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Abstract In this paper, we consider a method for computing
the similarity of executable files, based on opcode graphs. We
apply this technique to the challenging problem of metamor-
phic malware detection and compare the results to previous
work based on hidden Markov models. In addition, we ana-
lyze the effect of various morphing techniques on the success
of our proposed opcode graph-based detection scheme.

1 Introduction

Practical detection of metamorphic malware is a difficult
challenge. A detection technique using a hidden Markov
model trained on opcode sequences was studied in [33].
While this approach was highly successful at detecting
hacker-produced metamorphic malware, in [17] it was shown
that the detector can be defeated by a properly designed meta-
morphic generator.

The paper [1] discusses a malware detection strategy based
on weighted directed graphs derived from opcode sequences.
The authors of [1] show that their technique is effective
on many types of malware, including polymorphic viruses.
However, metamorphic viruses are not considered.

In this paper, we develop and analyze a technique that is
based on the same opcode graphs, but our overall approach
is simpler and more efficient than that in [1]. In addition, we
apply our technique to the challenging problem of metamor-
phic malware detection.

N. Runwal · M. Stamp (B)
Department of Computer Science,
San Jose State University, San Jose, CA, USA
e-mail: stamp@cs.sjsu.edu

R. M. Low
Department of Mathematics,
San Jose State University, San Jose, CA, USA

Various similarity measures have previously been applied
to the metamorphic detection problem [21,33]. In addition,
control flow graph analysis has been considered [5,8]. But
such graph techniques often lead to difficult graph isomor-
phism problems. Simpler call graph techniques have also
been studied in the context of metamorphic detection [16].
Yet another example of a graph-based malware detection
strategy can be found in [4]. However, there does not appear
to be any previous work involving similarity techniques or
graph analysis for metamorphic detection that is analogous
to the approach we discuss here.

The remainder of the paper is organized as follows. In
Sect. 2, we briefly discuss relevant background material
related to malware and malware detection, including a brief
overview of hidden Markov models (HMMs) and other sim-
ilarity-based detection methods. We also outline the graph-
based malware detection method developed in [1]. Section 3
covers the design and implementation of our graph based
similarity measure and its relevance to metamorphic detec-
tion. In Sect. 4, we present experimental results showing the
potential utility of our technique for metamorphic detection.
Then in Sect. 5, we analyze the effectiveness of morphing
strategies that a virus writer might employ in an effort to
evade our graph-based detection. Finally, Sect. 6 gives our
conclusions and mentions some directions for future work.

2 Background

In this section, we briefly discuss several topics that are rele-
vant to the remainder of the paper. First, we consider malware
detection in general, with the emphasis on metamorphic mal-
ware. Then we we discuss hidden Markov models and their
potential role in malware detection. We also briefly men-
tion a few other opcode-based similarity measures that have
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been applied to the metamorphic detection problem. Finally,
we turn our attention to the graph-based detection technique
in [1].

2.1 Malware detection

Malware is software “whose intent is malicious, or whose
effect is malicious” [3]. Examples of malicious activity
include damaging data, stealing information, or stealing com-
puting resources. Increasingly, malware appears to serve as
a source of revenue for the malware writer [19].

The purpose of anti-virus (AV) software is to detect and,
ideally, remove malware. Next, we briefly discuss a few types
of malware in the context of the ongoing “arms race” between
malware writers and malware detection. Here, we only pro-
vide a very brief overview with the aim of highlighting the
development of metamorphic malware. Note that throughout
this paper, we use the terms virus and malware interchange-
ably.

Since the dawn of time,1 signature scanning has been the
most widely used AV technique [3]. A virus signature can be
as simple as a string of bits (possibly, including wildcards)
that appear in a particular piece of malware. Of course, these
bits represent instructions and/or data in the particular virus.
Ideally, the signature does not occur in any other software.
However, once a signature has been detected, additional test-
ing is likely required to be certain that the code is indeed the
indicated malware. Signature scanning is efficient and effec-
tive against common types of malware; thus its popularity.

Of course, virus writers are aware that signature scanning
is the most prevalent form of AV scanning. Consequently,
virus writers have developed various techniques designed
to help their creations evade signature detection. As a first
line of defense against signature detection, a virus can be
encrypted or “packed” (i.e., compressed). Here, we consider
encryption, but similar comments hold for packed code. The
advantage of encryption is that a signature that is present in
the unencrypted code will not appear in the encrypted ver-
sion. Furthermore, different keys will yield different cipher-
text, so AV software cannot directly scan for a signature in
the ciphertext. From the virus writers perspective, the dis-
advantage of encryption is that the code must be decrypted
before it can execute, and the decryption code itself cannot
be encrypted. Consequently, AV software can scan for the
signature of the decryption code.

Polymorphic malware is the next logical step in the
arms race between signature-based detection and malware
writers. As with encrypted malware, polymorphic malware
is encrypted. However, polymorphic malware adds a new
twist—the decryption code is morphed and consequently
there is no fixed decryption code to search for in a scan [18].

1 Or, at least since the development of the first AV systems.

Ideally, new decryptor code would be generated for each
infection. Robust detection of polymorphic malware is diffi-
cult. One approach is to let the code decrypt itself (via emula-
tion), then scan for a signature in the decrypted code [3,10].

Metamorphic malware is sometimes said to be “body
polymorphic.” That is, instead of encrypting the virus body
and morphing the decryptor (as in polymorphic malware),
metamorphic code does away with encryption and morphs
the entire virus body [15,29,31]. Note that the function of
the code remains the same, but the internal structure of the
code changes. If the morphing is sufficiently thorough, no
common signature will exist and therefore, no encryption is
necessary. It could be argued that well designed metamorphic
code presents the ultimate challenge in malware detection.

A wide variety of techniques can be employed to
create metamorphic software. Such techniques include
register swapping, general code obfuscation, equivalent
instruction substitution, code shuffling, and subroutine per-
mutation [15]. Predictably, virus writers have developed
metamorphic “engines” that can be used by the unskilled
to create metamorphic malware. Often, existing malware is
morphed to create equivalent code that can evade signature
detection. Examples of metamorphic engines include the
Next Generation Virus Construction Kit (NGVCK), Phal-
con/Skism Mass-Produced Code generator (PS-MPC), Sec-
ond Generation virus generator (G2), and the Mass Code
Generator (MPCGEN) [32]. According to [33], NGVCK
is by far the most effective of these at creating highly
metamorphic code. Therefore, we focus our attention on
NGVCK [28].

Metamorphic detection is a challenging research prob-
lem. In [33] hidden Markov models (HMMs) were used to
successfully detect highly morphed NGVCK viruses. How-
ever, in [17] a metamorphic generator was developed that can
successfully evade the HMM-based detector in [33]. There-
fore, research into more robust detection mechanisms is war-
ranted.

The immediate motivation for the research presented here
is the paper [1], where an interesting graph-based technique
was applied to the malware detection problem. Our goal
is to analyze a similar (albeit simpler) opcode graph-based
detection algorithm in the context of metamorphic detection.
We also compare the results obtained using our proposed
technique to previous research involving HMM-based detec-
tion [17,33].

In the next subsection, we first discuss HMMs in general.
We then consider the use of HMMs for malware detection.

2.2 Hidden Markov models

Hidden Markov models can be viewed as a machine learning
technique and as a discrete hill climb [30]. An HMM is a
machine learning technique in the sense that the user only
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needs to specify some basic parameters. The HMM can then
be trained on a given data set and, if successful, the trained
model can be used to detect similar data. That is, data can be
scored against a trained model, with higher scores indicating
a higher degree of similarity to the training data.

The HMM training process can be viewed as a discrete
hill climb on a the HMM parameter space. Training is an
iterative process, and during the process, the parameters of
the HMM “climb” towards an optimal model.

HMMs have been successfully applied in many fields,
including language analysis [30], speech recognition [23],
and metamorphic virus detection [33]. Here we present a
classic example that illustrates the strength of HMMs. Spe-
cifically, we train an HMM on English text, as discussed
in [30]. But first, we require some notation.

A generic view of an HMM is given in Fig. 1. We assume
that there is a Markov process that is “hidden,” that is, the
Markov process is not directly observable. In Fig. 1, the
states of the hidden Markov process are denoted Xi . For each
state Xi of the underlying Markov process, we observe Oi .
As with any standard Markov process, the matrix A “drives”
the hidden Markov process. The unique feature of a hid-
den Markov model is that the states are hidden. But we do
have some information on the hidden states via the series of
observations (the Oi ), since these observations are probabi-
listically related to the hidden states by the matrix B.

For our discussion of HMMs, we use the following nota-
tion:

T = length of the observation sequence
N = number of states in the hidden Markov process
M= number of distinct observation symbols
A = state transition probabilities
B = observation probability matrix
π = initial state distribution
X = (X0, X1, . . . , XT −1) = hidden states

of Markov process
O = (O0,O1, . . . ,OT −1) = observation sequence.

The matrices A, B and π are row stochastic, that is, the
elements of each row form a discrete probability distribu-
tion [24].

To illustrate the strengths of HMMs, consider the follow-
ing experiment [30]. We are given a large body of English
text and we remove all punctuation, numbers, special char-
acters, etc., and convert all upper-case letters to lower-case.
The text then has 27 distinct symbols, consisting of the 26

Fig. 1 Generic Hidden Markov model [30]

letters and space. We train an HMM with this text serving as
the observation sequence.

Suppose that we select N = 2, that is, we assume there are
two hidden states. Then M = 27 and the matrix π is 1 × 2,
the matrix A is 2 × 2, while the matrix B is 2 × 27. The
matrices are initialized so that each element of π and each
element of A are approximately 1/N and each element of B
is approximately 1/M subject to the constraint that each row
sum must be 1. For technical reasons, we cannot initialize
the matrices to uniform values [30].

In this case, the HMM training requires about T = 50,000
observations to converge. The training algorithm is described
in detail in [30].

After training, for this example we find

π = [
0.00000 1.00000

]

and

A =
[

0.25633 0.74367
0.71195 0.28805

]
.

The π matrix has converged to the initial state probabilities,
while the A matrix gives the transition probabilities between
the two hidden states. Neither of these matrices tell us any-
thing about what the hidden states might represent. How-
ever, the converged B matrix, does provide some interesting
information concerning the hidden states. For this particular
example, the converged B matrix appears in Table 1. Note
that the matrix in Table 1 is actually the transpose of the B
matrix.

A careful examination of the B matrix in Table 1 reveals
that the two hidden states essentially correspond to con-
sonants and vowels. Note that no a priori assumption was
made regarding the nature of the hidden states—we simply
chose N = 2, which specified the number of hidden states.
The training process proceeded to automatically extract a
fundamental property of English from the training data. This
example illustrates the strength of HMMs as a machine learn-
ing technique.

For more information on HMMs in general, the paper [30]
is a readable and reasonably thorough introduction. Another
standard reference is [23].

2.3 HMM-based metamorphic detection

In [33], HMMs were used for metamorphic malware detec-
tion. First, several virus generating kits that claimed to pro-
duce metamorphic code were studied. Of these, only the Next
Generation Virus Construction Kit (NGVCK) was found
to produce highly metamorphic code. Consequently, the
paper [33] focuses on detecting NGVCK viruses.

A large number of experiments involving HMMs were
conducted in [33], with a typical result reproduced here in
Fig. 2. For this example, the authors of [33] trained an HMM
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Table 1 Trained HMM for English text

Final B matrix (transpose)

a 0.13956 0.00000

b 0.00000 0.02306

c 0.00000 0.05661

d 0.00000 0.06925

e 0.21460 0.00000

f 0.00000 0.03547

g 0.00016 0.02780

h 0.00000 0.07321

i 0.12308 0.00000

j 0.00000 0.00364

k 0.00177 0.00708

l 0.00000 0.07258

m 0.00000 0.03880

n 0.00000 0.11439

o 0.13184 0.00000

p 0.00000 0.03703

q 0.00000 0.00153

r 0.00000 0.10202

s 0.00000 0.11024

t 0.00971 0.14483

u 0.04514 0.00000

v 0.00000 0.01617

w 0.00000 0.02298

x 0.00000 0.00446

y 0.00000 0.02599

z 0.00000 0.00110

space 0.33413 0.01178

Fig. 2 HMM detection results from [33]

(with two hidden states) on a sequence of opcodes extracted
from 160 NGVCK variants. The test results given in Fig. 2
were obtained using 40 NGVCK “family” viruses and 40
“normal” (or benign) files, along with a smaller number of
“non-family” viruses. The 40 NGVCK test files were not
among those used for training. Also, Cygwyn utility files
were used as the benign files, and the non-family viruses
consisted of non-NGVCK viruses. The scores are given in

Fig. 3 HMM detection defeated [17]

the form of log likelihood per opcode (LLPO) that is, the
scores are normalized per opcode so that files of different
lengths can be compared.

In Fig. 2, we could easily set a threshold that would pro-
vide complete separation between the family viruses and the
benign files. That is, we can distinguish between the NGVCK
family viruses and the benign files using an HMM trained on
opcode sequences. The only misclassifications come from
the set of non-family viruses, some of which would be clas-
sified as family viruses, and some of which would be
classified as benign. The fact that some non-family viruses
are also detected could be considered a feature—as opposed
to a flaw—of the technique.

In the paper [17] a metamorphic generator was developed
for the purpose of defeating the HMM-based detection pre-
sented in [33]. The metamorphic generator in [17] relies pri-
marily on inserting dead code extracted from normal files.
In effect, this makes the resulting viruses look more like
benign files, thereby making it more difficult to distinguish
the viruses from the benign files.

Figure 3 gives typical test results from the paper [17].
For these results, the same procedure as in [33], was used,
that is, an HMM was trained on extracted opcode sequences,
and viruses and benign files were scored using the resulting
model.

The results in Fig. 3 show that an HMM-based detector
can be defeated by a properly constructed metamorphic gen-
erator. Consequently, there is a need to consider additional
detection techniques for metamorphic malware. In this paper,
we consider an approach based on opcode graphs and com-
pare it to the HMM-based technique discussed in this section.

2.4 Similarity and metamorphic detection

Software similarity is a potentially useful means for detecting
metamorphic malware. If we can determine a characteristic
common to all members of a metamorphic family, then we
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can potentially use this characteristic to detect metamorphic
code belonging to this family. Note that such an approach is
not limited to metamorphic malware, but it is one of the few
viable options available when dealing with well-designed
metamorphic code.

Various opcode-based similarity measures have been pro-
posed specifically for metamorphic detection, including
n-gram similarity [33], chi-squared (statistical) similar-
ity [11], edit distance [21], and pairwise sequence align-
ment [2,21]. In addition, opcode-based machine learning
techniques have been applied to the metamorphic detection
problem—examples include hidden Markov models (as dis-
cussed above in Sect. 2.3) and profile hidden Markov mod-
els [2]. These techniques are aimed at deriving a model that
captures the similarity of a given metamorphic family. Yet
another approach to opcode-based metamorphic detection is
to employ data mining techniques, such as cosine similar-
ity [14]. In this paper, we consider a metamorphic detection
strategy based on opcode graph similarity.

2.5 Opcode graph similarity

The paper [1] proposes an interesting graph-based technique
for virus detection. Given an executable file, the sequence
of opcodes is extracted and a weighted directed graph is

constructed as follows. Each distinct opcode that appears
in the program opcode sequence is a node in directed graph.
A directed edge is inserted from a node to each possible suc-
cessor node, that is, each successor opcode. Edge weights
give the probability of the corresponding successor node. To
illustrate the process, consider the program trace in Table 2,
where some lines have been abbreviated to save space (as
indicated by “. . .”).

From the program in Table 2, we extract the opcode
sequence and tabulate counts for pairs of consecutive
opcodes. That is, we are interested in opcode digram fre-
quencies. For this particular program, we obtain the counts in
Table 3. For example, in the sample program, the opcodeMOV
is immediately followed by the opcodeCALL three times (see
lines 17, 35, and 43 in Table 2). Consequently, there is a 3
in the MOV row and CALL column in Table 3.

Using the digram frequency counts in Table 3, we con-
vert the counts to probabilities by dividing the count in
each cell by its corresponding row sum. The resulting
matrix appears in Table 4. For example, MOV occurs 18
times, while (MOV,CALL) occurs 3 times. Therefore, the
(MOV,CALL) cell in Table 4 contains the probability 3/18 =
1/6.

The entries in Table 4 give the corresponding edge weights
in the opcode directed graph. The opcode graph for the

Table 2 Assembly language
instruction trace 1 PUSH ebp 24 MOV ebp, esp

2 MOV ebp, esp 25 PUSH edi

3 SUB esp, 8 26 PUSH esi

4 AND esp, 0FFFFFFF0h 27 PUSH ebx

5 MOV eax, ds:dword_404000 28 SUB esp, 7Ch

6 TEST eax, eax 29 MOV edi, [ebp+arg_0]

7 JZ Short loc_401013 30 MOV esi, [ebp+arg_4]

8 INT 3 31 AND esp, 0FFFFFFF0h

9 FNSTCW [ebp+var_2] 32 CALL sub_401930

10 MOVZX eax, [ebp+var_2] 33 CALL main

11 AND eax, 0FFFFF0C0h 34 MOV [ebp+var_4C], 0

12 MOV [ebp+var_2], ax 35 MOV [esp+88h+var_88], . . .

13 MOVZX eax, [ebp+var_2] 36 CALL CORBA_exception_init

14 OR eax, 33Fh 37 MOV dword ptr . . .

15 MOV [ebp+var_2], ax 38 XOR edx, edx

16 FLDCW [ebp+var_2] 39 MOV eax, offset . . .

17 MOV [esp+8+var_8], . . . 40 MOV [esp+88h+var_78], edx

18 CALL sub_401960 41 MOV [esp+88h+var_7C], eax

19 LEAVE 42 MOV dword ptr . . .

20 RETN 43 MOV [esp+88h+var_88], . . .

21 ALIGN 10h 44 CALL poptGetContext

22 PUSH ebp 45 MOV ebx, eax

23 MOV eax, 10h 46 LEA esi, [esi+0]
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Fig. 4 Weighted directed graph for code in Table 2

program in Table 2 appears in Fig. 4. However, for all com-
putations involving the opcode graph, we use the array of
edge weights. That is, we use the digram probability array in
Table 4, not the graphical representation in Fig. 4. This op-
code graph is the basis for the graph scoring technique in [1]
as well as the metamorphic similarity measure discussed in
this paper.

Next, we give a very brief summary of the opcode graph
technique in [1]. First, the opcode sequence is extracted and
the weighted directed opcode graph is constructed, as dis-
cussed above. Graph kernel techniques [9] are then used to
obtain a score corresponding to the graph. Finally, a sup-
port vector machine (SVM) is used for classification. That
is, based on training data, an SVM determines whether a
given score corresponds to a virus or a benign file.

The authors of [1] test their approach on a large sam-
ple of known malware and benign files, and they compare
their classification results with popular anti-virus software.
Some of the results from [1] are summarized here in Table 5.
These results are based on 615 instances of benign software
and 1615 instances of malware. The graph kernel technique
is clearly superior to a standard n-gram model and, in the
sense of overall accuracy, it is far superior to all of the AV
software tested. However, it is apparent from these results
that AV software companies designed their products so as to
avoid false positives at all cost—even if that cost includes
a large number of false negatives. While interesting in their
own right, direct comparisons of research techniques to AV
software may not be particularly informative, since any AV
software could certainly improve its accuracy by accepting
more false positives. In any case, the opcode graph technique
yields impressive results.

Our proposed graph technique is similar to that in [1], but
simpler, and hence more efficient. In addition, we apply our
technique to metamorphic detection and compare the results
to previous related work. In the next section, we discuss the
design of our graph technique in detail.

Table 5 Summary of results from [1]

Technique Accuracy False False
positives negatives

Graph kernel 96.41 47 33

n-gram 82.15 300 98

AV0 73.32 0 595

AV1 53.86 1 1028

AV2 49.60 0 1196

AV3 43.27 1 1264

AV4 42.96 1 1271

3 Opcode graph-based similarity

Here, we consider a graph technique base on the same
opcode graph used in the research presented in [1]. However
our technique is considerably simpler and somewhat more
efficient, and we are focused on the problem of metamorphic
detection. Our goal is to develop a similarity measure—based
on extracted opcode sequences—that can be used to compare
executable files. In Sect. 4 we apply this similarity measure
to the problem of metamorphic detection.

As discussed in Sect. 2.5, given an executable file, we
extract the opcode sequence and generate a weighted directed
graph based on opcode digrams. To this point, our technique
parallels the approach used in [1]. But, instead of using graph
kernels to generate scores and SVMs for classifications, we
directly compare the opcode graphs.

Let N be the number of distinct opcodes under consider-
ation and map the opcodes to {0, 1, 2, . . . , N − 1}. Let A =
{ai j } and B = {bi j } be the edge-weight matrices correspond-
ing to executable files. Recall that an example of such a
matrix appears in Table 4. Note that both A and B are N × N
and the opcode numbering is the same for both. That is, ai j

and bi j represent the probability that opcode i is followed by
opcode j in programs A and B, respectively.

Now, to compare these matrices, we compute the score

score(A, B) = 1

N 2

⎛

⎝
N−1∑

i, j=0

|ai j − bi j |
⎞

⎠

2

. (1)

If A = B, then the minimum score, namely, score = 0,
is achieved. Suppose that ai j = 1 and bik = 1, with j �= k.
Then we obtain the maximum possible row sum,

N−1∑

j=0

|ai j − bi j | = 2.

If this maximum row sum is achieved for each row, then we
obtain the maximum possible score of 4. Consequently,
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0 ≤ score(A, B) ≤ 4

for all A and B.
Other scoring functions were tested, but none proved supe-

rior to (1) for our purposes. In addition, various graph com-
parison techniques were considered, such as those in [12,20],
but most were costly to compute and none offered a clear
advantage to the straightforward calculation in (1).

To use the score function in (1) for metamorphic detec-
tion, we first need to determine a score threshold. To do so,
the following process is used:

1. Determine the opcode graphs for a collection of meta-
morphic family viruses.

2. Determine the opcode graphs for a representative sam-
ple of benign files.

3. Using (1), compute the scores for all pairs of metamor-
phic family viruses from step 1.

4. Using (1), compute the scores for all pairs consisting of
one family virus from step 1 and one benign file from
step 2.

5. Set a threshold based on the scores in steps 3 and 4.

Once we have set a threshold, we can use any randomly
selected metamorphic file from the set in step 1 for scoring.
That is, given a file that we want to score, we first determine
its opcode graph, then score the resulting graph against the
opcode graph from a known metamorphic file. If the resulting
score is below our threshold, we classify the file as belong-
ing to the metamorphic family; otherwise it is classified as
benign. Figure 5 shows the flow of our graph technique imple-
mentation.

4 Results

Our test set of metamorphic viruses consists of 200 NGVKC
files [32]. That is, all of our metamorphic viruses belongs
to the NGVCK family. In [33], these viruses are shown to
be the most highly metamorphic of any of the virus con-
struction kits tested. In addition, a wide variety of metamor-
phic detection techniques have been applied to this set of
viruses [2,7,11,21,22,27,33], so we have a basis for com-
paring the effectiveness of our technique to previous work.

Our set of benign files consists of 41 cygwin utility
files [6]. The cygwin utility files were used as representa-
tive benign files in several previous studies, including [33].
Finally, we also consider a third set containing 25 non-family
virus files.

The results in [33], show that this set of metamorphic
files can be distinguished from the benign files using an
HMM-based technique. Our initial tests are aimed at deter-
mining whether our graph-based technique is competitive
with HMM-based detection.

Using the approach outlined in Sect. 3 we determine a
threshold. The viability of our proposed technique is depen-
dent on there being a useful separation between scores for
the following two cases:

• Metamorphic virus versus metamorphic virus
• Benign file versus metamorphic virus

Although not strictly necessary for malware detection, we
also consider the following cases:

Fig. 5 Flow of the graph
technique
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• Benign file versus non-family virus
• Benign file versus benign file

The graphs in Figs. 6 and 7 give typical results correspond-
ing to the first two case listed above, that is, the “metamorphic
versus metamorphic” case and the “benign versus metamor-
phic” case, respectively. Note that the highest score in Fig. 6
is 0.525 while the lowest score in Fig. 7 is 0.588, and hence
we have significant separation as required for ideal detection.
These results show that our graph-based detection technique
is on par with the HMM-based approach in [33], which also
yielded no false positives or false negatives.

Figure 8 gives results for the case where benign files are
scored against other benign files. As mentioned above, this
is not directly relevant for malware detection, but it does
illuminate some properties of our similarity measure.

Note that the benign versus benign scores in Fig. 8 lie
within a similar range as the metamorphic versus metamor-
phic scores in Fig. 6. These graphs tell us that, according to
our graph similarity measure, NGVCK viruses are typically
about as different from each other as any two randomly cho-
sen benign files. While this does indicates a high degree of
metamorphism, it is actually considerably less than some pre-
viously studied similarity scores. In other words, according
to previous similarity measures, NGVCK viruses are signif-
icantly more different from each other than benign files are
different from each other. For example, for an n-gram based
similarity measure analyzed in [33], pairs of NGVCK viruses
are far more dissimilar than pairs of benign files. It could be
considered a strength of our graph-based approach that the
NGVCK viruses appear to be less metamorphic than with
other similarity measures.

Figure 9 gives similarity results when benign files are com-
pared to non-family viruses. The results are comparable to
those in Fig. 7 and indicate that our similarity measure is not
restricted to metamorphic detection.

Figure 10 shows all four of the graphs from Figs. 6, 7,
8, and 9 plotted on the same axes. Also, we note that many
additional graphs of results can be found in [25].

5 Attacks on graph-based detection

In this section, we consider the robustness or our proposed
metamorphic detection technique. In particular, we consider
two different approaches that a metamorphic virus writer
might follow to try to evade our detection technique. First,
we consider the effect of removing uncommon opcodes from
the malware. Second, we turn our attention to modifying the
morphing technique so that the resulting malware is more
similar to benign files. This latter approach was used in [17]
to effectively defeat the HMM-based detection.

5.1 Uncommon opcode removal

Consider again the opcode graph in Fig. 4 or, equivalently,
the opcode digram probability matrix in Table 4. By con-
struction, the outgoing probabilities for each node sum to
one. From the scoring formula in (1), we see that all opcodes
are weighted the same so that, for example, MOV carries no
more weight than INT, in spite of the fact that the former is
typically the most common opcode, while the latter is rare.

Consequently, it could be argued that our graph-based sim-
ilarity score gives excessive weight to uncommon opcodes.
That is, it might seem that the score is little more than a
glorified heuristic that detects malware based primarily on
a relatively few rare opcodes that do not typically occur in
benign code. If this is indeed the case, a virus writer who
could remove these rare opcodes would evade detection by
our opcode graph similarity score.

To test this hypothesis, we removed about 80 % of all op-
codes that appear in the virus files, but do not occur in the

Fig. 6 Similarity scores for metamorphic versus metamorphic
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Fig. 7 Similarity score for benign versus metamorphic

Fig. 8 Similarity scores for benign versus benign

benign files. Figure 11 shows the before and after results—
the upper line is the “metamorphic versus metamorphic” case
before opcode removal (this is the same graph that appears
in Fig. 6) while the lower line shows the same case after
these rare opcodes have been removed. The scores are only
slightly weaker and Fig. 12 confirms that even after removing
the vast majority of rare opcodes, we still have clear separa-
tion between the “metamorphic versus metamorphic” and the
“benign versus metamorphic” cases. That is, we still have an
effective detection strategy based on opcode graph similarity.

Note that to remove the rare opcodes, we simply expunged
the opcodes from the directed graph. However, a malware
writer would have to modify the virus code so as to avoid
these opcodes, which is a much more involved task. In any
case, given the results in Figs. 11 and 12, a virus writer
appears to have little to gain from such an effort.

5.2 Modified morphing engine

In [17], a morphing engine was developed for the sole pur-
pose of evading HMM-based detection. The morphing con-
sists primarily of inserting code from benign files directly into
malware files and the inserted code is largely “dead code,”
in the sense that it is not executed.

The paper [17] shows that inserting dead code from benign
files into viruses can be an effective strategy for evading
HMM-based detection. However, it is also shown that it
is much more effective to insert the dead code in blocks,
as opposed to having the dead code more evenly disbursed
throughout the morphed virus.

We conducted similar experiments for our proposed
graph-based similarity measure. Two types of morphing
are used. In the first case, which we refer to as “block
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Fig. 9 Similarity scores for benign versus non-family viruses

Fig. 10 Combined graph

morphing,” we insert the dead code as a single block. In the
second case, which we refer to as “random morphing,” we
distribute the dead code approximately uniformly through-
out the morphed virus. These strategies represent the extreme
cases for inserting dead code. As in Sect. 4, for all experi-
ments in this section, NGVCK viruses were selected as our
base virus files.

We conducted experiments for both block morphing and
random morphing with various dead code insertion percent-
ages. These percentages are given in terms of the size of
the original virus file. For example, if the source virus file
has 100 lines, to morph it at 20 % we extract 20 lines from a
randomly-selected benign file and insert these lines into the
virus file. Note that these steps all occur at the assembly code
level, and we make no effort to create a functioning program.
To actually use this technique, a virus writer would have to
work much harder, taking care that none of the dead code
was executed. A virus writer would also want to make some

attempt to disguise the fact that the dead code is actually dead
code, otherwise it could be ignored in the scanning process. In
addition, unless a virus writer is careful, excessive dead code
insertion might provide a simple heuristic for detecting the
morphed viruses (e.g., an excessive number of JMP instruc-
tions used to avoid dead code). By ignoring these important
practical issues, we are, in effect, considering the worst-case
scenario from the virus detection point of view.

Results for block morphing in the “benign versus mor-
phed viruses” case appears in Fig. 13. Here, the morphing
percentage ranges from 10 to 100 %. It is important to note
that for each score computation, we scored the morphed virus
against the benign file from which the morphing code was
extracted. This is certainly a worst-case scenario, since we
expect these programs to be, in general, much more sim-
ilar than if we score the morphed virus against a randomly
selected benign file. As expected, the general trend is that the
more code that is copied from a benign file into a morphed

123



Opcode graph similarity and metamorphic detection 49

Fig. 11 Metamorphic versus metamorphic: Before and after opcode removal

Fig. 12 Metamorphic versus metamorphic and benign versus metamorphic after rare opcode removal

Fig. 13 Block morphing: Benign versus morphed virus

file, the more closely the score approaches that of the “benign
versus benign” case. That is, as the morphing increases, the
scores decrease, making detection more difficult. This is as
expected.

In Fig. 14 we give detection results when 30 % block morp-
hing is used. That is, we compare the “benign versus mor-
phed virus” results with block morphing of 30 % (as given in
Fig. 13) to the “morphed virus versus morphed virus” results,
again with 30 % block morphing. In this case, we clearly have
some misclassifications, regardless of how we set the thresh-
old. For example, it we set the threshold at 0.5, there are 4
false positives and 6 false negatives.

For comparison, we also implemented the HMM-based
classification in [33] using the same 30 % block morphed
files used to obtain the results in Fig. 14. These HMM results
appear in Fig. 15.

Using a threshold of −3.8, the HMM detector Fig. 15
yields 1 false positive and 9 false negatives. Consequently,
the results for the HMM detection are comparable to those for
the graph-based similarity detection in Fig. 14. However, it is
worth noting that the HMM has a significant advantage in this
case. Recall that for the graph similarity detection results in
Fig. 14, for each score computation, we compared the mor-
phed virus with the benign file from which the morphing
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Fig. 14 Morphed virus versus morphed virus and benign versus morphed virus: 30 % block morphing

Fig. 15 HMM 30 % block morphed

code was extracted. That is, we took the worst-case scenario
in each and every score computation. For the HMM, no com-
parable worst-case scenario is possible. The HMM is trained
on a set of morphed virus files, and then scored against a
different set of morphed files and a set of benign files. That
is, the HMM represents an average case, not a specific case.

Perhaps a fairer comparison would be to select a random
benign file for the graph scoring technique, as opposed to
selecting the specific benign file from which the morphing
code was extracted. Figure 16 gives results for this particu-
lar case. These results demonstrate that, in practice, we can
likely tolerate significantly higher levels of morphing than
indicated by the results in Fig. 14.

Next, we consider random morphing. As with block
morphing, the morphing code is extracted from a randomly
selected benign file. However, instead of inserting the code as

a block, we disperse the morphing code approximately uni-
formly throughout the morphed virus. Again, we ignore the
practical issues involved in making a functioning program out
of the resulting morphed file—we simply modify the opcode
sequence. As mentioned above, this is a worst-case scenario
from the virus detection perspective. As an aside, we note
that these practical issues are much more challenging in the
case of random morphing than for block morphing.

Figure 17 shows the results for this case. Note that this
figure is the random morphing analog of the block morphing
case that appears in Fig. 13.

The results in Fig. 17 indicate that as the random morp-
hing increases, the morphed viruses actually become more
different from each other. Initially, this might seem coun-
terintuitive. However, if we consider the effect of random
morphing on the score calculation, then these result make
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Fig. 16 Metamorphic versus random benign

Fig. 17 Random morphing: Benign versus morphed virus

sense. The score is based on consecutive pairs of opcodes.
With random morphing, we are making essentially ran-
dom changes to consecutive pairs of opcodes—increased
morphing only increases this effect. Consequently, two ran-
domly-morphed viruses are, in the sense of our score cal-
culation, almost certainly “farther apart” than before the
morphing, and they are also almost certainly farther from a
given benign file. In effect, we are randomizing the weights
in the opcode graph. In contrast, block morphing has the
effect of merging the virus graph with (part of) a benign
graph, thereby making the morphed virus more similar to the
benign file, at least with respect to the opcode graph score
in (1).

The bottom line is that random morphing would tend to
make the detection problem easier, not more difficult. Finally,
we note that a similar effect has been observed with HMM-
based detection. That is, the more random the morphing (in
the sense of being spread uniformly throughout the virus), the
less effective the morphing is at defeating the HMM detec-
tor [17].

6 Conclusions

In this paper, we considered a similarity score based on op-
code graphs extracted from executable files. We applied this
score to the challenging problem of metamorphic malware
detection. The score was shown to be effective—under some
plausible scenarios it outperformed a previously developed
technique based on hidden Markov models.

Some relevant open questions remain. The score used in
the tests discussed here is given in (1). Alternative scoring
functions are considered in [25], where it is noted that minor
modifications to the scoring function tend to have surpris-
ingly large effects on the results. It would be interesting to
explore this more carefully, since it might be possible to find
a stronger scoring function.

A more sophisticated classification scheme might offer
a slight improvement in classification rates. For example,
elementary techniques such as linear discriminant analysis
(LDA) or quadratic discriminant analysis (QDA) could be
used, or more advanced methods could be applied.
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It might be useful to combine our opcode graph similar-
ity technique with other techniques, such as the HMM-based
detector in [33]. Such a combined approach could leverage
the relative strengths of each of its components to yield a
stronger overall detector.

Finally, it would be useful to have a standard metamorphic
malware dataset so that proposed detection schemes could
be compared, based on their performance on this standard
data. This approach has worked well in other security-related
research areas. For example, in the field of masquerade detec-
tion—a problem that arises in intrusion detection—there is a
standard dataset that all proposed systems are tested against;
see, for example [13]. Although this masquerade dataset, the
so-called Schonlau dataset [26], is far from perfect, it pro-
vides a method for directly comparing the effectiveness of
proposed systems.

References

1. Anderson, B. et al.: Graph-based malware detection using dynamic
analysis. J. Comput. Virol. 7(4), 247–258 (2011)

2. Attaluri, S., McGhee, S., Stamp, M.: Profile hidden Markov mod-
els and metamorphic virus detection. J. Comput. Virol. 5(2), 151–
169 (2009)

3. Aycock, J.: Computer Viruses and Malware. Springer,
Berlin (2006)

4. Al daoud, E., et al.: Detecting metamorphic viruses by using arbi-
trary length of control flow graphs and nodes alignment. In: ICIT
2009 Conference—Bioinformatics and Image. http://www.ubicc.
org/files/pdf/2_363.pdf

5. Cesare, S.: Faster, more effective flowgraph-based mal-
ware classification. http://www.ruxcon.org.au/2011-talks/
faster-more-effective-flowgraph-based-malware-classification/

6. Cygwin: Cygwin utility files. http://www.cygwin.com/
7. Desai, P., Stamp, M.: A highly metamorphic virus generator. Int.

J. Multimedia Intell. Secur. 1(4), 402–427 (2010)
8. Eskandari, M., Hashemi, S.: Metamorphic malware detection

using control flow graph mining. Int. J. Comput. Sci. Net-
work Secur. 11(12), 1–6 (2011). http://paper.ijcsns.org/07_book/
201112/20111201.pdf

9. Gartner, T. et al.: On Graph Kernels: Hardness Results and Efficient
Alternatives. pp. 129–143. Springer, Berlin (2003)

10. Halfpap, B.: Artificial immune system virus detector (2010). http://
resheth.wordpress.com/tag/virus-detection/

11. Hii, A.: Chi-squared distance and metamorphic detection. Master’s
report, Department of Computer Science, San Jose State University
(2011)

12. Hlaoui, A., Wang, S.: A New Algorithm for Inexact Graph Match-
ing. http://www.dmi.usherb.ca/~hlaoui/icpr2002.pdf

13. Huang, L., Stamp, M.: Masquerade detection using profile hidden
Markov models. Comput. Secur. 30(8), 732–747 (2011)

14. Karnik, A., Goswami, S., Guha, R.: Detecting obfuscated viruses
using cosine similarity analysis. In: First Asia International Con-
ference on Modelling & Simulation, pp. 165–170 (2007)

15. Konstantinou, E.: Metamorphic Virus: Analysis and Detection.
http://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-
02.pdf (2008)

16. Lee, J., Jeong, K., Lee, H.: Detecting metamorphic malwares using
code graphs. In: Proceedings of SAC10 (2010)

17. Lin, D., Stamp, M.: Hunting for undetectable metamorphic
viruses. J. Comput. Virol. 7(3), 201–214 (2011)

18. Nachenberg, C.: Understanding and managing Polymorphic
viruses. In: Symantec Enterprise Papers, vol. XXX. http://www.
symantec.com/avcenter/reference/striker.pdf

19. OECD, Malicious software (malware): A security threat
to the Internet economy. http://www.oecd.org/dataoecd/53/34/
40724457.pdf

20. Ogata, H., et al.: A heuristic graph comparison algorithm and its
application to detect functionally related enzyme clusters. http://
www.ncbi.nlm.nih.gov/pmc/articles/PMC110779

21. Patel, M.: Similarity tests for metamorphic virus detection.
Master’s report, Department of Computer Science, San Jose
State University. http://www.cs.sjsu.edu/faculty/stamp/students/
patel_mahim.pdf (2011)

22. Priyadarshi, S.: Metamorphic detection via emulation. Mas-
ter’s report, Department of Computer Science, San Jose
State University. http://www.cs.sjsu.edu/faculty/stamp/students/
priyadarshi_sushant.pdf (2011)

23. Rabiner, L.: A tutorial on hidden Markov models and selected
applications in speech recognition. Proc. IEEE 77(2), 257–
286 (1989)

24. Radev, D.: Lecture 13—Eigenvectors, Eigenvalues, Stochas-
tic Matrices. http://www1.cs.columbia.edu/~coms6998/Notes/
lecture13.pdf (2008)

25. Runwal, N.: Graph technique for metamorphic virus detection.
Master’s report, Department of Computer Science, San Jose
State University. http://www.cs.sjsu.edu/faculty/stamp/students/
runwal_neha.pdf (2011)

26. Schonlau, M. et al.: Computer intrusion: detecting masquer-
ades. Stat. Sci. 15(1), 1–17 (2001)

27. Shah, A.: Approximate disassembly using dynamic program-
ming. Master’s report, Department of Computer Science, San Jose
State University. http://www.cs.sjsu.edu/faculty/stamp/students/
shah_abhishek.pdf (2010)

28. SnakeByte: Next generation virus construction kit (NGVCK)
(2002). http://vx.netlux.org/vx.php?id=tn02

29. Stamp, M.: Information Security: Principles and Practice, 2nd
edn. Wiley, New York (2011)

30. Stamp, M.: A revealing introduction to hidden Markov models.
http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf (2011)

31. Szor, P., Ferrie, P.: Hunting for metamorphic, Symantec,
2001. http://www.symantec.com/avcenter/reference/hunting.for.
metamorphic.pdf

32. Heavens, V.X.: http://vx.netlux.org/
33. Wong, W., Stamp, M.: Hunting for metamorphic engines. J. Com-

put. Virol. 2(3), 211–229 (2006). http://www.cs.sjsu.edu/faculty/
stamp/students/Report.pdf

123

http://www.ubicc.org/files/pdf/2_363.pdf
http://www.ubicc.org/files/pdf/2_363.pdf
http://www.ruxcon.org.au/2011-talks/faster-more-effective-flowgraph-based-malware-classification/
http://www.ruxcon.org.au/2011-talks/faster-more-effective-flowgraph-based-malware-classification/
http://www.cygwin.com/
http://paper.ijcsns.org/07_book/201112/20111201.pdf
http://paper.ijcsns.org/07_book/201112/20111201.pdf
http://resheth.wordpress.com/tag/virus-detection/
http://resheth.wordpress.com/tag/virus-detection/
http://www.dmi.usherb.ca/~hlaoui/icpr2002.pdf
http://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-02.pdf
http://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-02.pdf
http://www.symantec.com/avcenter/reference/striker.pdf
http://www.symantec.com/avcenter/reference/striker.pdf
http://www.oecd.org/dataoecd/53/34/40724457.pdf
http://www.oecd.org/dataoecd/53/34/40724457.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC110779
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC110779
http://www.cs.sjsu.edu/faculty/stamp/students/patel_mahim.pdf
http://www.cs.sjsu.edu/faculty/stamp/students/patel_mahim.pdf
http://www.cs.sjsu.edu/faculty/stamp/students/priyadarshi_sushant.pdf
http://www.cs.sjsu.edu/faculty/stamp/students/priyadarshi_sushant.pdf
http://www1.cs.columbia.edu/~coms6998/Notes/lecture13.pdf
http://www1.cs.columbia.edu/~coms6998/Notes/lecture13.pdf
http://www.cs.sjsu.edu/faculty/stamp/students/runwal_neha.pdf
http://www.cs.sjsu.edu/faculty/stamp/students/runwal_neha.pdf
http://www.cs.sjsu.edu/faculty/stamp/students/shah_abhishek.pdf
http://www.cs.sjsu.edu/faculty/stamp/students/shah_abhishek.pdf
http://vx.netlux.org/vx.php?id=tn02
http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf
http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf
http://vx.netlux.org/
http://www.cs.sjsu.edu/faculty/stamp/students/Report.pdf
http://www.cs.sjsu.edu/faculty/stamp/students/Report.pdf

	Opcode graph similarity and metamorphic detection
	Abstract
	1 Introduction
	2 Background
	2.1 Malware detection
	2.2 Hidden Markov models
	2.3 HMM-based metamorphic detection
	2.4 Similarity and metamorphic detection
	2.5 Opcode graph similarity

	3 Opcode graph-based similarity
	4 Results
	5 Attacks on graph-based detection
	5.1 Uncommon opcode removal
	5.2 Modified morphing engine

	6 Conclusions
	References


