J Comput Virol (2007) 3:113-123
DOI 10.1007/s11416-007-0045-1

EICAR 2007 BEST ACADEMIC PAPERS

Rootkit detection from outside the Matrix

Sébastien Josse

Received: 12 January 2007 / Revised: 3 March 2007 / Accepted: 17 March 2007 / Published online: 15 May 2007

© Springer-Verlag France 2007

Abstract  The main purpose of this article is to present a
secure engine which is specifically designed for a security
analyst when studying rootkits and all kinds of programs
which interact at a deep level with the operating system,
including Anti-Virus, Personal Firewall and HIPS programs.
State-of-the-Art algorithms for rootkit detection are pre-
sented in this paper. Forensic techniques to monitor the sys-
tem’s critical components and advanced heuristics are also
used. This survey is based on a proof-of-concept human
analysis framework which puts forward a reliable system
for automatically gaining information about a rootkit and
its interaction with the OS executive, but focuses on human
decision as a detection process without the same limitations
or constraints as product-oriented anti-rootkit programs. We
use the new point of view provided by this framework to take
a fresh look at heuristics and forensics which are currently
used by rootkit detectors.

1 Introduction

In [35], we can find a formal definition of a stealth virus
by using recursive functions of the complexity theory. Using
this formalism, a stealth virus is defined as a virus that mod-
ifies its execution environment in such a way that a program
controlling the system through system calls will not detect

Sébastien Josse is an I.T. consultant at Silicomp-AQL Security
Evaluation Lab and also a Ph.D student EDX Polytechnique Doctoral
School within the ESAT Virology and Cryptology Lab in Rennes
sebastien.josse @esat.terre.defense.gouv.fr.

S. Josse (B<)

Silicomp-AQL - Security Evaluation Lab,

1 rue de la Chataigneraie, 51766, Cesson-Sévigné, France
e-mail: Sebastien.Josse@aql.fr

the presence of the virus. As far as stealth virus detection
is concerned, they prove that the general problem of stealth
virus detection is ¥3 complete. Therefore, we can see that
the underlying complexity problem is too high to expect to
find a generic algorithm that matches this type of Malware.

A rootkit can be defined as a program which implements
a set of stealth techniques [7]. Therefore, we can understand
arootkit as a technology. A rootkit is also commonly associ-
ated with a specific class of program, kernel modules, which
execute at the most privileged security level of the CPU.

There are many locations where a program can install it-
self and hide within a standard operating system like Win-
dows NT, Mac OS or Linux. With the apparition of rootkits,
the host-based sword against shield battle has a new theatre
of operation including: the kernel land, the CPU registers,
the BIOS (Basic I/O System). By examining the execution
flow, starting from an I/O request through until the effec-
tive hardware operation, we can note that there are many
slots for corruption and hiding. We can also observe that
many ingenious (or undocumented) ways to drop a kernel
module into the system have always been found by rootkits
designers.

Thus the main problem in rootkit detection is the wide
perimeter of this large battlefield: in fact the whole oper-
ating system, including BIOS, Registry, file systems, boot
sectors, CPU registers, etc. Moreover, Rootkit technology
is evolving very fast, with rootkits that exploit the growing
structural complexity of operating systems and new func-
tional features of hardware components to hide. For exam-
ple, Blue Pill [31] and Vitriol [36] are a proof-of-concept
rootkits which implants a thin VMM beneath the host OS by
utilizing AMD’s Pacifica [34] or Intel VT [21] virtualization
extensions of the CPU instruction set. In both cases, the root-
kit VMM is installed while running in Ring 0 and then the
running OS is migrated into a VM.

@ Springer



114

S. Josse

The second problem is that a rootkit detection engine has
to make a diagnosis on a system which may already be cor-
rupted, or which may be corrupted during analysis, thus sub-
verting the security diagnosis. An operating system which
bases its security on the frank separation between two privi-
lege levels, is an open space when both Malware and Detector
are executing at the same privilege domain.

Anti-Virus, Personal Firewall and HIPS (Host Based Pro-
tection Systems) designers have to face several difficulties
when dealing with rootkits. An anti-rootkit program has to
face the same constraints as a rootkit program while execut-
ing on an operating system: it has to be installed as deeply
as possible within the operating system, and its installation
has to be robust against low-level viral attacks. In particular,
it has to be stealthy. In order to be able to (proactively) gain
information, it has to corrupt several of the operating system
components. This constraint induces problems of stability. In
this Sword against Shield battle, the two parts use the same
weapons.

Human analysts do not have the same constraints while
analysing the behaviour of such a program. They can run
the program in an emulated environment and gather the re-
quired information in order to check the security aspects of
the targeted program. They can drive transformations on the
targeted program, such as unpacking, in order to obtain an
unprotected version of the program, which can then be analy-
sed statically. The static analysis of the targeted program can
involve powerful tools and algorithms, with no limitation on
the use of resources, in order to obtain a de-obfuscated vari-
ant/version of a program. Specialized debuggers can be used
in order to carry out a dynamic analysis (and to examine the
internal objects of the system). Several anti-rootkit products
and forensics tools can be used successively to refine the
diagnosis. The whole analysis can be conducted within a vir-
tual environment which can be very difficult to distinguish
from a real one.

These levels of freedom are far less real for a proactive
security product: for performance reasons, emulation en-
gines are necessarily much poorer. Thus, Rootkits can imple-
ment detection routines which forbid any efficient emulation
process.

Analysis is not driven by a human and is thus faced with
difficulties that can be avoided during a human interactively-
driven analysis process while disassembling and dynamically
analysing a program. The goal of this paper is to present
the general specifications of a secure and advanced analysis
framework for rootkit analysis based on a virtual CPU. This
anti-rootkit function does not suffer the same limitations as
those described above. The design of this analysis tool is
isolation and stealth oriented.

The main idea and design principle of this analysis frame-
work is to contribute to forensics from outside the emu-
lated PC. We call the virtual PC and its operating system the

@ Springer

Virtual Operating System

I
Virtual HW E m{.'r.;ﬂa' \

——
S

Fig. 1 Rootkit from outside the Matrix

Matrix, in which a rootkit will evolve (Fig. 1). Like an acu-
puncturist, we apply precise and fine probes in order to take
stealthy measurements and arrive at diagnoses.

The remainder of this paper is structured as follow:

e Section 2 presents related work in the field of rootkit
detection.

e Section 3 discusses the design and implementation de-
tails of our proposed solution. This section provides also
an experimental evaluation of its effectiveness, through
examples of utilization.

e Section 4 discusses the contribution of this paper, in regard
to existing solutions and gives the limitations and usage
conditions.

e Section 5 concludes and outlines future work.

2 Related work

Many algorithms and heuristics have been proposed very
recently by anti-virus researchers. Among these methods,
we find exact identification detection methods based on form
analysis, statistical generic methods (applied from inside the
Matrix), and several algorithms which intend to reveal infor-
mation about the way a rootkit installs and maintain hooks
in the target system.

Integrity checking methods (comparison between two
snapshots of a system’s critical components). A huge num-
ber of works exists; among them - for the latest - are WinPE
GhostBuster [17], SVV (System Virginity Verifier) [30],
CoPilot [1] and Microsoft KPP [23], also known as Patch
Guard.

Model checking methods consist of making a comparison
between two values of a parameter which is representative
of the underlying system statistical model. The distribution
of a clean system and the distribution of a corrupted sys-
tem are discriminated by using such an estimator. Model
checking methods show promising results. A statistical ap-
proach inspired by steganography from an information theo-
retic viewpoint has been proposed in [14]. Such an approach
is currently implemented in PatchFinder [29]. The principle



Rootkit detection from outside the Matrix

115

of this rootkit detection tool is to detect API hooks by com-
paring the number of instructions executed during invocation
of several API functions with a clean reference (under the
hypothesis that hooks cause extra instructions to be executed
that would not be called by unhooked functions).

Consistency checking methods consist of checking the
consistency of several objects, given information of the intrin-
sic rules they have to obey. Several tools exist among them
SIGA2 KprocCheck [24] and VICE [8] both look for any
ServiceTable entries containing function pointers that point
outside the memory image of ntoskrnl . exe (for SSDT)
or win32k.sys (for Shadow SSDT).

Cross-view based detection methods consist of making a
comparison between two points of view of several system
objects: for example, a high-level view of these objects and
a low-level view of the same objects. Microsoft SysInternals
RootkitRevealer [9] detects hidden registry entries and hid-
den files by parsing the registry hives and filesystem at a very
low level and without the help of Win32 API, and comparing
the result with what is obtained through standard Win32 API
calls. F-Secure BlackLight [4] and IceSword [20] both use
cross-view based methods to detect process and files that are
hidden from the user and security software.

Signature based detection methods consist of compar-
ing a pattern to a signature base, in order to identify a cer-
tain rootkit. In the case of stealth Malware, this approach is
limited. We have to expect that a rootkit leaves sufficient
trace to allow its identification. RAIDE [6] uses a mem-
ory signature scanning method in order to find EPROCESS
blocks hidden by rootkits. SIGA2 APIHookCheck detects the
presence of system-wide API hooks that are implemented
based on insertion of jmp instructions at the start of the
real APL

So it can be seen that many methods are available for
detecting use of rootkit technology. Cross-view based, form
or behavioural analysis methods are regularly proposed by
anti-virus researchers. Their efficiency is however a real chal-
lenge, especially when a rootkit has already taken place in the
host. As a matter of fact, inside-the-Matrix rootkit detection
tools are easy to detect and possibly evade. Execution within
a controlled environment like a virtual machine could solve
the problems of isolation and stealth.

3 Design of our solution

We now go on in this section to present an approach based on
emulation in order to analyse rootkits securely and reliably.
Our tool is designed for security analysts. It covers at least
the following range of use:

e Rootkit analysis
e Anti-Virus, Personal Firewall and HIPS products testing

We use the new standpoint provided by our framework (i.e.
we gain information about the rootkit by observing the whole
corrupted host system from outside) to take a fresh look at
heuristics and algorithms which are currently used by rootkit
detectors.

3.1 Core emulation engine

We have adapted the QEMU [3] emulator in order to imple-
ment the core emulation engine of our framework. The gen-
eral software design is very similar to TTAnalyze, a tool for
analysing Malware [2].

The virtual machine embeds a kernel service which com-
municates through a virtual network interface with the virtual
machine monitor. This communication channel is used to up-
load the target binaries into the virtual machine, to start the
execution of the main target program and to get information
from the kernel which makes it possible to drive the exe-
cution of the guest process from the host system. It should
be noted that this information, which is located in the guest
NT executive’s tables and structures, can be obtained from
kernel mode (the way of obtaining it from kernel mode is
well documented in [26,27]) or by forensic (and stealth)
methods.

The human analysis framework receives information
about:

e Win32 and native API calls of the target program

e Sequentially disassembled code of the target program

e Structure of the executable in guest memory (and dynamic
comparison with the raw file)

e Several internal structures/objects of the operating system:
interrupt descriptors, SYSENTER_ EIP register, (shadow)
(system) service descriptors, process double-linked list,
driver objects, I/O request packets tables, etc.

3.2 Analysis modes

The main program can be used in two console modes:

e default mode automatically uploads the target executable
into the VM, possibly unpacking it and getting required
information about its functional interactions with the guest
operating system;

e interactive mode makes it possible for the security analyst
to dynamically drive the execution of the target executable
and interact with the VM, by controlling its states.

The main program can also be used in graphics mode. This
mode is useful when the analysis process requires interac-
tions between the user and the target program through a
graphical interface. The same options as in console mode

@ Springer



116

S. Josse

(default or interactive) are available when using the graphical
mode.

3.3 API calls tracing

Among the information that can be extracted from an exe-
cutable, the most important is the nature of its interaction
with the operating system. Thus, we trace both Win32 and
native! API calls. This first information is enough to under-
stand how any stealth Malware drops its driver into the
Kernel.

Let us give an example. We upload and start the migbot
rootkit (inside the emulator):

P> upload migbot.exe

[INFO] download target migbot.exe 27136
[INFO] status: OK

P> execsuspend

P> resumeexec

P> disconnect

Then we examine the log file:

By using this trace function, we are able to diagnose the
method used by a rootkit to drop its kernel module what-
ever the method used (via SCM with OpenSCManager,
CreateService, OpenService or via NtDLL with
ZwLoadDriver, ZwSystemDebugControl, ZwSet -
SystemInformation, or by any other undocumented
method).

If the dropper is packed, we first have to unpack it using
the procedure described in [22].

3.4 Objects under monitoring

The next set of information that is crucial when dealing with
rootkit is a view of all locations within the host platform
where a hook can be installed. A first stage in our analysis
method is thus to walk through the executive structures of
the operating system in order to identify the potential targets
of a rootkit attack.

[APICALL] 7C80C7B1l: call function 7C80C7B1
C:\WINDOWS\system32\kernel32.dll: :FindResourceA
[HOOK] FindResourceA[IN] 1pType=MIGBOT
[HOOK] FindResourceA[IN] 1lpName=BINARY
[HOOK] FindResourceA[OUT] HRSRC=00407048
[APICALL] 7C91D682: call function 7C91D682
C: \WINDOWS\system32\ntdll.dll: :ZwCreateFile
[HOOK] ZwCreateFile[IN] ObjectName=\??\C:\MIGBOT.SYS
[HOOK] ZwCreateFile[IN] FileAttributes=00000000 |
[HOOK] ZwCreateFile [OUT] NTSTATUS=00000025
[APICALL] 7C80AC28: call function 7C80AC28
C: \WINDOWS\system32\kernel32.dll: :GetProcAddress
[HOOK] GetProcAddress[IN] hModule=7C910000
[HOOK] GetProcAddress[IN] 1lpProcName=ZwSetSystemInformation
[HOOK] GetProcAddress [OUT] ProcAddress=7C91E729
[APICALL] 7C91E729: call function 7C91E729
C: \WINDOWS\system32\ntdll.dll::ZwSetSystemInformation
[HOOK] ZwSetSystemInformation[IN]
SystemInformationClass=SystemlLoadAndCallImage (38)
[HOOK] ZwSetSystemInformation[OUT] NTSTATUS=000000F0

We obtain information about the way this rootkit drops its
kernel module, firstly by determining the location of its body
(a binary resource), then writing this binary to disk and then
installing and starting the module within the kernel using the
ZwSetSystemInformation system call.

I Windows NT native API is the set of system services provided
by the Windows NT executive to both user mode and kernel mode
programs.

@ Springer

We also need to identify and monitor all the hardware
components that could be corrupted by a rootkit: BIOS flash
memory, CPU registers, boot sectors, etc.

Once all this information is collected, we can put forward
algorithms to help the security analyst make his diagnosis,
starting with the most commonly used heuristics.

We apply forensic integrity controls at different stages of
a target rootkit’s life cycle. We make a snapshot of crucial
structures and objects and monitor each modification. The



Rootkit detection from outside the Matrix

117

principle is to enumerate the target objects using forensics
methods, and then to use a hash function or a field-to-field
comparison of the structures.

The following objects, tables and structures are currently
monitored:

e BIOS, MBR (Master Boot Record), IVT (Interrupt Vector
Table)

e Process memory code sections, IAT/EAT tables

e Process and thread objects, SDT (Service Dispatch Table)

e Kernel code, kernel SSDT (System Service Dispatch
Table) and IDT (Interrupt Descriptors Table)

e Driver objects, IRP_M]J tables

e CPU registers (SYSENTER_EIP, LDT, GDT, CRO, CR3,
EFLAGS)

Our tool is designed to run its checks at every cycle of the vir-
tual CPU. Thus, itis immune to timing attacks. Such an attack
is feasible using a hardware solution like Copilot because it
is designed to run its checks periodically (every 30s in the
present prototype).

Our tool is immune to race conditions. We access physical
and virtual memory directly from outside, without any inter-
action with the virtual hardware. Such an attack is feasible
using a hardware solution like Copilot because the Copilot
monitor accesses host memory only via the PCI bus.

Our tool is immune to CPU cache attacks. At each vir-
tual CPU cycle, we can access the processor cache. Since it
is possible to maintain a consistent view of Copilot’s mon-
itored memory while hiding malicious code elsewhere such
as in the processor Cache, this code would remain undetected
by Copilot.

3.5 Modules integrity check

The integrity of all loaded modules (including NtOsKrnl and
Hal) is verified on demand or at each virtual CPU cycle. If
corruption is detected, the code section, the IAT and EAT?
integrity of the target module are checked. Let us give an
example: We install an inline hook in a target executable
(inside the emulator):

C:\>withdll /d:traceapi.dll parano.exe

Now examine the log file:

[DETECT] inline hook detected

We notice that an alert has been raised because one of the
functions imported by the target executable has been

2 The IAT (import Address Table) is used when an application uses an
API function to import its address. The EAT (Export Address Table) is
used by a DLL to export its API functions.

modified. We monitor the code section, the EAT and IAT of
all modules in memory in order to detect any attempt made
by a rootkit to install a hook.

3.6 IDT and Sysenter register

The IDT (Interrupt Descriptor Table) is used to find inter-
rupt handlers. We use the virtual CPU register to locate this
table in virtual memory (SegmentCache IDTInfo=
virtual_cpu->idt). We then parse the IDT table.

Let us give an example: we start the strace rootkit (inside
the emulator):

C:\>pslist paranoiac
Process PID
Paranoiac.exe 1436

C:\>strace 1436 10000

Now examine the log file:

[INFO]  IDT Base: 8003F400 Limit:000007FF
o o e
| IDT | Selector:Handler |DPL| P |
o o . T
| 00 | 0008:804dfbff o] 1|
| 01 | 0008:804dfd7c | o] 1]
| 02 | 0058:0000112e | o] 1|
| 2e | 0008:804deeab | 3 ] 1|
| £4 | 0008:804ded32 o] 1]
| fe | 0008:804ded39 | o 1|
| £f | 0008:804ded40 o] 1]
Fomm e e
[INFO]  IDT Base: 8003F400 Limit:000007FF
e e e
| IDT | Selector:Handler |DPL| P |
e e e
| 00 | 0008:804dfbff | o] 1|
| 01 | 0008:804dfd7c | o 1|
| 02 | 0058:0000112e | o] 1|
| 2¢ | 0008:fa00£2a0 |3 ] 1|
| £4 | 0008:804ded32 | o] 1|
| fe | 0008:804ded39 | o | 1|
| £f | 0008:804ded40 | o] 1|
R e e

[DETECT] IDT hook detected

We notice that an alert has been raised because the INT 2E
entry in IDT has been modified. Any program which modifies
the IDT will be detected. Moreover, we obtain information
about the location of the rootkit routine in memory.

INT 2E and SYSENTER instructions are issued by
NtDLL.dIl to trap the Kernel. In order to detect TA32_
SYSENTER_EIP rootkit attack, we need only to monitor
the corresponding virtual CPU register virtual_cpu->
sysenter_eip.

@ Springer



118

S. Josse

Let us give an example: we install and start the rootkit
sysenter (inside the emulator):

C:\>instdriver -Install sysenter sysenter.sys
C:\>instdriver -Start sysenter

Now examine the log file:

[INFO] sysenter_eip=804def6f
[INFO] sysenter_eip=fal2ed9a
[DETECT] sysenter hook detected

We notice that an alert has been raised because the
SYSENTER_ETIP has been modified. Any program which
modifies the SYSENTER_EIP will be detected. Moreover,
we obtain information about the location of the rootkit rou-
tine in memory.

3.7 Process and driver objects

The double-linked list of process structures is parsed from
virtual memory, starting from the initial system process loca-
tion. The whole structure is monitored in order to detect any
attempt to suppress one of its elements or to modify its crit-
ical values (security token for privilege elevation purpose,
etc.).

Let us give an example: the Fu rootkit [16] can hide pro-
cesses and device drivers. It can also elevate process privilege

[INFO]

activeLink=815b2f98, imageBase=£f8c95000,

Let us suppress one element of the EPROCESS double-
linked list:

C:\>fu -ph 1436

Now examine the log file:

[INFO] activeLink=815b3718, PID=0000059c,

Name=paranoiac.exe
[DETECT] EPROCESS DKOM detected

We notice that an alert has been raised because the EPRO-
CESS double-linked list has been modified. Any program
which modifies the EPROCESS double-linked list will be
detected.

The double-linked list of module entry structures is parsed
from virtual memory, starting from the PsLoadedModul -
eList symbol value which is exported by NtOsKrnl. The
whole structure is monitored in order to detect any attempt
to suppress one of its elements (kernel module hiding) or to
modify any of its critical values.

Let us suppress one element of the DRIVER_OBJECT
double-linked list:

C:\>fu -phd paranoiac.sys

Now examine the log file:

imageSize=00053000,

drvPath=\SystemRoot\system32\DRIVERS\srv.sys

activeLink=816f1c50, imageBase=£f8d95000,

imageSize=0000£000,

drvPath=\??\C:\Documents and Settings\Sébastien Josse\paranoiac.sys

activeLink=8055ab20, imageBase=f8aec000,

imageSize=00041000,

drvPath=\SystemRoot\System32\Drivers\HTTP.sys

[INFO]

activeLink=816f1c50, imageBase=£f8c95000,

imageSize=00053000,

drvPath=\SystemRoot\system32\DRIVERS\srv.sys

activeLink=815716c0, imageBase=£f8aec000,

imageSize=00041000,

drvPath=\SystemRoot\System32\Drivers\HTTP.sys

[DETECT] DRIVER_OBJECT DKOM detected

and groups. All this is done by DKOM (Direct Kernel Object
Manipulation). Fu is a play on words from the UNIX program
su used to elevate privilege.

We start the fu rootkit (inside the emulator):

C:\>pslist paranoiac

Process PID

Paranoiac.exe 1436

C:\>fu -prs 1436 SeLoadDriverPrivilege

Now, look at the log file:

[DETECT] EPROCESS corruption detected
(privilege elevation)

We notice that an alert has been raised because the EPRO-
CESS structure has been modified. Any program which mod-
ifies the EPROCESS structure will be detected.

@ Springer

‘We notice that an alert has been raised because the DRIVER__
OBJECT double-linked list has been modified. Any program
which modifies this double-linked list will be detected.

3.8 IRP Major functions

IRPs (I/0 Request Packet) are handled by NT executive and
drivers to communicate buffered data or control code to a
user-mode program. We parse the IRP Major functions table
of each driver object within the guest operating system exec-
utive virtual memory in order to detect any hook in these
crucial tables. In order to get at these driver objects using
only forensic methods, we have to walk the whole device
tree and explore each node of this structure in virtual
memory.



Rootkit detection from outside the Matrix

119

Let us give an example: we install and start the rootkit
irphook (inside the emulator):

C:\>instdriver -Install irphook irphook.sys
C:\>instdriver -Start irphook

Now examine the log file:

[DETECT] IRP_MJ hook detected

We notice that an alert has been raised because the IRP
Major Functions Table within a DRIVER_OBJECT has been
modified. Any program which modifies this table within any
DRIVER_OBJECT will be detected. Moreover, we obtain
information about the location of the rootkit handler in
memory.

3.9 Service dispatch tables

The SSDT (System Service Dispatch Table) is used by NT
executive for handling system calls. By parsing NtOSKrnl
PDB symbol file, we can locate the service descriptor table
in virtual memory. We parse the whole SSDT and monitor
any modification that is made to this table. The same moni-
toring operation is done with the SHADOW SSDT (Shadow
SSDT).

Let us give an example: we install and start the rootkit
hideprocess (inside the emulator):

C:\>instdriver -Install hideprocess

hideprocess.sys
C:\>instdriver -Start hideprocess

Now examine the log file:

3.10 Boot process monitoring

During the booting up process, BIOS transfers execution to
code from some other medium such as disk drive, CD-ROM
or via network boot (BIOS PXE? agent requests and down-
loads a boot file from the BOOTP/TFTP server).

e In the case of a booting up process from a disk drive,
the BIOS loads the first sector of the disk drive (MBR?)
which locates a bootable partition in the partition table and
executes the first sector of this boot partition. The parti-
tion boot sector loads and executes the next boot stage of
the OS.

e In the case of a booting up process from a CD-ROM, the
BIOS loads boot code from the CD-ROM which executes
the next boot stage of the OS.

e In case of a network boot, BIOS executes PXE agent,
which downloads and executes the network boot file. The
network boot file loads and executes the next boot stage
of the OS.

Windows boot loader loads and executes NtLdr, which cre-
ates GDT and IDT, and maps and executes OsLoader.
OsLoader loads the OS (NtDetect, Hal, NtOsKrnl, BootVid,
etc.).

Some rootkits exploit the reliance of Windows start-up
upon the BIOS. Windows start-up uses BIOS interrupts, so
IVT is mostly preserved. Moreover, it has to respect mem-
ory ranges reserved by the BIOS. BIOS rootkit like eEye
BootRoot or BootKit exploit this trust to function like BIOS
hooks.

[INFO] _service_descriptor[0]=804e2d20
_service_descriptor[1]1=00000000
_service_descriptor[2]=0000011c
_service_descriptor[3]1=804d8f48
service_table[000]=80586691, argument_table=18
service_table[001]=805706ef, argument_table=20
service_table[173]=8057cc27, argument_table=10
service_table[282]=80648e3c, argument_table=10
service_table[283]1=8062c033, argument_table=00

[INFO]

service_table[000]=80586691, argument_table=18
service_table[001]=805706ef, argument_table=20

service_table[173]=fa044486, argument_table=10

service_table[282]=80648e3c, argument_table=10
service_table[283]1=8062c033, argument_table=00

[DETECT] SSDT hook detected

We notice that an alert has been raised because an entry in the
SSDT has been modified. Any program which modifies the
SSDT (or SHADOW SSDT) will be detected. Moreover, we
obtain information about the location of the rootkit handler
in memory.

3 Preboot eXecution Environment.
4 Master Boot Record.

@ Springer



120

S. Josse

‘We monitor several locations (BIOS and VGA BIOS reserved
range of memory, MBR, real-mode IVT, etc.) in order to de-
tect any attempt to take control before Windows boot loader.

Let us give an example: eEye’s BootRoot [25] is a proof-
of-concept rootkit presented as an exploration of technol-
ogy that custom boot sector code can use to subvert the
Windows kernel as it loads. It is a boot sector-based NDIS
backdoor that demonstrates the implementation of this tech-
nology. It executes after the BIOS but before the operat-
ing system, enabling complete control over the operating
system.

We install and start the eEye BootRoot from a (virtual)
floppy drive. Now examine the log file:

[INFO] IVT

+-———- o +
| INT | ADDR |
+o———- o +
| 00 | £O00ff53 |
| 01 | £000f£f53 |
| 13 | £000e3fe |
| fe | £000££f53 |
| ££ | £000££53 |
F———— e +
[INFO] IVT

F———— e +
| INT | ADDR |
+———— e et +
| 00 | £O00ff53 |
| 01 | £000f£f53 |
| 13 | 9£80005¢ |
| fe | £000f£53 |
| ££ | £000££53 |
t———— e e - +

[DETECT] IVT corruption detected

BootKit [5] is a project related to custom boot sector code
subverting Windows NT Security Model. The sample pre-
sented currently keeps escalating cmd.exe to system privi-
leges every 30s. It patches the kernel at runtime. BootKit
is PXE-compatible. Quite a similar result is obtained while
booting on the virtual BootKit CD-ROM:

[INFO] IVT

+———— e e ke +
| INT | ADDR |
+———— e e ke +
| 00 | £O00ff53 |
| 01 | £000f£53 |
| 13 | 9e000068 |
| fe | £000££53 |
| ££ | £000££53 |
+———— o e +

[DETECT] IVT corruption detected

@ Springer

Both rootkits hook INT 13h to patch OS files (OsLoader,
etc.) as they load. The boot process monitoring function is
under development. By tracing every CPU instructions (start-
ing from time t0: first BIOS instruction is executed) and by
comparing this trace with a clean boot process, we should
be able to detect any attempt to execute additional code after
the BIOS but before the operating system. By monitoring a
wider range of virtual hardware locations, we should be able
to detect next generation BIOS viruses [12] such as BootRoot
[25], ACPI° BIOS rootkits [ 18] and PCI® rootkits [19].

3.11 Model checking

We propose a generic approach to specify detection algo-
rithms based on statistical tests (and thus suffering errors
rates) as introduced in [15]. This detection method tries to
decide if a given system, observed from outside (using foren-
sics methods) is corrupted by a stealth Malware. No infor-
mation about the identity of the rootkit or about the way
it corrupts the target system is provided by this generic
method.

PatchFinder intends to detect APl hooks by comparing the
number of instructions executed during invocation of several
API functions with a clean reference. The estimator cho-
sen by this statistical detection test is thus the average m of
instructions executed during invocation of a given API call.
This estimator describes Dj.

Let x4 (¢) denote the number of CPU instructions executed
during the system call s on the clean system and x; (¢) denote
the number of CPU instructions executed during the same
system call s on an unknown system.

The principle of PatchFinder is to compare those two val-
ues. If the difference is too high, the system is considered
as compromised by a rootkit. Let’s see how this approach
can be transposed in an outside-the-Matrix context (passive
analysis): We define the null and alternative hypothesis:

Hy : the system call s is not hooked
Hj : the system call s is hooked

For ¢ from 1 to n, we execute a code in virtual memory
that calls s. Next, we calculate the average CPU instructions
number m1.

We denote m( the average number instructions executed
during invocation of the API call s on the clean system and
m the same calculation on the unknown system.

By choosing the m estimator we can define a bilateral test
as follows:

Hy:m =myg
Hy :m # my

3> Advanced Configuration and Power Interface.

6 Peripheral Component Interconnected.



Rootkit detection from outside the Matrix

121

Indeed, if a hook is installed on the system for the s function,
the average number of CPU instructions m is either larger
than m (if the hook instrumentalizes the function s by add-
ing functionalities) or smaller than m (if the hook inhibits
the function s).

Given an accepted false positive rate, if |m —mg| is greater
than a given decision threshold, we consider that the function
s is hooked (and thus that the target system is corrupted).

By analysing the system from the outside, we are com-
pletely stealthy. The detection function is thus more difficult
to circumvent. Our sampling can be made by executing code
that calls s from a random memory area. By taking n mea-
surements, we are able to estimate the probabilistic distri-
bution law under Hy more precisely and thus detect (with a
controlled false positive rate) any suspicious variation when
compared to this law.

4 Evaluation
4.1 So what is new?

We propose a reliable, stealthy and secure analysis system
for automatically (or interactively, if needed) gaining accu-
rate information about a rootkit. We get accurate informa-
tion about its interactions with the OS executive, particularly
about the way it installs and maintains hooks in the target
system.

The design of our tool is isolation and stealth oriented.
By providing a completely controlled environment, we can
analyse a rootkit without any risk for the real system.

The whole analysis is conducted within a virtual environ-
ment (the Matrix), which can be very difficult to distinguish
from a real one, thus increasing the technical skills required
by rootkit designers, in order to forge a rootkit that could
evade or spread.

Our approach enables a stealthy and reliable snapshot
of the critical Hardware/Kernel objects which are usually
patched by Malwares implementing rootkit technology. This
monitoring function is as stealthy as possible because we use
an accurate and complete CSIM (including virtual CPU and
hardware components), on which an unmodified version of
the operating system executes.

These controls can occur at any time during the life cycle
of the monitored rootkit: load-time, run-time or boot-time.
As a matter of fact, we could apply a check at every CPU
cycle. We thus have a great degree of freedom and a smooth
granularity.

By observing the whole of the corrupted host system from
the outside, we offer a new standpoint which allows for the
study of the current rootkit detection algorithms (inside-the-
Matrix) and to validate their relevance in this new context
(outside-the-Matrix).

When compared to hardware-based rootkit detection solu-
tions, and because the whole machine can be inspected at any
time during the analysis process, our solution does not suffer
the same limitations and does not have their vulnerabilities
(timing attacks, CPU cache attacks, race conditions).

In comparison with the current inside-the-Matrix rootkit
detection tools, the same detection algorithms are more diffi-
cult to circumvent:

e integrity checking functions do not have to face the con-
straints and rules imposed by the operating system or by
the hardware. Stealth measurements can be made without
disturbing the operating system and without being locat-
able. Since rootkits do not execute at the same level as
the detection function, they can no longer disturb their
diagnosis.

e for the same reasons model checking algorithms are more
robust and difficult to evade. Moreover, because we can
sample and make finer-grained random measurements at
higher frequencies (at every CPU cycle, if needed), it is
possible to specify more efficient implementations of these
types of data mining algorithms.

Classic algorithms apply but without the same operational
constraints. As a consequence, it is much easier to apply
most of them jointly and possibly increase the scope of the
analysis.

During the analysis process, we can drive complex trans-
formations on the targeted program, such as unpacking, and
thus analyse possibly armoured rootkit.

Most rootkit currently do not implement software protec-
tion such as packing. Our unpacking engine, which is a plug-
in of our analysis framework, provides a generic unpacking
functionality which could be useful in the future while anal-
ysing rootkits.

4.2 Limitations

In the context of rootkit analysis, two security requirements
must be covered: isolation (propagation containment)éland
stealth (if emulation is detected, the target rootkit will no
longer provide information). Several additional security
functions are mandated in order to increase the security of our
proposed solution. In order to be isolated and secure, an emu-
lator must implement robust device protection, filtering and
network quarantine mechanisms. At least, a Firewall must be
installed on the host system in order to monitor the network
communication interfaces between host and guest operating
systems. We are currently exploring the possibility of inhib-
iting every interface between host and guest systems, provid-
ing a highly isolated VM. Natively, QEMU does not support
guest-to-host or host-to-guest communication since it is in-
tended to behave like a completely stand-alone machine. It is

@ Springer



122

S. Josse

possible to upload the target executable into the VM, without
using any standard communication channel, by using foren-
sics techniques: writing the target files directly on the raw
virtual disk. The task is not so easy.

We will recall now the problem of detection of an emu-
lated environment by a rootkit, which is crucial in the con-
text of rootkit detection using emulation: since knowing that
it is running on a virtual machine is the first step in a vi-
ral evasion attack attempt, a secure emulator must simu-
late the hardware components as precisely as possible and
must be resilient against pattern matching recognition algo-
rithms and any hardware functionality scan’. It is very diffi-
cult to simulate the hardware components of an emulated PC
perfectly.

Other mechanisms can be implemented by a Malware to
recognize an emulated environment. Several detection meth-
ods have long been documented for detecting commercial
VMM (Virtual Machine Monitor) like VMware or Virtual-
PC[10,28,33]. New methods have recently been discovered
in order to detect VMware, VirtualPC, Bochs, Hydra, QEMU
and Xen [11]. According to their author, only CSIM (Com-
plete Software Interpreter Machine) can approach complete
transparency. Bochs, Hydra, and QEMU, all suffer from bugs
and limitations that allow their detection, but these are prob-
lems that are possibly fixed.

Concerning QEMU emulator, among the most frequently
encountered problems, due to incorrect emulation, we find:

e problem in emulating self modifying code (a self over-
writing rep sequence for example), since using dynamic
translation,

e wrong returns value of some CPU instruction (wrong re-
turns value of cpuid instruction for processor name or
Easter egg on AMD CPU, for example),

e unexpected behaviour of the result of some CPU instruc-
tions (CMPXCHG8B instruction does not always write to
memory, for example),

e limitations in the exception handling code (Double Fault
exception is not supported, for example).

In order to be as stealth as possible, these bugs and limita-
tions of the core emulation engine must be corrected. Thus
some work has to be done to increase the security level of a
rootkit detector based on a core emulation engine.

5 Conclusion and future work

As we have seen in Sect. 2 of this paper, some interest-
ing detection methods, currently implemented by specialized

7 A Hardware functionality scan is an authentication method proposed
by Microsoft. The driver exercises complex inner workings of a chip
and checks for correct responses. In this way, the driver can authenticate
that a chip really is valid hardware.

@ Springer

forensics tools, should be transposed to our rootkit analysis
module:

e Cross-view based methods could be implemented by
injecting code into the virtual machine, in order to pro-
vide more or less low level system calls.

e Consistency checks could be implemented on several ker-
nel structures by providing intrinsic bounds characterizing
a healthy state.

e Signature based methods could be implemented by con-
trolling several locations of the system (for example the
kernel module part of the rootkit, its dropper, the memory
area where it loads, etc.) at crucial stages during the exe-
cution of the targeted program or during the life cycle of
the whole virtual system (boot time, for example).

e Model checking methods could be also implemented, as
specified in Sect. 3 of this paper.

We mentioned in the abstract of this paper that our analysis
tool applies to rootkit but also to any security product which
interacts deeply with the operating system in order to ensure
its robustness or to hide information by installing hooks.

Indeed, we can use this framework to check the robust-
ness of security mechanisms and to recover information on
their internal working procedures: as we have seen in Sect. 3
of this paper, we are able to collect many data which reveal
possible hiding locations.

We could implement some more specialized diagnosis
modules in order to assess the robustness of security func-
tions and mechanisms through a black-box or grey box
approach:

e for example, by using a black box approach, we could
extract the non-detection Boolean function under its Dis-
junctive Normal Form [13]. Thus we could measure the
quality of an anti-rootkit product as far as its knowledge
base and its detection algorithms are concerned. This ap-
proach is valid if the testing method is based on form anal-
ysis: pattern matching algorithms, API calls sequences
analysis, etc. A black-box approach and combinatorial
modelling are enough to underwrite the effectiveness of a
detector.

e the ability to apply code patching transformations at
instruction or basic block level during the target security
product’s execution (possibly using a reliable unpacking
functionality) and to modify any location on the whole
platform is a critical component of any information extrac-
tion or fault injection system.

We could also validate learning detection algorithms and the
calculation of similarity indices in several statistical detec-
tion models. Many statistical models, such as Markov mod-
els, have been used in DNA sequence analysis, and can be



Rootkit detection from outside the Matrix

123

used in metamorphic virus family analysis and recognition.
The implementation of such algorithms on viral sets is tech-
nically difficult using a static approach. A dynamic approach,
such as the one provided by emulation, is more suited than a
static approach.

Putting all this potential use of emulation together (oper-

ating system internals integrity check, dynamic binary code
analysis, statistical detection and learning algorithms vali-
dation on an intra-procedural level), it is easy to imagine
the benefits that could be gained from using an outside-the-
Matrix framework to help the security analyst do his job.

References

10.

11.

12.

13.

14.

. Arbaugh, W.A., Fraser, J.T., Molina, J., Petroni, N.L.: Copilot - a

Coprocessor-based Kernel Runtime Integrity Monitor. Available
at: http://www.usenix.org/events/sec04/tech/full_papers/petroni/
petroni_html/main.html, (2004)

. Bayer, U., Kruegel, C., Kirda, E.: TTAnalyze: a tool for ana-

lyzing malware. In: proceedings of the 15th EICAR Conference,
Hamburg, Germany, April 29 - May 3, 2006. In Journal in com-
puter Virology, EICAR 2006 Special Issue, V. Broucek et al. Editor
(2006)

. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Pro-

ceedings of the 2005 USENIX Conference (2005)

. BlackLight.: Available at: http://www.f-secure.com/blacklight/,

(2006)

. BootKit.: Available at: http://www.rootkit.com/vault/vipinkumar/,

(2007)

. Butler, J.: RAIDE: rootkit analysis identification elimination.

Available at: http://www.blackhat.com/presentations/bh-europe-
06/bh-eu-06-Silberman-Butler.pdf, (2006)

. Butler, J., Hoglund, G.: Rootkits: subverting the Windows kernel.

Addison Wesley, ISBN 0-321-29431-9 (2006)

. Butler, J., Hoglund, G.: VICE - Catch the hookers! (Plus new root-

kit techniques). Available at http://www.rootkit.com/, (2006)

. Cogswell, C., Russinovich, M.: RootkitRevealer. Available at:

http://www.sysinternals.com/, (2006)

Elias: Detect if your program is running inside a Virtual Machine.
14 Mars 2005. Retrieved from: http://Ilgwm.org (Elias homepage),
(2005)

Ferrie, P.: Attacks on virtual machine emulator. In: proceedings of
AVAR 2006 Conference, Auckland, New Zealand, December 3-5,
(2006)

Filiol, E.: Introduction to computer viruses: from theory to
applications. IRIS International Series, Springer, Heidelberg
(2005)

Filiol, F.: Malware pattern scanning schemes secure against
black-box analysis. In: proceedings of the 15th EICAR
Conference, Hamburg, Germany, April 29 - May 3, 2006, and In:
Broucek, V., Turner, P. (eds.) Eicar 2006 Special Issue, J. Comput.
Virol. 2(1), pp. 35-50 (2006)

Filiol, E.: Techniques virales avancées, IRIS Series, Springer
Verlag France, January 2007. An English translation is pending
(due mid 2007)

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Filiol, F., Josse, S.: A statistical model for undecidable viral detec-
tion. In: proceedings of the 16th EICAR Conference, Budapest,
Hungary, May 5 - 8, 2007. In: Broucek, V. (ed.) Eicar 2007 Spe-
cial Issue, J Comput Virol 3(2), (2007)

Fu.: Fu rootkit. Available at: https://www.rootkit.com/vault/
fuzen_op/, (2006)

GhostBuster.: the Strider GhostBuster Project. Avalaible at:
http://research.microsoft.com/rootkit/, (2006)

Heasman, J.: Implementing and detecting an ACPI BIOS Rootkit,
Black Hat Europe (2006)

Heasman, J.: Implementing and detecting a PCI rootkit, Available
at: http://www.ngssoftware.com/, (2006)
IceSword.: IceSword, Available at:
200509/1085.html, (2006)

IntelVT.: Intel Virtualization Technology, Available at: http://
www.intel.com/technology/virtualization/, (2007)

Josse, S.: Secure and advanced unpacking using computer emu-
lation. In: proceedings of the AVAR Conference, Auckland, New
Zealand, December 3-5, (2006)

KPP.: Kernel Patch Protection: Frequently asked questions,
Available at:  http://www.microsoft.com/whdc/driver/kernel/
64bitpatch_FAQ.mspx, (2006)

KprocCheck.: SIGA2 KprocCheck, Available at: http://www.
security.org.sg/, (2006)

Permeh, R., Soeder, D.: eEye BootRoot: A Basis for Bootstrap-
Based Windows Kernel Code, Available at: http://www.blackhat.
com/presentations/bh-usa-05/bh-us-05-soeder.pdf, (2006)
Russinovich, M.E., Solomon, D.A.: Inside Microsoft Windows
2000, 3rd edn. Microsoft Press, ISBN 0-7356-1021-5 (2000)
Russinovich, M.E., Solomon, D.A.: Microsoft windows internals,
4th edn: Microsoft Windows Server 2003, Windows XP, and Win-
dows 2000, (2004)

Rutkowska, J.: Red Pill... or how to detect VMM using
(almost) one CPU instruction. Retrieved from: http://www.
invisiblethings.org/papers/,(2004)

Rutkowska, J.: Detecting Windows Server Compromises
with Patchfinder 2. Retrieved from: http://www.invisiblethings.
org/papers/, (2004)

Rutkowska, J.: System virginity verifier, defining the roadmap for
malware detection on windows system. Hack in the box security
conference, September 28th -29th 2005, Kuala Lumpur, Malaysia
(2005)

Rutkowska, J.: Subverting VistaTM kernel for fun and profit.
SyScan’06 July 21st, 2006, Singapore & Black Hat Briefings 2006
August 3rd, 2006, Las Vegas (2006)

Szor, P.: The art of computer virus research and defense, Addison-
Wesley, ISBN 0-321-30454-3 (2005)

Z0mbie.: Z0mbie. VMWare has you. Retrieved from: http://vx.
netlux.org/, (2001)

Zeichick, A.: Coming soon to VMware, microsoft, and Xen: AMD
virtualization technology solves virtualization challenges, Avail-
able at: http://www;devx.com/amd/Article/30186/, (2005)

Zhou, M., Zuo, Z.: Some further theoretical results about computer
viruses, In: The computer journal, vol. 47, N°6 (2004)

Zovi, D.A.D.: Harware virtualization rootkits. Black Hat Federal
2006, Washington D.C., January 25th (2006)

http://xfocus.net/tools/

@ Springer


http://www.usediscretionary {-}{}{}nix.org/events/sec04/tech/full_papers/pediscretionary {-}{}{}trondiscretionary {-}{}{}i /pediscretionary {-}{}{}trondiscretionary {-}{}{}i_html/main.html
http://www.f-secure.com/blackdiscretionary {-}{}{}light/
http://www.rootdiscretionary {-}{}{}kit.com/vault/vidiscretionary {-}{}{}pinkudiscretionary {-}{}{}mar/
http://www.blackdiscretionary {-}{}{}hat.com/prediscretionary {-}{}{}sendiscretionary {-}{}{}tadiscretionary {-}{}{}tions/bh-europe-06/bh-eu-06-Sildiscretionary {-}{}{}berdiscretionary {-}{}{}man-Butdiscretionary {-}{}{}ler.pdf
http://www.rootdiscretionary {-}{}{}kit.com/
http://www.sydiscretionary {-}{}{}sindiscretionary {-}{}{}terdiscretionary {-}{}{}nals.com/
https://www.rootdiscretionary {-}{}{}kit.com/vault/fudiscretionary {-}{}{}zen_op/
http://research.microdiscretionary {-}{}{}soft.com/rootdiscretionary {-}{}{}kit/
http://www.ngsdiscretionary {-}{}{}softdiscretionary {-}{}{}ware.com/
http://xfocus.net/tools/200509/1085.html
http://www.intel.com/techdiscretionary {-}{}{}noldiscretionary {-}{}{}ogy/virdiscretionary {-}{}{}tudiscretionary {-}{}{}aldiscretionary {-}{}{}izadiscretionary {-}{}{}tion/
http://www.microdiscretionary {-}{}{}soft.com/whdc/driver/kerdiscretionary {-}{}{}nel/64bitdiscretionary {-}{}{}patch_FAQ.mspx
http://www.secudiscretionary {-}{}{}rity.org.sg/
http://www.blackdiscretionary {-}{}{}hat.com/prediscretionary {-}{}{}sendiscretionary {-}{}{}tadiscretionary {-}{}{}tions/bh-usa-05/bh-us-05-soediscretionary {-}{}{}der.pdf
http://www.indiscretionary {-}{}{}visdiscretionary {-}{}{}idiscretionary {-}{}{}blediscretionary {-}{}{}things.org/papers/
http://www.indiscretionary {-}{}{}visdiscretionary {-}{}{}idiscretionary {-}{}{}blediscretionary {-}{}{}things.org/papers/
http://vx.netdiscretionary {-}{}{}lux.org/

	Rootkit detection from outside the Matrix
	Abstract 
	Introduction
	Related work
	Design of our solution
	Core emulation engine
	Analysis modes
	API calls tracing
	Objects under monitoring
	Modules integrity check
	IDT and Sysenter register
	Process and driver objects
	IRP Major functions
	Service dispatch tables
	Boot process monitoring
	Model checking
	Evaluation
	So what is new?
	Limitations
	Conclusion and future work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


