The use of HMMs for metamorphic virus detection is
explained in detail in [27,28]. The basic objective is to train
an HMM using opcodes extracted from viruses belonging to
a particular metamorphic family. The trained HMM will, in
effect, represent the statistical properties of the virus family.
Using this trained HMM, we can compute a score for any
given program—based on its extracted opcode sequence—
to determine how “close” the file is to the virus family that
the HMM represents. We can then classify the file based on
a predetermined threshold.

There has been some research on metamorphic code that
can evade HMM-based detection. The method presented
in [13] relies on dead code insertion from benign files.

The results in [12] show that, with an increase in the
amount of carefully selected dead code from benign files,
the average scores for viruses tends toward the scores for
benign files. Furthermore, the results in [12] indicate that

inserting long sequences of opcodes, (e.g., entire subrou-
tines) is more effective at defeating HMM detection than
inserting an equivalent amount of dead code in the form of
multiple small fragments. Thus, the worm presented in this
paper uses a detection-evading strategy based on dead code
insertion, where the dead code is inserted in blocks.

3 Design and implementation

In this section, we consider the design of our metamorphic
worm and provide some relevant implementation details. As
discussed above, the fact that the worm carries its own mor-
phing engine presents a significant challenge since both the
worm body and the morphing engine itself must be morphed.
In addition, we discuss the defenses that our metamorphic
worm incorporates, and we point out how these make static
detection more difficult.

3.1 Worm structure

The worm includes the following components.

1. Body—This is the central component that controls the life
cycle of the worm. The worm body controls and coordi-
nates the activities of all the other active components of
the worm.

2. Disassembler—This component disassembles the worm
binary and extracts instructions from it.

3. Morphing engine—The morphing engine operates on the
set of disassembled instructions by removing old dead
code instructions, adding new dead code, and it also
employs equivalent instruction substitution.

4. Reassembler—The reassembler restructures the control
flow of the morphed worm body and converts the code
to binary.

5. Payload—This is the code that will execute on every
infected computer. For a malicious worm, the payload
would, of course, be malicious, but for our implemen-
tation, the payload is completely benign—we simply
append a line of text to a temporary file.

6. Padding blocks—These are blocks of dead code that are
replaced from generation to generation. The purpose of
this code is to make the worm statistically similar to nor-
mal files and thereby evade HMM detection [13]. These
blocks also help us to avoid relocating sections and sim-
plify other book-keeping operations.

Figure 2 illustrates the structure of the various components
of the worm. In addition, the layout of the components within
the address space of the worm is illustrated in Fig. 3, where
Pad_block_1 and Pad_block_2 are the padding blocks.

123



52 S. Madenur Sridhara, M. Stamp

Fig. 2 Metamorphic worm components

Fig. 3 Metamorphic worm memory layout

3.2 Worm implementation

The worm uses two of the metamorphic techniques dis-
cussed in Sect. 2.1. Specifically, the worm employs equiva-
lent instruction substitution and garbage code insertion.

For equivalent code substitution, we concentrate on the
MOV and the XOR instructions. We chose the MOV opcode
since it is abundant in binaries, and XOR was selected since
it is often used in our substitutions for MOV; by substituting
MOV for XOR, we tend to maintain the first order opcode
statistics.

Table 1 Equivalent instruction table

Instruction Equivalent Action

0x48 0x89 0xc3 0x48 0x31 0xdb
0x48 0x01 0xc3

NULL

0x48 0x89 0xc1 0x48 0x31 0xc9
0x48 0x01 0xc1

NULL

.

.

.
.
.
.

.

.

.

After the disassembler has disassembled the worm-
containing portion of the executable image, the morphing
engine scans for possible equivalent instruction substitution.
Substitutions are made for each candidate instruction with a
fixed probability. This is achieved using a substitution table—
the initial part of the code substitution table appears in Table
1; the complete substitution table used by our morphing
engine can be found in [14].

The first column in Table 1 correspond to the instructions

MOV RBX,RAX and MOV RCX,RAX

respectively. The second column correspond to the equivalent
instructions

XOR RBX,RBX;
ADD RBX,RAX; and

XOR RCX,RCX;
ADD RCX,RAX;

respectively. In these examples, one instruction has been
replaced by two instructions.

The “action” field in Table 1 is the address of a label
inside the morphing function which performs actions specific
to the instructions that were substituted, such as modifying
addresses. If no additional action is necessary, the action field
is set to NULL.

Our metamorphic worm also employs garbage code inser-
tion. Garbage code of the “do-nothing” variety (i.e., the code
is executed, but it has no effect) is inserted throughout the
worm. Garbage code of the “dead code” variety (i.e., the code
is never executed) is inserted in the padding blocks.

Some care must be taken when inserting do-nothing
code—the effect of such instructions on the RFLAGS reg-
ister must be carefully considered since there is the potential
to inadvertently alter the control flow. Control flow instruc-
tions use bits in the RFLAGS register to decide which code
path to take. If a dead code instruction which manipulates
RFLAGS is inserted before a control flow instruction, it can
change the path taken by the next control flow instruction.
Consequently, we are careful not to insert do-nothing code
in positions where it could change the control flow.

Examples for do-nothing code employed by our metamor-
phic worm include

ADD RAX,0 and SUB RBX,0 and XOR RAX,0.

123



Metamorphic worm that carries its own morphing engine 53

Table 2 Worm function

A complete list of do-nothing code used by the worm is given
in [14].

The overall operation of the worm is summarized in
Table 2. Note that theMorph function that appears in Table 2
is summarized in Table 3.

The worm has been implemented on Linux in the Intel
x86_64 architecture. The programming language used to
implement the worm is C. The compiler used to build the
worm is GCC, version 4.6.2 build 20111027, and the result-
ing format of the executable image of the worm is ELF64.

The worm only links directly to libc and libdl. The libraries
dynamically loaded during run-time are libbfd and libopdis.
Libraries libc and libdl are part of the core of any Linux dis-
tribution, while libbfd is part of the GNU Binutils [16] pack-
age, and is found on most Linux distributions. Libopdis is
an independent library licensed under GNU LGPL as of ver-
sion 1.0.4 [18]. Libopdis extends the libopcodes library [16]
by offering algorithms for linear and control-flow disassem-
bly, instruction and operand objects that are suitable for
analysis.

4 Experiments

In this section, we evaluate the effectiveness of our meta-
morphic worm in terms of its morphing ability and its

ability to evade statistical detection. To measure the degree
of morphing, we use the n-gram similarity and the opcode
graph similarity techniques discussed in Sect. 2.2. To mea-
sure the worm’s ability to evade statistical detection, we test
it using the HMM-based detection technique discussed in
Sect. 2.3.

For the worm to be effective at evading signature based
detection, the worm bodies in different generations cannot be
too similar to one another. At the same time, the worm files
must be sufficiently similar to benign files so that they are not
easily distinguishable based on a similarity threshold [20].

An effective means of evading statistical-based detec-
tion is to make the worm variants statistically similar to
benign binaries. To accomplish this, we use long sequences
of instructions from benign executable files to fill the padding
blocks. This is consistent with the HMM evasion technique
in [13].

4.1 Test data

For each experiment, 100 generations of the worm were pro-
duced and 20 benign files were selected. The list of benign
files are given in Table 4. From the 100 worms, 80 worms
were chosen to train the HMM. The remaining 20 worms
and all benign files were scored using the trained HMM. The

123



54 S. Madenur Sridhara, M. Stamp

Table 3 Worm morph function

Table 4 Mapping from Benign file ID to actual executable file

Benign file Executable file Benign file Executable file

BEN_0 /usr/bin/as BEN_10 /bin/mount

BEN_1 /bin/date BEN_11 /usr/bin/nasm

BEN_2 /bin/dmesg BEN_12 /usr/bin/nm

BEN_3 /usr/bin/file BEN_13 /usr/bin/objdump

BEN_4 /usr/bin/gcc BEN_14 /usr/bin/readelf

BEN_5 /usr/bin/size BEN_15 /bin/rm

BEN_6 /bin/grep BEN_16 /bin/sleep

BEN_7 /usr/bin/kill BEN_17 /usr/bin/strip

BEN_8 /usr/bin/ld BEN_18 /bin/systemctl

BEN_9 /bin/mknod BEN_19 /bin/touch

worm files in the test set were named MWOR_0, MWOR_1,
. . ., MWOR_19, while the benign files were named BEN_0,
BEN_1, . . ., BEN_19 (as indicated in Table 4).

The padding blocks of the MWOR files were randomly
chosen blocks of code from one or more of the benign (BEN)
files. Replacing the padding block randomly from the chosen
benign file set in Table 4 is part of the worm’s functionality.

We computed both n-gram and opcode graph similarity
between pairs of worms, between worms and benign files,
and between pairs of benign files. We also trained an HMM
classifier on worm files and the resulting model was used to

Table 5 n-gram similarity statistics

Case Mean Variance Minimum Maximum

Worm vs worm 0.190862 0.007521 0.120562 0.526146

Worm vs benign 0.139772 0.001732 0.050677 0.234278

Benign vs benign 0.263479 0.006037 0.176202 0.450179

classify benign files and worm files in the test set. Next, we
discuss our results for each of these test cases.

4.2 n-gram similarity

The n-gram similarity technique outlined in Sect. 2.2
was used to measure similarity between opcode sequences
extracted from different generations of the worm and from
benign executable files. The objective here is to assess
whether common signatures can be extracted from worm
executable files, so our worm padding blocks were excluded
from the assessment. When comparing a worm body to a
benign file, a randomly selected sequence of instructions of
length equal to that of the worm body was chosen from the
benign files.

Table 5 summarizes the results of 20 n-gram similarity
score calculations comparing consecutive generations of the
worm, along with analogous results for the similarity scores

123



Metamorphic worm that carries its own morphing engine 55

Fig. 4 n-gram similarity—worm vs worm

Fig. 5 Opcode graph similarity

Table 6 Opcode graph similarity statistics

Case Mean Variance Minimum Maximum

Worm vs worm 0.592744 0.017882 0.355481 0.831699

Worm vs benign 0.565945 0.028684 0.347320 0.957393

Benign vs benign 0.667563 0.068312 0.261346 1.295305

between worms and benign files, and, finally, between pairs
of worm files. These results show that the morphing applied
to the worm body is highly effective.

The n-gram similarity between worm generations can also
be visualized graphically as discussed in Sect. 2.2. The sim-
ilarity between a typical first and second generation worm
is illustrated in the graph in Fig. 4. Examples of similarity
graphs for other pairs of worms can be found in [14].

The n-gram similarity between worms is somewhat lower
than the similarity between benign files. This is due to the
fact that only the worm body is considered in our similarity
tests, rather than the whole worm. The initial sections of the
benign files result in a higher similarity between benign files,
since there is considerable commonality in the initial sections
of most executables.

4.3 Opcode graph similarity

In this section, we consider the opcode graph similarity tech-
nique discussed in Sect. 2.2. We applied this similarity mea-
sure to complete worm executable files, including padding
blocks. We also computed the similarity of pairs of benign
files, and worm files versus benign files. Figure 5 shows the
similarity between these various combinations of worm and
benign files.

Table 6 summarizes similarity scores between consecu-
tive generations of worms, and the similarity scores between
worms and benign files, and, finally, between pairs of benign
files. These results indicate that the morphing of the worm—
including the padding blocks—is highly effective.

4.4 HMM-based detection

We now analyze the results of testing an HMM detector
on our metamorphic worms. Previous research has shown
that the number of states in the HMM does not significantly
impact its accuracy [13,28]. Consequently, here we only con-
sider HMMs with N = 2 hidden states; additional results can
be found in [14].

We define the ratio of dead-code to worm-code as the
“padding ratio.” For example, a worm with twice as much
dead code as worm instructions will have a padding ratio of 2.
We used an HMM classifier to score worms with padding
ratios of 0.5, 1, 1.5, 2, 2.5, 3, and 4. The goal here is to
approximately determine the minimum padding ratio at
which the HMM detector starts to falter.

Figure 6 shows the results of scoring worms versus benign
files, for padding ratios varying between 0.5 and 2.5. The
scores are given as log likelihood per opcode (LLPO), that
is, the scores are normalized to account for files of different
length.

In Fig. 6(a), a padding ratio of 0.5 was used, which implies
that the generated worms contain half as much dead code as
the number of instructions that constitute its core functional-
ity. We see that for this padding ratio, the detector can effec-
tively distinguish our metamorphic viruses from benign files.
However, for the higher padding ratios in Fig. 6, the LLPO
scores of the worms overlap with those of benign binaries,
to the point that detection would be impractical.

123



56 S. Madenur Sridhara, M. Stamp

Fig. 6 HMM classifiers for various padding ratios

Our detection results for various padding ratios are sum-
marized in the ROC curves in Fig. 7. For an ROC curve, the
area under the curve (AUC) is equal to the probability that
a classifier will rank a randomly chosen positive instance

higher than a randomly chosen negative one [8]. Therefore,
an AUC of 1 implies perfect classification, while an AUC
of 0.5 implies that the classification is no better than flip-
ping a coin. The AUC for each of the curves in Fig. 7 is

Fig. 7 ROC curves

123



Metamorphic worm that carries its own morphing engine 57

Table 7 AUC at various
padding ratios Padding ratio AUC

0.5 1.0000

1.0 0.9900

1.5 0.9625

2.0 0.9725

2.5 0.8325

3.0 0.8575

4.0 0.8225

given in Table 7. Note that for a padding ratio of 2.5, the area
under the curve is 0.8325 and, consequently, at this padding
level, the HMM detector has an impractically high level of
misclassification.

5 Conclusion and future work

The metamorphic worms considered in this paper carry
their own morphing engine. The worms also include strong
defenses against static detection techniques. We presented
experimental results showing that for sufficiently high
padding ratios, these worms cannot be reliably detected using
signature-based methods. Furthermore, the worms cannot
be detected using a static technique based on HMMs. The
HMM detector performance is acceptable for padding ratios
up to about a factor of 2. However, the probability of misclas-
sification is clearly unacceptable for padding-ratios greater
than 2.0.

We measured the similarity of the worms using an n-gram
technique and an opcode graph technique. The n-gram sim-
ilarity was shown to be sufficiently low so as to prevent the
extraction of a common signature. The average similarity
scores measured using the opcode graph technique are com-
parable to the similarity scores for randomly selected benign
files. This is another strong indicator that signature-based
detection is futile. These results show that the worms cannot
be reliably distinguished from benign files based on these
similarity measures.

The worm presented in this paper is designed to serve as a
practical tool for studying detection strategies for advanced
metamorphic malware. Techniques aimed at identifying pos-
sible dead code could prove useful for detecting the worm
presented here. Although dead code can be disguised to the
point where automatic identification is impractical, the tech-
niques used in this research—as with the similar techniques
used by metamorphic malware in the wild—are fairly ele-
mentary. Consequently, statistical analysis may prove use-
ful for identifying regions of code that are of interest. For
example, in [24], Kullback–Leibler divergence was used to
enhance a masquerade detection system by statistically sep-

arating the attack from other activities. A similar principle
might be of practical use when applied to metamorphic mal-
ware.

References

1. Anderson, B., et al.: Graph-based malware detection using dynamic
analysis. J. Comput. Virol. 7(4), 247–258 (2011)

2. Attaluri, S., McGhee, S., Stamp, M.: Profile hidden Markov models
and metamorphic virus detection. J. Comput. Virol. 5(2), 151–169
(2009)

3. Aycock, J.: Computer Viruses and Malware (Advances in Informa-
tion Security). Springer, Berlin (2006)

4. Beaucamps, P.: Advanced metamorphic techniques in computer
viruses. In: International Conference on Computer, Electrical,
and Systems Science, and Engineering–CESSE ’07, Venice, Italy
(2007)

5. Bilar, D.: On callgraphs and generative mechanisms. J. Comput.
Virol. 3(4), 285–297 (2007)

6. Bilar, D.: On callgraphs and generative mechanisms, erratum. J.
Comput. Virol. 3(4), 299–310 (2007)

7. Borello, J., Me, L.: Code obfuscation techniques for metamorphic
viruses. J. Comput. Virol. 4(3), 211–220 (2008)

8. Bradley, A.P.: The use of the area under the roc curve in the evalu-
ation of machine learning algorithms. Pattern Recognit. 30, 1145–
1159 (1997)

9. Desai, P.: Towards an undetectable computer virus (2008). Master’s
Projects. Paper 90. http://scholarworks.sjsu.edu/etd_projects/90

10. Filiol, E.: Metamorphism, formal grammars and undecidable code
mutation. Int. J. Comput. Sci. 2, 70–75 (2007)

11. Konstantinou, E., Wolthusen, S.: Metamorphic virus: analysis and
detection. Technical Report RHUL-MA-2008-02, Department of
Mathematics, Royal Holloway, University of London (2008)

12. Lin, D.: Hunting for undetectable metamorphic viruses. Mas-
ter’s Projects. Paper 18 (2009). http://scholarworks.sjsu.edu/etd_
projects/18

13. Lin, D., Stamp, M.: Hunting for undetectable metamorphic viruses.
J. Comput. Virol. 7(3), 201–214 (2011)

14. Madenur Sridhara, S.: Metamorphic worm that carries its own
morphing engine (2012). Master’s Projects. Paper 240. http://
scholarworks.sjsu.edu/etd_projects/240

15. The Mental Driller: Metamorphism in practice or “How I made
MetaPHOR and what I’ve learnt” (2002). http://biblio.l0t3k.net/
magazine/en/29a/

16. Miller, F., Vandome, A.: Gnu Binutils. Alphascript Publishing
(2010)

17. Mishra, P.: Taxonomy of uniqueness transformations. Mas-
ter’s Report, Department of Computer Science, San Jose State
University (2003). http://www.cs.sjsu.edu/faculty/stamp/students/
FinalReport.doc

18. Opdis. libopcodes-based disassembler (2010). http://mkfs.github.
com/content/opdis/

19. Orr, The molecular virology of Lexotan32: Metamorphism illus-
trated (2007). http://www.openrce.org/articles/full_view/29

20. Runwal, N., Low, R.M., Stamp, M.: Opcode graph similarity and
metamorphic detection. J. Comput. Virol. 8(1–2), 37–52 (2012)

21. Snakebyte. Next Generation Virus Construction Kit (NGVCK)
(2000). http://vx.netlux.org/vx.php?id=tn02

22. Stamp, M.: Information Security: Principles and Practice. Wiley,
New York (2011)

23. Stamp, M.: A revealing introduction to hidden markov models
(2012). http://www.cs.sjsu.edu/stamp/RUA/HMM.pdf

123

http://scholarworks.sjsu.edu/etd_projects/90
http://scholarworks.sjsu.edu/etd_projects/18
http://scholarworks.sjsu.edu/etd_projects/18
http://scholarworks.sjsu.edu/etd_projects/240
http://scholarworks.sjsu.edu/etd_projects/240
http://biblio.l0t3k.net/magazine/en/29a/
http://biblio.l0t3k.net/magazine/en/29a/
http://www.cs.sjsu.edu/faculty/stamp/students/FinalReport.doc
http://www.cs.sjsu.edu/faculty/stamp/students/FinalReport.doc
http://mkfs.github.com/content/opdis/
http://mkfs.github.com/content/opdis/
http://www.openrce.org/articles/full_view/29
http://vx.netlux.org/vx.php?id=tn02
http://www.cs.sjsu.edu/stamp/RUA/HMM.pdf


58 S. Madenur Sridhara, M. Stamp

24. Tapiador, J., Clark, J.: Masquerade mimicry attack detection: a
randomised approach. J. Comput. Virol. 30(5), 297–310 (2011)

25. Venkatachalam, S.: Detecting undetectable computer viruses. Mas-
ter’s Projects. Paper 156 (2010). http://scholarworks.sjsu.edu/etd_
projects/156

26. Venkatesan, A.: Code obfuscation and virus detection. Mas-
ter’s Projects. Paper 116 (2008). http://scholarworks.sjsu.edu/etd_
projects/116

27. Wong, W.: Analysis and detection of metamorphic computer
viruses. Master’s Projects. Paper 153 (2006). http://scholarworks.
sjsu.edu/etd_projects/153

28. Wong, W., Stamp, M.: Hunting for metamorphic engines. J. Com-
put. Virol. 2(3), 211–229 (2006)

29. Zbitskiy, P.: Code mutation techniques by means of formal gram-
mars and automatons. J. Comput. Virol. 5(3), 199–207 (2009)

123

http://scholarworks.sjsu.edu/etd_projects/156
http://scholarworks.sjsu.edu/etd_projects/156
http://scholarworks.sjsu.edu/etd_projects/116
http://scholarworks.sjsu.edu/etd_projects/116
http://scholarworks.sjsu.edu/etd_projects/153
http://scholarworks.sjsu.edu/etd_projects/153

	Metamorphic worm that carries its own morphing engine
	Abstract 
	1 Introduction
	2 Background
	2.1 Metamorphic techniques
	2.2 Binary similarity
	2.3 Hidden Markov models and metamorphic detection

	3 Design and implementation
	3.1 Worm structure
	3.2 Worm implementation

	4 Experiments
	4.1 Test data
	4.2 n-gram similarity
	4.3 Opcode graph similarity
	4.4 HMM-based detection

	5 Conclusion and future work
	References


