
J Comput Virol (2012) 8:1–13
DOI 10.1007/s11416-011-0157-5

ORIGINAL PAPER

Shadow attacks: automatically evading system-call-behavior
based malware detection

Weiqin Ma · Pu Duan · Sanmin Liu · Guofei Gu ·
Jyh-Charn Liu

Received: 4 June 2011 / Accepted: 20 November 2011 / Published online: 20 December 2011
© Springer-Verlag France 2011

Abstract Contemporary malware makes extensive use of
different techniques such as packing, code obfuscation, poly-
morphism, and metamorphism, to evade signature-based
detection. Traditional signature-based detection technique is
hard to catch up with latest malware or unknown malware.
Behavior-based detection models are being investigated as a
new methodology to defeat malware. This kind of approaches
typically relies on system call sequences/graphs to model a
malicious specification/pattern. In this paper, we present a
new class of attacks, namely “shadow attacks”, to evade cur-
rent behavior-based malware detectors by partitioning one
piece of malware into multiple “shadow processes”. None
of the shadow processes contains a recognizable malicious
behavior specification known to single-process-based mal-
ware detectors, yet those shadow processes as an ensem-
ble can still fulfill the original malicious functionality. To
demonstrate the feasibility of this attack, we have developed
a compiler-level prototype tool, AutoShadow, to automat-
ically generate shadow-process version of malware given
the source code of original malware. Our preliminary result
has demonstrated the effectiveness of shadow attacks in
evading several behavior-based malware analysis/detection

W. Ma · P. Duan · S. Liu (B) · G. Gu · J.-C. Liu
Department of Computer Science and Engineering,
Texas A&M University, College Station,
TX 77843-3112, USA
e-mail: sanminliu@gmail.com

W. Ma
e-mail: weiqinma@cse.tamu.edu

P. Duan
e-mail: dp1979@cse.tamu.edu

G. Gu
e-mail: guofei@cse.tamu.edu

J.-C. Liu
e-mail: liu@cse.tamu.edu

solutions in real world. With the increasing adoption of multi-
core computers and multi-process programs, malware writ-
ers may exploit more such shadow attacks in the future.
We hope our preliminary study can foster more discus-
sion and research to improve current generation of behav-
ior-based malware detectors to address this great potential
threat before it becomes a security problem of the epidemic
proportions.

1 Introduction

Malware, such as viruses, worms, trojan, spyware, root-
kits, and botnets, are a prevalent and severe threat to Inter-
net security. Malware writers have developed sophisticated
techniques to evade existing signature-based detection tools.
These evasion techniques include packing, code obfusca-
tion [20], polymorphism, and metamorphism [23]. These
techniques generate different variants of a malware pro-
gram, i.e., every instance looks different (syntactically) but
still maintains the same function (semantically). To nullify
those evasion techniques defenders began to develop coun-
termeasures [1,3,12,19,24] that aimed to recognize malware
based on their behaviors, which are typically characterized by
sequences/graphs of system calls since system calls are inev-
itable interaction interfaces between applications and OS.
This behavior based solution detects malicious behaviors of
malware families by matching suspicious system calls with
existing malicious behavior specifications built on certain
system call sequences or graphs [1,3,8,30]. Thus this behav-
ior-based detection solution is more robust and hard to evade
by using traditional attacking techniques.

We believe that knowing the limitations of the contempo-
rary behavior-based malware detection research is an impor-
tant problem. In this paper, we propose a new class of attack,

123

2 W. Ma et al.

“shadow attack”, to counter behavior-based malware analy-
sis by splitting critical system call sequences/graphs of mal-
ware and exporting them to separate processes. Specifically,
shadow attacks create shadow process communication (SPC)
channels between the rewritten malware and its shadow
processes to achieve the original malicious functionalities.
As of writing of this paper, most behavior-based malware
detectors are designed based on malicious specifications in
terms of system call sequences/graphs of individual sin-
gle-process program (or these with simple inheritance/fork
relationships). It is worth noting that the practically used
system call sequence/graph behaviors are rarely just a single
system call because that will have high false positive rates as
likely many normal programs could use the same single sys-
tem call with similar parameters as a malware does. There-
fore, these behavior-based malware detectors could hardly
detect shadow processes because they only contain small seg-
ments (e.g., just one system call) of the malicious behavior
of malware.

As behavior-based malware detection becomes more
prevalent, understanding its weaknesses and evasion vec-
tors is very important to improve its resilience. We inves-
tigate the feasibility of indirect, implicit SPC design so that
explicit in-host SPCs can be concealed with mixed implicit
chains or even with the help of remote network coordina-
tion. We also adopt the technique proposed in [22] to hide
local SPC among shadow processes by transforming data
dependence to control dependence to evade dynamic infor-
mation flow and data tainting based detections [25]. Given the
myriad collections of process partition and coordination con-
structs, our study unveils the potential evasion vectors of this
attack.

We have developed a compiler-level prototype tool, Auto-
Shadow, for malware writers to automatically make source to
source and source to binary transformation of C/C++ based
malware codes. We applied AutoShadow to several real-
world malware examples and found that our technique can
successfully export critical system calls into shadow pro-
cesses. Our preliminary results show that shadow processes
can evade the detection from real-world behavioral detec-
tion/analysis tools such as Norman Sandbox [28].

In short, this paper makes the following contributions:

• We present a new, general class of attacks to conceal mal-
ware behaviors in multiple shadow processes and provide
a systematic and in-depth study. Shadow attacks can be
automated for partition and export of critical system calls
or other functions into shadow processes. This kind of
new attack can help us better understand the limitation of
existing behavior-based malware detection techniques.

• We develop a compiler-level prototype system, Auto-
Shadow, to demonstrate the practicality of automatic
shadow attacks using several real-world malware samples.

Table 1 Notations of our model

Description Set Instance

Process P = (p1, . . ., pn) ∀i ∈ [1, . . ., n], pi ∈ P

Process state Q = (q1, . . ., qm) ∀i ∈ [1, . . ., m], qi ∈ Q

System call S = (s1, . . . , sk) ∀i ∈ [1, . . ., k], si ∈ S

Table 2 System call relationship

Symbol Description

si ∧ s j Both si and s j happen, si , s j ∈ S

si ∨ s j Either si or s j happen, si , s j ∈ S

si → s j si happens before s j

Fig. 1 Malware specification
graph of download-execution:
recv ∧ open → write → exec

recv

exec

open

write

• Experimental results suggest that shadow attacks can
effectively conceal behaviors of malware and evade sev-
eral current behavioral detection solutions. Although we
provide some defense insights, the rich functionalities of
SPC give malware writers a new ground to protect their
properties. We hope this study can foster more discussion
and research efforts to address this new class of attacks
before they elevate to large scale malware outbreaks.

2 Problem statement

2.1 Problem formulation and illustration

Follow what current behavioral detection approaches do, we
model program behaviors at the system call level. That is,
the behavior of a program is represented by the sequence
of system calls, their I/O parameters and data. The behav-
iors of most malware can be tied to their system call
sequences/graphs. However, when a shadow attack is added
as a part of the malware, this sequence/graph is broken.
Table 1 lists some basic notations that will be used in the
rest of the discussion.

We assume that a system consists of n processes P =
(p1, . . ., pn). Each process can be in any state of Q, which
represents the state of process resources such as memory,
CPU, file, and network. ∀i ∈ [1, . . ., l], si ∈ S denotes a
system call. Table 2 lists different relationships between two

123

Shadow attacks: automatically evading system-call-behavior based malware detection 3

P0

00q

01q

02q

2s

P0' P1'

1sΔ

2sΔ

1s

00q

01q

02q

1sΔ 1s

10q

2s

11q

transfer

transfer

2sΔ

2sΔ

Fig. 2 Illustration of a shadow attack

system calls. γ denotes a set of relation operators between
two system calls, i.e., γ = {∧,∨,→}. We define a malware
specification as M = s1γ s2γ s3..., i.e., a set of sequence and
parameter/data dependence relations of system calls.

Figure 1 shows a typical system call sequence of a mal-
ware specification which attempts to download an executable
file from the Internet and then execute it [1], such as “egg”
downloading and infection.

If an execution trace of a program p is denoted by
Tp, Tp = s1 → s2 → · · · → sn . We define sub(Tp) as
any possible sub-sequence of Tp. Then for a behavior-based
malware detector, we define a detection function

Detect(p) =
{

True, subi(Tp) ∈ M, ∃i ∈ [1 . . . n]
False, subi(Tp) /∈ M,∀i ∈ [1 . . . n]

Definition A shadow attack can be regarded as a pro-
gram transformation function S Ap : given a program p and
some malware specifications M as inputs, S Ap will gener-
ate a multiple-process program p′ with two properties: (i)
Detect(p’)=False while Detect(p)=True, (ii)p′ has the same
functionality as p.

Figure 2 illustrates how the functionality of a program
remains the same when its system call sequence is exported
to shadow processes. That said, the ensemble of shadow pro-
cesses could achieve the same state as the original process had
when same input parameters, output parameter values and
return values are transferred appropriately between shadow
processes. Here, the left side, P0, is the original program,
while the right side, P0’ and P ′

1, is the transformed program.
qi j denotes the state of process Pi for ∀i ∈ [0, 1]and j ∈
[0, 1, 2], si denotes system call. We further define �s j as
the impact of s j over the environment including the changes
to output parameters, return values and changes to system
resources. Through transferring the same input parameter
from P ′

0 to P ′
1, and transferring the output parameter value

and return value from P ′
1 back to P ′

0, the ensemble of P ′
0 and

P ′
1 will achieve the same state as P0 had.

2.2 Bootstrapping shadow attacks

As illustrated above, a shadow attack is essentially a multi-
process malware program. Executing multi-process shadow
attack takes more elaborated steps than a single process
attack. An important question is then how to get this multi-
process malware executed on a single victim machine (i.e.,
the bootstrapping procedure)? Actually there are many ways
to accomplish this. Here we provide two example scenarios
to demonstrate it.

• The partitioned binaries can be spawned from one auxil-
iary process. For example, the partitioned binaries can be
compressed into a self-extraction binary using compres-
sion tools. The advantage of this method is that malware
can be easily and efficiently spread. The disadvantage is
that the processes can be grouped or correlated relatively
easily.

• Web-based malware infection is one of the most pop-
ular malware infection vectors nowadays. The shadow
processes can be (drive-by) downloaded separately into
the target machine and then executed separately. This
approach is practical. Nowadays many Internet browsers,
such as Google Chrome, Microsoft Internet Explorer, are
all implemented in multiple processes. In such an environ-
ment, malware can be downloaded by different processes
via the same (or different) malicious URLs and executed
separately. Correlation of multiple shadow processes will
likely be harder.

Although we give two example scenarios above, we note
that with the increasing popular use of multi-process pro-
grams, and dynamic, complex and variant existing infection
vectors, multi-process malware is very feasible with many
possibilities to arrive at end users.

3 Shadow attack design

In principle, a shadow attack can export any critical system
call in a malware specification to different shadow processes
so that any such specification-based malware detector will
be hard to detect it. One of the key questions in designing
such a shadow attack is how to coordinate these shadow pro-
cesses so that they can still accomplish the original function-
ality as a whole system. In this section, we first show the
general architecture of shadow attack malware. We discuss
how we can design shadow process coordination/communi-
cation (SPC) with different levels of sophistication, flexibil-
ities and stealthiness. In particular, we show the design of
indirect, implicit local SPC using remote network coordina-
tion. We also discuss to hide local SPC from taint-based data
dependence tracking among processes. We leave detailed

123

4 W. Ma et al.

1s

2s

1s
SPC

2s

SPCprocess1
process1

process2

process3

SPC

SPC

Fig. 3 Architecture of shadow attacks

SPC

recv

SPC

SPC

SPC

open
SPC

write

SPC

SPC
exec

SPC

Fig. 4 Shadow attack version of example shown in Fig. 1

discussion on how to automatically partition a given mal-
ware code to its shadow-process version to next section.

3.1 Architecture of shadow attack malware

The design space of Shadow Process Coordination/Commu-
nication (SPC) includes covert channel communication [14]
like covert cache [31] and branch predictor [10], and other
traditional communication approaches like Inter-Process
Communication (IPC) [32], environment variables, files and
registries. In our shadow attacks, we mainly target to export
critical system calls from their original process/code to new
generated (shadow) processes.

For example, in Fig. 3, two critical system calls are initially
in process1. We export s1 and s2 to two processes process2
and process3, respectively. Then, process1 communicates
with process2 and s1 is executed in process2. process2 then
communicates with process1 to return the results of s1. The
same procedure is used to execute s2. As a result, the func-
tionality of process1 is maintained since both s1 and s2 are
executed in the original order.

Using this shadow attack, the previous presented down-
load-then-execute malware example (in Fig. 1) can be trans-
formed to the shadow process version illustrated in Fig. 4.

Our shadow attack uses marshalling [33] to transfer
objects between two separate processes. Basically, there are
two ways to transfer a file descriptor in Unix: Unix Domain

Socket and Stream Pipe [32]. In addition, some general
in-host communication mechanism can transfer file descrip-
tors between processes as proposed in [16]. In Windows,
at least two ways can be used to transfer socket handlers:
WSADuplicateSocket()—a function in the Windows Socket
2 library in the context of the source process which created
the socket; Win32 DuplicateHandle() function.

3.2 Hiding local SPC through remote network coordination

To make local shadow processes’ communication harder to
be noticed, we also design indirect/implicit SPC through
remote network coordination, i.e., we coordinate local
shadow processes via outside stepping nodes. As shown in
Fig. 5, we export critical system calls s1 and s2 from pro-
cess1 to process2 and process3, respectively. process1 com-
municates with an outside host A through network channels.
This host A then communicates with another host B which
then communicates with process2 and process2 executes s1.
After the execution, process2 communicates with process1
through other outside hosts (A and B) to get results of s1.
Similar procedure is taken when s2 is executed in process3.
The advantage is that it is difficult to detect local SPC links
between local processes because there is no direct observ-
able connection. These local processes also do not have net-
work-level correlation because they talk to different remote
machines. In this way, it is a very challenging task to find
their relationship of different local processes that coordinated
through different networks.

3.3 Further discussion on SPC design space

A plurality of in-host and network based coordination and
communication approaches exist on both Linux/Unix and
Windows operation systems. On Linux/Unix, communica-
tion methods include message queues, semaphore sets, Unix
domain sockets, and shared memory [32]. On Windows,
communication methods include Clipboard, COM, DDE,
File Mapping, Mailslots, Pipes, RPC, shared memory Win-
dows Sockets and web services. Our shadow attack utilizes
communication methods for data/parameter communication
and synchronization between processes. Next we use the fol-
lowing examples to illustrate functionality, advantages, and
disadvantages of some communication methods:

(1) Unix domain sockets: Sockets transfer data between
processes using buffers in the kernel memory. A pro-
cess can exchange a file descriptor to another process
using sendmsg() and recvmsg(). The file descriptor is
related to process migration and socket migration. For
example, the technique used in MSOCK [14] can be
used for socket migration between two processes.

123

Shadow attacks: automatically evading system-call-behavior based malware detection 5

Fig. 5 Hiding SPC through
remote network coordination

1s

2s

process1
process1 1sprocess2 2sprocess3

Network
Network

Network Network

(2) Shared memory: When there is not much data type con-
version in the shared data between processes, shared
memory methods have better performance compared
with other SPC methods (e.g., pipe and sockets). We
can utilize certain techniques, e.g., mapping physical
pages to two distinct virtual addresses, to complicate
the detection of the use of shared memory. On the other
hand, shared memory method can only be used in a sin-
gle machine, while other SPC methods may be used on
different machines in a network.

(3) SOAP: Simple Object Access Protocol (SOAP) can be
used for data communication or calling methods in web
services through the Internet. In SOAP, data is trans-
mitted in XML files. The advantage of this approach
is that it can easily pass through many firewalls since
XML files can be transmitted through standard HTTP
requests. The disadvantage is that XML files in SOAP
use more bandwidth and memory as compared with
direct data access methods like shared memory.

In addition to these well-known SPC mechanisms, one can
easily use other more advanced SPC approaches (e.g., covert
channels), especially mixing of different SPC mechanisms,
to complicate the detection of SPC. Various covert chan-
nels have been proposed before. In [31] the authors demon-
strate that shared access to memory caches can provide an
easily used high bandwidth covert channel between threads.
While in [10] the authors introduce a Simple Branch Pre-
diction Analysis (SBPA) attack which analyzes the CPU’s
Branch Predictor states through spying on a single quasi-
parallel computation process.

To build a mixed and indirect SPC Chain, as shown in
Fig. 6, we take out the critical system call s1 from pro-
cess1 and place it in process2. To provide the communication
between process1 and process2, we let process1 communi-
cate with the SPC method file at the point right before the
execution of s1. Then file communicates with shared memory,

shared memory communicates with socket and so on, until
we reach process2. After the execution of s1, we return to pro-
cess1 at the point right after the execution of s1, based on the
communication provided by the same SPC mechanisms. The
advantage of this mixed implementation of SPC mechanisms
is that it is more difficult to detect the hybrid communica-
tion between process1 and process2. In this communication,
because many SPC objects, files, or resources are also used
by other regular programs, it is challenging for detectors to
differentiate the partitioned malwares from other regular pro-
grams.

Another aspect of shadow attack is that it may signif-
icantly increase the resource requirements for tracing and
detection of multi-process applications. Because interleav-
ing of multiple processes could lead to path explosion, the
detection of a specific behavior would become significantly
more difficult.

3.4 Hiding SPC from information flow tracking

In our attack, the system calls in multiple processes usu-
ally carry the same parameter data (e.g., file name) to fulfill
the malware’s functionality. A possible technique to detect
related processes is to correlate them by tracking the infor-
mation flow, e.g., taint the system call parameter (e.g., file
name) and track the data dependence [25]. However, these
techniques are mainly used in offline analysis instead of real-
time detection because of their high overhead. In addition,
we can systematically transfer data dependence into control
dependence [22] through an automated source code rewrite
procedure. This kind of technique is particularly well suited
for evading taint-analysis-based detection.

We first use two simple examples to introduce control
flow dependence, which can be categorized by two types:
explicit control flow dependence and implicit control flow
dependence.

123

6 W. Ma et al.

Fig. 6 Mixed, indirect, implicit
SPC chain

1s
process1

process2

file
shared

memory
socket

Com
m

. . . Com
m

file shared

memory
socket . . . Com

m

Comm

Then we show how to use the idea of control flow to hide
the data dependence of different types of data in system calls,
e.g., char, string, int, struct. We use an example to illus-
trate how to transmit the value of a char type parameter x to
another char type parameter y without revealing their data
dependence relationship.

We can use the same idea to transmit the value of a string
parameter x to another string parameter y by applying control
flow to each character in the string.

For numeric types, e.g., int or float in C or C++, we can
first convert them into a string type. Then we use the string-
based control flow transformation as shown above and con-
vert the string back into a numeric type after transformation.
For struct type parameters, we can follow a similar procedure
because they are constructed with int and string parameters.

4 Automating shadow attack

We have implemented a prototype tool AutoShadow as a
proof of concept to automate shadow attacks, i.e., it can
automatically generate a shadow-process version of mal-
ware given an original malware source code. AutoShadow is
built on the intermediate representation (IR) bytecode using
compiler frameworks such as LLVM [2] and Phoenix [21].
We selected LLVM because of its mature features in Linux.
AutoShadow analyzes source code and locates critical sys-
tem calls to launch the shadow attack. For the Phoenix based
example, some manual patching was done to demonstrate the
feasibility.

123

Shadow attacks: automatically evading system-call-behavior based malware detection 7

LLVM-GCC

Compiler

Communication
Code(c/c++)

Malware
Source

Code(c/c++)

Malware
IR

Bytecode

Communication
Bytecode

IR

IR transform
Pass

LLVM
Optimization

Transformed
MalwareIR
Bytecode

LLVM
Linker

P1
Binary

LLVM
Linker

Malware
Source
Code

Pn
Binary

Malware
Binary

Fig. 7 AutoShadow design architecture

4.1 AutoShadow design architecture

Figure 7 shows the design architecture of AutoShadow.
It takes malware source code as input and generates the IR
bytecode through the LLVM-GCC compiler, which includes
both malware bytecode and communication bytecode. The
malware bytecode can be further optimized and transformed
based on our pass/plug-in. Then, the transformed bytecode,
together with the communication bytecode, is passed to the
LLVM linker to generate ELF executable format binaries.
These binaries can then be distributed to execute real attacks.
Bytecodes can be converted to the source code form so that
they can be further morphed into new shapes and structures
to fulfill the same malicious functionalities.

4.2 Code analysis and transformation

As shown in Fig. 7, our IR transform pass performs trans-
formation on the IR bytecode of malware and is loaded by
LLVM as a shared library during the optimization of the IR
code. Our transformation technique converts the IR code into
new malware IR bytecode. We replace the critical system
calls with an external function to communicate with another
process. The new transformed bytecode will be executed in
multiple processes, which achieves the process partitioning.

Our pass inherits the existing CallGraphSCCPass [2] pro-
vided in LLVM, traverses all system calls and finds the can-
didate critical system calls. CallGraphSCCPass is used to
traverse the call graph of a program. The candidate system
call will be replaced by the external function in all instruc-
tions that invoked the candidate system call. In our pass, the
alias analysis of LLVM is used to update the change of call
graph. Algorithm 1 shows the transformation procedure of
in-host SPC based shadow attacks.

Algorithm 1: in-host SPC
1. Traverse all the system calls
2. Determine whether a system call s is a candidate system call
3 Create a new external function s’ using the arguments and return types of s
4. Replace s with s’ in all instructions that called s
5. Update the call graph using alias analysis

4.3 Communication code generation

Parameter data serialization For system call partitioning,
the most important and challenging task is to decide whether
a system call can be exported from its original process to
another process to cross process boundaries. Two aspects
need to be considered: the type of the system call parame-
ters/data and the semantics of the system call.

For the first aspect, the parameters of a candidate critical
system should satisfy two conditions: the parameter com-
munication part can be abstracted as a layer of object serial-
ization and the parameters can be put into the medium like
shared memory, message queue, or file. The communication
data between processes can be categorized into two types:
standard variable type like int, char andstruct and void*, sys-
tem resource object like file descriptor and socket descriptor.

• Standard variable type: for int type parameters, we
can easily convert int to string and then transfer string type
parameters through SPC to other processes. For void*, type
parameters, it is very difficult to decide which
actual types of pointed parameters need to be transferred.
However, the number of system calls is limited and we only
focus on those critical system calls that are attributable to the
description of malware behavior. Therefore, we can know
the specific semantics of these system calls and which type
of data should be transferred for the specific system call by
manually checking its definition and usage. Then, we can
transfer void* to string or struct or others. For example, we
can convert the void* into char* or some struct type based
on semantic of the system call. Also we can know that there
is a variable to tell the length of the char*. For other complex
types of objects, we can use boost serialization [29].

• System resource object: this type of data includes file
descriptors and socket descriptors. In Linux, we used Unix
domain socket and stream pipe to transfer file descriptors.
In Windows, we use DuplicateHandle and WSADuplicate-
Socket to clone socket descriptor. WSADuplicateSocket fills
up a WSAPROTOCOL_INFO structure with information of
existing socket connection. WSAPROTOCOL_INFO struc-
ture can be transferred by using common communication
mechanism like pipe, shared memory, and socket. This could
be used for transferring handles in network-coordinated SPC
described in Sect. 3.2.

Since we can transfer the file descriptor in addition to
directly copying the filename, it is far more expensive and
difficult than tracking filename duplications in traditional
approaches. Since a file descriptor is a quintessential example
of capability object, data transferring could be generalized
to an object capability system. More generally speaking, the
system call partitioning could be easily extended to function
and module level.

We also need to consider several system calls with special
semantics. For example, fork() cannot be exported because

123

8 W. Ma et al.

Table 3 Example system calls supported in AutoShadow (more system
calls could be easily added)

Function category System call

File I/O operation open, read, write

Network socket, connect, recv, send, read, write

Process management exec,execl

it inherits context of current process. Another example is
getpid() because its execution result is different in different
processes. In windows, similar function like fork() can be
used [19].

Our implementation focused on critical system calls that
are heavily used in malware and can be exported to another
process. Currently, AutoShadow supports a list of system
calls as shown in Table 3. The system calls are frequently
used to identify malicious behaviors. For example, they are
used to manage processes (e.g., execute an updated binary),
operate on file and I/O (e.g., access confidential file, infect
existing executable, modify registry), access network (e.g.,
egg downloading, botnet C&C, spamming and proxy). Some
simple examples of malware malicious behaviors and their
associated system calls are shown in Table 4.

4.4 Prototype implementation

In current version of AutoShadow, we have implemented
in-host shadow attacks. The implementation of remote-net-
work-coordinated shadow attacks follows similar principle
and is not included in current version.

For in-host SPC, we implemented pipe and socket as
example representative mechanisms. As shown in Fig. 8,
malware.c source code can be transformed into three files to
extract system call write(). After transformation, the system
call write() in malware.c was replaced with an external func-
tion called SPC_write() in SPCwriteClient.c which serves as
a client to send required data for write() in SPCwriteServer.c.
SPC_writeSrv() function will receive data and convert data
into needed arguments for write(). Then the critical system
call write() is executed. After its execution, output parameters
and return values are sent to SPC_write() in SPCwriteClient.c
which is called by malware.c. Note that SPC_write() could be
further obfuscated to avoid to being statically fingerprinted.

write(…);

.

.

.

.

SPC_write(...);

.

.

.

.

SPC_write(...) {

…
sendmsg(..)

malware.c malware.c

}

SPCwriteClient.c

SPC_writeSrv(..) {

…
recvmsg(..)

}

SPCwriteServer.c

write(…);

//send SPC data //recv SPC data

//cast data to args//wait
//receive SPC result

...
...

//send SPC result
...

Fig. 8 Code transformation example

4.5 Windows compiler tool implementation

In Windows, we use Phoenix to make the transformation. We
generated binary from source codes and used the PEReader
to construct IR from the binary. We imported external func-
tions from a dll to replace target system calls or functions.
Finally, we use PEWriter to write IR to new binary files.

5 Evaluation

We evaluated the effectiveness and performance of our tool.
Since we target behavior-based malware detection, we first
filter out tradition signature-based AV tools. Some AV tools
claim to combine both signature-based detection and behav-
ior-based detection. They are not suitable for our evaluation
because it is difficult for us to differentiate whether a malware
sample was detected by its signature or its behavior. Many
research prototype systems such as the tool in [1] are unfor-
tunately not publicly available for testing. As a result, we
submitted the binary to two online malware behavioral anal-
ysis/detection tools: CWSandbox [26] and Norman Sandbox
(we also implemented a simple detection tool similar to [1]
as described in Sect. 5.4). We have also tried Anubis [13].
However, Anubis could not properly recognize and analyze
our multi-process-based binaries inside the self-extracting
archive form. Thus, we exclude it in our evaluation.

5.1 Effectiveness test via online analysis

We compare detection results of a single-process based
malware with that of the transformed multiple processes.
We extracted relevant critical system calls, i.e., connect,
send, recv, CreateFile, WriteFile, from the source code of

Table 4 Example malware
behavior and system calls
(notations are the same as in
Table 2)

Malicious behavior Key system call sequence

Download and execute (recvˆwrite)ˆ(open→write)ˆ(recv→write)ˆ(write→exec)

Proxy recv(socket, buffer) →send(destsocket, buffer)

Modify registry (RegCreateKeyA→DeleteValueA)
∨ (RegCreateKeyA→RegCloseKeyA)

123

Shadow attacks: automatically evading system-call-behavior based malware detection 9

DoTcpConnectExecute.exe:INFECTEDwith
W32/Downloader (Signature: NO_VIRUS)
[DetectionInfo]
*Filename:C:\analyzer\scan\DoTcpConnectExecute.exe.
* Sandbox name: W32/Downloader.
[Network services]
* Connects to "students.cs.*.edu" on port 80.
OpensURL: students.cs..edu/*/notepad.exe.
[Security issues]
*Starting downloaded file-potential security problem.

Fig. 9 Norman report of single process

self.exe : Not detected by Sandbox
(Signature: NO_VIRUS)
[DetectionInfo]
* Filename: C:\analyzer\scan\self4.exe.
* Sandbox name: NO_MALWARE
[Network services]

* Connects to "students.cs.*.edu" on port 80.

Fig. 10 Norman report of shadow processes

Agobot [4], which implemented the malicious behavior of
downloading a file from a URL and then executing the file.
We compiled the code into a binary, and then submitted
the binary to two online malware behavioral analysis tools:
CWSandbox and Norman Sandbox.

We evaluated the shadow attack based on the extracted
code from Agobot, which consisted of three different binary
executable files representing connect process, download pro-
cess and execute process, respectively. The three binary files
were combined into one self-extracted binary using winrar
(as the simplest scenario described in Sect. 2.2) because these
online services only accept single binary submission. We then
used winrar to unfold and execute the binaries to verify the
original functionality as downloading and executing.

We now describe the detection outcomes of two cases in
the Norman Sandbox. For the single-process based binary,
the Norman sandbox detected it as “Win32/Downloader” as
shown in Fig. 9. For the shadow-attack based binary, the Nor-
man sandbox reported it as not infected as shown in Fig. 10.
The Norman Sandbox’s Report showed the opened URL in
the single process detection result. While for the shadow pro-
cessed binary it only showed the connection.

Then, we submitted the multi-process-based binary (.exe)
file to CWSandbox for analysis. For single-process based
binary, CWSandbox clearly reported the network activity
via a download URL as shown in Fig. 11. However, for the
shadow processes based binary, it only reported the outgoing
connection without indicating the download URL, as shown
in Fig. 12. These two examples demonstrate the effectiveness
of shadow attack.

Fig. 11 CWSandbox report of single process

Fig. 12 CWSandbox report of shadow processes

5.2 Evaluation using real-world Malware

We further evaluated the efficiency and feasibility of Auto-
Shadow on several real-world malware programs. Our eval-
uation was performed on a Linux machine with an Intel core
2 Duo 2.40GHz processor, 6MB cache, and 2GB of memory.

The results in Table 5 show that AutoShadow can automat-
ically extract critical system calls in well-known malwares
like Q8bot (a bot program), Apachworm, Computer_dun-
no, and Kaiten. After partition, Q8bot becomes a new mal-
ware with four shadow processes. Obviously, by splitting,
creating, sending, and receiving behavior into multiple pro-
cesses, behavior-based detection tools that attempt to capture
the C&C (command & control) pattern (e.g., [25]) in one
process are likely to fail. The apache worm has a mailing
behavior. This mailing behavior can be modeled using sys-
tem call sequence as “connect() ˆ write() ˆ write(“Hello”) ˆ
write(“RCPT”)”, which can be readily detected by exist-
ing behavior-based detectors (e.g., [1,3]). This behavior
specification is exported to multiple shadow processes,
and therefore they do not exist in any single process.
Coromputer_dunno and Kaiten are two examples of bot pro-
grams that are designed to launch DDoS attacks. They have
C&C patterns that could be potentially detected by detec-
tion approaches like [25]. Similar to the Q8bot, AutoShad-
ow successfully partitions its critical system calls and thus
make it undetectable. We also report the transformation time.
For example, Apach-worm has a total of 2,255 lines of
code. It costs AutoShadow only 0.05 s for the partition. As
shown in Table 5, other three malware programs take less
than 0.05 s for the transformation. These tests on the four
real-world malware examples demonstrate the high effi-
ciency of AutoShadow.

5.3 Performance

We also evaluated the process communication cost by using
the malware example in Fig. 1.

123

10 W. Ma et al.

Table 5 Evaluation results
on malware examples Malware Code Transform File related Network related Process related

name line time (s) system call system call system call

Apach-worm 2,255 0.05 open write 9 read 4 recv 1 execl 1

Q8Bot 926 0.02 socket 7

recv 5

write 1

Coromputer_dunno 254 0.005 write 6 socket 1 system 1

connect 1

send 6

recv 6

Kaiten 971 0.025 write 1 socket 7

write 1

recv 5

Fig. 13 Performance time

Since the main overhead occurred when two shadow pro-
cesses communicate, we changed the number of such com-
munication interactions by using different buffer size of
write(). Figure 13 shows the total execution time of the mal-
ware in two cases: before partition (single process) and after
partition using in-host communication. We can see that when
there are less than 10 interactions between shadow processes,
the attack have similar execution time as the original mal-
ware. With the increase of interactions, the shadow attacks
cost more time on the communication. It is worth noting
that although multi-process malware is slower than the orig-
inal single-process malware, we believe most malware writ-
ers might still favor more evasive multi-process malware if
the task is not time-critical. In addition, malware writers can
always optimize communications between shadow processes
in reality, e.g., choosing selective critical system calls and
limiting the number of shadow processes.

5.4 Estimating possible detection cost of multi-process
Malware

In theory, one could defend against shadow attack with ade-
quate monitoring of process activities to determine their
relationship, data flows, etc. That being said, it is impor-
tant to gain a realistic sense of the performance in these

countermeasures. We use the Linux system calls to gain a
glance of the design complexity and run-time costs.

Firstly, we implemented a very simple single process
behavior-based malware detector, similar to the idea of [1].
In order to monitor system calls, we can employ either Ptrace
or kernel modifying. We choose using Ptrace for simplicity.
We use shadow attack to transform Agobot, which contains
five malicious behaviors including: (a) download and exe-
cute; (b) Remote-Initiated Network Download; (c) Remote-
Initiated Send Email; (d) Remote-Initiated Sendto; (e) TCP
Proxy. Not surprisingly, our result showed that Agobot suc-
cessfully evades the single-process detector after shadow
attack (while it can be detected before shadow attack).

In a generic defense system, one needs to group correla-
tive processes which have direct or indirect communications
with each other. After grouping correlated processes, one
could implement a system call dependency graph of multi-
ple processes using relevant state information as its inputs.
To monitor the System-V IPC, we need to monitor the sys-
tem call shmget()/msgget()/semget(), and group processes
by comparing parameters of these system calls. Besides, to
monitor in-host SPC method of pipe, socket, and disk file, the
inode value of each file descriptor opened by all processes
(called IPC object hereafter), needs to be analyzed. In doing
so, we can tell which processes have ever accessed the same
IPC object to communicate with each other. We employ a
user mode approach, that is whenever a pipe/socket/disk-file
related system call is triggered, the change of file descriptors
in /proc/fd needs to be logged, and then analyzed. Figure 14
displays the architecture of our example multi-process mal-
ware detector.

For each correlated process group, we can recover a global
system call sequence according to the specification. With-
out considering any specific malware, we conducted a series
of experiments to gain a sense of the monitoring cost. We
use a benchmark program which makes five system calls:

123

Shadow attacks: automatically evading system-call-behavior based malware detection 11

P1

P2

…
Pn

Syscall_Seq1
Syscall_Seq2

…
Syscall_Seqn

(IPC_obj1,pid)
(IPC_obj2,pid)

…

G1(Pi,Pj,…)
G2(Px,Py,…)
…
Gm(Pq,Pw,…)

Specification

Behavior Matcher
System call tracking

IPC object monitoring

Fig. 14 Example architecture of a multi-process malware detector

Fig. 15 Time cost induced by multi-process monitoring/correlation

fopen->read->write->fclose->execv, with 1,000 iterations.
And measure the running time of this program, normally,
with ptrace monitoring and with /proc/fd monitoring. Fig-
ure 15 shows that the running time of this program increased
from 150 to 1,195 and 93,121 ms, respectively, when
Ptrace and /proc/fd monitoring were activated. The check-
ing of /proc/fd directory is trigged whenever fopen/fclose
are called. Thus it is time consuming.

We note that our above naïve example detector is merely
for the purpose of estimating one possible detection cost for
multi-process malware. It is just an example, and by no means
a best, realistic, nor optimal design. One may easily argue
that there can be much better design in terms of both effec-
tiveness and efficiency. However, the message we want to
convey from this naïve example is that fully real-time corre-
lating processes (through explicit or even implicit SPC) can
be much more expensive than single-process based monitor-
ing. To our knowledge very few tools support multi-process
analysis due to the high cost of blind enumeration on group-
ing of processes to one or more malwares. In addition, inter-
process coordination can be made indirect and hidden using
many ways (even remote-network-coordination) to make it
more difficult for multi-process malware detection. We need
further research to study more efficient real-time solution for
correlating processes communicating using different SPC.

We also need to improve the effectiveness of accurately
correlating multi-process malware that uses indirect/implicit
SPC. A possible way is to perform fine-grained kernel-level

global processes and system object tracking and correla-
tion analysis. In [18], BackTracker, a VM-based monitoring
method, is proposed for such a fine-grained tracking. How-
ever, this approach is very expensive and used only for off-
line analysis instead of real-time detection purpose. Thus, we
believe how to build an effective and efficient shadow attack
detector is still an open problem.

6 Discussion

Our approach could easily be combined with current signa-
ture-evading techniques such as metamorphic viruses [34].
By doing so, AutoShadow could be able to evade both sig-
nature-based and behavior-based malware detector.

To defend against SPC based shadow attacks, all possible
in-host SPC activities might need to be monitored to screen
for correlated processes. Some major obstacles must be over-
come by defenders. First, a detection approach may have high
false positive rate because normal processes also use in-host
communications. In particular, with the increasingly used
multi-core CPUs and increasingly adopted normal multi-pro-
cess programs, this issue could become worse. Second, with
conversion of data flows to control flows, it is not easy to
efficiently track the parameter data dependency between pro-
cesses. Finally, the use of information flow and data tainting
are relatively expensive in practice because of their high oper-
ational overhead. The remote-network-coordinated shadow
attacks could further eliminate the direct observable commu-
nications and makes the detection even harder.

We believe that it will be useful to consider correla-
tions and dependencies between processes based on system
objects/resources. For example, the correlation between two
processes may be established when they are found to oper-
ate on a same file. However, this approach must also address
the false positive issue and the high overhead (as shown in
BackTracker [18]).

7 Related work

Program/Malware partition: One related work to AutoShad-
ow is k-ary theoretic malware model [6] that provided a
theoretical analysis of the hardness of detection. Source
code fragmented malware has been proven to be NP-Com-
plete in general [6]. Detection of shadow attack is thus also
NP-complete since shadow attack is a form of fragmented
malware at behavior level. Our approach is different from [6]
because we fragment malware into different executable bina-
ries at behavior level and we provide a practical, automated
compiler-level solution. Several systems automatically gen-
erated distributed programs by applying static code analysis
[2]. In theory, program partition can also be abstracted as
a NP-hard problem [11]. In addition, Mimicry attack [5,27]

123

12 W. Ma et al.

obfuscated the order of system calls to evade system call
based IDS. Another similar multi-process based work [7]
proposed a code injection technique, which writes some mali-
cious code to other processes for detection evasion. It has the
weakness that the behavior of writing data to the memory
space of other process is uncommon and suspicious, which
could cause attention of detection tools.

Behavior-based malware detection: A semantic-aware
detector using code template of instructions was developed
in [3]. In [12] specification language was mined for mali-
cious behavior. Layered behavior graph using system calls
was proposed in [1]. These detectors focus on one single pro-
cess rather than multiple processes. Jiang et al. [15] detected
the break-in point of worms by assigning different colors
to different processes derived from different services. It can-
not detect covert communication channels. Panorama system
[17] was proposed to detect privacy breaking malwares by
tracing the information flow of access and processing sen-
sitive information in an offline fashion. BackTracker [18]
traced back to vulnerable points by monitoring and logging
system calls, files and processes. It is still an offline tool.

It was recently proposed in [9] that one could counter
the behavior-based detections by using Time-Lock Puzzle
(TLP). It utilizes cryptographic techniques to ensure that a
message is never revealed until certain right moment. Thus,
TLP prevents the Anti-Virus (AV) engine from discovering
the encryption key and thus hide suspect codes without being
identified [9]. Another technique, system call obfuscation
[29], evades malware detectors by replacing certain system
calls with general control system calls. Our work is differ-
ent from these in that we propose a new class of attacks on
behavior-based detectors.

8 Conclusion

In this paper we show the models and techniques of shadow
attack. The essence of this kind of attack is to export mali-
cious behavior specifications from a malware program to
multiple shadow processes. We implemented a compiler-
level prototype tool to demonstrate its feasibility. Our pre-
liminary results show that transformed malware could evade
or counter existing behavioral analysis tools. Several research
problems still remain open. For example, from attack point
of view, how to launch optimal shadow attach in terms of
minimal number of processes, resource consumption, and
communication cost. More importantly, from defense point
of view, how to efficiently and effectively defend against this
new threat still requires further research.

References

1. Martignoni, L., Stinson, E., Fredrikson, M., Jha, S., Mitchell, J.
C.: A Layered Architecture for Detecting Malicious Behaviors.

In: Proceedings of the 11th international Symposium on Recent
Advances in intrusion Detection (RAID’08) (2008)

2. Lattner, C., Adve, V.: LLVM: A compilation framework for life-
long program analysis & transformation. In: Proceedings of the
2004 International Symposium on Code Generation and Optimi-
zation (CGO’04) (2004)

3. Christodorescu, M., Jha, S., Seshia, S., Song, D., Bryant, R.:
Semantics-Aware Malware Detection. In: Proceedings of IEEE
Symposium on Security and Privacy (2005)

4. Barford, P., Yagneswaran, V.: An Inside Look at Botnets. In:
Advances in Information Security. Springer, Berlin (2006)

5. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion
detection systems. In: Proceedings of the 9th ACM conference on
Computer and communications security (CCS’02) (2002)

6. Filiol, E.: Formalisation and implementation aspects of k-ary (mali-
cious) codes. J. Comput. Virol. 3(3), 75–86 (2007) (EICAR 2007
Best Academic Papers)

7. Harbour, N.: Stealth Secrets of the Malware Ninjas. https://www.
blackhat.com/presentations/bh-usa-07/Harbour/Presentation/bh-
usa-07-harbour.pdf.

8. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou,
X., Wang, X.: Effective and Efficient Malware Detection at the
End Host. In: Proceedings of 18th USENIX Security Symposium
(2009)

9. Nomenumbra: Counter Behavior Based Malware Analysis, Hack-
ing at Random. HAR (2009)

10. Aciiçmez, O., Koç, Ç.K., Seifert, J.: On the power of simple branch
prediction analysis. In: Proceedings of the 2nd ACM Symposium
on information, Computer and Communications Security (ASIA-
CCS’07) (2007)

11. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for par-
tition graphs. Bell Syst. Tech. J. 49, 291–307 (1970)

12. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of
malicious behavior. In: Proceedings of the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering
(2007)

13. Anubis. http://anubis.iseclab.org/
14. Lamport, L.: Time, clocks, and the ordering of events in a distrib-

uted system. Commun. ACM 21(7), 558–565 (1978)
15. Jiang, X., Walters, A., Buchholz, F., Xu, D., Wang, Y.M.,

Spafford, E.H.: Provenance-Aware Tracing of Worm Break-in and
Contaminations: A Process Coloring Approach. In: Proceedings of
26th IEEE Int’l Conf. Distributed Computing Systems (ICDCS’06)
(2006)

16. Fletcher, T.: Sharing a File Descriptor Between Processes. http://
www.qnx.com/developers/articles/article_913_1.html

17. Yin, H., Song, D., Manuel, E., Kruegel, C., Kirda, E.: Panorama:
Capturing system-wide information flow for malware detection and
analysis. In: Proceedings of the 14th ACM Conferences on Com-
puter and Communication Security (2007)

18. King, S.T., Chen, P.M.: Backtracking Intrusions. In: Proceedings
of the 2003 Symposium on Operating Systems Principles, pp. 223–
236 (2003)

19. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.: Behav-
ior-based Spyware Detection. In: Proceedings of the USENIX
Security Symposium (2006)

20. Cohen, F.: Computer viruses: theory and experiments. Comput.
Secur. 6(1), 22–35 (1987)

21. Phoenix. https://connect.microsoft.com/Phoenix
22. Cavallaro, L., Saxena, P., Sekar, R.: On the limits of information

flow techniques for malware analysis and containment. In: Proceed-
ings of 5th international conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (2008)

23. Szor, P.: The Art of Computer Virus Research and Defense. Addi-
son-Wesley Professional, Reading (2005)

123

https://www.blackhat.com/presentations/bh-usa-07/Harbour/Presentation/bh-usa-07-harbour.pdf
https://www.blackhat.com/presentations/bh-usa-07/Harbour/Presentation/bh-usa-07-harbour.pdf
https://www.blackhat.com/presentations/bh-usa-07/Harbour/Presentation/bh-usa-07-harbour.pdf
http://anubis.iseclab.org/
http://www.qnx.com/developers/articles/article_913_1.html
http://www.qnx.com/developers/articles/article_913_1.html
https://connect.microsoft.com/Phoenix

Shadow attacks: automatically evading system-call-behavior based malware detection 13

24. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R., Self-Nonself
Discrimination in a Computer. In: Proceedings of IEEE Sympo-
sium on Security & Privacy (1994)

25. Stinson, E., Mitchell, J.C.: Characterizing Bots’ Remote Control
Behavior. In: Detection of Intrusions & Malware, and Vulnerability
Assessment (2007)

26. Willems, C., Holz, T., Freiling, F.: Toward Automated Dynamic
Malware Analysis Using CWSandbox. In: Proceedings of IEEE
Security and Privacy (2007)

27. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Auto-
mating mimicry attacks using static binary analysis. In: Proceed-
ings of the 14th conference on USENIX Security Symposium
(2005)

28. Norman Sandbox Whitepaper. http://www.norman.com
29. Srivastava, A., Lanzi, A., Giffin, J.: System Call API Obfuscation.

In: Proceedings of the 11th International Symposium on Recent
Advances in Intrusion Detection (2008)

30. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learn-
ing and Classification of Malware Behavior. In: Proceedings of
Detection of Intrusions and Malware, and Vulnerability Assess-
ment (2008)

31. Percival, C.: Cache missing for fun and profit. BSDCan
(2005). http://www.daemonology.net/hyperthreading-considered-
harmful/

32. Stevens, R.: UNIX Network Programming, 2nd edn. Interprocess
Communications, vol. 2. Prentice Hall, Englewood Cliffs (1999)

33. Dyshlevoi, K.V., Kamensky, V.E., Solovskaya, L.B.: Marshalling
In Distributed Systems: Two Approaches (1997). http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.26.9781

34. Borello, J., Mé, L.: Code obfuscation techniques for metamorphic
viruses. J. Comput. Virol. 4, 211–220 (2008). doi:10.1007/s11416-
008-0084-2

123

http://www.norman.com
http://www.daemonology.net/hyperthreading-considered-harmful/
http://www.daemonology.net/hyperthreading-considered-harmful/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.9781
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.9781
http://dx.doi.org/10.1007/s11416-008-0084-2
http://dx.doi.org/10.1007/s11416-008-0084-2

	Shadow attacks: automatically evading system-call-behavior based malware detection
	Abstract
	1 Introduction
	2 Problem statement
	2.1 Problem formulation and illustration
	2.2 Bootstrapping shadow attacks

	3 Shadow attack design
	3.1 Architecture of shadow attack malware
	3.2 Hiding local SPC through remote network coordination
	3.3 Further discussion on SPC design space
	3.4 Hiding SPC from information flow tracking

	4 Automating shadow attack
	4.1 AutoShadow design architecture
	4.2 Code analysis and transformation
	4.3 Communication code generation
	4.4 Prototype implementation
	4.5 Windows compiler tool implementation

	5 Evaluation
	5.1 Effectiveness test via online analysis
	5.2 Evaluation using real-world Malware
	5.3 Performance
	5.4 Estimating possible detection cost of multi-process Malware

	6 Discussion
	7 Related work
	8 Conclusion
	References

