J Comput Virol (2007) 3:39-49
DOI 10.1007/s11416-007-0036-2

EXTENDED VERSION OF WTCV’06

Intrusion detection and virology: an analysis of differences,

similarities and complementariness

Benjamin Morin - Ludovic Mé

Received: 8 October 2006 / Accepted: 12 January 2007 / Published online: 7 February 2007

© Springer-Verlag France 2007

Abstract In this paper, we analyze the differences,
similarities and complementariness which exist between
two major domains of nowadays information security:
intrusion detection on one hand, virology and anti-
viruses technologies on the other hand. This analysis
is built from two points of view. First, we compare,
through the definitions that have been proposed by
researchers of the two communities, the goals that are
actually pursued in each domain. Then, we compare
the techniques that have been developed to reach these
goals. In the conclusion, we summarize our analysis and
suggest that alert correlation is one way to make the two
fields cooperate.

1 Introduction

Research in virology and research in intrusion detection
both emerged in the 1980s, but evolved separately until
today. Viruses and intrusion detection are nowadays two
major building blocks for information security. An anti-
virus software is embedded in almost each computer,
not to say in each computer hosting the Windows ope-
rating system. Intrusion detection is more restricted to
the professional area. Nevertheless, intrusion detection
systems (IDSes) are largely used by network adminis-
trators in small or large companies, or in research or
academic environments.

Using an anti-virus software or an IDS is actually an
answer to the same kind of concerns: even if preven-
tive security tools (e.g., authentication, access control,

B. Morin (X)) - L. Mé
Supélec, Rennes, France
e-mail: benjamin.morin@supelec.fr

cryptography) are deployed, it is often or even always
possible, for a malicious individual, to bypass the pro-
tections. Thus, a second level of defense is mandatory,
which is constituted by tools such as anti-virus softwares
and IDSes. The idea is that if it is not possible to prevent
attacks against our computers, at least it may be possible
to detect these attacks. Then, once detected, it may also
be possible, in some cases, to stop the attack.

The goals of the two domains thus appear to be pretty
similar. In this case, why are the two domains separate?
Is there an intrinsic difference between the two forms
of attacks justifying such a separation? Presumably not.
Some researchers work in both domains [18,6,19], and
IDSes have already been used as anti-virus softwares:
in [20], the ASAX [13] IDS is used as an expert system
to detect viruses in the VIDES platform.

This paper is an attempt to position each of these
domains with respect to the other. We do not claim
here any new major scientific contribution. Rather, our
objective is to identify similarities and differences, and
see how the tools from the two domains may be inte-
grated in a unified framework that would benefit to the
final users by increasing the hosts and networks security
levels.

The reader should notice that this article is written
by authors from the intrusion detection field, not by
computer virologists. Therefore, this paper is open to
discussion, and even written to give rise to discussion. It
only reflects the (potentially biased) opinion of intrusion
detection specialists, although we make an effort to be
impartial.

The remaining of this article is organized as follow. In
Sect. 2, we compare, through the definitions that have
been proposed by researchers of the two communities,
the goals that are actually pursued in each domain. Then,

@ Springer

40

B. Morin, L. Mé

in Sect. 3, we compare the techniques that have been
developed to reach these goals. Finally, in the conclusion,
we summarize our analysis and suggest that alert corre-
lation is one way to make the two fields cooperate.

2 Comparing domains

In this section, we compare the definitions that have
been proposed by researcher of the two domains. First,
we present the generally accepted definition of intrusion
detection, then we come to the Cohen’s and Adleman’s
definitions of virology, to finally be able to compare
these definitions in order to position each domain with
respect to the other. It is here a first attempt in compa-
rison, the next section being devoted to a comparison
based on the technics used by the tools presently used
to detect intrusions or viruses.

2.1 A definition of intrusion detection

To enforce security properties within an information sys-
tem, one has first to define a security policy, i.e., a set
of rules and principles that ensure one or several of the
properties of the “security triad”:

1. Confidentiality: preserving authorized restrictions
on information access and disclosure. A violation
of the confidentiality property is the unauthorized
disclosure of information.

2. Integrity: guarding against improper information
modification or destruction. This includes ensuring
information non-repudiation and authenticity.
A violation of the integrity property is an unautho-
rized modification or destruction of information.

3. Availability: ensuring timely and reliable access to
and use of information. The violation of the availa-
bility property is the disruption of access to or use
of information or an information system.

Classically, preventive security tools are deployed to
implement the security policy. For instance, access
control and cryptology are both fields of computer secu-
rity whose objective is to prevent security policy viola-
tions. Therefore, the question of detecting such violation
might look trivial, if not pointless.

The intrusion detection field has emerged from the
insufficiencies and failures of classical security mecha-
nisms to protect computers from attacks. Intrusion
detection is nothing but a second line of defense whitch
actually finds its origin in log audit activities. The report
written by James P. Anderson in 1980 [2], considered
as the seminal work on intrusion detection, proposed

@ Springer

changes in computer audit trails exploitation, in order
to provide information ensuring that the activities that
have occurred on a computer system were in compliance
with the security policy. Auditing was indeed neces-
sary because of the numerous flaws (i.e., vulnerabilities)
introduced in a system during its design, implementation
or configuration. These vulnerabilities can be exploited
to bypass security mechanisms used to enforce a security
policy.

From the scientific perspectives, the domain still lacks
theoretical ground, and there is no formal definition of
intrusion detection. Nevertheless, there is a commonly
accepted one, coming from Anderson’s view. This defi-
nition is relative to the security policy and can be stated
as follows:

Definition 1 Intrusion detection is the process of moni-
toring computer networks and systems for violations of
the enforced security policy.

Automating the analysis of large audit trails had
become necessary as computer networks grew in size.
This automation is the goal of intrusion detection sys-
tems (IDS), the foundations of which are attributed to
the Denning’s intrusion detection model [9].

2.2 Definitions of virology

Compared to intrusion detection, virology benefits from
stronger theoretical foundations. There are two major
formalization efforts in studying viruses, namely the
work by Cohen [7], then the one by Adleman [1].

In order to position intrusion detection with respect to
virology, we give a summary of the existing definitions of
viruses. Further details can be found in Filiol’s book [11].

Cohen’s work is considered as the seminal work on
computer virology. According to Cohen, a virus can be
formalized as a word on a Turing machine tape that
duplicates or mutates on the tape when it is activated.
An informal definition of a virus can thus be stated as
follows:

Definition 2 A computer virus is a program that can
infect other programs by modifying them to include a
possibly evolved copy of itself.

The notion of replication in central to Cohen’s defi-
nition of viruses. More recent studies comply with this
definition. For example, Bonfante et al. [3,4] proposed a
new virus model, where self reproduction is considered
a distinctive feature of viruses. Filiol [11] also states that
any sequence that reproduces itself is a virus.

Deciding whether a computer program is a virus thus
consists in deciding whether this program replicates
itself. Cohen’s main theorem states that deciding

Intrusion detection and virology

41

whether a program is a virus is undecidable. In other
words, there does not exist any program capable of deci-
ding that a program is a virus either by enumerating
all viral sequences or all non-viral sequences. There-
fore, classical anti-virus techniques used nowadays are
deemed to fail.

In [1], Adleman proposed a more general formali-
zation of computer viruses. Notably, Adleman’s model
relaxes the virus replication characteristic. This model
allows to capture a broader class of attacks, named com-
puter infections, for which a classification is proposed.
This classification includes viruses, as well as other forms
of computer attacks, like trojan horses and logic bombs.
The preferred term used to denote Adleman’s compu-
ter infections is now malwares, whose origin is unclear.
Initial references to it can be found in [18]. Brunnstein
also used this term in 1991 [5], where a transition from
anti-viruses to anti-malware programs is proposed. Filiol
proposes in his book [11] the following definition of
malware:

Definition 3 A malware is a simple or self-reproducing
offensive program that is installed in an information
system without users’ knowledge, in order to violate
confidentiality, integrity or availability of that system,
or susceptible of falsely incriminating the owner or user
of the program in a computer offense.

In his paper, Adleman also refines the complexity
class of the infection detection problem, but the problem
still remains undecidable.

2.3 Discussion based on definitions

2.3.1 Following Cohen’s definition: an IDS should
not directly detect viruses

In the light of Cohen’s formal definition, computer
viruses do not seem to fit into the scope of intrusion
detection. Indeed, this definition of viruses makes no
explicit reference to any security policy violation, which
is a key concept in intrusion detection. In other words, a
program that corresponds to Cohen’s definition does not
necessarily violate a security policy. Thus, this program
would not be considered as an attack too by an IDS.
Moreover, to our best knowledge, the detection of intru-
sions that can be characterized by the self-replication
property of a program is not addressed in the intrusion
detection literature. IDSes cope with potentially isola-
ted attacks, lead by individuals whose objective is to take
the control of some hosts; the objective of such indivi-
duals is not to have their attack necessarily replicated.
Computer worms are one exception to this. A
computer worm can be defined as an autonomous

self-replication program. Autonomy means that worms
do not need user intervention to duplicate themselves,
which makes their spreading much faster. Autonomy
is made possible in ever increasing networked envi-
ronments, where computer softwares exhibit remotely
exploitable vulnerabilities. This difference between clas-
sical viruses and worms is referred to as /locality in the
malware taxonomy proposed by Swimmer [20]. Because
of their self-replication characteristic, worms definitely
fit into Cohen’s definition. They also fit into the scope
of intrusion detection, because they exploit a vulne-
rability which may lead to a security policy violation.
Moreover, the fast propagation of worms has side effects
on the network which can lead to a denial of service.
For this reason, intrusion detection techniques based
on the profiling of network traffic have been proposed
to detect worms propagation. In these approaches, self-
duplication is used as a mean to detect worms. Worms
are thus an example of malware that has been studied
in depth by both communities.

One may notice that the self-duplication property
of Cohen’s definition implies that a virus provokes the
modification of other programs. This is an integrity vio-
lation, which should be detected by an IDS as a security
policy violation.

2.3.2 Following Adleman’s definition: an IDS should
detect viruses

A common characteristic of Cohen’s and Adleman’s
models is that they consider infected programs, i.e., pro-
grams that have been modified by a virus. In other words,
virology assumes the presence of a virus within the code
or data of a program. Whether the decision is made
based on a static analysis of the program or by execu-
ting it in a protected environment, the problem remains
the same: virus detection consists in deciding if a pro-
gram contains a viral sequence or not.

The objective of intrusion detection is not to detect
infected computer programs, but to analyze the activities
of some monitored active entities (e.g., users, processes),
in order to identify the subset of these activities that vio-
lates the security policy enforced within the monitored
system.

Adleman’s definition of malwares, which includes
viruses, is similar to the definition of intrusions: in both
cases, there is an explicit reference to a violation of the
security properties. In the light of Adleman’s model,
worms are thus not the only common object under study
in intrusion detection and viruses. Also are backdoors
and trojans, whose detection can typically be achieved
using an IDS.

@ Springer

4

B. Morin, L. Mé

For example, a brute force attack intended to guess a
password should be detected by an IDS. Nevertheless,
unless if realized by a virus, a classical anti-virus system
should not detect such an attack. On the other hand, if
it is a virus that realizes the attack, an IDS should detect
it exactly as if it was realized by any user or process of
the monitored system, i.e., by analyzing activities.

More generally speaking, any execution of a virus
payload that engenders malicious activities should be
detected by an IDS. As such, virus detection should fall
within the scope of IDSes. Moreover, notice that, as it
monitors activities, IDSes are a priori less impacted by
the undecidability result related to virus detection.

2.4 Summary

At this point, we have shown that, from a theoretical
point of view, intrusion detection encompass anti-virus
detection. Actually, this is not surprising, as the defini-
tion of intrusion detection refers to any violation of the
security policy.

Nevertheless, intrusion detection and virology are not
redundant. From the practical point of view, they tackle
computer security from different points of view, which
are complementary. Current IDSes are generally not
designed to detect viruses. Likewise, as noted by [20],
anti-virus vendors have been reluctant to detect other
forms of malicious software than pure virus.

However, this situation is slowly changing. Indeed,
anti-virus softwares now detect and stop worm propa-
gation. This could be interpreted as a natural evolution
of anti-virus that acquire HIDS functionalities. In the
same time, currently existing IDSes now acquire viruses
detection capabilities.

3 Comparing techniques

In Sect. 2, we have compared, through the definitions
that have been proposed by researchers of the two com-
munities, the goals pursued in intrusion detection and
anti-virus fields. Another way to position intrusion
detection with respect to virology is to compare the tech-
niques developed in these two domains to reach those
goals. This is the aim of this section.

In the case of intrusion detection, we will see that
there is a large gap between practical achievements and
the theoretical objectives.

This section is organized as follows: we first present
the characteristics of IDSes, then we give four examples
of implementations which are the most representative
according to us. The positioning with respect to anti-virus

@ Springer

softwares will be addressed throughout these two sec-
tions, where it is the most relevant.

3.1 Characteristics of IDSes

In this section, we present the different characteristics
of present IDSes, as proposed by Debar et al. [8], and
compare these characteristics to the ones of anti-virus
softwares.

3.1.1 Architecture of an IDS

According to the Intrusion Detection Working Group
at the IETF, an IDS is composed of two distinct compo-
nents, the architecture of which is illustrated in Fig. 1:

1. The sensor is responsible for the capture, feature
extraction and normalization of the activity of the
monitored entity, as seen from a data source. The
sensor provides events to the analyzer.

2. The analyzer is responsible for the detection of
misuse or anomalous activities, and sends alerts to
a manager where alert correlation and management
processes take place.

The sensor and analyzer functions correspond to the
two most discriminating characteristics of IDS taxo-
nomy proposed by Debar et al., namely the data source
employed to detect attacks and the detection method

Data
Source

activity

Probe
Alerts

|
events —+

Manager

—

alerts

v

Analyzer

Fig. 1 Architecture of an IDS

Intrusion detection and virology

43

that allows to distinguish attacks from normal activi-
ties. These two characteristics are further explained in
this section. This taxonomy includes three other classi-
fication criteria, namely the behavior on detection, the
detection paradigm, and the usage frequency. These cri-
teria are not as discriminative as the first two to distin-
guish two IDSes pairwise, but they provide interesting
elements for the anti-virus comparison. We will briefly
discuss them in the remainder.

We may notice that in [20], Swimmer shows that a
classical anti-virus software fits into the IDS Debar et al’s
taxonomy.

3.1.2 Data sources

Exploitable data sources to monitor the activity of an
information system are generally split into three cate-
gories: the network traffic, the operating system’s audit
trails and the applicative logging information. IDSes
that take advantage of the former are called Network-
based IDS (NIDS), while IDS that take advantage of the
two latest are called Host-based IDS (HIDS) because
their analysis is achieved on the target host. Neverthe-
less, the term HIDS is generally used for an IDS analy-
zing operating system level data, while IDS exploiting
application data are rather named application-based
IDS.

Network-based intrusion detection: NIDSes analyze net-
work packets in order to detect signs of intrusions.
NIDSes either listen to traffic passively using a dedica-
ted interface in promiscuous mode, or are put inline, in
which case they are called intrusion prevention systems
(IPS) because of their traffic blocking capabilities.

Network-based IDSes received a wide acceptance by
the industrial community. This is mainly due to their
easy deployment, to the absence of impact on the per-
formances of the monitored network, and to the fact
that one single sensor is capable of monitoring the acti-
vity of several hosts provided it is located at a strategic
point in the network.

The scope of NIDSes is not only large from the topo-
logical point of view, but also from the point of view of
the attack types that can be detected. Any attack vec-
tored to the target through the network can potentially
be detected by a NIDS, without any modification of the
monitored system.

However, network-based IDSes suffer from several
drawbacks. First, they are not able to analyze ciphered
traffic, which is increasingly used in network protocols.
Second, the ever increasing traffic bandwidth makes
the exhaustive capture of packets a challenging task,

potentially leading attacks not to be detected. Last but
not least, diagnosis of NIDSes is generally not reliable
enough because the information contained in network
traffic is generally not sufficient to rule on the success or
failure of attacks.

Host-based intrusion detection: Host-based intrusion
detection systems (HIDS) take advantage of audit trails
to monitor the activity of processes or users at the host
level. Audit trails can be provided by the operating sys-
tem (e.g., Sun BSM) or by individual applications (e.g.
web server log files), in which case sensors are some-
times referred to as application-based.

System calls invoked by processes constitute a data
source of particular interest in host-based intrusion
detection, because they provide fine-grained informa-
tion about what is actually executed by a host. There-
fore, system calls allow for a more reliable diagnosis
about the impact of attacks.

Host-based intrusion detection has two major draw-
backs. First, the mere capture of the activity can turn
out to be time and space consuming, thereby degrading
the overall performance of the monitored host. Moreo-
ver, time spent to analyze events adds to their capture.
Second, the scope of HIDSes is limited to a single host
or application. Therefore, several sensors need to be
deployed in large networks for the monitoring to be
effective, which makes alert management and correla-
tion at the manager level crucial. For these reasons, the
development of HIDSes has not been as successful as
for NIDSes in the industrial community.

Anti-virus softwares vs. HIDS/NIDS: From the analysis
localization point of view, classical anti-virus softwares
are similar to HIDS. Yet, almost any computer is now
equipped with an anti-virus, so we may wonder why
HIDS did not achieve the same deployment. We believe
that there are two reasons for this. The first one is that
HIDS have a continuous impact on the overall perfor-
mance of the monitored host, and their installation is
intrusive because they require deep interactions with
the operating system. The second reason is that IDSes
still suffer from a significant amount of false alarms.
From an IDS vendor point of view, these two reasons
are all the more intolerable as their softwares are to be
used by privates.

3.1.3 Detection method
In this section, we focus on the detection paradigm, that
is to say the approach used to distinguish malicious acti-

vities from normal ones. There are two opposite cate-
gories of attack detection paradigms: knowledge-based

@ Springer

44

B. Morin, L. Mé

Fig. 2 Detection methods Legal activities = lllegal activities| [Legal activities lilegal activities
- o~
7 @Faise A\ False g
[posiive \ ey
l ! - A Bl . 7
\ Knowledge-based 4 . <
S Model \ / !
{ ! [o hevior based /]
\ i / \ Model S
7
~ 2 I W’ r- f> 1 Tr?_e ®
® True T = e, Fasa ," poen
gedaie @ False N mmgatties
negative - = /T

and anomaly-based intrusion detection. The former is
best known as misuse intrusion detection and the latter
as anomaly intrusion detection. We prefer the know-
ledge and behavior terminology, due to Debar et al. [8],
because we believe it is more explicit.

Figure 2 illustrates these two conceptually opposite
detection methods. Behavior detection consists in mode-
ling normal activities, while the knowledge-based intru-
sion detection consists in modeling malicious activities.
We will give further details in the remainder. In both
cases, the challenge is to build models that are simul-
taneously complete (i.e., the model allows to detect all
malicious activities) and accurate (i.e., the model allows
to detect only malicious activities). Incompleteness leads
to false negatives (i.e. attacks that are not detected),
while inaccuracy leads to false positives (i.e. false alerts),
which are the two infamous problems that current IDSes
face.

Knowledge-based detection: Conceptually, knowledge-
based intrusion detection consists in building a model of
known malicious (i.e., forbidden) activities, and com-
paring the current activity with this model. The ele-
ments of the model that encode the characteristics of
malicious activities are generally called signatures. The-
refore, knowledge-based intrusion detection is a recog-
nition problem, where the objective is to decide whether
the currently monitored activity matches one of the
signatures.

The obvious major drawback of knowledge-based
intrusion detection resides in their inherent incomple-
teness: attacks for which no signature exists are not
detected. Therefore, the signature database must be
up-to-date in order not to miss attacks. The so-called
“0-days” (i.e., attacks exploiting unknown vulnerabi-
lities) are of course a major concern for that type of
detection.

Knowledge-based IDSes are presumably more accu-
rate than behavior-based ones. However, in order not
to miss attacks, signature providers tend to create gene-
ric signatures, in order to capture most attacks. Generic

@ Springer

signatures are also susceptible to capture legitimate acti-
vities, leading thus to false positives.

The major advantage of knowledge-based intrusion
detection is that it recognizes the exploited vulnerabili-
ties. Therefore, the diagnosis provided by the IDS allows
security operators to take fast and appropriate counter-
measures.

Anti-virus softwares vs. knowledge-based detection:
Knowledge-network-based IDSes are the most com-
mon kind of IDSes. Most of them contain signatures
intended to detect malwares based on their payload,
including viruses and worm propagation. However, the
signatures used by IDSes to detect viruses are gene-
rally both incomplete and inaccurate compared to those
found in anti-virus systems.

The principles of knowledge-based intrusion detec-
tion are the same as classical anti-virus systems. The-
refore, Cohen’s theorem about the undecidability of
virus detection also applies to this category of intru-
sion detection approach. As a consequence, knowledge-
based intrusion detection is sensitive to obfuscation
techniques intended to hide attacks.

Behavior-based detection: Behavior-based (i.e., ano-
maly) detection consists in comparing the observed
behavior of the monitored system with a reference
model previously constructed, which describes the
expected behavior of this system. A significant devia-
tion between the current behavior and the model can be
the sign of an intrusion. The model of safe behavior can
be either established by learning techniques or explicitly
specified by an expert.

Existing detection techniques falling in this category
vary, depending on the type of system being monitored
and the model construction approach. In [9], Denning
proposed to build profiles of users based on metrics like
the type of programs used, the rate of keystrokes, or the
amount of CPU and memory consumed. However, the
most productive line of research in the anomaly detec-
tion area consists in modeling the behavior of processes

Intrusion detection and virology

45

by means of the system calls they invoke during exe-
cution. Several techniques have been proposed in the
literature, most of which are based on statistical profiles.
Examples are given in Sect. 3.2.

The main advantage of anomaly-based IDSes resides
in their completeness: the detection does not require any
knowledge of existing attacks. Therefore, this approach
can potentially detect unknown or obfuscated attacks.

The major drawback of behavior-based intrusion
detection lies in its inability to spot the exploited vulne-
rability explicitly. This leads to additional investigation
efforts by security operators to understand the situation
at issue.

It is also difficult to correctly capture the behavior
of the system, i.e. capture all and only normal activities.
Indeed, an incomplete model leads previously unseen
normal activity to trigger false alarm; on the contrary,
malicious activities that occur during the learning period
leads attacks not to be detected.

Updating the normal behavior model is also challen-
ging compared to the knowledge-based approach, where
the malicious activities model update merely consists in
adding new attack signatures to the existing database.
Anti-virus softwares vs. behavior-based detection: There
is a fundamental difference between behavior-based
approach in intrusion detection and behavior detection
in virology (also known as detection by heuristics).

Behavior-based virology basically consists in using
generic virus infection evidence in order to detect viruses
without relying on a specific signature. Behavior intru-
sion detection consists in dynamically detecting devia-
tions in the behavior of processes which are subject to
computer infections. Their objective is not to recognize
computer infections by analyzing the payload of a mal-
ware program.

In the context of behavior-based detection, mimi-
cry attacks are the analog of obfuscation attacks in
knowledge-based detection. Mimicry consists in mas-
querading a malicious activity so that it is not discernible
from legitimate activity. We conjecture that Cohen’s
theorem probably applies when trying to decide whe-
ther a process behaves well with regard to the model
of safe behavior, but this would require further
investigations.

3.1.4 Other classification criteria

We now study the three other IDS classification criteria
of Debar et al’s taxonomy [8]. These criteria are not
as discriminant as the data source and detection model
previously discussed, but are interesting to study when
comparing intrusion detection and virology.

Behavior on detection: The behavior on detection
denotes the type of reaction that is undertaken by an
IDS when an attack is detected. We may distinguish
passive reaction, which only consist in raising an alert
toward a human security operator or an alarm correla-
tion mechanism, and active reaction which consists in
trying to stop the attack by, e.g., blocking a network
connection, killing a process or closing a user account.
Most IDSes use passive reaction because of the non-
negligible false positive rate. This is in contrast with
anti-virus softwares, which do not only stop viruses, but
also try to remove them. This aspect is not addressed in
intrusion detection. One may notice however, that some
knowledge-based NIDSes, called IPSes are able to block
incoming malicious traffic because they are positioned
inline, instead of passively sniffing traffic.

Usage frequency: Usage frequency applies to the way
an IDS performs its analysis. There are two categories:
continuous and periodic monitoring. Most IDSes per-
form continuous monitoring, by analyzing, for instance,
the network traffic or the system calls invoked by pro-
cesses during their execution. Anti-virus softwares also
run continuously to scan each income, whatever the way
it actually enters into the system. In addition, anti-virus
systems are generally also used periodically, for example
at boot time, to scan the files present on a host.

Detection paradigm: The taxonomy distinguishes two
types of paradigms, transition-based and state-based
IDSes. Transition-based detection consists in detecting
intrusions by means of the transitions between inse-
cure states. State-based detection consists in recogni-
zing insecure states. Continuous-based IDSes (most of
the IDSes) and anti-virus softwares are transition-based.
Nevertheless, when used periodically, a anti-virus soft-
ware is state-based.

3.2 Examples of IDS

In this section, we briefly present four existing types of
IDSes, corresponding to the four possible combinations
of the detection method and data source, {network-
based, host-based} x {behavior-based, knowledge-
based}.

3.2.1 Knowledge and network-based 1D Ses
Knowledge and network-based IDSes are the most

widespread type of IDSes in operational contexts,
because of their aforementioned advantages. Among

@ Springer

46

B. Morin, L. Mé

these types of IDSes, the open source IDS Snort! is
probably the most widely used. Snort signatures consist
of conjunct of constraints over the network packets hea-
der fields and payloads, as well as meta-information
which describe the attack the signature is supposed to
detect. The set of allowed constraints notably include
fixed-string patterns and regular expressions that are
matched against the payload of IP packets.

The following example is an excerpt of the attack
signature database:

3.2.2 Behavior and network-based ID Ses

In the PAYL IDS proposed by Wang and Stolfo [24],
the model of normal network traffic is composed of the
frequency distribution of every byte value in the payload
of packets, for various network protocols. The rationale
for this is that packets carrying shellcodes are likely to
have a different byte frequency distribution than usual
traffic, since shellcodes contain programs that are to be

alert tcp $EXTERNAL_NET any -> SHTTP_SERVERS SHTTP_PORTS

(msg: "WEB-IIS CodeRed v2 root.exe access";

flow:to_server,established; uricontent:"/root.exe"; nocase;
reference:url,www.cert.org/advisories/CA-2001-19.html;

classtype:web-application-attack;)

This signature is supposed to allow the detection of
the propagation of the Code Red worm. Actually, the
mere presence of the root . exe in an HTTP request to
a machine on TCP port 80 is sufficient for this signature
to provoke an alert. The success or failure of an attack

would not be evaluated in this case.

Snort signatures are also used to detect activities
which might not necessarily denote an intrusive acti-
vity. For example, the following signature detects hosts
that do not respond in a network:

alert icmp S$EXTERNAL_NET any -> S$SHOME_NET any
(msg:"ICMP Destination Host Unreachable";
icode:1; itype:3; classtype:misc-activity;)

Some advocate that alerts provoked by this kind of
signature are false positives because hosts not respon-
ding in a network are a classical phenomenon. We argue
that these alerts are actually irrelevant in most contexts,
but can be used to detect abnormal situations, the cause
of which can be related to security. For example, an
increase in the frequency of the above alert can be cau-
sed by a random scanning worm. Thus, these kinds of
signature should not be deactivated. Rather, some addi-
tional component should be proposed to filter out from
the alert stream the “normal” alerts, i.e., alerts that are
generated without relation to a security problem. The
Ref. [22] proposes such a filter.

This example illustrates that security operators who
use IDSes are not only concerned with viruses, but also
with abnormal activities in their network, the origin of
which can be related with a security policy violation,
but not necessarily. From this point of view, anti-viruses
and IDSes are complementary in order to achieve a
comprehensive protection of an information system.

I http://www.snort.org.

@ Springer

executed on the target server. The Mahalanobis distance
is used to compare the byte frequency distribution of a
given packet with the profile of normal traffic previously
learned. A distance that exceeds a given threshold is
indicative of an attack.

Actually, this approach proposes to study the fre-
quency distribution of n-grams, i.e. byte sequences of
length n, but the authors demonstrated that their
approach is effective with n = 1 (which amounts to
considering the frequency distribution each byte value).
Indeed, the PAYL IDS achieves 100% detection rate
with a false positive rate of only 0.1% on a widely used
evaluation traffic corpus.

However, Kolesnikov and Lee [15] demonstrated that
this approach was vulnerable to mimicry attacks that
blend exploits with normal appearing byte padding, such
as blended polymorphic attacks. Therefore, Wang et al.
[23] proposed a revised version of their initial IDS, based
on randomized higher-order n-grams (i.e. a mixture of
n-grams, whose length is n > 1). This version is resilient
against simple mimicry attacks because it is more diffi-
cult for smart worms to mimic normal traffic, as they are
not aware of the normal traffic model used by the IDS.

This detection technique is interesting because it is
radically different from classical anti-virus approaches,
both by data source and the detection method employed.
It achieves promising results.

3.2.3 Knowledge and host-based 1D Ses

The ASAX system developed by Habra et al. [13] is
an expert system whose purpose is to analyze univer-
sal audit trails (e.g., Sun Basic Security Module). The
attack signatures are specified in a rule-based language,
RUSSEL, which allows to recognize sequences of
(potentially non-adjacent) events within an audit trail.

Intrusion detection and virology

47

Several languages in the same vein have been pro-
posed since ASAX, like ADeLe [21] or Sutekh [16,
17], which allow for more complex logical connectors
between event patterns, such as negation, disjunction
and conjunction.

These recognition systems basically work following
the same principle: at initialization, signature specifica-
tions are translated into finite state automata, whose
transitions are event patterns. During detection, each
event (e.g., system call) is fed into the automata. Auto-
mata whose current triggering event patterns match the
event evolve to the next state. Reaching a final state is
indicative of the achievement of an attack scenario.

In an attempt to show that viruses can be detec-
ted by host-based IDSes, Swimmer proposed in [6,20]
a knowledge-based HIDS called virus intrusion detec-
tion expert system (VIDES). VIDES detects system-
executable malwares by running the target programs
inside a virtual operating system and analyze their side
effects on the emulated system. The VM Ware software is
used for the emulation purpose and ASAX is the expert
system used to diagnose the presence of malwares.

According to Swimmer, VIDES achieves promising
results in detecting viruses known at the time, by using
signatures based on generic interactions of the virus with
the operating system.

These results are not surprising, because knowledge-
based HIDS are very close to anti-virus softwares, as
previously explained. More importantly, this approach
illustrates what we already evoked in Sect. 2.3.2: one
difference between IDSes and anti-viruses lies in the
fact that the former exploits external interactions bet-
ween the virus and the attacked system (i.e., symptoms)
while the latter exploits intrinsic characteristics of the
viral sequence. Actually, the behavior-based detection
approach in virology, which is based on the analysis
of actions of a virus on the system, corresponds to the
knowledge-based intrusion detection approach.

Swimmer’s work is interesting because, to our best
knowledge, it is the first attempt to join the virology and
intrusion detection domains, where they are the closest.

3.2.4 Behavior and host-based IDSes

The first IDS falling in this category is the model pro-
posed by Denning [9]. However, we choose to present
here the immunological approach proposed by Forrest
in [10,12] because it initiated a long series of works
in the same vein (profiling processes based on system
calls), and also because the biological allusion makes it
(at least terminologically) relevant with the subject of
this article.

This approach is inspired by the natural immune sys-
tem, where cells are capable to distinguish self from
non-self. In the context of computer security, the self of
a given process is a list of short system call sequences
considered safe, established through a learning process.
During monitoring phase, the sequences of system calls
invoked by a running process are matched against the
process profile and a distance is computed on a statistical
basis. Any significant deviation is indicative of a poten-
tial intrusion (through code injection for instance).

Improvements of the approach basically consist in
making the length of sequences variable or taking into
account the parameters of system calls.

Despite their common biological inspiration and
detection location, anti-viruses and immunology-based
IDSes are different from the detection method view-
point. The former detects attacks based on their intrin-
sic characteristics (e.g., the fact that a program sequence
self-duplicates), while the latter detect attacks by means
of symptoms of the executed code on the target.

3.3 Summary

Most anti-virus techniques implement the static,
signature-based, host-based approach to malicious pro-
gram detection [20]. From the detection method view-
point, anti-viruses which consist in looking for patterns
of known viruses within a string of bits are very similar
to knowledge-based network IDSes. From the analysis
localization viewpoint, anti-viruses are like HIDs.

One notable difference between knowledge-based
HIDS and classical anti-viruses lies in the fact that the
former exploits external interactions between the virus
and the attacked system (i.e., symptoms like invoked
system calls) while the latter exploits intrinsic characte-
ristics of the viral sequence.

The behavioral anti-virus approach should not be
confused with behavior-based intrusion detection.
Behavior-based anti-viruses are actually very similar to
knowledge-based HIDSes, as they also exploit interact-
ions between a code execution and the system. Behavior-
based intrusion detection measures deviations in the
behavior of the monitored system (e.g., a network, a
host, a process) in order to detect attacks. This is funda-
mentally different from techniques which take advan-
tage of knowledge about the characteristics of attacks.
Behavior based detection is supposedly more resilient
to obfuscation techniques which modify the shape of
viruses.

Lastly, contrary to virology, intrusion detection does
not address the problem of malwares removal from an
infected system. Stopping attacks automatically is still
not widely proposed, except in the knowledge-based

@ Springer

48

B. Morin, L. Mé

NIDS community (IPS), because of the IDSes’ lack of
accuracy.

4 Conclusion

Our objective in this paper was to identify similarities
and differences between virology and intrusion detec-
tion in order to position each of these domains with
respect to the other. We deliberately discussed these dif-
ferences only through scientific and technical arguments.
Nonetheless, other aspects might also be of interest.
From the sociological viewpoint for instance, Swimmer
[20] speculates that one reason why there is so little
communication between virology and intrusion detec-
tion communities is that the former tends toward secrecy
while the latter tends toward openness.

From the theoretical point of view, the objects under
study in virology seem to be included in the intrusion
detection field, which is not surprising owing to the gene-
rality of the definition of intrusion detection. However,
the two domains differ by their methodology : intrusion
detection considers objects by their extrinsic characte-
ristics, whereas virology considers them by their intrinsic
characteristics. These two visions are complementary.

Another difference between virology and intrusion
detection is that the former has sound theoretical basis,
but surprisingly few contributions [4], while the latter
lacks a formal ground, but has been the subject of nume-
rous research papers. We believe that intrusion detec-
tion would benefit from the theoretical basis of virology,
while virology would benefit from the numerous detec-
tion techniques that have been investigated in intrusion
detection.

Thereis aclear trend toward the convergence of intru-
sion detection and virology in scientific conferences,
particularly by means of the malware concept. Indeed,
the malware topic is increasingly evoked in conferences
which were originally devoted to intrusion detection.
The interested reader may refer for example to the
RAID 2006 conference session titles or to the DIMVA
20077 call for paper.

From the practical point of view, it seems that most
anti-virus techniques implement the same kind of tech-
nology, namely the signature, host-based approach to
malicious program detection, whereas IDSes consider
different data sources and detection methods. Howe-
ver, the fact is that signatures host-based IDSes have
barely not been used to detect viruses (except the work

2 Recent advances in intrusion detection, http://www.raid-
ssymposium.org/.

3 http://www.dimva.org.

@ Springer

by Swimmer [20]). Therefore, from the practical point
of view, IDSes and anti-viruses are complementary. One
may also notice that anti-viruses are progressively acqui-
ring HIDS capabilities.

Another illustration of the complementarity of
approaches is given by policy-based IDSes. This detec-
tion method consists in monitoring information flows
within a system and detecting sequences of operations
which lead to a security policy violation, each operation
being legal if considered individually [14,25,26]. Such
IDSes allow for the detection of privilege escalation
attacks, but will not detect activities that do not vio-
late the underlying security policy, contrary to anti-virus
softwares. For example, a document of some user stolen
by a malware executed by the same user (by means of
an infected mail or macro virus for instance) would not
lead a policy-based IDS to raise an alert, because a dis-
cretionary access control (DAC) policy allows a process
run by a user to access any of the user’s resource. On the
contrary, for the same situation, an anti-virus software
could detect the malware.

All malware detection approaches have their own
advantages and drawbacks, and a correct protection
approach will ultimately combine several heterogeneous
sensors (i.e. different IDS sensors types and anti-virus
softwares) rather than a single sensor to catch all. None-
theless, multiplying heterogeneous sensors reinforce the
need for a centralized supervision of the security of an
information system. Alarm fusion and correlation is one
field of intrusion detection by means of which the two
fields could cooperate.

As suggested by Swimmer [20], we believe that the
separation between the intrusion detection and the viro-
logy fields should cease because they are complemen-
tary, both from the theoretical and practical point of
view. As a matter of fact, the merger has already taken
place, as illustrated by the shared topics that both com-
munities study. A holistic approach to the problem of
defending against malware would be on call.

References

1. Adleman, L.: An abstract theory of computer viruses. In:
Advances in Cryptology. Lecture Notes in Computer Science,
vol. 403, pp 354-374. Springer, New York (1988)

2. Anderson, J.P.: Computer security threat monitoring and sur-
veillance. Technical report, James P. Anderson Company, Fort
Washington, Pennsylvania, April 1980

3. Bonfante, G., Kaczmarek, M., Marion, J.-Y.: Toward an abs-
tract computer virology. In: International Colloquium on
Theoretical Aspects of Computing. Lecture Notes in Com-
puter Science, vol. 3722, pp 579-593. Springer, New York
(2005)

Intrusion detection and virology

49

10.

11.

12.

13.

14.

15.

16.

Bonfante, G., Kaczmarek, M., Marion, J.-Y.: On abstract com-
puter virology from a recursion theoretic perspective. J. Com-
put. Virol. 1(3), 45-54 (2006)

Brunnstein, K.: From AntiVirus to AntiMalware Software
and beyond: another approach to the protection of custo-
mers from dysfunctional system behaviour. In 22th National
Information Systems Security Conference, pp 12-26 (1999)
Charlier, B.L., Mounji, A., Swimmer, M.: Dynamic detection
and classification of computer viruses using general behaviour
patterns. In: Proceedings of 5th International Virus Bulletin
Conference (1995)

. Cohen, FE.: Computer viruses. PhD Thesis, University of Sou-

thern California (1985)

Debar, H., Dacier, M., Wespi, A.: A revised taxonomy for
intrusion-detection systems. Ann. des Télécommun. 55(7-8),
361-378 (2000)

Denning, D.E.: An intrusion-detection model. IEEE Trans.
Softw. Eng. 13(2), 222-232 (1987)

D’Haeseleer, P, Forrest, S., Helman, P: An immunological
approach to change detection: algorithms, analysis and impli-
cations. In: Proceedings of the 1996 IEEE Symposium on
Research in Security and Privacy. IEEE Computer Society
Press, Oakland, pp 110-119 (1996)

Filiol, E.: Computer viruses: from theory to applications.
Springer, New York (2005)

Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.:
A sense of self for unix processes. In: Proceedings of the
1996 IEEE Symposium on Research in Security and Pri-
vacy. IEEE Computer Society, IEEE Computer Society Press,
pp 120-128, May 1996

Habra, N., Charlier, B.L., Mounji, A., Mathieu, I.: ASAX:
software architecture and rule-based language for universal
audit trail analysis. In: Proceedings of the 2nd European Sym-
posium on Research in Computer Security (ESORICS’92).
Lecture Notes in Computer Science, vol. 648, pp 435-450.
Springer, New York (1992)

Ko, C., Redmond, T.: Noninterference and intrusion detec-
tion. In: Proceedings of the IEEE Symposium on Security
and Privacy (2002)

Kolesnikov, O., Lee, W.: Advanced polymorphic worms: eva-
ding IDS by blending in with normal traffic. In: USENIX
Security Symposium (2006)

Pouzol, J.-P, Ducassé, M.: From declarative signatures to
misuse IDS. In W. Lee, L. Mé, A. Wespi (eds.) In: Proceedings
of the 4th International Symposium on the Recent Advances
in Intrusion Detection (RAID’2001). LNCS, vol. 2212,
pp 1-21, October (2001)

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Pouzol, J.-P,, Ducassé, M.: Formal specification of intrusion
signatures and detection rules. In: Proceedings of the 15th
IEEE Computer Security Foudations Workshop (CSFW’02).
IEEE Computer Society, pp 64-76, June (2002)

Spafford, E.H.: Computer viruses as artificial life. J. Artif.
Life 1(3), 249-265 (1994)

Swimmer,M.: Review and outlook of the detection of viruses
using intrusion detection systems. In Debar H., Mé L., Wu S.F.
(‘eds.) In: Proceedings of the 3rd International Workshop on
the Recent Advances in Intrusion Detection (RAID’2000).
LNCS, vol. 1907. Springer, New York, October 2000 (Exten-
ded abstract)

Swimmer, M.: Malware intrusion detection. PhD Thesis,
Hamburg University (2005)

Totel, E., Vivinis, B.,, Mé, L.: A language driven intrusion
detection system for event and alert correlation. In: Pro-
ceedings ot the 19th IFIP International Information Secu-
rity Conference, pp 209-224, Toulouse. Kluwer, Dordrecht,
August 2004.

Viinikka, J., Debar, H., Mé, L., Séguier, R.: Time series
modeling for IDS alert management. In: Proceedings of the
ACM Symposium on Information, Computer and Commu-
nications Security (ASIACCS’06), pp 102-113. ACM Press
(2006)

Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A content ano-
maly detector resistant to mimicry attack. In: Zamboni, D.,
Kruegel, C. (eds.) Recent Advances in Intrusion Detection.
Lecture Notes in Computer Science, vol. 4219, pp 226-248.
Springer, New York (2006)

Wang, K., Stolfo, S.J.: Anomalous payload-based network
intrusion detection. In: Erland Jonsson, Alfonso Valdes,
Magnus Almgren (eds.) Proceedings of the 7th Internatio-
nal Symposium on Recent Advances in Intrusion Detec-
tion (RAID2004). Lecture Notes in Computer Science, vol.
3224, pp 203-222. Springer, New York, September 15-17
(2004)

Zimmermann, J., Mé, L., Bidan, C.: Introducing reference
flow control for detecting intrusion symptoms at the os level.
In: Wespi, A., Vigna, G., Deri, L. (eds.) Proceedings of
the 5th International Symposium on Recent Advances in
Intrusion Detection (RAID’2002). Lecture Notes in Com-
puter Science, vol. 2516, pp 292-306. Springer, New York
(2002)

Zimmermann, J., Mé, L., Bidan, C.: Experimenting with a
policy-based hids based on an information flow control model.
In Proceedings of the Annual Computer Security Applica-
tions Conference (ACSAC), December (2003)

@ Springer

	Intrusion detection and virology: an analysis of differences,similarities and complementariness
	Abstract
	Introduction
	Comparing domains
	A definition of intrusion detection
	Definitions of virology
	Discussion based on definitions
	Following Cohen's definition: an IDS shouldnot directly detect viruses
	Following Adleman's definition: an IDS should detect viruses
	Summary
	Comparing techniques
	Characteristics of IDSes
	Architecture of an IDS
	Data sources
	Detection method
	Other classification criteria
	Examples of IDS
	Knowledge and network-based IDSes
	Behavior and network-based IDSes
	Knowledge and host-based IDSes
	Behavior and host-based IDSes
	Summary
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

