
J Comput Virol (2008) 4:211–220
DOI 10.1007/s11416-008-0084-2

ORIGINAL PAPER

Code obfuscation techniques for metamorphic viruses

Jean-Marie Borello · Ludovic Mé

Received: 15 June 2007 / Revised: 27 October 2007 / Accepted: 29 January 2008 / Published online: 21 February 2008
© Springer-Verlag France 2008

Abstract This paper deals with metamorphic viruses. More
precisely, it examines the use of advanced code obfuscation
techniques with respect to metamorphic viruses. Our objec-
tive is to evaluate the difficulty of a reliable static detection of
viruses that use such obfuscation techniques. Here we extend
Spinellis’ result (IEEE Trans. Inform. Theory, 49(1), 280–
284, 2003) on the detection complexity of bounded-length
polymorphic viruses to metamorphic viruses. In particular,
we prove that reliable static detection of a particular category
of metamorphic viruses is an NP-complete problem. Then
we empirically illustrate our result by constructing a practi-
cal obfuscator which could be used by metamorphic viruses
in the future to evade detection.

1 Introduction

Cohen’s seminal work [10] defines computer viruses as self-
reproducing programs. Since then, viral techniques have not
stopped evolving and progressing, mainly to bypass detection
algorithms and software. This evolution has given birth to
more and more complex viruses, on which one of the most
sophisticated form is metamorphism.

By metamorphic virus, we consider only viruses able to
modify their own codes in order to produce viral copies that
are as syntactically different as possible from their parents.

J.-M. Borello (B)
CELAR, BP 7419, 35174 Bruz Cedex, France
e-mail: jean-marie.borello@dga.defense.gouv.fr

J.-M. Borello
ESAT, Laboratoire de Virologie et de cryptologie,
BP 18, 35998 Rennes, France

L. Mé
SUPELEC, SSIR (EA 4039), Rennes, France

Consequently, each binary offspring of a metamorphic virus
aims to differ from its original form. We consider meta-
morphism as the self-reproduction technique used by such
viruses. Metamorphism operates in two different steps:
firstly, the viral program extracts the semantics of its own
code in order to have its model at one’s disposal. Secondly,
the viral program applies obfuscation transformations to this
model in order to produce a code as different as possible from
its parent code, while keeping the same behavior.

As metamorphic variants of a virus aim to look different,
pattern matching does not appear to be a reliable detection
technique. Based on the assessment that a metamorphic virus
is able to model itself before self-reproducing, a number of
works on antiviral detection put forward the hypothesis that
another program (e.g. an antivirus software) should also be
able to model such a virus for detection purposes [4,5,18,27].
Our aim is to study the validity of this hypothesis with respect
to the two existing detection techniques: static-based and
dynamic (or behavior-based) detection.

In this paper, the first part of our research work will only
address static detection. Here, static analysis is conceived as a
process whose goal is to extract the semantics of a given pro-
gram without any help of code execution. The global analy-
sis of the reproduction cycle of a metamorphic virus would
clearly exceed the scope of a single paper. That is the rea-
son why the present paper will only consider obfuscation
transformations. In other words, we will focus exclusively
on the obfuscation techniques that could be envisaged by
metamorphic viruses in the future. In particular, we will try
to determine the possible, practical consequences of the use
of such techniques in terms of antiviral detection capabilities.

The paper is organized as follows. Section 2 deals with
obfuscation techniques and metamorphic virus detection. In
Sect. 3, which is more formal, we expose the theoretical lim-
itations that a detection algorithm is bound to be confronted

123

212 J.-M. Borello, L. Mé

Table 1 Obfuscation
techniques used in known
metamorphic codes

Evol ZMist ZPerm Regswap MetaPHOR
(2000) (2001) (2000) (2000) (2001)

Instruction substitution ✓

Instruction permutation ✓ ✓ ✓

Variable substitution ✓ ✓ ✓ ✓

Dead code insertion ✓ ✓ ✓

Changing the control flow ✓ ✓ ✓

with. Finally, in Sect. 4, we present a practical obfuscation
approach which is likely to be used by metamorphic viruses
in the future. This approach which aims to bypass static detec-
tion takes into account most of the limitations presented in
the previous section.

2 Code obfuscation techniques and metamorphic virus
detection

This first section presents code obfuscation techniques used
by existing metamorphic viruses. It subsequently presents
the main developments in obfuscation. Finally, this section
addresses the detection of such viruses.

2.1 Code obfuscation techniques used by metamorphic
viruses

From a practical point of view, code obfuscation consists
in making a program as “unintelligible” as possible. This
practice has essentially grown with the widespread use of
high-level programming languages such as .net and java.
Indeed, as far as high-level programming languages are con-
cerned, the byte code format which is produced at the time
of compilation, still contains the whole program informa-
tion. Consequently, it is possible to go back to the program
source and then to the underlying algorithms themselves.
Code obfuscation tries to thwart decompilation in order to
protect source codes.

It is worth mentioning that code obfuscation operates on
both the program data and control flow. A detailed taxon-
omy of obfuscation techniques can be found in [11]. Below
are the obfuscation techniques that are particularly used by
metamorphic viruses:

– data flow obfuscation (instruction substitution, instruc-
tion permutation, dead code or garbage code insertion,
variable substitution…);

– control flow obfuscation (changing the control flow).

Table 1 summarizes the main viruses which make use of these
obfuscation techniques.

We briefly present the first three basic techniques of Table 1
which are well-documented [14,22,25].

– Instruction substitution consists in replacing a given
instruction block with another instruction block while
keeping the same code semantics.

– Instruction permutation consists in modifying the
instruction execution order in a program while keeping
the same semantics.

– Variable substitution consists, at the binary code level,
in either exchanging the used registers or in modifying
the scope of the variables by using local or global vari-
ables instead of registers.

Dead code insertion and control flow obfuscation are more
interesting techniques. We illustrate these two techniques on
which we base our obfuscation approach in Sect. 4.

– Dead code insertion consists in introducing useless
codes into the program. In a similar way, it can be com-
posed of more complex instructions that are never exe-
cuted. Table 2 gives some examples of “dead codes”. The
left column lists useless instructions which are semanti-
cally equivalent to the NOP (No Operation) instruction.
The exact meaning of each instruction is given in the right
column. The first line corresponds to adding the value 0
to the Reg register. In the second line, the Reg register
self-affects with its own value. The third line performs
a logical “OR” on a Reg register with the null integer.
While the last line applies a logical “AND” on the Reg
register with the -1 value.

– Changing the control flow consists in modifying the
execution flow of a program by introducing conditional

Table 2 Examples of “dead code”

Rules Meaning

ADD Reg,0 Reg ← Reg + 0

MOV Reg,Reg Reg ← Reg

OR Reg,0 Reg ← Reg | 0

AND Reg,-1 Reg ← Reg & -1

123

Code obfuscation techniques for metamorphic viruses 213

Fig. 1 Examples of control
flow modification

or unconditional branching instructions, while preserving
the program result. Figure 1 gives an example of such
control flow modification by inserting unconditional
branching instructions. An original code made of sequen-
tial instructions can be replaced by the two other codes
whose execution flow has been modified so as to no
longer be sequential (first and second alterations). In both
cases, the same sequence of instructions is executed.

2.2 Main developments in obfuscation

Instead of presenting all the main contributions in the field of
obfuscation schemes, we use Collberg’s work [11] as refer-
ence. Our goal is to present only the notions useful in obfus-
cating a metamorphic virus. First, the authors define a metric
commonly used to evaluate the efficiency of obfuscators. We
sum them up as follows:

– the potential which evaluates the understanding com-
plexity of an obfuscated code during human-driven
analysis;

– the resilience which measures the complexity of the
inverse operation (deobfuscation) by means of automatic
tools (software);

– the cost, which defines the price we have to pay in terms
of computing time and memory space required for the
analysis.

It is easy to see that in the case of a virus the main inter-
esting criteria is the resilience. In fact, resilience can infor-
mally be viewed as the difficulty to detect a metamorphic
virus. According to this criterion, we are interested in control
flow transformation as developed in [12]. This study presents
the use of opaque predicates to increase the resilience of an
obfuscated program. Broadly speaking, a predicate P is said
to be opaque if it has a property q known to the obfuscator
but which is hard for a deobfuscator to deduce. Our goal is to

transpose such control-altering transformations from general
purpose to metamorphic viruses in order to try to evaluate the
detection difficulty (resilience). This idea was inspired by the
contrast between obfuscations used in well-known viruses as
presented in Sect. 2.1 and by advanced control flow transfor-
mations based on Collberg’s work.

2.3 Detection techniques of metamorphic viruses

We will now address the issue of metamorphic virus detection
and the techniques used by the existing antivirus software.
Very few technical details are published on the existing tools.
However, some works dealing with the reliability of detect-
ing known viruses have pinpointed the severe limitations
of existing antivirus software [8,9]. In fact, the tested tools
have proved to still be inefficient at detecting even the most
trivial obfuscation techniques, such as dead code insertion
or instruction substitutions. These results show that simple
detection pattern matching—looking for a fixed byte pattern
which represents the virus signature—remains the main tech-
niques used nowadays. This has been recently confirmed by
more recent works [15,16].

However, it is a very well-known fact that perfect obfus-
cation is impossible to achieve. That is, the semantics of a
program cannot be perfectly hidden [2,3]. In other words,
given a fixed obfuscated program, its semantics can always
be recovered. Nevertheless, the semantics extraction cannot
be automated (Rice theorem [21]). For that purpose, some
detection prototypes aim at building an optimized model of
the program by using code compiling optimizations [1]. As
shown in [7,13], the same techniques can be directly used to
model binary codes. Such a modeling process is performed
in two steps:

1. In the first step, a control flow graph of the program
is built. This graph in fact is a model of the possible
program execution flows.

123

214 J.-M. Borello, L. Mé

2. In the subsequent step, the data flow is analyzed and
simplified. It is thus possible to use this feedback on the
control flow graph in order to further simplify it.

The optimized control flow graph represents a model for the
program under analysis. Detecting a metamorphic virus can
be viewed as checking whether or not the model we obtain
corresponds to this virus. The construction of such a model
is detailed in C. Cifuentes’ thesis [7]. Many approaches have
been proposed [5,8,24] to detect the state of the art viruses.
The following section demonstrate the difficulty of reliable
detection and especially in the case of a particular category
of metamorphic viruses.

3 Limitations of reliable static detection
of metamorphic codes

3.1 Impossibility of perfect static detection

In this section, we address the issue of evaluating the dif-
ficulty of perfect detection of metamorphic viruses, at the
theoretical level. For that purpose, we will give some useful
notations and definitions.
Notations: We consider two programs (algorithms) A and
B which are respectively defined on the domains DA and DB

respectively. A and B are said to be functionally equivalent,
and we note A ≡ B, if and only if they output the same result
on the same inputs, in other words:{

DA = DB,

∀x ∈ DA, A(x) = B(x).

We give a first definition of perfect detection in terms of
functional equivalence as follows:

Definition 1 The program DV perfectly detects a metamor-
phic virus V if and only if for any program P ,{

DV (P) returns “true” if P ≡ V,

DV (P) returns “ f alse” otherwise.

Proposition 1 There exists no algorithm which is able to
determine for two given non null programs P and P ′ whether
P ′ ≡ P.

This Proposition 1 is just a particular instance of the Rice’s
theorem [21]. The direct consequence of Proposition 1 is
that the perfect detection of a metamorphic virus as defined
in Definition 1 is an undecidable problem.

3.2 Limitations of reliable static detection of a particular
category of metamorphic codes

Let us suppose that all the (graph) paths with respect to a
program P are potentially executable. Despite the fact that

it is not systematically valid, this hypothesis is frequently
assumed during static analysis [1]. Even under this hypothe-
sis, the problem of functional equivalence remains an unde-
cidable one. That is the reason why, we will consider a more
restrictive category of metamorphic virus obtained when
modifying the program control flow.

This paragraph starts with the presentation of a code trans-
formation. Then, we prove that the problem of determining
if a program is obtained by another program transformation
is an NP-complete problem. Finally, we deduce from this
result the difficulty of detecting a particular category of meta-
morphic viruses.

Build of a program transformation T

Definition 2 Let P be a program composed of n consecutive
instructions I1 I2 . . . In . We define a transformation T of the
program P as follows:

– P is split into k blocks denoted Pi . Each block contains
a random non null number of consecutive instructions
and ends up with a sequential instruction (different from
a conditional branching instruction).

– We consider a permutation σ on the set [1, k]. For each
block Pi , we define a new block P ′σ(i) as follows: each
block P ′σ(i) contains exactly the same instructions as the
corresponding block Pi and ends up with two conditional
branching instructions toward two other blocks P ′j and
P ′l . This transformation produces a program P ′ from an
original program P . We denote P ′ = T (P).

We then define a set of obfuscators (k-obfuscators) denoted
Ok as follows: a transformation T is a k-obfuscator, denoted
T ∈ Ok if and only if ∀i ∈ [1, k] during its execution, the
last output of P ′σ(i) is P ′σ(i+1). By last output, we mean the
destination of the conditional branching in block P ′σ(i).

It is worth noting that if T ∈ Ok then T (P) ≡ P and thus
T is indeed an obfuscator.

Determining if P ′ = T (P) is NP-complet

Proposition 2 Under the assumption that each program path
is potentially executable, for any pair of programs P and P ′,
determining whether there exists T ∈ Ok such that P ′ =
T (P) is an NP-complete problem.

The proof given hereafter relies on a polynomial time
reduction inspired from Landi’s work [17]. More precisely, it
relates to proof given in [19,26].

Proof 1. The problem is in NP . Indeed, for every given
pair of programs P and P ′, a non deterministic algo-
rithm can check in polynomial time whether there is a

123

Code obfuscation techniques for metamorphic viruses 215

Fig. 2 Construction scheme of
the obfuscated program P ′
(right) from the program P (left)

transformation T which complies with Definition 2 such
that P ′ = T (P). Then this algorithm can also verify in
polynomial time, whether there exists an output from
every block P ′(i) such that T ∈ Ok .

2. Let S be an instance of the NP-complete problem
3-SAT, and P a program. We are going to prove that
it is possible to build in polynomial time with respect to
the size of S, a program P ′ (P ′ = T (P)) such that S is
satisfiable if and only if T ∈ Ok . An instance S of the
3-SAT problem has the following form:
S =∧n

i=1(li,1 ∨ li,2 ∨ li,3),⎧⎪⎨
⎪⎩
{v1, v2, . . . , vm} a set of Boolean variables

∀(i, j) ∈ [1, n] × [1, 3], ∃k ∈ [1, m],
∣∣∣∣∣
li, j = vk or

li, j = vk
We build the family of ui , denoted (ui)i∈[1,k] such that
it is a partition of consecutive elements of the set [1, n].
(1, 2, 3︸ ︷︷ ︸

u1

, 4, 5, . . . , 8︸ ︷︷ ︸
u2

, . . . , n − 1, n︸ ︷︷ ︸
uk

)

We have: S = ∧k
i=1 Si with Si = ∧max(ui)

j=min(ui)
(l j,1 ∨

l j,2 ∨ l j,3)

Let T be a transformation as defined in Definition 2
in order to build the program P ′ in a polynomial time.
The program P ′ is made up of the family of (P ′i)i∈[0,k]
obtained from the program P . Figure 2 illustrates such
a reduction.

Since as each path is assumed to be executable, we do
not care about the logical conditions with respect to
the branching instructions:if (-) {code1} else
{code2}. Figure 3 presents the pseudo-code contained
in block P ′0. This code is used to initialize the pro-
gram P ′. Every variable Vi and its negation Vi are first
declared as pointers of function pointers. Each of these
variables may point to true or false (declared in
line 2 as function pointers). Every Vi and Vi describe
a Boolean variable in S and its negated form respec-
tively. Thus, setting vi to “true” for S, corresponds to
set *Vi=true for P ′. An execution path in block P ′0
(lines 4 to 6) thus initializes every variable Vi and Vi ,
which is equivalent to fix the values of Boolean vari-
ables vi in the equation S. There are two cases: either
the setting of the vi satisfies S, or it does not.
Figure 4 defines for every i ranging from 1 to k−1, block
P ′i from block Pi . The pointer false is initialized with
the address of block P ′i+1. The second line represents the
insertion of the code contained within block Pi in such
a way that executing block P ′i results in executing block
Pi as well. Notation li, j in expressions ∗li, j=&P ′g (lines
3 and 4) is an abstract one. This symbol stands for the
variable Vk or its negation Vk (as in the formulation of
S). Lines 3 and 4 enable us to modify the destination
of the pointer false according to the values of the

123

216 J.-M. Borello, L. Mé

Fig. 3 Pseudo-code of block P ′0

variables Vi and Vi which have been initialized in P ′0
(see hereafter). Finally, the function false is called at
line 5. Block P ′k slightly differs from the other blocks
P ′i , i ∈ [1, k − 1]), for program termination purposes.
Throughout the rest of the paper, unless differently men-
tioned, we will always refer to Fig. 4. Moreover, let us
denote the output of block P ′i as one of the two possible
destinations: P ′i+1 or P ′g . We will now prove the equiv-
alence between our problem as defined in Proposition 2
and the 3-SAT problem.
(a) First case: S is satisfiable. This means that ∀i ∈

[1, k], Si is satisfiable. Si satisfiable corresponds
at the pseudo-code level to l j,1, l j,2 or l j,3 points
toward the true variable ∀ j ∈ [min(ui), max
(ui)]. Since at least one literal of the form l j,t ,
t ∈ [1, 3] is pointing towards the variable true,
then there exists at least one path in the graph for
which the pointer destination true is assigned to
the P ′g address. With this property being valid for
every lines from 3 to 4, consequently there exists
a path starting from block P ′i for which the true
variable has only been re-allocated to block P ′g
address, in line 5 and thus for which the false
variable has never been redefined. In the present
case, the output of block P ′i is block P ′i+1. This
property being valid for every block P ′i , subse-
quently we have T ∈ Ok . Consequently, if S is
satisfiable then T ∈ Ok .

(b) Second case: T ∈ Ok . This implies that for every
i , the output of block P ′i is block P ′i+1. In other

words for every block P ′i , the false variable
points towards block P ′i+1 in line 5. Now the
false variable points towards block P ′i+1 only
if, for the path with respect to block P ′i in ques-
tion, every literal of the form l j,t point towards
the variable true. Indeed, if for this particular
path, a single literal would point towards false,
then the address of block P ′g would be allocated
to false in lines 3 or 4, and thus the latter would
point towards a block different from block P ′i+1
in line 5. This result for block P ′i implies that Si

is satisfiable. Since this predicate must be valid
for every i (ranging from 1 to k), S is satisfiable,
hence the result we were looking for: if T ∈ Ok

then S is satisfiable.

Finally, we proved the equivalence between our problem
and the 3-SAT problem. 	

Consequences in terms of detecting a specific category of
metamorphic viruses

Definition 3 Let us consider a metamorphic virus V whose
new instance V ′ is defined by V ′ = T (V) where T ∈
Ok . Under the assumption that all paths are potentially exe-
cutable, we define a reliable detection as follows: A program
DV detects the metamorphic virus V if and only if, for any
program P ,⎧⎨
⎩

DV (P) returns “true” i f there exists T ∈ Ok

such that P = T (V)

DV (P) returns “ f alse” otherwise.

We can then deduce that for such a category of metamor-
phic viruses (Definition 3), a reliable static detection is an
NP-complete problem. This result can be viewed as a com-
plement of the one of Spinellis [23] about the complexity
of bounded-length polymorphic code detection. Indeed, we
extend his result over metamorphic code. Even if this formal
result seems far from detection in reality where false positives
are acceptable, we believe that it could give birth to complex
viruses able to thwart recent detection strategies like [4,20].
We will illustrate our metamorphic code obfuscator approach
in Sect. 4.

Fig. 4 Pseudo-code of P ′
program blocks

123

Code obfuscation techniques for metamorphic viruses 217

4 Metamorphic code obfuscator making static analysis
more complex

This section presents a possible design approach for obfusca-
tors that could be used by sophisticated metamorphic codes.
This practical obfuscator rests on the proof of Proposition 2.

4.1 Obfuscation approach for the control flow

Our approach consists in modifying the control flow of a
program P in order to produce an obfuscated program P ′. It
is close to the approach presented in [6] by means of finite
state automata and that is presented in [19] which uses func-
tion pointers. However our own technique has two specific
features:

1. Our proposed obfuscator works directly at the assembly
source. This enables to apply all the obfuscation tech-
niques presented in Sect. 2, independently of the control
flow modifications. The transformations we use are kept
during the code assembling process. It is worth mention-
ing that it is not always the case when considering higher
level language source code. Indeed the compiling step
generally performs some optimizations that can invert
obfuscation transformations and thus lessen the obfus-
cation efficiency.

2. The obfuscation proposed hereafter is designed with
severe constraints since it should enable the virus to
model itself while making sure that the static detection
of its own code is as complex as possible. This particular
point will be addressed in the next subsection but is not
exhaustively presented in this paper.

The global approach for building the obfuscated program P ′
can be summarized as follows:

1. As we did in the proof of Proposition 2, we split the
program P—which contains a suite of n instructions
(I j) j∈[1,n]—into k sets of random non null size, with
each of them containing consecutive instructions. We
thus get blocks (Pi)i∈[1,k]. This program scissoring is
performed in such a way that each block Pi does not
end up with an unconditional jump (goto) or a routine
exit (ret). This restriction is required otherwise the con-
nection condition from block Pi to block Pi+1 would be
useless. Figure 5 presents an example of assembly code
scissoring which corresponds to the first basic block in
the WIN32.MetaPHOR virus control flow graph. The
detailed explanation of this code is not required for the
understanding of the next part. The reader just needs to
know that this basic block corresponds to the following
call: GetModuleHandle("Kernel32.dll").
The block chaining here is linear (P1, P2, . . . , P5).

Fig. 5 Example of program splitting into blocks (Pi) for a bootstrap
input program of the Win32.MetaPHOR virus

2. From a practical point of view, we build a family of
meaningful instruction sequences (Gi)i∈[1,p] in order to
complicate the analysis. Each sequence has a non null
random size. By meaningful, we mean that the instruc-
tion sequence comes from a real program and not from
random instructions. This family describes dead code
blocks. The purpose of these blocks is to increase the
difficulty of the static detection of program P ′ only. In
the following, we will use dead code blocks as illustrated
in Fig. 6.

3. We now build the obfuscated program P ′ from blocks
(P ′i)i∈[0,k+p] as follows:

(a) P ′(0) is the starting block in the obfuscated pro-
gram. It initializes a variable K which describes
the unique switchpoint at the exit of each block
P ′i , in such a way that P ′ ≡ P . This variable K
represent a key element for the obfuscator. We call
it the obfuscation parameter.

(b) ∀i ∈ [1, k+ p], two choices have to be considered
for building block P ′i :
– either P ′i is a legitimate block, that is to say

that ∃!s∈[1, k] such that P ′i contains the code
of Ps . In this case, we define a legitimate exit

123

218 J.-M. Borello, L. Mé

Fig. 6 Example of dead code blocks (Gi)

towards block P ′i+1 and another random exit
to the other blocks.

– or P ′i is an illegitimate block (dead code), that
is to say that ∃!t ∈[1, p] such that P ′i contains
the code of Gt . In this case, we define two
random exits.

In any case, block exits are conditioned by K in such a way
that the execution of program P is corresponding to that
of P .

Initializing the obfuscation parameter K

Since K is a critical component for statically reconstructing
the program P from P ′, we have to explain how to make the
retrieval of this information more complex. We consider two
different approaches:

1. The first one rests on mathematical complexity as pre-
sented in [11].
– With respect to this approach, using some mathe-

matical conjectures can dramatically increase the
complexity of static analysis. For example, let us
consider the Syracuse suite (un)n∈N defined by:⎧⎨
⎩

u0 ∈ N

∀n ∈ N
∗, un+1 =

{ un
2 if un is even,

3un + 1 otherwise.

The Syracuse conjecture claims that for every start-
ing element u0, the suite (un)n∈N always ends up
with the cycle 4, 2, 1. The obfuscation parameter K
could then depend upon the smallest integer i which
verify ui = 1 (K = f (i)).

– It is also possible to consider algebraic expressions
which are complex to verify [19]. For example, the
bit initialization ki of K could be obtained by the
following piece of code:
if (a*(a+1)%2==0) {ki=1;} else
{ki=0;} wherea describes any integer. In this case,
whatever the value of a, the previous predicate is
always true. From a general point of view, resolv-
ing such a condition requires the use of complex
algorithms as formal computing does.

2. Some difficulties induced by static analysis which can-
not consider the program in an execution context. From
a static point of view, the result of any external call
(other programs, API…) remains unknown and can-

Fig. 7 Example of possible obfuscation for the program P

Table 3 Results of program P ′ execution for different values of K

K Assignment of (xi) Execution paths Program P ′ results

0 x6, x5, x4, x3, x2, x1 P1,G2,P3,P5 Fatal error

1 x6, x5, x4, x3, x2, x1 (P1,P2,G1)* Endless loop

2 x6, x5, x4, x3, x2, x1 P1,G2,P3,P5 Fatal error

3 x6, x5, x4, x3, x2, x1 P1,P2,P3,P5 Fatal error

4 x6, x5, x4, x3, x2, x1 (P1,G2,P3,P4,P2,G1)* Endless loop

5 x6, x5, x4, x3, x2, x1 (P1,P2,G1)* Endless loop

6 x6, x5, x4, x3, x2, x1 P1,G2,(P3,P4,P2)* Endless loop

7 x6, x5, x4, x3, x2, x1 P1,(P2,P3,P4)* Endless loop

8 x6, x5, x4, x3, x2, x1 P1,G2,P3,P5 Fatal error

9 x6, x5, x4, x3, x2, x1 (P1,P2,G1)* Endless loop

10 x6, x5, x4, x3, x2, x1 P1,G2,P3,P5 Fatal error

11 x6, x5, x4, x3, x2, x1 P1,P2,P3,P5 Fatal error

12 x6, x5, x4, x3, x2, x1 P1,G2,P3,P4,P5 Incorrect

13 x6, x5, x4, x3, x2, x1 (P1,P2,G1)* Endless loop

14 x6, x5, x4, x3, x2, x1 P1,G2,P3,P4,P5 Incorrect

15 x6, x5, x4, x3, x2, x1 P1,P2,P3,P4,P5 Correct

not be solved unless running the program. The same
is true for static analysis of results produced by iterative
or recursive computing. For example, the use of hash
functions or of encryption primitives can increase the
complexity of the analysis. Let us suppose that K =
(xm, xm−1, . . . , x2, x1) is defined by ∀i ∈ [1, m], ∃ j ∈
[1, m], xi = H(Pj) where H is any hash function out-
putting a single bit. Guessing a xi needs to execute the
function H which is a complex process in static analysis.

Example of static analysis complexity with respect to an
obfuscated program

We will now try to illustrate the difficulty of deobfuscation
through the example given in the following Fig. 7 which
presents an obfuscated program P ′ obtained from an original
program P .

Block P ′0 initializes the Boolean variables (xi)i∈[1,6]which
conditioned the exit of every block. For example, for block
P1, if x1 = 1 then the next block to be executed is P2 oth-
erwise G2. In order to make the execution of program P ′

123

Code obfuscation techniques for metamorphic viruses 219

correspond to program P , we must keep the sequence of
blocks as shown in Fig. 5. In this case, it corresponds to
∀i ∈ [1, 4], xi = 1. Without knowledge of the value of K ,
the number of possible execution paths is equal to 2k+p−1.

Variables x5 and x6 conditioned the output of dead code
blocks G1 and G2 only. These blocks are never executed
whenever P ′ ≡ P . Table 3 thus presents the first 16 values
of K only, by assuming that x5 and x6 are null. Instead of
developing static analysis optimizations for the 16 possible
(xi)i∈[1,4] settings, we consider the execution result of the
obfuscated program P ′ as shown in Table 3. This is relevant
in this particular case since detecting this basic block (see
Fig. 5) is equivalent to checking whether it comes to execut-
ing the GetModuleHandle("Kernel32.dll") call
as previously noted. Table 3 presents four types of results
which are summarized as follows:

– seven cases (K = 1, 4, 5, 6, 7, 9, 13) which correspond
to an endless loop for which thecall instruction is never
reached;

– six cases (K = 0, 2, 3, 8, 10, 11) in which an error occurs
during the WIN32GetModuleHandle call. This error
comes from an incorrect parameter (invalid pointer);

– two cases (K = 12, 14) exit 0 after the call. Here, the
pointer given as parameter is valid indeed but it does not
correspond to the awaited string ("Kernel32.dll");

– a single case (K = 15) which corresponds to the awaited
call according to the value of K which has been used for
building P ′.

This example clearly shows the concrete impact of the the-
oretical result on a static analysis whenever the obfuscation
parameter K is unknown.

5 Conclusion

In this paper, we have proved that a reliable static analy-
sis of a particular category of metamorphic viruses is an
NP-complete problem. As a practical application, we have
presented an obfuscating approach whose resilience should
be high enough to defeat static analysis tools. This approach
operates by modifying the program control flow and has been
designed to be applied to metamorphic viruses in order to
prevent an efficient static analysis. Indeed, it rests on the
fact that a metamorphic virus can, during its execution, solve
problems which are considered as complex in static analy-
sis. We emphasize that our result is close to perfect detection.
However, we believe that this approach could present a prob-
lem for the state of the art detection tools. Fortunately, the
obfuscation technique presented here cannot be applied to
existing viruses: the metamorphic replication process oper-
ates by obfuscating the code after a modeling step. To use our

approach directly, the virus should first be able to invert this
transformation during its own execution in order to model
itself. This modeling step, as well as the modifications it
implies are not addressed in this paper. Our future work will
consider this aspect in order to study the whole replication
process: virus modeling then code obfuscation step.

Acknowledgments The authors would like to thank Guillaume
Bonfante (LORIA) for his valuable comments on the first version of
this paper.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Tech-
niques and, Tools. Addison-Wesley, Reading, MA (1986)

2. Beaucamps, P., Filiol, E.: On the possibility of practically obfus-
cating programs—towards a unifed perspective of code protection.
J. Comput. Virol. (WTCV’06 Special Issue, Bonfante, G., Marion,
J.-Y. eds), 2(4) (2006)

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A.,
Vadhan, S., Yang, K.: On the (im)possibility of obfuscating pro-
grams. In: Crypto ’01, LNCS No.2139, pp. 1–18 (2001)

4. Bruschi, D., Martignoni, L., Monga, M. : Detecting self-mutating
malware using control-flow graph matching. In: Büschkes, R.,
Laskov, P. (eds.) Detection of Intrusions and Malware & Vulnera-
bility Assessment, volume 4064 of LNCS, pp. 129–143. Springer,
Berlin (2006)

5. Bruschi, D., Martignoni, L., Monga, M.: Using code normaliza-
tion for fighting self-mutating malware. In: Proceedings of the
International Symposium of Secure Software Engineering. IEEE
Computer Society, Arlington (2006)

6. Chow, S., Gu, Y., Johnson, H., Zakharov, V.A.: An approach to
the obfuscation of control-flow of sequential computer programs.
In: ISC ’01: Proceedings of the 4th International Conference on
Information Security, pp. 144–155. Springer, London (2001)

7. Cifuentes, C.: Reverse Compilation Techniques. Ph.D. thesis,
Queensland University of Technology, School of Computing Sci-
ence (1994)

8. Christodorescu, M., Jha, S.: Static analysis of executables to detect
malicious patterns. In: In Proceedings of the 12th USENIX Secu-
rity Symposium, pp. 169–186 (2003)

9. Christodorescu, M., Jha, S.: Testing malware detectors. In ISSTA
’04: Proceedings of the 2004 ACM SIGSOFT international sym-
posium on Software testing and analysis, pp. 34–44. ACM Press,
New York (2004)

10. Cohen, F.: Computational aspects of computer viruses. Rogue pro-
grams: viruses, worms and Trojan horses, pp. 324–355 (1990)

11. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscat-
ing transformations. Technical Report 148, Univerity of Auckland,
New Zealand (1997)

12. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap,
resilient, and stealthy opaque constructs. In: Principles of Pro-
gramming Languages 1998, POPL’98, pp. 184–196 (1998)

13. Debray, S.K., Evans, W., Muth, R., De Sutter, B.: Compiler tech-
niques for code compaction. ACM Trans. Program. Languages
Syst. 22(2), 378–415 (2000)

14. Filiol, E.: Advanced Viral Techniques: Mathematical and Algo-
rithmic Aspects. Springer, Berlin (2006)

15. Filiol, E.: Malware pattern scanning schemes secure against black-
box analysis. J. Comput. Virol. (EICAR 2006 Special Issue,
Broucek, V., Tuner, P. eds), 2(1) (2006)

123

220 J.-M. Borello, L. Mé

16. Jacob, G., Filiol, E., Le Liard, M.: Evaluation methodology and
theoretical model for antiviral behavioural detection strategies. J.
Comput. Virol. (TCV 2006 Special Issue, Bonfante, G., Marion,
J.-Y. eds), 3(1) (2007)

17. Landi, W.A.: Interprocedural Aliasing in the Presence of Pointers.
Ph.D. thesis, New Brunswick, New Jersey, USA (1992)

18. Lakhotia, A., Kapoor, A., Kumar, E.U.: Are metamorphic viruses
really invincible? Virus Bull. (2004)

19. Ogiso, T., Sakabe, Y., Soshi, M., Miyaji, A.: Softwate tamper resi-
tance based on the difficulty of interprocdeural analysis. In: The
Third International Workshop on Information Security Applica-
tions, pp. 437–452 (2002)

20. Preda, M.D., Christodorescu, M., Jha, S., Debray, S.: A semantics-
based approach to malware detection. In: Proceedings of the
34th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL’07), pp. 377–388, January
17–19, 2007. ACM Press, New York (2007)

21. Rice, H.G.: Classes of recurively enumerable sets and their deci-
sion problems. Transactions of the American Mathematical Soci-
ety, pp. 358–366 (1953)

22. Szor, P., Ferrie, P.: Hunting for metamorphic. In: Virus Bulletin
Conférence, September 2001

23. Spinellis, D.: Reliable identification of bounded-length viruses is
np-complete. IEEE Trans. Inform. Theory 49(1), 280–284 (2003)

24. Sung, A.H., Xu, J., Chavez, P., Mukkamala, S.: Static analyzer
of vicious executables(save). In: Proceedings of the 20th Annual
Computer Security Applications Conference (ACSAC’04). IEEE
(2004)

25. Szor, P.: The Art of Computer Virus Research and Defense.
Addison-Wesley, Reading, MA (2005)

26. Wang, C., Hill, J., Knight, J., Davidson, J.: Software tamper resis-
tance: Obstructing static analysis of programs. Technical Report
CS-2000-12, University of Virginia (2000)

27. Walenstein, A., Mathur, R., Chouchane, M.R., Lakhotia, A.:
Normalizing metamorphic malware using term rewriting. SCAM
2006: The 6th IEEE Workshop Source Code Analysis and Manip-
ulation, pp. 75–84 (2006)

123

	Code obfuscation techniques for metamorphic viruses
	Abstract
	1 Introduction
	2 Code obfuscation techniques and metamorphic virus detection
	2.1 Code obfuscation techniques used by metamorphic viruses
	2.2 Main developments in obfuscation
	2.3 Detection techniques of metamorphic viruses

	3 Limitations of reliable static detectionof metamorphic codes
	3.1 Impossibility of perfect static detection
	3.2 Limitations of reliable static detection of a particular category of metamorphic codes

	4 Metamorphic code obfuscator making static analysis more complex
	4.1 Obfuscation approach for the control flow

	5 Conclusion
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

