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Abstract Behavioural analysis for detection of mal-
ware has recently emerged as a new promising set of
antiviral techniques: function-based detection is now
considered along with sequence-based detection. Most
of the antivirus publishers now claim to use behav-
ioral analysis as a marketing argument. But the real
impact of these “new” techniques seems to be mitigated
since no real progress in the general antiviral fight has
been noticed nowadays. This paper presents an evalu-
ation methodology of the real capabilities of antivirus
software with respect to the behavioral analysis. It is
shown that contrary to the claims of some publishers,
behavioural analysis is still very marginally used and
implemented. These techniques are quite always either
validated by or dependant on classical form-based detec-
tion methods (detection pattern as an example). In this
context, we propose a generalised, theoretical detection
model which considers at the same time both form-based
and function-based detection and give some essential
properties this model should exibhit to achieve a real
behavioural-based detection.

This paper is the extended version of the paper presented at
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1 Introduction

Up to this point, the introduced evaluation methods
mainly audit the effectiveness of form-based detection
engines [7,10]. However, these engines experience
important and evergrowing difficulties to deal with the
development of polymorphic/metamorphic techniques.
Behavioral blockers and more globally every function-
based detection method prove particularly adapted to
address anti-antiviral techniques such as polymorphism/
metamorphism.

The concept of behaviour-based detection has been
originally introduced by Fred Cohen [3, p. 73]. Unfor-
tunately, this kind of detection has been proved to be
indecidable as its sequence-based counterpart is. How-
ever, behaviour-based detection appears to be a promis-
ing approach, even if there is a lot of technical problems
to differentiate legitimate behaviours from purely mali-
cious ones. Most of the reknowned antivirus publishers
have decided to include it in their product. Behaviour-
based detection has now become a marketing argument.
What is the reality?

The issue to determine whether behaviour-based
detection is indeed implemented is essential. Unless
using disassembly techniques which are illegal in most
countries, there is no other evaluation approach than
black-box analysis. The most simple one consists in test-
ing some reference codes and to check what the detec-
tion results really are. The most sophisticated ones use
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learning algorithms. But the most difficult problem is
to be able to distinguish between sequence-based tech-
niques and behaviour-based techniques. In most cases,
there is no simple facilities supplied such as a case to
tick in order to disactivate sequence-based detection.

The objective of this paper is twofold. Firstly we
present an evaluation methodology of behaviour-based
detection techniques. For this purpose, we consider
behavioural polymorphism/metamorphism. In other
words, instead of making the code sequence change like
in classical techniques of polymorphism/metamorphism
– which proves to be efficient to bypass sequence-based
detection techniques [7] – we make the functions of
the malware themselves change while the final malware
actions remain the same. Thus it has been possible for
the cases which have been considered to precisely iden-
tify what is really involved in the detection process.

Secondly, we extend the notion of detection scheme,
which has been proposed in [7], by considering the gen-
eralised concept of detection strategy, which no longer
distinguishes sequence-based detection techniques from
behaviour-based techniques. A mathematical analysis of
different detection strategies is given. The properties of
the underlying detection functions are addressed as well.

This paper is organised as follows. In Sect. 2, we recall
the theoretical notation and concepts which are used
throughout the paper. In Sect. 3, we then present the
behaviour-based detection evaluation method. In addi-
tion, in Appendix 5, we give detailed evaluation results
for the main antiviruses which claim to use behavioural
detection. Section 4 provides a mathematical analysis of
detection strategies. In particular, some properties that
good detection functions should present are detailed. At
last, we will conclude and address some open-problems
with respect to our work.

2 Generalised mathematical model for malware
detection

In [7], a theoretical model has been proposed for
sequence-based detection techniques.1 The concept of
detection scheme has been introduced. We recall hereaf-
ter its definition we will start from in the present paper.

Definition 1 A malware detection scheme with respect
to a given malware M is the pair {SM, fM}. If we con-
sider sequence-based detection the set SM will contain

1 The present paper is based on notation developped in [7]. The
reader is advised to read it before. Nonetheless, we recall here
most of its basic notation and concepts for self-containment pur-
poses.

bytes whereas if behaviour-based detection is considered
instead, this set contains program functions.

Since this definition does not consider both sequence-
based detection and behaviour-based detection at the
same time, we propose the next definition as a general-
isation of the notion of detection: we will now consider
the more universal concept of detection strategy.

Definition 2 (Detection strategy) A malware detection
strategy DS with respect to a given malware M is the
triplet DS = {SM, BM, fM}, where SM is a set of bytes,
BM is a set of program functions (behaviours) and fM :
F

|SM|
2 × F

|BM|
2 → F2 is a Boolean detection function, F2

being the binary field.

It is interesting to notice that this definition refers
to both known and unknown malware. As far as an
unknown code M is involved, the set BM is precisely
the set which triggers an alert with respect to M. If the
essential nature of the set SM is quite easy to understand
– it contains bytes – that of the set BM is probably not.
In fact, this set can be considered as a meta-set of bytes,
in the following sense: behaviours can be described by
structures of bytes which more or less correspond to
each procedure achieving a given action or behaviour.
Reading a file or creating a mutex can be described by
means of such more or less complex structures of bytes
that can be located either on the hard disk (inactive
malware code) or in memory (malware is active). From
a formal point of view, thus BM ⊂ N

∞
256 (a family of

sequences of bytes of indefinite length). In the rest of
the paper, we will only speak of behaviour. Asserting
that behaviour b ∈ BM is realised means that the code
contains a structure of bytes whose execution results in
the behaviour b.

In order to consider Boolean functions thoroughly as
detection functions, let us explicit this definition from a
mathematical point of view. For that purpose, we adopt
the formalism used in [7]. Let us describe the action of
a given malware detector D on a file F that is suspected
to be infected by M. Let us first define the s + b binary
variables Xj (1 ≤ j ≤ s + b) as follows:

Xj =
⎧
⎨

⎩

1 if F(ij) = bσ(j),

0 otherwise.

The purpose of these Boolean variables is to express
the fact that a given byte at a given location, or a given
behaviour (in fact a structure of bytes, see before) is rea-
lised (X = 1) or not present (X = 0) in the malware, no
matter how in practice the antivirus is checking it. Thus,
according to these notation, we indifferently consider
sequence-based objects or behaviours. This notation
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enables to clearly describe the modification of SM bytes
or BM behaviours by anyone who tries to bypass a given
detector D. Thus Xj equals 0 means that we have indeed
modified SM(j) or BM(j) (up to the permutation σ ).
The reader will note that by associating any byte in SM
or any behaviour in BM to Boolean variables, we thus
can consider the boolean sets F

|SM|
2 and F

|BM|
2 respec-

tively. We consequently have s = |SM| and b = |BM|.
For sake of simplicity, we will now consider, up to an iso-
morphism, only the Boolean set F

|SM∪BM|
2 which has a

cardinal of 2n = 2s+b.
Let us note that σ [7] denotes a bijective permuta-

tion over the byte of SM. The use of this permutation
enables to take into account potential modification of
M made by any copycat. Indeed, different code obfus-
cation or polymorphism/metamorphism techniques can
modify the structure (byte ordering or indexing) of SM
or the sequence of behaviours of BM.

Let us now consider a Boolean function fM : F
n
2 →

F2. We say that a given detector decides that F is infected
by the malware M with respect to the detection function
fM and the malware detection components SM ∪ BM
is and only if fM(X1, X2, . . . , Xn) = 1. In other words:

fM(X1, X2, . . . , Xn) =
⎧
⎨

⎩

1 F is infected by M,

0 F is not infected by M.

Here the function models the different possible combi-
nations of bytes or behaviours that result in effectively
detecting the malware. We will represent detection func-
tions by their disjunctive normal form (DNF), that is to
say the logical disjunction of terms, each term being a
conjunction of literals Xi. By construction, literals do not
appear under negated form Xi. Thus, detection functions
are modelled by monotone DNF.

Analyzing antivirus software aims at identifying
which characteristics are considered by the software:
behaviours, detection patterns, mode of detection…As
previously shown in [7], such an approach consists in
solving the characteristic extraction problem which has
been shown equivalent to a learning problem. For that
purpose, the analyst may selectively modify any detected
malware in order to decide whether the modification
results in detection or not. With the previous formal-
ism, this problem comes to computing the non-detection
function fM. In other words fM = 1⊕ fM. This function
describes the way malware may be modified to bypass
the detection strategy {SM, BM, fM} in force. These
modifications correspond to the n-tuples (x1, x2, . . . , xn)

for which the non-detection equals 1. For a given such
n-tuple, any modification that can be applied is defined
as follows:

⎧
⎪⎪⎨

⎪⎪⎩

if xi = 0 byte or behaviour i in SM ∪ BM
must be modified,

if xi = 1 byte or behaviour i in SM ∪ BM
may be left unmodified.

In the rest of the paper, we will indifferently consider
either the detection function or the non-detection func-
tion. We will just give the following definition that will
be later of some interest.

Definition 3 A malware bypassing strategy BS with respect
to a given malware M is the triplet BS = {SM, BM,
fM}.
Remark The malware M is uniquely characterised by
both SM and BM as well as the detection function fM.
This function allows to greatly reduce the false positive
rate, when judiciously selected [7].

3 Behaviour-based detection evaluation method

The goal of this study has been to evaluate the effective-
ness of behaviour-based detection in modern antivirus
products. Our intention is not to uselessly criticise one or
more products but to pinpoint the existing weaknesses
in such detection techniques. We intend to propose an
efficient evaluation methodology that should help any-
one who is charge of antivirus evaluation. Despite the
fact that our approach and results have considered a sin-
gle malware – the W32.MyDoom mass-mailing worm –
this can be generalised to any other malware.

In this study, we analysed the fact that modern mal-
ware detection techniques are supposed2 to consider
both detection pattern databases and forbidden behav-
iours databases. Then, we generalised the approach devel-
opped in [7] which consists in solving the problem of
detection techniques extraction. In other words, any
analyst aims at precisely guessing how any antivirus
is working by performing a black-box analysis. In the
present case, we selectively modify detection behaviours
instead of detection patterns and record whether the
tested antivirus still detect the modified code or not.
The mathematical analysis of the results then enables to
reconstruct the whole detection strategy as defined in
Sect. 2.

Following this principle, we have chosen to assess the
resistance of antiviral products with respect to behav-
ioural detection, by examining their reactions face to
different versions of a virus whose one or more func-
tions have been modified. In other words, our approach

2 This assertion has been deduced from the different unequiv-
ocal marketing claims of most of the antivirus publishers whose
products we have tested in this study.
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conceptually consists in realizing behavioural polymor-
phism/metamorphism instead of classical (form-based)
one. Let us now present how we realised this new
kind of code polymorphism/metamorphism on the
W32.MyDoom mass-mailing worm.

3.1 W32.MyDoom behavioural
polymorphism/metamorphism

The underlying idea is in fact to simulate the poly-
morphic/metamorphic generation of the virus code with
respect to its functionnalities but in a selective and
controlled way. To achieve this, we have generated sep-
arate different versions of a virus that could be the
result of several duplications from an original strain.
For each newly generated version, one of the main infec-
tious behaviours has been manually modified, replaced
or even suppressed simulating the different functional
mutations. Unfortunately, regarding the state-of-the-art,
these modifications are still hardly automatically per-
formed. The concept of functional or behavioural
polymorphism/metamorphism has still to be studied
in-depth.

Throughout this article, we will focus our approach
on the well-known virus W32.MyDoom [4,6,8,9]. The
reason for this choice is quite simple. This mass-mail-
ing worm may be considered as a reference declined in
a whole range of versions and whose techniques keep
being reused. It is clearly possible to reproduce and
adapt the process to other viruses as far as they offer
a minimal diversity of behaviours.

3.1.1 Identification of the behaviors

Before proceeding with any behaviour modification, the
first step was to identify the main classes of infectious
behaviors implemented in the malware. Considering
behaviours is far more complex that considering detec-
tion patterns or other form-based object like in [7]. It
was thus necessary to adopt a different approach and
consider the source code3 of the malware.

The tight functionnal analysis of the W32.MyDoom
source code has made it possible to identify the flow of
the different functions and their internal process. Each
infectious behaviour manifests itself as one or several
characteristic actions of the virus. An action can be
either a particular functionality or simply a programming
technique used during the virus development. Table 1
lists the main behaviours identified in W32.MyDoom as

3 This source code may be either public or obtained through a
disassembly step.

Table 1 Identified behaviors in MyDoom

Reference Behavior Actions
DUPLI Code replication Write the running file

in the system directory
RESID Residency Virus is made memory resident

by means of a run register key
PROPA Spread Massmailing with the virus

as an attachment
OVINF Overinfection test Test whether a given

a register key does exist
ACTIV Activity test Test whether a Mutex object

is active in memory
STEAL Stealth Sets its own network

protocol stack
POLYM Polymorphism Encryption of the embedded

backdoor library
INFOR Information gathering Recursive scanning of user’s

and Internet files
FINAL Final Payload Backdoor library installation
SOCIA Social engineering Simulating lost e-mails recovery

well as examples of the actions that have given away
their presence.

Behaviours listed in Table 1 thus represents the actual
set BM that has been presented in Sect. 2. We will note
here BM = {b1, b2, . . . , b10} where bi is one of the behav-
iour listed in Table 1.

3.1.2 Code modification with alternative behaviors

Once the behaviors which may be or are likely to be
involved in the detection have been identified, the sec-
ond step consists in modifying them according to the
principle “different action/same result”. In other words,
the modification aims at performing polymophism/
metamorphism at the functional (behavioural) level and
not at the form level (the latter corresponding to the clas-
sical polymophism/metamorphism techniques). Accord-
ing to the notation of Sect. 2, we consider the ten Bool-
ean variables X1, X2, . . . , X10 with respect to BM =
{b1, b2, . . . , b10}. Each time original behaviour bi is left
unmodified we have Xi = 1 whereas Xi = 0 each time
the corresponding behaviour has been modified. The
final aim consist thus to determine whether behavioural
detection is really used and if any, which behaviours are
involved.

This step is essential since the amount of information
gathered during the analysis step proved to be propor-
tional to the relevance of the newly generated versions.
It is important to recall that we have to think in term
of program functionalities to proceed. In other words
we have to find equivalent potential actions (behav-
iour) that eventually lead to the same resulting mal-
ware action than the original strain. Table 2 summaris-
es the alternative actions we have worked out for the
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Table 2 Nature of the modifications brought to the behaviors

Behavior Reference Nature of the modifications
DUPLI DUP SH CUT Recopy in a shortcut file

DUP NAM PATH Recopy under a compressed
system patch directory

RESID RES SERV KEY Virus inscription under a
service register key

RES WIN INI Modification of the win.ini file
OVINF INF DIF KEY Existence test of a different register key

INF SUP HID Existence test of a “superhidden” file
INF ENV VAR Existence test of an environment variable

ACTIV ACT MUTEX Existence test of a different mutex
ACT EVENT Existence test of an event object

POLYM POL PLAIN LIB Backdoor library integrated
as plaintext

POL FLOW LIB Backdoor library encrypted
a stream cipher

POL PLAIN STR Strings left as plaintext
POL FLOW STR Strings flow encrypted

FINAL FIN TRIG TARG Different target and trigger
for the DDOS attack

FIN NO BDOOR Suppression of the backdoor library

different behaviours considered for detection by the an-
tivirus we have tested. Additional modifications could
have clearly been considered but they prove to be unnec-
essary regarding the scope of the current study. Indeed
every tested antivirus proved to implement behavioural
detection at a very poor or limited level (see Appen-
dix 5). Simple modifications manage to bypass them
easily.

As an example, let us detail two of the modifications
that are listed in Table 2. A complete description of the
modifications we have performed are described in [9,
pp. 26–29].

Overinfection test. The aim for the malware is to test
whether it has previously infected the current host. In
the W32.MyDoom case, this is checked by looking for
a particular key (the infection marker) in the Windows
base registry. A first variant would consist in modifying
the infection marker itself but this would correspond to
classical polymorphism (form-based).

Among many other possibilities, we choose to test
whether a superhidden file is present (host infected) or
not (host non-infected). This type of file makes it pos-
sible to hide any file even when the display of hidden
files/directories is activated. In order to force superhid-
den files to be visible, administrator permissions as well
as modification of base registry keys are required. The
reader will note that this feature is undocumented in the
Windows Operating System documentation. To use this
file type, we have just to define the following parameter:

#define FILE_ATTRIBUTE_SUPER-HIDDEN
0x00000006

To mark the infection, the virus uses the CreateFile func-
tion to create a superhidden file in a secret location. To
check for previous infection, the virus looks for this file.

Activity test. In this case, the W32.MyDoom code
looks for a particular Mutex. The first obvious modifica-
tion suggests to change the mutex’name but once again
this does not appear conceptually very different from
classical polymorphic techniques (form-based modifi-
cations). Many other Windows objects enables the in-
terprocess synchronization. Therefore we considered a
second variant in which the activity is tested by means
of a different event object. Yet simple, we used the fol-
lowing one:

TaskmonInitialised Event

In this case – as in many other cases – the code checks the
function error exit code whenever the object is created.

3.2 Test methodology

In order to apprehend the test procedure, it is important
to keep in mind that most of the actual antiviral products
do not provide a clear distinction between sequence-
based detection and behaviour-based detection. It is
almost always impossible to determine which method
is really used. From a practical point of view, very few
controls – if any – are left to the user, in particular to acti-
vate separately the different detection methods, which
would have proved helpful for the test. As a general rule,
we can assert that any “exact” identification is based on
sequence-based detection while “generic” identification
may or might involve behaviour analysis at some level.

Since it is impossible to run the behavioral analy-
sis without running the form-based analysis as noticed
in our experiments, it becomes essential to extract the
sequence-based detection components (e.g. signature)
first. Thus, once this signature is removed, the virus
detection can eventually rely on function-based meth-
ods only such as behavioural engines. As a consequence
the test procedure has been broken down into two
phases. During the first one, we have tested the different
versions statically by manual scanning in order to iden-
tify the nature and the location of the sequence-based
components. For the second phase, we have activated
the resident protection which is supposed to run the
behavioural analysis.4 Thanks to the knowledge about
the signature extracted in the first place, it becomes now
possible to retrieve information on the true nature of
the behavioural detection.

4 We did not address the case of code emulation. The reason
lies in the fact that existing products only consider sequence-
based detection techniques for detection, especially when classical
(form-based) polymorphism/encryption is involved. A future evo-
lution of antivirus could be to implement behaviour-based detec-
tion during code emulation steps as well.
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Let us now describe our test bench. The experiments
require several Windows 2000 platforms which are clean
from malware and deconnected from any network. A
recovery solution must be considered in order to reini-
tiate the platforms in their original state after an infec-
tion. To achieve this, virtually emulated machines such
as VMware prove to be particularly adapted. Indeed the
execution remains confined to a sandbox and by simply
reloading the original configuration, it resets the plat-
form. A second, less convenient solution is to reboot
after each test on a clean ghost of the operating system.

The detailed results are given product by product in
Appendix 5.

4 Mathematical analysis of detection strategy

4.1 Global synthesis of the experiments results

To reach a higher level of abstraction, we have now to
detach from the products in order to introduce a global
trend according to the formalization we have established
in the first place.

It must be clear that all the realised deductions mainly
concern the detection strategies with respect to a given
malware. No particular information has been gathered
about the different implementations of the behavioural
detection really adopted by the editors, if any. It simply
seems that in most cases, the modelization by suspect
scenarios has been chosen by the antivirus developpers.
In fact, this detection mode proves specifically adapted
to this model given the fact that only the dangerous
behaviours have been identified and modified. We could
not have obtained more relevant results if antiviral prod-
ucts had chosen a modelization by legitimate behav-
iours. This last aspect relates more to IDS concepts [12].

As far as detection strategy is concerned, on the other
hand, a very strong trend comes out with regards to the
results that no antiviral product really contradicts except
Viguard. This trend can be formulated through the two
main following hypotheses:

– H1: behavioural detection is non implemented or
inefficient,

– H2: behavioural detection is ignored without corrob-
oration or validation by a sequence-based detection
component (e.g a signature).

For Viguard, we can establish an additional hypothesis
aside:

– H3: behavioural detection consists in detecting any
possibly threatening behaviour.

In the scope of our tests, a simple and significant fact
backs up these two first hypotheses. Whenever a virus
has been detected, a precise response has been provided
including its identity. This can be achieved only through
a signature; a pure behavioural detection would have
detected a generic agent. From a more mathematical
point of view, using a Boolean modelisation as intro-
duced in Sect. 2, the three hypotheses can be translated
as follows:

H1 : Tsig

H2 : Tsig ∨ (Tsig ∧ Tbehav) = Tsig (by absorption law)

H3 : Tbehav =
b∨

i=0

Xi where Xi relates to the ith element

in the behaviour base BM

The notation Tsig relates to the restriction f SM
M of

the detection function fM to the set SM. This means
that Boolean variables with respect to the set BM do
not appear in the detection (sub-)function disjunctive
normal form. Conversely, as far as the H3 hypothesis is
concerned, we consider the restriction f BM

M to the set of
behaviours BM with the essential differences that:

– the set BM contains any behaviour that might be
“dangerous”,

– the detection function is the or function, of weight
2|BM| − 1.

By setting the problem mathematically, it becomes
clear that the first two hypotheses are in fact equiv-
alent and lead to a same and unique conclusion. In
both cases, we can say that the utility of the behavio-
ural engine, if any, is questionable. Without any doubt,
it is due to the fact that it is not properly integrated into
the detection strategy. On behalf of decreasing the rate
of false positives, this trade-off solution totally inhibits
the main functionality of the behavioural detection: the
detection of unknown viruses. If we examine the two
logical formulae, they remain really simple ones and
represent a negligible part of the Boolean modelisation
potential. Nothing proves that they necessarily are the
most optimal. On the other hand, Viguard’s hypothesis
is exactly the opposite. The maximum weight is given
to each behaviour detection, thus increasing alarmingly
the rate of false positives.

It is getting even worse knowing that several an-
tiviral products like AntiVirusKit, KAV and F-secure
partly or totally share the same sequence-based detec-
tion features (e.g. signature databases). Considering the
efficiency factor, they are completely equivalent and
combining them would not increase the rate of detection.
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Only the behavioural engine properly implemented
would have made possible a real distinction.

4.2 Mathematical properties of efficient detection
strategies

In [7], the properties, that any good detection scheme
should exhibit, have been proposed as well as a secure
detection scheme. All of them extend to the concept of
detection strategy as defined in Sect. 2. We just have
to consider two reference databases (bytes and behav-
iours) instead of one. The only difference lies in the
detection function (or the non detection function on the
attacker’s side) since its domain is now twofold. From a
general point of view, we claim that the input of these
two functions – Boolean variables describing bytes and
behaviours – must have an equal effect on their output.
It is not the case in existing antivirus software.

Before giving some results for interesting detection
functions, let us first make the theoretical background
more precise.

4.2.1 Properties of Boolean detection functions

As previously exposed, the detection function plays an
essential role in a detection strategy. It represents the
way form-based and/or behaviour-based characteristics
are analysed and searched for in a file. In [7], a strong
result show that the weight of the detection function
(the number of input for which the function outputs 1)
was an important parameter. While a weight of a single
unit (and detection function) proves to be the poorest
solution, detection functions with a larger weight offer
a wider range of detection opportunities (see [7] and
wildcard detection as an example). As far as the detec-
tion function is concerned, this remark remains true –
but in the attacker’s opposite view – since we have for a
Boolean function f : F

n
2 → F2:

wt(f ) = 2n − wt(f ),

where wt(f ) = |{x|f (x) = 1}|. In other words, if the
detection function has a small weight (limited number
of detection configurations), the non detection function
will exhibit a larger weight (a high number of bypassing
configurations). This enables to consider the following
definition.

Definition 4 Let be a detection strategy DS = {SM, BM,
fM} and the corresponding bypassing strategy BS =
{SM, BM, fM} Let n = |SM| + |BM| = s + b The strat-
egy DS is said to be stronger than the strategy BS if and
only if

2n−1 ≤ wt(fM) ≤ 2n − 1

This first definition can be considered as a first crite-
rion to select “good” detection functions.

Another very important criterion deals with the
respective influence of Boolean variables Xi on the
detection function’s output. It is nothing but essential
that they all have the same impact on fM (or equiva-
lently on fM). If it was not the case – due to the fact
that a given variable could have a preponderant role
(respectively a marginal role) compared to the other
input variables – the relevant byte/behaviour should be
considered as preponderant (respectively marginal) in
the detection strategy. Such an information would inevi-
tably be exploited by any attacker in order to bypass the
detection strategy considered. This can be generalised
to any t-set of Boolean input variables. We will adopt
the following definition.

Definition 5 A detection function is said to be weakly
bypassable at order t if and only if the function’s output
does not statistically depend on any set of input variables
of size at most t. A detection function is said to be strongly
bypassable at order t if and only if its outputs statistically
depend identically on any set of at most t input variables.

According to this definition, no particular set of at
most t input variables will be more interesting to con-
sider than another one, in order to bypass the detection
strategy. The difference between “weakly” and
“strongly” lies in the fact that in the first place there
is no dependance with respect to any t-set of input vari-
ables whereas in the second case such a dependance
does exist but with respect to any t-set, identically. It is
rather intuitive to assert that realizing the first case is
more difficult than the second one. We will demonstrate
it in Sect. 4.2. Let us mention that if fM is (weakly or
strongly) bypassable at order t, this property still holds
for the corresponding non-detection function fM – but
the meaning in attacker’s approach is reversed.

This property enables to logically consider a very par-
ticular class of Boolean functions, which are very impor-
tant in symmetric cryptography: correlation immune
functions. In order to consider these special functions,
let us first recall the main mathematical tool which is
used to characterise the concept of correlation for Bool-
ean functions. The reader may refer to [1, Chap. 2] or
[11, p. 207] for more details on this mathematical tool.

Definition 6 Let f be a Boolean function over F
n
2 . The

Walsh-Hadamard transform of f is the Fourier transform
of the corresponding sign function, x 
→ (−1)f (x):

∀ u ∈ F
n
2, χ̂f (u) =

∑

x∈F
n
2

(−1)f (x)(−1)<u,x>

where < ., . > denotes the usual scalar product.
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The Walsh-Hadamard transform enables to exhibit
statistical dependencies (biases) between some subsets
of input variables and the function’s output. Let us make
things more precise.

Definition 7 A Boolean function in n variables is said to
be correlation immune at order t if its statistical distri-
bution of output does not change when at most t input
variables have a fixed value.

In other words, the function’s ouptut is statistically
independent of any variable vector (Xi1 , Xi2 , . . . , Xit ).
As an example, the function

f (X1, X2, . . . , Xn) = X1 ⊕ X2 ⊕ . . . Xn

is correlation immune at order (n − 1).
A very important result [15], establishes a link between

correlation immunity and Walsh transform coefficients.

Proposition 1 [15] The Boolean function f in n variables
is correlation-immune at order t if and only if we have5

χ̂f (u) = 0 ∀ u ∈ F
n
2, 1 ≤ wt(u) ≤ t.

We now can establish the following result.

Proposition 2 A Boolean function fM is weakly bypass-
able at order t if and only if it is correlation-immune at
order t. A Boolean function fM is strongly bypassable at
the order t if and only if

∀ u ∈ F
n
2 such that 1 ≤ wt(u) ≤ t χ̂f (u) is a constant.

Proof The proof is obvious by definition of correlation
immunity. Let us notice that this property still holds for
non detection function fM since we have

χ̂f (u) = −χ̂f (u).

�

This proposition makes it possible to define a criterion
to choose detection function for real behaviour-based
detection. Such a function should be weakly bypassable
(respectively strongly bypassable) at least with respect
to variables related to SM.

4.2.2 Some good detection functions

According to Definition 4, the weight of detection func-
tion must be at least equal to 2n−1. But known results in
cryptography show that balanced functions – functions
of weight exactly equal to 2n−1 – are among interest-
ing candidates as soon as correlation immunity is con-
cerned. One of the basic reasons is that it is rather easy
to find balanced functions having some desirable prop-
erties than overbalanced ones. This is why we will focus
on balanced Boolean functions.

5 wt(u) denotes the Hamming weight of u, that is to say the num-
ber of 1 in the binary expansion of u.

Weakly bypassable detection functions. Linear func-
tions are obviously the first functions to consider. Their
algebraic normal form is given by

f (X1, X2, . . . , Xn) = X1 ⊕ X2 ⊕ · · · ⊕ Xn.

The most interesting property as far as detection func-
tions are considered lies in the following proposition.

Proposition 3 The function X1 ⊕ X2 ⊕ · · · Xn is weakly
bypassable at order n − 1.

Proof By Walsh transform computation, we show that
the only non-zero Walsh coefficient χ̂f (u) = 2n �= 0 is
that for u = (1, 1, 1, . . . , 1). Hence the result. �


This proposition means that unless considering simul-
taneously all the input variables – in other words all the
bytes and all the behaviours, in the context of malware
detection – no particular subset is worth considering in
order to bypass detection when linear detection function
are used.

Strongly bypassable detection functions Another very
interesting detection functions are majority functions.
Indeed, they are strongly bypassable.

Definition 8 We call a n variable Boolean function a
majority function (denoted MAJn, the Boolean function
which maps F

n
2 to F2 such that:

f (x) = 1 ⇔
{

wt(x) ≥ n+1
2 if n impair,

wt(x) ≥ n
2 + 1 if n pair.

Moreover, when n is even, f (x) = 1 for exactly 1
2

(n
n
2

)
input

values x of weight n
2 .

While there are

⎛

⎜
⎜
⎝

(
n
n
2

)

1
2

(
n
n
2

)

⎞

⎟
⎟
⎠functions MAJ2p, there is

only one MAJ2p+1 for a fixed value of p. Without loss
of generality, we will consider only the last case (n =
2p + 1). A known result [2] asserts that MAJn functions
(n even or odd) are balanced for any value of n.

The next proposition shows that MAJn are strongly
bypassable functions, except asymptotically.

Proposition 4 The Boolean functions MAJn are correla-
tion-immune at order 0, with respect to every variables xi

and

P[MAJn(x) = xi] = 1
2

+
(n−1

n−1
2

)

2n .

The reader will find the proof of this proposition in [5].
This result asserts that if MAJn functions are statistically
dependent on every of their input variables, they are
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also identically dependent on them. Consequently, no
particular variable (a byte of a behaviour) is playing a
more important role than another one.

However in the context of detection functions, MAJn
have an additional interesting property as stated by the
following proposition.

Proposition 5 Let us consider a MAJ2p+1 for a given

value p. Its DNF formula contains
(2p+1

p+1

)
logical terms.

The corresponding function MAJ2p+1 contains
(2p+1

p+1

)

terms, each of them containing p + 1 variables in negated
form (xi).

Proof We will prove the second part of the proposition
by induction on p. Let us consider a MAJ2p+1 function.
Let us denote H2p+1 the property we want to prove.
Firstly, it is obvious that H1 holds since MAJ1 has x1 as
DNF. Let us suppose that H2p+1 holds and let us show
that consequently H2p+2 still holds.

Since H2p+1 is true, the corresponding DNF has
(2p+1

p+1

) = (2p+1
p

)
terms. Let us build the DNF of function

MAJ2p+3 from that of MAJ2p+1. For that purpose, we
consider two additional Boolean variables y1 = x2p+2
and y0 = x2p+3. For sake of simplicity, let us note {xp}
the logical union of terms in MAJ2p+1 each of them con-
taining exactly p negated variables. In the same way, we
will note {x≤p} the logical union of terms containing at
most p negated variables.

The DNF formula of MAJ2p+3 is given by

10{xp} ∨ 01{xp} ∨ 11{xp−1} ∨ 00{xp+1}. (1)

where the two first bits describe the y1 and y0 additional
variables. Let us mention that any other logical terms,
whose general DNF formula is

01x{≤p−2} ∨ 10x{≤p−2} ∨ 11x{≤p−2} ∨ 00x{≤p−2},

has to not be considered since they each outputs 0 with
regards to the MAJ2p+3 function. Since H2p+1 holds and
by construction of the MAJ2p+3 DNF formula, the union
of logical terms in Eq. (1) cannot be simplified further.
Let us now determine how many terms are involved.

Obviously, Eq. (1) includes a number of logical terms
which is given by
(

2p + 1
p

)

+
(

2p + 1
p

)

+
(

2p + 1
p + 1

)

+
(

2p + 1
p − 1

)

= 2(2p + 3)

(p + 2)

(
2p + 1

p

)

=
(

2p + 3
p + 1

)

.

Hence the result for the number of logical terms in DNF
formula. By construction, it is easy to check that each
logical term contains indeed p + 1 negated variables.

The first part of the proposition is proved by induction
in the same way. �

Remark The number of logical terms in the DNF for-
mulae (with regards to both MAJ2p+1 and MAJ2p+1) cor-
responds in fact the maximum size of an antichain in a
poset (Sperner’s theorem [14]). By considering the set F
of all p-element subsets of the Boolean set F

2p+1
2 (each of

them corresponds to the support of a DNF logical term),
we obtain the result since F is an antichain. Therefore,
by basic properties on antichains, we cannot simplify the
corresponding DNF further.

This results asserts that if we choose a MAJ2p+1 as a
detection function, thus any attacker who will to bypass
a detection strategy, will have to modify at least p + 1
variables (in other words bytes or behaviours). Conse-
quently, by choosing large value of p, the attacker will
face a high complexity [7].

Example 1 Let us consider the MAJ5 function whose
DNF formula is

MAJ5 = x4x3x2 ∨ x4x3x2x1 ∨ x4x3x2x1 ∨ x4x3x2x1

∨ x4x3x2x1 ∨ x4x3x2x1x0 ∨ x4x3x2x1x0

∨ x4x3x2x1x0 ∨ x4x3x2x1x0 ∨ x4x3x2x1x0

The DNF formula of the corresponding non detection
function is then:

MAJ5 = x0x1x2 ∨ x0x1x2x3 ∨ x0x1x2x3x4 ∨ x0x1x2x3

∨ x0x1x2x3x4 ∨ x0x1x2x3x4 ∨ x0x1x2x3

∨ x0x1x2x3x4 ∨ x0x1x2x3x4 ∨ x0x1x2x3x4

The non-detection function will equal 1 if and only if
at least three detection features (bytes in the code or
behaviours) are simultaneously modified.

We could consider a special class of strongly bypass-
able functions: bent functions [13]. These functions f in
n variables verify |χ̂f (u)| = 2

n
2 for all u ∈ F

n
2. Unfortu-

nately, exhibiting bent functions is still an open problem
unless for some trivial or simple class and for small val-
ues of n.

5 Conclusion and future work

In this paper, we have proposed a generalised model
for malware detection which considers at the same time
both sequence-based detection and behaviour-based
detection. As far as the latter is concerned, we have pro-
posed an evaluation methodology for behaviour engines
of existing products. This partial study has shown that
behaviour-based detection seems to be more a claim
than a reality – at least for the antivirus we have tested.
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This study has to be widely extended to other kinds
of malware to produce a huge number of results that
could produce an in-depth evaluation. By the present
time, the methodology’s validity itself has only been suc-
cessfully tested. Future work will consider automated
tools to produce behavioural polymorphism/metamor-
phism directly on input malware. We thus will be able to
extensively evaluate behaviour-based detection in com-
mercial products.

The secure detection scheme presented in [7] can be
extended without any difficulty from detection schemes
to detection strategies. The main interest lies in the fact
that many malware source codes are publicly available.
Consequently, an attacker will try to modify them rather
at the functional level than at the code sequence level.

The work presented in this paper shows that up to now
behaviour-based detection is not really implemented in
existing antivirus software. The lack of a thorough model
for such a detection seems to be the reason why it is not
efficiently implemented yet. Our work may be a first step
to precisely define what behavioural detection really is
and how antivirus products should implement it. But
there is still a growing need to study the concept of pro-
gram behaviour from a theoretical point of view.

At last, this work should promote theoretical research
on Boolean functions. Finding good detection functions,
which both lower the number of false alarms (as pointed
out in [7]) and make black-box analysis of antivirus soft-
ware far more difficult at the same time, is an essential
point in future developments of far more efficient anti-
virus products.
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Appendix A Detailed experimental results
and interpretations

Seven antivirus softwares have been tested (Table 3). We
have considered those who are supposed or claim to use

behavioural detection. Fourth column gives the num-
ber of bytes involved in the detection pattern that has
been extracted according to the techniques presented
in [7]. The detection function is the and logical func-
tion. Except for Avast, all detection patterns share the
same following sub-pattern, whose bytes are located at
indices:

1,080→1,083, 1,090→1,093, 1,100→1,103, 1,111→1,114.

We will now present the results obtained by confront-
ing the test platforms to the new muted versions of the
virus. Enough details have normally been provided to
make sure that these results are reproducible, at least
conceptually. Results on their own are of little inter-
est, thus we will seize the opportunity to introduce the
worked out reflections with regards to our problematic
of the antiviral strategy evaluation methodology. We
have willingly associated both to illustrate our speech
and give quick references. This exercise of interpreta-
tion has been made product by product. Global syn-
thetic results of the state-of-the-art of actual behavioural
detection has been presented in Sect. 4.

A.1 Results product by product

Whatever may be the antivirus software, the summary
of its results are stored in tables identically structured.
Before anything else, it is important to briefly explain
how to read each of the table entries. Each of them is
associated to a particular modification labeled as in the
reference Table 2. To support our argumentation we will
punctually remind these references as elements of proof.
Concerning the codification, an empty field means that
no detection occured at all. A red one brings into light
differences from the reference tests where the original
executable and its included backdoor library have been
separately tested.
AVG test results As a first comment, by consulting the
content of the signature base, the antiviral product
claims that six specific versions of W32.MyDoom are
classified, plus a generic one. Though, with regards to
the reference tests, the original strain is not detected by

Table 3 Tested antivirus
software (versions and viral
definitions)

Products Version Viral definition Detection pattern size
(in bytes)

Avast 4.6.763 0611-2 8
AVG 7.1.375 267.9.2/52 18,497
DrWeb 4.33.2.12231 10062006 637
F-Secure 2005 6.12-90 2006-06-02-02 46
G-Data AVK 16.0.3 KAV-6.818/BD-16.864 41
KAV Pro 6.0 07062006 46
Viguard 11 NA N/A
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a static analysis whereas the backdoor library is detected
as a generic version, once it has been both extracted and
decrypted. From this established fact, two deductions
can possibly be raised. Firstly, the signature is localised
only in the library in plaintext form, which proves injudi-
cious because it is not the library itself but the executable
who presents infectious features. Secondly, the specific
signature of this version, considered as out-dated, must
have been suppressed for a virus however dating from
2004. The absence of signature in the database is con-
firmed by the negative results of every static analysis of
the other versions.

Now that the generic signature has been localised, it
becomes possible to use this information in order to con-
sequently interpret the results of the dynamic analysis in
an unbiased manner. A first interesting remark concern-
ing the resident protection is that the antivirus does not
block the installation of MyDoom and leaves the main
process running even if it responsible for the propaga-
tion, the duplication, the residency and other infectious
functionalities. It only warns of an infection as soon as
the library containing the signature is extracted. This
must be correlated with the negative result obtained
when analysing dynamically the version without back-
door library ([FIN_NO_BDOOR]). This version is not
detected though it implements every other infectious
behaviour of the original strain. These results prove
that the behaviors are simply undetected or remain
ignored without the validation by means of a comple-
mentary signature. On the opposite, the other versions
leaving this aspect of the final payload unmodified: the
backdoor library ([DUP_SH_CUT, RES_WIN_INI]),
are detected according to the same criteria than the
original strain. These versions all contain the signature
in their respective libraries proving once again our inter-
pretation.

To go further, it is possible to localise more precisely
the signature without performing a complete extraction
like in [7]. It can be noticed that in the particular cases
where the strings have been left as plaintext or encrypted
by means of a stream cipher ([POL_PLAIN_STR,
POL_FLOW_STR]), the library is not detected any-
more. We can formulate the hypothesis that the signa-
ture is made of a shuffled string of the library or even
of the shuffle mechanism itself. Once again, these two
versions implement every infectious behaviour of the
original strain, including the library extraction, but they
remain undetected because they simply do not contain
the signature. This conclusion backs up the fact that
only the signature is taken into account in the context
of dynamic analysis (Table 4).
Avast test results As far as Avast antivirus software is
concerned, we first have a look on the static results and

Table 4 Detection results with AVG
Behaviors Versions Static analysis Dynamic protection
none original strain G I-Worm/MyDoom

shimgapi.dll library I-Worm/MyDoom N/A
FINAL FIN TRIG TARG G I-Worm/MyDoom

FIN NO BDOOR G G
DUPLI DUP SH CUT G I-Worm/MyDoom

DUP NAM PATH G I-Worm/MyDoom
RESID RES SERV KEY G I-Worm/MyDoom

RES WIN INI G I-Worm/MyDoom
POLYM POL FLOW LIB G I-Worm/MyDoom

POL FLOW STR G G
POL PLAIN LIB G I-Worm/MyDoom
POL PLAIN STR G G

ACTIV ACT EVENT G I-Worm/MyDoom
ACT MUTEX G I-Worm/MyDoom

OVINF INF DIF KEY G I-Worm/MyDoom
INF SUP HID G I-Worm/MyDoom
INF ENV VAR G I-Worm/MyDoom

as a second step we will interpret the dynamic results
paying particular attention to the versions which are
not detected in static mode. The original W32/MyDoom
strain is detected as “Win32 : Agent - EZ[UnP]”.
The first observation we can do is that the test where
the malicious library has been removed from the virus
([CHARG_NO_BDOOR]) is negative. So the Avast!
signature base contains a detection pattern located in
the backdoor library of the worm. We can confirm this
fact again, when we consider all the tests where the
included library is left unchanged. These variants are all
detected identically to the original MyDoom strain.

A distinctive feature that can be underlined for Avast
is that the library tested alone and in plaintext form
(deciphered) triggers a different detection alert “Win32:
MyDoom - BJ [Wrm]”. So the signature database of
Avast contains at least two different signatures for
MyDoom corresponding to different versions of the
worm. The first signature which states a generic version
of the worm is, as we have seen above, located in the
encrypted library. A single test where the strings have
been left in plaintext ([POL_PLAIN_STR]) seems to
contradict this. It should have been detected generically
like the test where the strings have been encrypted by
means of an alternative method (stream cipher) ([POL_
FLOW_STR]). An explanation could be that by com-
pletely removing the ciphering system we have modified
the location of certain bytes of the signature making it
inefficient.

The second signature, which proved to be more accu-
rate, is located in the library in plaintext (once deci-
phered) and raises the alert “Win32: MyDoom-BJ
[Wrm]”. In the test when the library has been left in
deciphered form or encrypted by means of a stream
cipher ([POL_FLOW_LIB]), the generic signature is no
longer present; consequently Avast is able to detect the
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Table 5 Detection results for Avast; * means identified as
“Win32:Agent-EZ[Unp]” while ** means identified as
“Win32:MyDoom-BJ[Wm]”

Behaviors Versions Static analysis Dynamic protection
none original strain Agent-EZ* Agent-EZ*

shimgapi.dll library MyDoom-BJ** N/A
FINAL FIN TRIG TARG Agent-EZ* Agent-EZ*

FIN NO BDOOR G G
DUPLI DUP SH CUT Agent-EZ* Agent-EZ*

DUP NAM PATH Agent-EZ* Agent-EZ*
RESID RES SERV KEY Agent-EZ* Agent-EZ*

RES WIN INI Agent-EZ* Agent-EZ*
POLYM POL FLOW LIB G MyDoom-BJ**

POL FLOW STR Agent-EZ* Agent-EZ*
POL PLAIN LIB MyDoom-BJ** MyDoom-BJ**
POL PLAIN STR G G

ACTIV ACT EVENT Agent-EZ* Agent-EZ*
ACT MUTEX Agent-EZ* Agent-EZ*

OVINF INF DIF KEY Agent-EZ* Agent-EZ*
INF SUP HID Agent-EZ* Agent-EZ*
INF ENV VAR Agent-EZ* Agent-EZ*

malware once the library containing the specific signa-
ture has been deciphered and extracted, only.

Now let us have a look on the versions which are not
detected neither in static nor dynamic mode ([FIN_NO_
BDOOR, POL_PLAIN_STR]). In these variants, as
mentioned above, we have changed very few parts of
the malicious code and especially we have not changed
any of the main infectious behaviours from the origi-
nal strain but they simply do not contain the signature
anymore. This result is amazing because these modified
malware work very well without generating any alert.
Consequently, we can deduce that Avast is not able to
detect them by observing the different behaviors of one
of the most famous worms (Table 5).

G-DATA test results Each antivirus we have tested
has its own features and original aspects. As far as GDa-
ta’s antivirusKit2006 is concerned they lie in the fact that
this software uses two detection engines which GData
has not created. It uses actually the KAV engine from
the Kaspersky Lab company and the BD engine from
Bitdefender antivirus from the Softwin company. The
software enables the user to activate them either sepa-
rately or together in parallel or sequentially. Our tests
have considered this last setting. Let us make a first
remark. According to the engine which has issued an
alert, the worm is always detected in a generic way
either as “Email-Worm.Win32.My Doom.Gen” or as
“Win32.Worm.MyTob.2.Gen”. This seems to indicate
that behavioural detection is more seriously implemented
in this software. Now when the strings are encrypted with
a different encryption method than in the original strain
([POL_FLOW_STR]), the worm is not detected in any
mode. We can deduce that either the original ROT13

Table 6 Detection results with antiVirusKit 2006 – * means identi-
fied as “Win32.Worm.MyTob.2.Gen” (BD engine), ** means iden-
tified as “Email-Worm.Win32.MyDoom.Gen” (KAV engine) and
*** means identified as “Trojan-Proxy.Win32.ProDoom.C (KAV
engine)

Behaviors Versions Static analysis Dynamic protection
none original strain MyTob.2.Gen* MyTob.2.Gen*

shimgapi.dll library ProDoom.C*** N/A
FINAL FIN TRIG TARG MyDoom.Gen** MyDoom.Gen**

FIN NO BDOOR MyDoom.Gen** MyDoom.Gen**
DUPLI DUP SH CUT MyDoom.Gen** MyDoom.Gen**

DUP NAM PATH MyDoom.Gen** MyDoom.Gen**
RESID RES SERV KEY MyDoom.Gen** MyDoom.Gen**

RES WIN INI MyDoom.Gen** MyDoom.Gen**
POLYM POL FLOW LIB MyDoom.Gen** MyDoom.Gen**

POL FLOW STR G G
POL PLAIN LIB MyTob.2.Gen* MyTob.2.Gen*
POL PLAIN STR MyDoom.Gen** MyDoom.Gen**

ACTIV ACT EVENT MyTob.2.Gen* MyTob.2.Gen*
ACT MUTEX MyTob.2.Gen* MyTob.2.Gen*

OVINF INF DIF KEY MyTob.2.Gen* MyTob.2.Gen*
INF SUP HID MyDoom.Gen** MyDoom.Gen**
INF ENV VAR MyDoom.Gen** MyDoom.Gen**

encryption mechanism or a jammed character string are
the main clues that betray the infection.

The tests do not allow to understand why a particular
engine is responsible for the detection of a given ver-
sion and not the other one. Nevertheless it seems that
the BD engine is more sensitive to the changes oper-
ated to certain keys of the registry base. As an exam-
ple, instead of writing in a run key we have registered
the virus in the file win.ini to achieve code residency
([RES_WIN_INI]), the detection does not occur any-
more with respect to the BD engine but with respect
to the KAV one. In the same way, for the overinfection
test, if we keep on testing a registry key, even differ-
ent ([INF_DIF_KEY]), the worm is still detected by
the BD engine. Now, if we change the target of the
test – a file, an environmental data ([INF_SUP_HID,
INF_ENV_VAR]…) only the KAV engine still success-
fully detects it. To obtain more details with respect to
this, we should have reconfigured differently the antivi-
rus and activated separately each engine (Table 6).

From a general point of view, the results remains the
same both in static and dynamic modes. Only a var-
iant whose variable strings are encrypted by a differ-
ent method ([POL_FLOW_STR]) – a stream cipher
– is no longer detected. We can deduce that it is the
only version affecting the integrity of the signature.
This version is not detected neither in dynamic or static
mode and yet it implements exactly the same behaviours
than the original strain. We can thus consider that the
behaviours either are not kept under supervision or they
remain unconsidered without the validation by means of
a signature.
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Table 7 Detection results with F-Secure – * means identified as
“Email-Worm.Win32.Mydoom.gen” and ** means identified as
“Trojan-Proxy.Win32.Prodoom.c”

Behaviors Versions Static analysis Dynamic protection
none original strain G Prodoom.c**

shimgapi.dll library Prodoom.c** N/A
FINAL FIN TRIG TARG Mydoom.gen* Mydoom.gen*

FIN NO BDOOR Mydoom.gen* Mydoom.gen*
DUPLI DUP SH CUT Mydoom.gen* Mydoom.gen*

DUP NAM PATH Mydoom.gen* Mydoom.gen*
RESID RES SERV KEY Mydoom.gen* Mydoom.gen*

RES WIN INI Mydoom.gen* Mydoom.gen*
POLYM POL FLOW LIB Mydoom.gen* Mydoom.gen*

POL FLOW STR G G
POL PLAIN LIB G Prodoom.c**
POL PLAIN STR Mydoom.gen* Mydoom.gen*

ACTIV ACT EVENT G Prodoom.c**
ACT MUTEX G Prodoom.c**

OVINF INF DIF KEY G Prodoom.c**
INF SUP HID Mydoom.gen* Prodoom.c**
INF ENV VAR Mydoom.gen* Prodoom.c**

F-Secure test results What is quite peculiar with
F-secure is that the static sequence-based analysis
method does not detect the original W32/MyDoom
strain whereas others versions are detected as the
generic worm “Email-Worm.Win32.Mydoom.gen”.
For example, when the backdoor library is removed
([FIN_NO_BDOOR]), although we have suppressed
a whole part of the virus, it is detected as a generic
version of MyDoom. This could be explained by the
fact that a signature is a sequence of bytes which are
supposed to be located at a given place in the exe-
cutable code. If one byte is not present, the signature
does not match (the detection function is in fact a sim-
ple and function; see [7]). So whenever our modifica-
tions have changed either the value or the location of
one of these bytes, the new version is detected or not.
To understand this phenomenon we can compare the
results between F-Secure and AntiVirusKit 2006 from
GData. The similarity is striking and we can deduce
that the signature database of F-Secure does not contain
the “Win32.Worm.MyTob.2.Gen” signature relative
to the Bit Defender engine, at all. This would explain
why F-Secure antivirus does not raise any alert by man-
ual scanning for the tests detected by the BD engine
in AntiVirusKit 2006 ([INF_DIF_KEY, ACT_MUTEX,
ACT_EVENT, POL_PLAIN_LIB]) and the original
Mydoom worm (Table 7).

If we now focus on the dynamic detection tests, we
obtain three different kinds of results. First, the ver-
sions which were detected with the generic signature
“Email-Worm.Win32.Mydoom.gen” are also detec-
ted in the dynamic mode under the same label which
proves that the signature has been involved in the

Table 8 Detection results with KAV – * means identified as
“Email-Worm.Win32.Mydoom.gen” and ** means identified as
“Trojan-Proxy.Win32.Prodoom.c”

Behaviors Versions Static analysis Dynamic protection
none original strain G Prodoom.c**

shimgapi.dll library Prodoom.c** N/A
FINAL FIN TRIG TARG Mydoom.gen* Mydoom.gen*

FIN NO BDOOR Mydoom.gen* Mydoom.gen*
DUPLI DUP SH CUT Mydoom.gen* Mydoom.gen*

DUP NAM PATH Mydoom.gen* Mydoom.gen*
RESID RES SERV KEY Mydoom.gen* Mydoom.gen*

RES WIN INI Mydoom.gen* Mydoom.gen*
POLYM POL FLOW LIB Mydoom.gen* Mydoom.gen*

POL FLOW STR G G
POL PLAIN LIB G Prodoom.c**
POL PLAIN STR Mydoom.gen* Mydoom.gen*

ACTIV ACT EVENT G Prodoom.c**
ACT MUTEX G Prodoom.c**

OVINF INF DIF KEY G Prodoom.c**
INF SUP HID Mydoom.gen* Prodoom.c**
INF ENV VAR Mydoom.gen* Prodoom.c**

process. Secondly we have the versions which are not
detected in static mode but in the dynamic mode because
of the specific signature which is in the extracted back-
door library ([ACT_EVENT, INF_SUP_HID]). You can
notice that this signature is once again identical to the
one detected with AntiVirusKit 2006 in the extracted
library once deciphered. At last, remains the test where
the library has been flow ciphered ([POL_FLOW_STR])
which seems not to contain any signature according to
the F-Secure database and thus is not detected just like
with AntivirusKit 2006. With regard to these similitudes,
we can draw exactly the same conclusion as for Anti-
VirusKit, in F-Secure the signature remains mandatory
independently from any behavioural detection.
Kaspersky Anti-Virus test results The analysis of the
Kaspersky antivirus tests is going to be very short. The
reader is invited to compare the result (Table 8) with
the F-Secure results. This is not a copy/paste mistake but
the exact result of the test. It has been proved recently
in [7] that these two companies share the same signa-
ture databases. The exact similitude between the two is
a proof that the behavioural engines which could have
been different, have no influence at all on the results
or that behaviour management, if any, is the same as
well. Otherwise some slight variation should have been
visible. The signature is the only element taken into
account in the detection results.
DrWeb test results DrWeb antivirus introduces some
other new particularities. The original Mydoom exe-
cutable code is detected as “BackDoor-Trojan” during
the static analysis and most of the modified variants
show the same results except three of them. In the
first undetected one, the worm duplicates itself under
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Table 9 Detection results with DrWeb – * exact Dr Web antivirus
message is “shimgapi.dll infected by Trojan-Proxy-470”
Behaviors Versions Static analysis Dynamic protection
none original strain BackDoor-Trojan Trojan-Proxy-470*

shimgapi.dll library Trojan-Proxy-470* N/A
FINAL FIN TRIG TARG BackDoor-Trojan Trojan-Proxy-470*

FIN NO BDOOR BackDoor-Trojan G
DUPLI DUP SH CUT BackDoor-Trojan Trojan-Proxy-470*

DUP NAM PATH G Trojan-Proxy-470*
RES RES SERV KEY BackDoor-Trojan Trojan-Proxy-470*

RES WIN INI BackDoor-Trojan Trojan-Proxy-470*
POLYM POL FLOW LIB BackDoor-Trojan G

POL FLOW STR BackDoor-Trojan Trojan-Proxy-470*
POL PLAIN LIB MULDROP.Trojan Trojan-Proxy-470*
POL PLAIN STR DLOADER.Trojan BackDoor.Trojan

ACTIV ACT EVENT BackDoor-Trojan Trojan-Proxy-470*
ACT MUTEX BackDoor-Trojan Trojan-Proxy-470*

OVINF INF DIF KEY BackDoor-Trojan Trojan-Proxy-470*
INF SUP HID BackDoor-Trojan Trojan-Proxy-470*
INF ENV VAR BackDoor-Trojan Trojan-Proxy-470*

a different path and more particularly in a folder com-
pressed thanks to the NTFS mechanism ([DUP_NAM_
PATH]). The compression must have made it unde-
tected because we have tampered with the integrity of
the signature. This signature seems also to be altered for
the tests where the library and then the strings have been
left in plaintext ([POL_PLAIN_LIB , POL_PLAIN_
STR]), but for each of them, a new kind of alert is raised
corresponding to different signatures. It is also interest-
ing to notice that, still in the static mode, the signature
“BackDoor-Trojan” does not seem to have any link with
the backdoor library since the same alert is raised any-
way for the version where the backdoor library has been
removed ([FIN_NO_BDOOR]).

Let us move on to the dynamic mode. We have pre-
viously seen that the backdoor library alone is statically
detected as “Trojan-Proxy-470”. Most of the variants
including the original strain are dynamically detected
because of the extraction of shimgapi.dll. Let us notice
that when the alert is triggered, the virus is already par-
tially installed and DrWeb just offers to
destroy the library shimgapi.dll which has just been
extracted. On the other hand, two versions remain
undetected in dynamic mode whereas they were in
static mode ([FIN_NO_BDOOR, POL_FLOW_LIB]).
DrWeb is the only antivirus presenting such results. It
means that the resident protection does not use exactly
the same detection engine than the manual scanning.
If the others versions had been detected dynamically
by behavioural analysis, these two versions should have
been detected as well as they implement nearly the same
behaviours. So resident protection mainly relies on sig-
nature as manual scanning did, except the fact that the
detection pattern and/or the detection function differ
(Table 9).

Table 10 Detection results with Viguard – * exact message is an
alert of shimgapi.dll modification attempt; ** exact message is an
alert to prevent the program from trying to set up on the start-up
zone
Behaviors Versions 1st execution 2nd execution
none original strain shimgapi.dll*

shimgapi.dll library N/A N/A
FINAL FIN TRIG TARG In residence** shimgapi.dll*

FIN NO BDOOR
DUPLI DUP SH CUT shimgapi.dll*

DUP NAM PATH shimgapi.dll*
RES RES SERV KEY shimgapi.dll*

RES WIN INI shimgapi.dll*
POLYM POL FLOW LIB shimgapi.dll*

POL FLOW STR shimgapi.dll*
POL PLAIN LIB shimgapi.dll*
POL PLAIN STR shimgapi.dll*

ACTIV ACT EVENT shimgapi.dll*
ACT MUTEX shimgapi.dll*

OVINF INF DIF KEY shimgapi.dll*
INF SUP HID shimgapi.dll*
INF ENV VAR shimgapi.dll*

Viguard test results Up this point, the antiviral prod-
ucts we have tested show certain common features and
approach but Viguard, in the antivirus classification, can
be discarded. Its first well-known distinction is that it
claims to not use any sequence-based detection tech-
nique except integrity checking. When installing
Viguard antivirus, a fingerprint for the different files
of the system is calculated and stored in a secure way.
A drawback of this method – and it is clearly stated
by Viguard – is that you need a safe and clean oper-
ating system without any malware before its installa-
tion.6 A second major drawback is that it can generate
a huge number of false positives. Indeed, the number of
behaviours that are considered as potentially dangerous
is particularly high. Most of the legitimate, uninfected
programs adopt many of these behaviours.

Because of these particularities, we had to change the
test procedures into a new protocol consisting in execut-
ing each variant twice without manual scanning.

During the first execution, we observe that no alert is
raised for any malicious code except one ([FIN_TRIG_
TARG]) for which Viguard warns us that a program is
trying to set up in the start-up of the operating system
(many other legitimate programs try to do that!). In fact,
Viguard watches over specific zones of the registry base
and triggers an alert whenever a program wants to reg-
ister under a new or existing key.7 With this approach,

6 Indeed, we manage to install Viguard on a corrupted system and
the malware has been certified without any alert. Consequently,
the malware was able to run efficiently after the installation.
7 Many of Viguard’s alerts are rather useless for generic users
who are unable to interpret them conveniently.
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it is bound to generate a high number of false positives
knowing that most of present legitimate programs do
the same. It is even surprising to see that only this par-
ticular version is detected, the others trying to register
under the same exact key. After this first alert, by choos-
ing to keep the virus running, Viguard triggers several
additional alerts warning the user that a “new e-mail
program” is attempting to establish a network connec-
tion. Once again, this could be done by any e-mail client
or other legitimate softwares.

For the second detection pass, in all the tests, Viguard
warns the user that a program is trying to modify the
existing file “shimgapi.dll”. Viguard is not able to pre-
cise that it is a malicious file and would act the same
way with any other file. In addition, it is left to the user
to judge if the action is legitimate or not! We cannot
really say that Viguard is implementing a real behavioral
detection method. It simply watches disparate possibly
malicious actions without correlating them (Table 10).
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