
Vol.:(0123456789)

Intern. J. Comput.-Support. Collab. Learn
https://doi.org/10.1007/s11412-023-09392-2

1 3

Contesting sociocomputational norms: Computer
programming instructors and students’ stancetaking
around refactoring

Morgan M. Fong1 · David DeLiema2 · Virginia J. Flood3 · Oia Walker‑van Aalst4

Received: 24 January 2022 / Accepted: 5 April 2023
© International Society of the Learning Sciences, Inc. 2023, corrected publication 2023

Abstract
Working solutions to problems are not definitive end points. As a result, code that is
technically correct can still be treated as needing revising – a practice in computer pro-
gramming known as refactoring. We document how late elementary to middle school
students and their undergraduate instructors weigh the possibility of refactoring work-
ing code in an informal summer computer science workshop. We examined a 20-min
stretch of classroom activity in which multiple coding approaches were explicitly evalu-
ated as alternative routes to the same code output. Our theoretical framework draws
on the stance triangle, amplifying and attenuating inequity, and an extension of soci-
omathematical norms. Using the method of interaction analysis, we transcribed and
analyzed stretches of talk, gesture, and action during whole class dicourse and small
group interactions involving 4–6 students. We investigated how instructors and students
introduced, characterized, applied, and contested sociocomputational norms through
stancetaking in classroom discourse, which shaped whose voices contributed to the dis-
cussion and whose ideas were treated as impactful and praiseworthy in the classroom.
Because it is within these discourse spaces that instructors and students interpret and
reinterpret sociocomputational norms about what is valued in programming approaches,
educational researchers and teachers might attend to these conversation dynamics as
one route to fostering more supportive and inclusive learning spaces.

Keywords Computer science education · Interaction analysis · Inequity · Refactoring ·
Sociocomputational norms · Stance

Extended author information available on the last page of the article

http://orcid.org/0000-0003-1697-0856
http://orcid.org/0000-0002-2014-0313
http://orcid.org/0000-0003-1808-9923
http://crossmark.crossref.org/dialog/?doi=10.1007/s11412-023-09392-2&domain=pdf

 M. M. Fong et al.

1 3

Introduction

“I could rewrite it, but I decided to leave well enough alone.”1

“Good, better, best. Never let it rest.”2

What counts as a solution or an end point to a problem is not always straightforward.
In learning settings, even when a student arrives at a viable approach to a problem, other
students and instructors may make the case that more is needed. Given uncertain or
even contrasting criteria around which solutions count as good enough, better, or best,
the opposing quotes above point to intractable questions around whether to invest time,
effort, and risk toward refactoring, the process of improving an already working approach
(Alves et al., 2016; Papert, 1980; Reason, 1990). In this paper, we examine these con-
trasting pathways in a classroom of late elementary to middle school students learning
computer programming. In particular, we document how students and instructors weigh
the possibility of pursuing new approaches to working code. Joining growing efforts to
examine the social context of the computer science and robotics classrooms (e.g., Elli-
ott, 2020; Hennessy et al., 2023; Ryoo et al., 2020; Silvis et al., 2022; Vakil, 2020),
we attend in particular to a facet of inequity in classrooms (Esmonde & Booker, 2016;
Philip & Gupta, 2020), namely who has access to the conversational floor and whose
ideas are treated as impactful and praiseworthy (e.g., Boaler, 2008; Shah & Lewis, 2019)
in teacher–student discourse that, over time, assigns unequal value to decisions about
whether and how to revise code.

We conduct this inquiry with explicit attention to persistent tensions between discipli-
nary norms in computer science (CS) and students’ agency to carve out their own approach
(Papert, 1980; Philip & Sengupta, 2021; Ryoo et al., 2020; Turkle & Papert, 1990). Com-
puter science curriculum and notions of computational thinking have routinely valorized
the process of generating abstractions in code that are more efficient or generalizable than
prior versions (Brennan & Resnick, 2012; Wing, 2008). Despite this disciplinary commit-
ment, few studies have empirically scrutinized how instructors and youth new to coding
collaboratively navigate the prospect and process of refining code that already works. We
draw on prior computer-supported collaborative learning (CSCL) and learning sciences
scholarship that attends to equitable participation in group discourse (Danish et al., 2020;
Philip & Gupta, 2020; Sinha et al., 2015), in particular to research on moment-to-moment
shifts in status and inequity throughout peer dialogue in classrooms (Philip et al., 2018;
Shah & Lewis, 2019; Simpson et al., 2017). Toward this end, we focus on the following
research question: How do students and instructors in one classroom propose, debate, and
ultimately decide during public discourse whether to refactor their code? In answering this
question, we attend to the manner in which students come to problematize a pathway to a
solution that is already working for some of them, how instructors and students shape the
process of defining “inefficiency,” and how participants in the classroom endorse and con-
test one another’s stances.

1 This phrase “Leave well enough alone” may have originated in Aesop’s fable, “The Fox and the Hedge-
hog.” The example we use here is borrowed from the Cambridge English Dictionary (https:// dicti onary.
cambr idge. org/ us/ dicti onary/ engli sh/ leave- well- enough- alone).
2 This phrase has often been attributed to St. Jerome; however, this attribution has been contested.

https://dictionary.cambridge.org/us/dictionary/english/leave-well-enough-alone
https://dictionary.cambridge.org/us/dictionary/english/leave-well-enough-alone

Contesting sociocomputational norms: Computer programming…

1 3

Refactoring in computing and beyond

The process of revising working code, or refactoring, has played a central role in the disci-
pline of computer programming. Fowler’s (2019) textbook on refactoring, written for pro-
fessional programmers, provides the following accessible definition:

“Refactoring is the process of changing a software system in such a way that it does
not alter the external behavior of the code yet improves its internal structure. It is a
disciplined way to clean up code that minimizes the chances of introducing bugs. In
essence when you refactor you are improving the design of the code after it has been
written.” (p. 9)

Refactoring is characterized by a continuous revision process in service of reaching the
same functional requirements or outcomes. Reasons to refactor include improving reus-
ability, communicability, maintainability, adaptability, efficiency, elegance, and knowledge
(Ionescu et al., 2020; Suryanarayana et al., 2014; Thompson, 2020). In the computer sci-
ence discipline, refactoring is not a fringe activity; refactoring is an important strategy to
keep software systems up to date and extensible (Demeyer et al., 2005). However, refactor-
ing is inherently uncertain and intersubjective. Programmers, couched in a context with
particular learning or design goals, and often in discussion with other programmers, have
to decide whether their code is efficient, communicable, or adaptable enough. These con-
siderations involve not just the code in its current form but also the systems that surround
the code, judgments of how others might use and understand the code, and projections
about how the software might need to change moving forward.

Deliberation about these dynamics is core to programming and could provide a point
of departure for CSCL designs that focus on productive failure (Kapur, 2008; Kapur &
Kinzer, 2009). For example, possibilities for refactoring are ill-structured and might natu-
rally provoke discussion about a range of problem-solving strategies. This inherent uncer-
tainty, and the range of strategies one could take to navigate these ill-structured spaces,
might provide a powerful start to a productive failure learning design. Moreover, while the
word “refactoring” arose in the context of computer programming, the open-ended practice
of revising an already functional solution occurs across disciplines. For example, in refin-
ing a scientific model, a student or scientist may recognize that the model makes accurate
predictions about the target phenomenon but is hard for others to interpret or use. That is,
the model could become more generalizable or accessible over time (Schwarz et al., 2009).
Enyedy (2005) captures this revision process in a study of how second and third graders
use progressive symbolization to iterate and refine topological maps into more formalized
and abstract forms.

Similarly, mathematicians aim not only for accuracy in mathematical definitions but
also for minimality and elegance (Van Dormolen & Zaslavsky, 2003). Mathematics stu-
dents might also be encouraged to adopt these practices (Vinner, 2002). For example,
Kobiela and Lehrer (2015) document sixth-graders’ efforts to define geometric shapes,
attending in particular to how students negotiate the criteria for what constitutes a suf-
ficient or acceptable definition. In this study by Kobiela and Lehrer, students argued
about whether the word “side” in a definition of a triangle needed to be phrased “straight
side” if the word had already been defined that way in their classroom. When negotiat-
ing definitions, students might consider if the definition should be efficient or if certain
properties should be foregrounded or backgrounded (e.g., a square’s diagonal versus its
sides) (Kobiela & Lehrer, 2015, p. 427). In this way, learning to judge the soundness of

 M. M. Fong et al.

1 3

a mathematical definition, and whether it warrants revising, involves sociomathematical
norms, or “normative understandings of what counts as mathematically different, math-
ematically sophisticated, mathematically efficient, and mathematically elegant in a class-
room” (Yackel & Cobb, 1996, p. 461). Sociomathematical norms—or sociocomputational
norms in the context of computing—play a role in guiding classroom expectations about
quality. Both in the classroom and in professional industries, what counts as an “elegant”
or “good” solution is inherently intersubjective; these norms are socially and culturally
negotiated and evolve given changing technology and circumstances (Nader, 1996; Philip
et al., 2018; Stevens & Hall, 1998).

In summary, refactoring has been identified as a recurring practice not only in comput-
ing, but also in other science, technology, engineering, and mathematics (STEM) domains.
Refactoring as an activity is inherently uncertain, dependent at least in part on the domain-
specific and context-specific norms that constitute elegance, efficiency, or other valued
attributes.

The integral but potentially contentious place for refactoring in CS
education

Computer science educational researchers have called for courses that explicitly address
refactoring (e.g., Romeike & Göttel, 2012). Some have even argued that computer science
curricula have overlooked refactoring at the undergraduate level (Stoecklin et al., 2007).
In a study that proposes a software tool for refactoring, the authors note that there is little
agreement on best practices for teaching refactoring (Demeyer et al., 2005). At the same
time, the K-12 Computer Science Framework emphasizes the value of refactoring. In rec-
ognizing the goal of abstraction and the process of debugging, the framework also invites
learning experiences focused on the gradual refinement of code, such as the “iterative pro-
cess of designing, implementing, and reviewing programs” and “remixing other programs
within a community” (2016, p. 104). Building on a few recent efforts to raise awareness to
refactoring practices in CS education (Danielak, 2022; Techapalokul & Tilevich, 2019), we
extend this work by looking at the under-examined complexities of classroom discourse
that surround discussions about revising code.

In alignment with CSCL scholarship on the social construction, appropriation, and
impact of classroom norms (Danish et al., 2020; Overdijk et al., 2014; Siyahhan et al.,
2010), we advance a critical perspective on refactoring practices in computer science edu-
cation that attends to the ways that classrooms determine what constitutes valuable code.
The work of introducing disciplinary conventions, values, or norms of revision/refactor-
ing often takes place in collaborative, extended discourse when students have been pre-
sented with the task of problematizing a pathway to a solution that might work but could
be improved. While we know a great deal about structuring group problem-solving pro-
cesses from the CSCL literature (e.g., Cress et al., 2021; Radkowitsch et al., 2020; Scheuer
et al., 2010), we know little about how CS disciplinary norms are negotiated and contested,
and even less about how those negotiations shape refactoring decisions for new coders.
When considering whether to refactor, students take as a point of departure code that is
already working to a certain extent. Because nothing in principle has broken down in their
process of pursuing an approach to a coding activity, students may be reluctant to leave
a known solution. Thus, a pedagogical challenge for supporting students’ learning about
refactoring is that moments of success (e.g., working code) might not spark reflection and

Contesting sociocomputational norms: Computer programming…

1 3

course correction. Instead, moments of friction, impasse, and breakdown prompt individu-
als across levels of experience to dedicate effort and time to reflect on and consider adapt-
ing their process in a variety of scenarios (Kapur & Kinzer, 2009; Koschmann et al., 1998;
Weiner, 1985). In a similar vein, research on conceptual change points to a moment of
dissatisfaction as a catalyst for thinking about a topic in a new way (Posner et al., 1982, p.
214). Broadly speaking, students may gravitate toward the tendency of cognitive conserva-
tism (Reason, 1990), or a reluctance to approach an activity in a new way unless a prob-
lem arises. For example, Danielak (2022) documents how an undergraduate programmer’s
“design choices were made early and persisted” (p. 29) throughout a semester of coding—a
kind of “design inertia” (p. 29)—which ultimately introduced considerable complexity into
the student’s code. Instructors might have particular programming solutions in mind that
align with longer-term learning goals, but students may prefer in the shorter term to write
their code a different way.

Indeed, one of the foundational texts on computer programming education drew direct
attention to these tensions surrounding refactoring (Papert, 1980). In several anecdotes,
Papert (1980) problematized when to ask elementary to middle school students to refac-
tor, noting a balancing act between allowing students to use a known set of commands
and nudging students to write their code in more efficient ways. The following extended
excerpt describes this dynamic:

“Deborah decided to restrict her Turtle commands, creating a microworld within the
microworld of Turtle commands. She allowed herself only one turning command:
RIGHT 30. To turn the Turtle through 90 degrees, she would repeat RIGHT 30 three
times and would obtain the effect of LEFT 30 by repeating it eleven times. To an
onlooker it might seem tedious to obtain simple effects in such complicated ways. But
for Deborah it was exciting to be able to construct her own microworld and to discover
how much she could do within its rigid constraints. She no longer asked permission to
explore. And one day, when the teacher offered to show her a ‘simpler way’ to achieve
an effect, she listened patiently and said, ‘I don’t think I’ll do it that way.’”

Papert’s anecdote highlights a student’s authority to push back on instructor expecta-
tions and instead make a personal choice about when to refactor. As Papert alluded to with
critiques of instructionism, this tension between students’ preferences and instructors’
expectations might be amplified by instruction that is guided by a scope and sequence that
makes certain assumptions in advance about what will be coherent and valuable to students
and when (Sikorski & Hammer, 2017).

These dynamics are especially concerning against the backdrop of recent scholarship on
computing learning spaces that documents the resistance high school computing students
face to asserting their agency during learning (Ryoo et al., 2020), including CSCL scholar-
ship that documents girls’ efforts to inequitably position one another along dimensions of
power and status during a summer camp (Simpson et al., 2017). This contemporary work
resonates with concerns raised over 30 years ago about how programming education envi-
ronments limit epistemological pluralism, defined as “accepting the validity of multiple
ways of knowing and thinking” (Turkle & Papert, 1990). Rightful presence (Calabrese
Barton & Tan, 2019)—students’ power and authority to shape their approach to learning
and “resist an unquestioning acceptance of established norms” (p. 621)—is not guaran-
teed in computing learning spaces. Inequities are a prevalent part of learning, attenuated
and amplified by the moment-to-moment contours of discourse in the computing class-
room (Shah & Lewis, 2019). Inequitable dynamics around marginalization and domination
in pair programming spaces designed to promote equity have been connected to students

 M. M. Fong et al.

1 3

working quickly to finish tasks (Lewis & Shah, 2015), which might be exacerbated by a
focus on “efficient” refactoring. Moreover, efficiency in problem solving has been tied
to exclusionary practices along racial and gendered lines in undergraduate mathematics
courses, such as college instructors suggesting that students take a lower-level course or not
enroll in the next course in the sequence when they do not complete problems rapidly, or
even laughing at students who struggle with seemingly easy problems (Leyva et al., 2021a,
b). Exclusionary practices like these create unnecessary pressure and have disproportion-
ately impacted mathematics students from marginalized groups (Leyva et al., 2021a, b),
heightening the urgency to examine these dynamics in CS education spaces.

Given the factors described above around instructional (Papert, 1980), emotional
(Koschmann et al., 1998), and cognitive (Posner et al., 1982; Reason, 1990) reasons to
question when students will be interested in revising a working solution, we might expect
that refactoring considerations are especially contentious during collaborative learning,
where dominant sociocomputational norms may attenuate students’ agency. For example,
Vakil (2020) used two case studies of high school students to document how students
grapple with the tension between “values of a discipline” (p. 107) (i.e., sociocomputational
norms) and their own potentially differing values while simultaneously maneuvering the
social norms in their classrooms. This tension raises a central question for the discipline.
As instructors bring students into a “community of learners,” a stepping stone toward a
community of practice (Suzuki & Kato, 1995), how can they help students to understand,
explore, critique, and respond to the field’s traditional sociocomputational norms without
expecting uncritical acceptance of those norms? In all, we join recent calls in the learning
sciences and in CSCL (e.g., Gomez et al., 2021; Sengupta et al., 2021; Simpson et al., 2017;
Wang et al., 2021) to pay more analytic attention to the ways in which issues of equity arise
when diverse ways of knowing and participating in computer science are contested and
negotiated. We adopt a situated perspective to document how instructors and students in one
stretch of classroom interaction navigate the disciplinary convention of refactoring code.

In summary, situations in which instructors and students weigh the possibility of refac-
toring may prove to be contested spaces. If this conjecture about CS classroom discourse
is correct, we argue that it is essential to study through a critical lens the question of who
contributes to these discussions and whose ideas and coding approaches are treated as
impactful and praiseworthy.

Theoretical framework and central constructs

We take as a point of departure educational research frameworks that recognize that
classroom spaces assign (unequal) value to particular student actions and outcomes
over others (e.g., Holland et al., 2001). In particular, we are interested in understand-
ing whose voices are present and whose ideas are treated as impactful and praisewor-
thy in moment-to-moment discourse about refactoring. Among the wide range of facets
of inequities in education—including historical injustice, suppression of future oppor-
tunities, and political oppression (e.g., Bang & Vossoughi, 2016; Gutiérrez & Jurow,
2016; Philip & Azevedo, 2017)—we join others in recognizing that conversations in
classrooms, both in terms of who participates and whose ideas are valued, are central
components of (in)equity (Philip & Gupta, 2020). Through attention to micro moments
of social interaction in the classroom, we explicitly take up the call from Langer-
Osuna and McKinney de Royston (2017) to develop “conceptual and analytic tools that

Contesting sociocomputational norms: Computer programming…

1 3

examine how these processes and related patterns of inequality are instantiated, perpetu-
ated, or transgressed through interaction at the classroom level” (p. 645–646; see also
Philip & Gupta, 2020). Because we are focusing on classroom discourse, our theoretical
framework draws on three constructs that have been widely used in education research
studies of social interaction: (1) stancetaking (Du Bois, 2007), (2) sociomathematical
norms (Yackel & Cobb, 1996), and (3) the amplification and attenuation of participa-
tory and relational inequity (Shah & Lewis, 2019). Below, we articulate how these three
features of our theoretical framework provide a unique and synergistic lens on studies of
inequities in classroom discourse about refactoring.

Stancetaking: evaluate, position, (mis)align

Du Bois’ stance triangle framework (2007) is a powerful tool for documenting how
classroom participants voice their opinions on issues and (dis)agree with one another
as a conversation progresses. Moreover, the theoretical lenses of stancetaking and posi-
tioning (see Davies & Harré, 1990) have been applied productively in CSCL and learn-
ing sciences scholarship (e.g., Watkins et al., 2016), including within studies that attend
to equity and power. For example, stancetaking has been used to document college
students’ argumentation about ethics in engineering and whose voices are suppressed
along the way (Philip et al., 2018), and to examine CSCL contexts in which particular
positions and storylines in the classroom shape who benefits most from collaborative
learning designs (Simpson et al., 2017). We carry these threads forward here by utiliz-
ing the stancetaking framework of Du Bois. Stance is formed through dialogue between
people: “I evaluate something, and thereby position myself, and thereby align with you”
(emphasis added, Du Bois, 2007, p. 163). Du Bois’ statement makes explicit that stance
is an action that is inherently value-laden and builds recursively on prior stances to form
new stances. Stancetaking is not solely a linguistic practice. Body movement, outward
signs of affect, and the incorporation of physical materials in the environment constitute
stance (Goodwin, 2006, 2007).

By attending to multimodal and linguistic features of social interaction, we are spe-
cifically interested in conversation turns in which students and instructors adopt a stance
on refactoring. We articulate the components of stance—evaluating, positioning, and
aligning—in the following way: Students and instructors may evaluate refactoring (the
object or the focus of a given strip of conversation) by drawing on particular criteria
(e.g., noting that a particular coding approach is fast, arguing that the approach is too
much work, having a personal preference for a particular approach). Through these acts
of evaluation, students position themselves as someone supportive, opposing, or neutral/
ambivalent about refactoring. Given that others in the classroom might be evaluating
refactoring possibilities, and thus positioning themselves within a broader argumenta-
tion landscape, we are interested in tracking whether students align (what Du Bois refers
to as convergence) or misalign (what Du Bois refers to as divergence) with prior stances
on the topic (p. 164). Students mark this (mis)alignment specifically in their language
(e.g., “yeah but…” or “No, you could…”) and/or through multimodal cues (e.g., shak-
ing one’s head in disagreement). These three components form a stance. For example,
a student might evaluate the notion of refactoring a hard coded sequence into a loop as
a waste of time, which positions that student in opposition to refactoring, and which
might misalign with a peer who had previously evaluated the loop as a time saver.

 M. M. Fong et al.

1 3

Sociocomputational norms

Given our attention to stancetaking during discussions of refactoring, we are interested
in understanding the extent to which these stances relied on different criteria for what
constitutes effective approaches to coding challenges, including different interpretations
of those criteria. To capture these dynamics, we drew inspiration from Yackel and Cobb’s
(1996) notion of sociomathematical norms. Like social norms (e.g., a recurring expectation
in a classroom that students explain their solutions), sociomathematical norms are formed
over time and, like stancetaking, develop over the course of social interaction (Lopez &
Allal, 2007). However, sociomathematical norms are distinct from social norms in that they
are domain specific, such as mathematical notions of “efficiency” and “elegance.” Prior
work has described in rich detail how in one third grade science classroom, teacher-initiated
but socially defined sociomathematical norms developed alongside students’ computational
thinking to shape what counted as a “good” measure of distance (Dickes et al., 2020).
Separately, researchers have explicitly called for computing education environments to
adopt “professional norms” around “precision” in programming (Kolikant & Pollack,
2004), a move that underscores the power of disciplinary norms to shape evaluations of
the quality of student work. With a critical eye toward these disciplinary structures
(drawing inspiration from Philip & Sengupta, 2021), in our paper, we extend and explore
the construct of sociomathematical norms in the context of computer science by examining
sociocomputational norms: normative understandings of what counts as computationally
sophisticated, computationally efficient, and computationally elegant. In our analysis, we
illustrate how sociocomputational norms are explicitly described by instructors and students
in whole class discourse. In addition, we show how recurring stances taken throughout
peer-to-peer and instructor–student conversations during coding communicate notions
of efficiency, elegance, etc., especially in terms of who holds others accountable to their
stance, and thus amount to gradually refined sociocomputational norms for the classroom.
In this way, we are interested in attending to both explicitly professed sociocomputational
norms (e.g., “good code is concise”) and to enacted stances that endorse particular
sociocomputational norms (e.g., “loops save you so much time”).

Amplifying and attenuating participatory and relational inequity

Because stancetaking (and the sociocomputational norms that stances endorse, contest, and
refine) arise within social interaction between instructors and students over time, these frame-
works can play a role in helping researchers understand moment-to-moment inequities in dis-
course (Philip & Gupta, 2020). Our approach in this paper responds to broader calls in CSCL
and the learning sciences to examine inequities in classroom discourse (Esmonde & Booker,
2016; The Politics of Learning Writing Collective, 2017) and to build on empirical findings
in CS education research that document (resistance to) inequitable discourse dynamics (Ryoo
et al., 2020; Shah et al., 2020; Tsan et al., 2021), such as middle school pair programmers’
departures from their roles as “navigators” and “drivers” during coding (Denner et al., 2021).
We sought to remain open to capturing the shifting dynamics within the classroom that might
ultimately elevate some students’ approaches and dismiss others. To attend to the possibility
of these shifts over time, we drew specifically on Shah and Lewis’s (2019) paper examining
the moment-to-moment fluidity of inequity in peer-to-peer and instructor-student dialogue.
Shah and Lewis (2019) document this process by attending to the ongoing amplification and

Contesting sociocomputational norms: Computer programming…

1 3

attenuation of inequity in pair programming. Their approach distinguishes participatory from
relational equity. Participatory equity is the extent to which participants in dialogue both have
opportunities to engage in communication and take advantage of those opportunities. This
involves both access to the “conversational floor” and utilization of the conversational floor.
On the other hand, relational equity (originally developed by Boaler, 2008) is the extent to
which people respect each other’s ideas, including ideas different from their own, evidenced
by whose ideas impact/shape the classroom discussion and whose ideas are outwardly valued/
praised in conversation. In the case of refactoring, relational equity becomes visible through
whose ideas about refactoring (a) are considered in classroom discussion, (b) inform how stu-
dents actually write their code, and (c) serve as benchmarks for endorsement or praise.

As Shah and Lewis point out, relational and participatory equity are intertwined: a class-
room where peers respect each other will naturally lead to more opportunities for everyone
to offer evaluations and positionings, including misaligning stances. On the other hand,
a classroom where peers and instructors do not respect each other’s contributions might
lead to fewer opportunities for students to participate in the conversation. Shah and Lewis
explicitly identify inequity as a constant feature of peer-to-peer and instructor–student rela-
tionships, and thus an important area of focus in computing learning environments. For
this reason, Shah and Lewis use the terms amplifying and attenuating to describe inequity
as a persistent tendency that is constantly being negotiated and either exacerbated (ampli-
fied) or mitigated (attenuated). In our work, we remain open to the possibility that stretches
of interaction will blend facets of attenuated and amplified inequity.

Summary of theoretical framework

All together, these constructs allow us to investigate how sociocomputational norms
around refactoring code into more efficient, elegant, and communicable abstractions take
shape in the discourse of a computer science classroom. We investigate how instructors
and students introduce, characterize, apply, and contest these sociocomputational norms
through stancetaking in classroom discourse, with implications for participatory and rela-
tional inequities in the classroom. These constructs (stancetaking, sociocomputational
norms, and participatory and relational inequity) amount to a theoretical framework that
aligns with our commitment as interaction analysts (Jordan & Henderson, 1995) to study
how meanings are negotiated on a public stage, without making assumptions about par-
ticipants’ inner experiences. We unpack this commitment and provide additional details
on our methods below.

Methods

Statement of positionality

Our analysis presents a critical perspective on a learning community that members of our
research team both participated in and helped design. The research team consisted of the
authors of the paper: Morgan, David, Virginia, and Oia.

Prior to the workshop, David had partnered with the nonprofit community learning
center to develop computing curriculum and programs for the center’s students. David par-
ticipated in the focal classroom as a researcher who took field notes at the back of the
room and occasionally joined students at their tables to help with coding and/or debugging.

 M. M. Fong et al.

1 3

Indeed, David was part of the classroom discussion we analyze below. Oia and Virginia
helped set up recording equipment in the focal classroom, but spent their time in different
classrooms taking field notes and collecting video data.

Morgan joined the team after data collection as an undergraduate research assistant.
Based on her courses as a computing major at the time, Morgan felt debugging was not
discussed enough as a topic or skill, and participated in the project to better understand
how students debugged and how instructors might be better equipped to teach debugging.

Through our experiences observing and participating in the nonprofit’s classrooms, and our
extensive conversations with instructors before and after the workshops, we recognized that this
learning environment offered strong values about what it means to be a coder (e.g., learning to
debug code independently). At the same time, we had been reading extensively about critical
perspectives on computing education (much of which we cite in our literature review above). As
we studied the video-recorded conversations in the classroom about debugging (our focal
research topic), we noticed layers of marginalization that we decided to write about, especially
because refactoring had not been “on the radar” in our interview questions or in instructors’
reflections on debugging. In addition, David and Morgan had spent time in CS-specific education
spaces (at the K-12 and college level) that had strongly signaled the value of “efficient” code.
For David, who participated the most in co-designing pedagogical practices at the nonprofit,
this translated into ignoring the possibility that refactoring to get more efficient code might
disempower many students along the way. For Morgan, who was also involved in peer tutoring,
this translated into pushing students toward a “correct” solution. In addition, as scholars who
identify as White and Asian who have historically been given privileged positions in CS spaces,
we further felt compelled to reflect critically on how inequities can arise in CS education spaces.
Lastly, our identities as researchers of debugging in this research–practice partnership motivated
us to bring to the attention of our research and practice team our observations about how
refactoring was approached in the classroom and what alternatives we might consider.

All four authors participated in the data selection and analysis, which we describe next.
We view our critical perspective on this classroom session as reflexively emerging from
our own contributions to the curriculum and classroom discourse, and not simply as a
detached analysis of teaching and learning outside of our influence. We provide this criti-
cal examination of inequity in the classroom with the goal of challenging ourselves, our
collaborators (both instructors and designers), and the broader research community to pur-
sue a deeper and more equitable understanding of refactoring, to better support students in
computing learning environments.

Setting and participants

The specific setting for this research was a 2 week summer computer programming workshop
(M–F, 9 am to 4 pm) held at a nonprofit community learning center. Students in the work-
shop either demonstrated financial need or attended schools with high proportions of students
from low-income families (schools classified as Title 1 in the United States), and all students
submitted an application to attend the workshop where they expressed their interest in pro-
gramming (there was slightly higher demand than space available in the workshop). There
were 14 students enrolled in the focal classroom. In response to an open-ended prompt on a
demographic survey, six students identified as Latino/a, three students identified with multi-
ple categories (e.g., Latino and Asian, Latina and African American), two students identified
as Asian, one student identified as White, and two students did not provide any identification.
Six of the students identified as girls, and eight identified as boys. Table 1 provides details on

Contesting sociocomputational norms: Computer programming…

1 3

students’ pseudonyms, prior coding experience at the nonprofit community learning center,
and grade level. The focal students, indicated by an “*” in Table 1, all had some experi-
ence at the community learning center and most had experience with the PixelBots platform
(details below) more specifically. As a result, the focal students had different comfort levels
with different programming constructs, which we detail in the next section. We attempted to

Table 1 Pseudonyms, grade level, and coding experience of students in our focal classroom. Focal students
have an asterisk (*) after their pseudonym

a Of the students with prior coding experience at the community learning center, most had attended earlier
eight session weekend workshops that year, and some would have attended two week workshops from the
previous summer

Pseudonym Grade level Coding experience at community
learning centera

PixelBots experience

Nya* Fifth Two workshops One workshop
Pat Sixth Three workshops One workshop
Max* Seventh Five workshops One workshop
Rio Eighth No workshops No workshops
Ash* Fifth Two workshops One workshop
Gil Fifth Two workshops One workshop
Sal Fifth Two workshops One workshop
Ana Fifth Two workshops One workshop
Eva Fifth Two workshops One workshop
Ora Seventh No workshops No workshops
Lou* Sixth One workshop No workshops
Ian Fifth Five workshops One workshop
Kay* Fifth Two workshops One workshop
Zoa Sixth One workshop No workshops

Fig. 1 Classroom seating and
configuration. During the focal
lesson, Ash, Zoa, Ian, and Eva
sat together at the front left table.
Nya, Lou, Kay, and Max sat
together at the front right table.
Ana, Rio, Gil, Sal, Ora, and Pat
sat together at the back right
table

 M. M. Fong et al.

1 3

pick pseudonyms that matched students’ self-identified gender. Figure 1 provides the seating
arrangement of the students. All the participants in this study were introduced to the research
ahead of the summer workshop, given time to reflect on whether they wanted to participate,
and then added to a classroom in which research would take place only after a parent and
child signed consent/assent forms, following our institutional review board (IRB)-approved
procedure. Even with this process in place, we recognize that the context of maintaining con-
sent during video-based research is ongoing and complex (Vossoughi & Escudé, 2016).

The lead instructors in the classroom, Ben (self-identified as a man) and Meg (self-iden-
tified as a woman) were both working toward undergraduate computer science degrees at
local universities. Ben and Meg (both pseudonyms) taught at the nonprofit community learn-
ing center for two consecutive eight session weekend workshops prior to this summer work-
shop. In this particular classroom, Meg and Ben often taught from the front of the classroom
with the aid of a projector (whiteboard in Fig. 1). David, one of the co-authors of this paper,
participated in the classroom as a researcher/instructor, devoting most of his time to typing
field notes at the back of the classroom (empty table, upper left in Fig. 1) but occasionally
supported students in one-on-one or small group debugging sessions at their tables. The last
group of participants relevant to our analysis, a team of three software developers, had been
working on the PixelBots software platform for over a year prior to the summer session and
occasionally visited classrooms at the non-profit community learning center.

Software and curriculum

The PixelBots platform was inspired by Logo, one of the first programming environments
designed explicitly for children learning programming (Papert, 1980). In Logo, students
write in a custom programming language to control the movement and drawing actions of a
“turtle” around a grid. In PixelBots, students write in the Javascript programming language
to control the movement and painting actions of an animal avatar around a grid. PixelBots
was developed by a computing education nonprofit and is available at https:// www. pixel
bots. io/ to instructors and students interested in using the software (see DeLiema et al.,
2020, 2022 for prior publications focused on PixelBots). Next, we describe some of the
features available to students in the PixelBots platform.

Figure 2 is a screenshot of the PixelBots challenge students worked on in our focal les-
son. An API in the center of the screen provided the syntax for the commands students
could use when programming a specific PixelBot (e.g., “paint(color)”) in the editing space
to the right. This challenge in PixelBots asked students to recreate a pre-drawn image (i.e.,
four pink corners and an orange square) that students attempted to program. (Other chal-
lenges used a blank grid for free creation). Directly below the grid, students could adjust
the opacity of the pre-drawn template image by dragging the slider from the white circle
(i.e., completely transparent) to the black circle (i.e., completely opaque). Below the opac-
ity slider, students could reset the state of the canvas by clicking the red counterclockwise
arrow, run their code by clicking the green play button, see the end state of their code by
clicking the yellow end button, and check their code output for correctness by clicking the
blue “CHECK” button. Below these buttons, students could adjust the speed at which their
code runs by dragging the slider from left (i.e., slowest) to right (i.e., fastest).

The design of the PixelBots platform created numerous opportunities for students to
consider refactoring. First, because some challenges in PixelBots provided a target image
to paint, students in the classroom often worked on their own laptops to paint the same

https://www.pixelbots.io/
https://www.pixelbots.io/

Contesting sociocomputational norms: Computer programming…

1 3

image that other students were trying to paint (e.g., four pink corners in Fig. 2). For this
reason, students often compared the different routes they were taking to paint the same
image. Second, the API changed throughout the workshop, for example, by concealing
certain functions or limiting the use of parameters. These evolving constraints invited
students to solve similar challenges in new ways. Third, for some challenges, the Pixel-
Bots programming interface visibly tracked the number of lines in students’ programs,
which often drew students’ attention, and invited them to compare the efficiency of their
programs with respect to the number of lines written. In some cases in the workshop,
the PixelBots challenge required students to complete it within a certain number of lines
(though the students in the data analyzed below had not yet encountered this feature).

In the focal activity, students are tasked with painting the target image in Fig. 2. We
outline some of the possible approaches to and refactoring opportunities in the focal
activity below. We use the term “approach” rather than “solution” to highlight the fact
that students may not have working code when discussing their programs with others.

One possible approach for programming the outer corners is to write each step:

 1. paint(‘pink’)
 2. forward(4)
 3. turnRight()
 4. paint(‘pink’)
 5. forward(4)
 6. turnRight()
 7. paint(‘pink’)
 8. forward(4)
 9. turnRight()
 10. paint(‘pink’)

Fig. 2 Sample screenshot of PixelBots platform

 M. M. Fong et al.

1 3

We refer to this kind of approach as hard code. Students might notice that lines one to three
are repeated twice. Students can highlight lines one to three, copy and paste them twice, then
copy and paste line one to write line ten. We refer to this kind of approach as copy-and-paste.
Students familiar with programming may start to notice the repeating pattern and refactor their
code to use a loop:

1. for(var i = 0; i < 4; i++) {
2. paint(‘pink’)
3. forward(4)
4. turnRight()
5. }

We refer to the above approach as using a for-loop. Since “for” is a Javascript keyword,
this syntax will work in the PixelBots platform. However, the software developers working
on PixelBots introduced the repeat-loop syntax that became an important distinction in
the activity. Students may achieve the same result as the for-loop by using the repeat-loop
syntax:

1. repeat(4, () => {
2. paint(‘pink’)
3. forward(4)
4. turnRight()
5. })

Depending on how students approach the outer corners, their PixelBot ends up in different
places. As students move to paint the inner orange square, they may hard code the commands,
use copy-and-paste, or use a for or repeat-loop. Students might also notice some repetition
within the repeat-loop itself, and use nested loops:

1. repeat(4, () => {
2. repeat(2, () => {
3. paint(‘deepOrange’)
4. forward(1)
5. })
6. turningRight()
7. })

The overarching scope of the curriculum contained a thread of refactoring practices
woven throughout it, and thus provides important context for our analysis. At this stage
of the research project, the nonprofit had piloted classroom activities with PixelBots, and
this marked the second version of PixelBots curriculum focused on cubist art. The bulk of
the curriculum was written by a curriculum developer at the nonprofit community learning
center, but all of the instructors collaborated on the design of the debugging-focused activi-
ties, which included journaling to set debugging goals and strategies, instructors mode-
ling and then prompting for the use of particular debugging strategies during coding, and
a five-part debugging process (see Dahn et al., 2020; Dahn & DeLiema, 2020; DeLiema
et al., 2020, 2022 for additional details). Recognizing that debugging had been a consist-
ent source of discussion among the educators and learning designers at the nonprofit,

Contesting sociocomputational norms: Computer programming…

1 3

and seeing connections to the research literature on productive failure (Kapur & Kinzer,
2009), the nonprofit leaders and collaborating researchers had worked together to decide
on debugging as a focal practice for their design-based research and received a grant from
the National Science Foundation to pursue the work. At this point in the team’s work, each
of the above designs had been piloted in the previous two weekend workshops (eight ses-
sions each) at the nonprofit. The instructors in the focal classroom, Meg and Ben, spent
time familiarizing themselves with the curriculum in the week leading up to the work-
shop and before each class. In addition, the coding challenges students navigated each day
were designed to work in synchrony with the lesson plans in the curriculum. In this way,
the written lesson plans and accompanying coding challenges structured the work of the
students and instructors over the 2 weeks. These skill-building challenges were intended
to provide students with an array of coding techniques they could then deploy on custom
projects (described below). In this way, the curriculum designers intended for students to
master foundational programming concepts that would have high utility on project-based
coding activities.

For their final projects, students created animal cubism paintings that took advantage
of square and rectangle functions to paint creatures composed of block-like shapes. As
such, the final project highlighted the process of decomposing an animal drawing into
basic shapes so that general, shape-producing functions could be called to paint the ani-
mal. For this reason, many of the activities leading up to the animal cubism painting
invited students to write code in a first-pass solution before rewriting the code into “more
efficient” (as quoted in the curricular materials) or abstract shape-producing functions.
Here is just a sample of some of the language written into the lesson plans with phrases
italicized for emphasis:

• “Highlight the theme of ‘Less is more’” (day 02)
• “Hint 2: What chunk of code/lines are reused? How could you rewrite this program?”

(day 02)
• “Can we use functions to refactor this code?” (day 02)
• “Students learn to define functions with parameters to generalize bot’s actions with

arguments” (day 03)
• “You will notice all three challenges paint the same pixel, in the upper right corner. I

want you to focus on refactoring the program to use the least amount of lines as pos-
sible” (day 03)

• “Students will prototype a picture of an animal on PixelBots using rectangles and trian-
gles” (day 04)

In short, refactoring toward particular valued ends was one of the core sociocomputational
norms that structured the lesson plans and coding challenges in this workshop. The process
of learning about loops, parameters, functions, and eventually multiparameter functions was
motivated in the lessons by sociocomputational norms such as reuse, generalization, and
using the fewest lines possible. Challenges that students worked on throughout the course
constrained the number of lines they could use, demanding a process of refactoring a first
solution into something more efficient with respect to the length of the program. However,
the written lesson plans presented the value of these sociocomputational norms around
refactoring in a neutral way—seemingly under the assumption that students would readily
pursue refactoring—and discussions about pedagogical practices ahead of and throughout
the workshops did not focus on refactoring.

 M. M. Fong et al.

1 3

Data sources

Students typically sat in groups of four to six at three tables spread throughout the room (see
Fig. 1). We used GoPro cameras to capture social interaction that took place during coding. Our
camera configuration involved two GoPro cameras raised on small stands at two corners of each
table (six cameras in total), and one or two cameras in the upper corners of the room. To capture
the details of students’ code, we used Screencastify software run on Google Chrome laptops to
record students’ screens and capture audio near the laptop. Combining these data sources provides
a multiperspective view of whole class discourse and the substance of conversations between
students about their code. However, due to Screencastify needing an actively running laptop to
record, some recordings were cut short or missing due to students closing their laptops during the
workshop.

Selection of data

The current study of refactoring emerged from a broader design-based research investigation of
how students learn to program and debug in an informal computer science workshop. Follow-
ing the data collection activities for the workshop noted above, an author of this paper, Oia, was
performing a substantive review of the corpus (Erickson, 1992) to build a collection of clips
of interactions where instructors and students debug together when she noticed the focal les-
son where refactoring was negotiated. In this lesson, students engage in discussion about how
to balance the pursuit of a new coding approach against the cost of investing time to learn the
new technique and the risk of introducing new bugs along the way. We purposefully selected
this focal lesson for closer analysis because it presented an opportunity to closely examine and
discover how this process of social negotiation can unfold (Erickson, 1992; Maxwell, 2013).

After reviewing the lesson for discussions about refactoring, we chose to focus our
analysis on a 20 minute episode of classroom activity for multiple reasons. First, students
and instructors in this discussion brought up an especially diverse range of issues related
to refactoring, such as speed, efficiency, and elegance. Thus, the episode presented
an opportunity to examine how students and instructors negotiated many different
sociocomputational norms around refactoring. Second, this lesson featured a very public,
intense, and persistent discussion on the merits of various approaches (copy-and-paste
versus loops versus nested loops) with a range of different stakeholders participating
(students, professional programmers, instructors, researcher–instructors). Third, because the
topic of refactoring was taken up by different stakeholders in the classroom and handled
in whole-class discourse at several moments, this discussion provided an especially rich
opportunity to trace how distinct stances taken on refactoring impacted one another and
changed over time. Fourth, this activity took place on the second day of the workshop
and served as an early example of the instructors explicitly placing value on the pathways
students took to the solution. Given our interest in understanding how inequity can arise
in computer science learning environments, this provided us with an opportunity to look
closely at how preferences for particular coding approaches took root in the classroom.

Data analysis

Our approach to analyzing the focal lesson drew primarily on the tradition of interaction
analysis (Derry et al., 2010; Jordan & Henderson, 1995; Stahl, 2006). After choosing the

Contesting sociocomputational norms: Computer programming…

1 3

20 minute stretch of classroom activity to analyze, we used Adobe Premiere to synchronize
the audio and video from multiple camera angles and then visually arrange the clips to display
them at once on the screen. We created one overview video (bringing together the cameras
from the corners of the room) and one video for each student in the classroom (using a camera
at their table and their laptop screen recording). This allowed us to document the details of
conversation at each table in addition to whole-class discourse. We then orthographically
transcribed (i.e., not including gestures, prosody, etc.) all the whole-class talk during the
20 min stretch and all the talk at each of the three tables. For several months, our research
team met to watch video data and describe our observations relative to refactoring.

From our discussions, the unit of analysis we chose are stretches of interaction where
refactoring arose and how the value of refactoring was publicly negotiated (see the timeline
in Fig. 3 for a summary of these events; the bolded events roughly correspond to the phrasing
of headings in the findings’ subsections). The first was how Meg, an instructor, framed the
challenge students worked on and how students ended up evaluating refactoring. Meg’s
framing introduced students to general classroom norms that were gradually instantiated as
sociocomputational norms through students’ and instructors’ evolving interpretations. We
selected the focal students to follow for the rest of the key moments based on their strong
opinions on their respective approaches, sustained discussion of the sociocomputational
norms, and different status levels within the classroom. Additionally, we chose students based
on the availability of screen recording data to see and track their coding progress.

For these key moments, we followed the interaction analysis tradition of creating tran-
scripts based on representational conventions from conversation analysis and representational
conventions from scholars who attend to multimodality. In particular, we used a transcription
style inspired by Jefferson (2004) and Goodwin (2018) for our interaction analysis because
it allows us to capture the methods and resources participants used to make their ideas and
stances publicly visible to one another. This includes the use of prosody, gaze, head nods and
posture, facial expressions, talk, gestures, and other resources. Images included in transcripts
were modified to enhance the visual anonymity of participants. However, to make it easier to
distinguish different participants, adults’ hair is colored black, whereas students’ hair is white.
A transcription key is provided in Appendix A. Our subsequent analysis of these transcripts
strove to not make inferences about participants’ private intentions, thoughts, or feelings.
Rather, we took an emic approach and anchored our claims in what the participants made pub-
licly relevant over the course of the interaction (Jordan & Henderson, 1995). With these com-
mitments in mind, and through our use of three focal constructs (sociocomputational norms,
stancetaking, and participatory and relational inequity), our examination of classroom inequity
does not account for how students felt about or reflected privately on moments of participatory

Fig. 3 Timeline of classroom events

 M. M. Fong et al.

1 3

and relational inequity in classroom discourse, but rather documents what is observable in the
video data regarding who participates in refactoring discussions and whose ideas are treated
outwardly as impactful and praiseworthy.

Our detailed analyses of the processes involved in how this programming classroom
approaches refactoring allow us to expand current theory on how difficult and value-laden
disciplinary decisions are negotiated in educational settings (a form of analytic generaliza-
tion, see Yin, 2009). Our three-part framework, integrating stancetaking, sociocomputational
norms, and relational and participatory inequity, provide a generative lens on research ques-
tions and analyses both in other computer science learning settings, as well as outside of refac-
toring practices in computer science education. When norms are an explicit part of educa-
tional conversations, studies in other settings can examine the microlongitudinal variations
in community members’ stances on those norms. Because these analyses would track (mis)
alignments in stances over time, they naturally pair with inquiries into whose voices join the
discussion (attenuated participatory inequity) and whose voices have traction in the discussion
(attenuated relational inequity). In this way, we hope that this three-part framework can aid
other researchers in understanding the moment-to-moment process through which particular
voices shape the sociodisciplinary norms of a community.

Findings

We present below a chronological analysis of the way in which the classroom comes to
consider the possibility of refactoring and how participants negotiate the value of differ-
ent coding approaches. We specifically document how the students and instructors surface,
defend, and contest their stances on refactoring. In each subsection, we provide a sum-
mary of the actions taken by different instructors and students that lead up to and provide
crucial context for a particular key moment. For key moments where refactoring was pub-
licly negotiated, we then provide multimodal transcripts, followed by moment-by-moment
analysis with respect to stancetaking. After the analysis of the transcripts, we revisit and
summarize the actions observed in the transcript with respect to sociocomputational norms
and participatory/relational inequity.

This focal classroom session occurred on the second day of the summer coding workshop.
On the first day, the students had familiarized themselves with PixelBots by working with
a partner and then independently to code basic PixelBot movements and painting actions.
Because loops become a prominent part of the discussion on the second day, we note here
that the instructors had briefly introduced the syntax and meaning of loops on the first day of
class, but most of the students had not practiced using them, specifically the PixelBots repeat-
loop syntax. Now on the second day, the PixelBots session is just getting started.

Part 1: Introducing general norms around knowledge, challenge, and efficiency

One of the instructors, Meg, stands at the front of the room and introduces the activity to
the whole class. We see the instructor introducing three general norms: (1) be resourceful
with what you know; (2) embrace difficulty/struggle, do not be afraid of it; and (3) work
quickly and efficiently. Meg first introduces the norm of being resourceful with what you
know by describing the purpose of the activity: “This is to show me and show yourself
how much you learned about PixelBots.” And she continues to emphasize: “Use what you

Contesting sociocomputational norms: Computer programming…

1 3

know.” Meg frames what the students already know as a central resource. Second, Meg
introduces the norm of embracing difficulty/struggle using a call and response chant. Meg
initiates with, “Coders, I have a challenge for you!” and then students respond with: “Bring
it! Bring it!” The chant frames the upcoming activity not only as difficult but also as a dif-
ficulty that the students should embrace.

Meg then introduces the norm of working quickly and efficiently. As the students are
getting started with the challenge, Meg introduces a time constraint: “I’ll give you guys
10 minutes to work on this.” Several students respond, some indicating the time is too
short, some indicating it is too long, and Meg encourages them to keep going. This nego-
tiation over the duration of the upcoming work, while outwardly playful (there is smiling
and laughing), is left unresolved (a timer is set with an unsaid number of minutes). This
facet of deciding how long the challenge should take sets in motion a number of subse-
quent considerations around time-efficient solutions to the coding challenge.

At this stage, the details around what makes these norms domain-specific are vague.
Additionally, this negotiation reflects a stretch of attenuated participatory inequity between
students and instructors because the students have access to the conversational floor, chim-
ing in and even pushing back on Meg’s statements in a playful discussion. In all, Meg and
her students’ framing of the activity introduces nascent features of three norms that the
students and instructors later specify and incorporate as sociocomputational norms in their
stances on refactoring. At this stage of our analysis, we had also noticed that these norms
may not have aligned congruently: some amount of tension is perhaps likely when students
are using what they know, which might be more time consuming, or fearlessly trying a
novel approach, which might save time.

Part 2: Launching refactoring—hackers and the loop

When faced with lots of repeating code, programmers have an opportunity to use loops
(see Software and curriculum for sample solutions). Alternatively, students might find that
the copy-and-paste function makes writing redundant code less of a hassle, reducing the
need to use a loop in the first place. Ash, in the transcript below, kicks off the classroom’s
discussion about refactoring by making this very argument. Just as the class starts to work
on the challenge, Ash, sitting at the front left table, gasps, leans back in his seat, raises his
arms in a display of victory, and loudly declares to the class that he has discovered a way to
cheat (see Fig. 4).

Ash makes his discovery known to the classroom with a pronouncement: “I fihhgured
ouht a way to che::at I’m- I’m a hacKER (.) I’m a hacker now” (Fig. 4.1, 4). In this strip
of talk, Ash evaluates his discovery as a “way to cheat” and explicitly calls himself a
“hacker,” a category of programmers that in popular culture connotes clever and rebellious
approaches to coding [see, Ames, (2018), for a critical perspective on this history]. Ash
outwardly demonstrates amazement by gasping audibly and speaking as though out of
breath, and his exclamation is accompanied by a physical display of celebration: Ash
throws his hands up and bobs his head back and forth, similarly to a runner finishing a
race (Fig. 4a). Additionally, Ash looks up from his laptop and speaks loudly, publicizing
his achievement. Layered together, these features present the discovery as a valuable
technique worthy of sharing with others, including instructors in the classroom who might
ratify the technique as amazing and hackeresque. In all, Ash evaluates the “cheat” and the
title of “hacker” as deserving of celebration, publicity, and status through a number of
cues.

 M. M. Fong et al.

1 3

Ash’s pronouncement attracts the attention of the adults in the room. The software
developers, who had been wandering around the room, smile (Fig. 4.5) and with Meg, they
walk toward Ash (Fig. 4.6). They “gotta see” (Fig. 4.7) for themselves. By physically sur-
rounding Ash, Meg and the software developers attenuate participatory inequity by giv-
ing Ash the conversation floor. Meg asks with a smile: “What’s your hack” (Fig. 4.13).
When Ash demonstrates the act of copying and pasting a line of code (Fig. 4.11, 15),
Dex, a developer, describes the copy-and-paste action as something that Ash found a hack
(Fig. 4.16), to which Meg responds, “#Oh:h okay#” (Fig. 3.17), while nodding and smil-
ing. In contrast to how instructors respond to other students’ coding approaches later in
this activity, here the instructor’s acknowledgement (e.g., “Oh:h okay”) does not outwardly
valorize Ash’s proposal, misaligning with Ash’s strong positive evaluation.

Following this moment, Ash elaborates on and intensifies his stance. He once again
raises his arms and bobs his head (Fig. 4.19). He announces to the whole classroom that
copy-and-paste is the “WORLD best” (Fig. 4.20) and “THE FASTEST WAY TO FIN-
ISH” (Fig. 4.25). By evaluating copy-and-paste as the world’s best, Ash strengthens his
stance that using copy-and-paste is better than using any other approach to the challenge.

Fig. 4 Transcript detailing Ash’s discovery of copy-and-paste

Contesting sociocomputational norms: Computer programming…

1 3

And by evaluating copy-and-paste as the fastest way to finish, Ash highlights its efficiency
with respect to time. Moreover, in voicing this stance to the full classroom, Ash broadens
its potential impact in the classroom. In noting in his evaluation the speed of completing
the challenge, Ash starts to provide specific contours to the sociocomputational norm of
efficiency.

During this stretch of time, Ash receives additional pushback on his position. In between
his evaluations of using copy-and-paste, Zoa, a student sitting next to Ash, states, “You
(told) us nothing new” (Fig. 4.22). In this moment of misalignment, Zoa evaluates copy-
and-paste as an already known and thus unremarkable and low-impact proposal. After Ash
states his case again in an even louder voice (Fig. 4.24–25), Meg, still facing Ash’s table,
suggests that if students “are copying and pasting a lot” (Fig. 4.27), then they should “think
about maybe using: ↓a loop” (Fig. 4.28), accompanying the statement with a looping ges-
ture (Fig. 4.c). The stance evaluates using “a lot of the same code” (Fig. 4.30) as a reason
to change course and think about using a loop. By recommending a different course of
action, “think about maybe using: ↓a loop” (Fig. 4.28), this talk evaluates copy-and-paste
as an approach that could (and should) be promptly reconsidered and improved on. This
position presents a new angle on the sociocomputational norm of efficiency: sequential
commands repeatedly used might be replaced with a single loop.

Ash again misaligns with Meg’s stance, offering a “ > Nayah < ” (Fig. 4.31) and high-
lighting personal preference, “I like copy and pas::te,” before elaborating with a broader
rationale that copy-and-paste is “so (.) SO much better” (Fig. 4.32). This talk is accom-
panied by a strong misaligning and embodied stance: Ash leans back, shakes his head,
and lifts his hands off his computer (Fig. 4.33). In these initial stances, Ash is consist-
ently positioning himself as someone in support of copy-and-paste and opposed to the loop
and refactoring. Zoa enters the dialogue again briefly with a statement about “less typing,”
though it is not clear whether Zoa is referring to the loop or copy-and-paste. Meg again
misaligns with Ash’s stance (signaled with “but”) while showing him where he can find the
loop syntax in the API (Fig. 4.36–38). After Ash again affirms that he does not want to use
the loop (Fig. 4.39), Meg temporarily aligns with his approach (“Mhmm (.) so keep doing
it how you’re doing it”) before again signaling misalignment by leaving open the possibil-
ity that Ash will see a pattern later (Fig. 4.40–42). As Meg starts to walk away, Ash again
evaluates copy-and-paste as “better” (Fig. 4.45) and “much faster” (Fig. 4.46).

This stretch of interaction makes evident how contrasting stances on refactoring arise.
In the most direct sense, Ash’s favorable evaluation of copy-and-paste as hackeresque,
time efficient, and the overall best technique differs from Meg and Zoa’s evaluation that
this approach is well known and immediately worthy of students considering replacing it
with a different approach. The participants in this exchange anchor their stances around
distinct sociocomputational norms of efficiency. Ash’s stance, which he defends in
four separate turns, frames as valuable the use of a known approach to complete a task
quickly, whereas Meg’s stance frames repeated uses of a line of code as inefficient and
a clear point of departure for exploring a new technique. Along the way, the participants
directly mark in language and body movement the misalignment in their stances. In all, this
stretch of dialogue reflects attenuated participatory inequity and some degree of attenuated
relational inequity between student and instructor: Ash, the student, maintains access to
the conversational floor (both interpersonally with Meg and with respect to the whole
class), and Meg, the instructor, both responds directly to Ash’s proposal and grants Ash
leeway to continue using the copy-and-paste approach while keeping an open mind about
using the loop. On the other hand, there is a degree of amplified relational inequity to this
stretch of interaction. Meg swiftly evaluates the loop as the preferred, instructor-endorsed

 M. M. Fong et al.

1 3

approach to the challenge, in line with the longer-term learning objectives centered in their
curricular materials. In this way, Ash’s support of using copy-and-paste is neither praised
for its ingenuity nor treated as impactful enough for instructors to suggest that students
code using copy-and-paste. That is, after Ash shares the coding approach widely with the
class, Ash is immediately asked to consider replacing his approach to the coding activity.
This closes down an opportunity to explore in discourse how each approach appeals to
different sociocomputational norms, both in terms of domain-specific interpretations of a
particular norm (e.g., taking the “fastest” route or avoiding using “a lot” of the same code)
and in terms of the relative importance of each norm. The misalignment that emerges
here foreshadows how the instructors, and students at other tables in the room, continue to
consider whether or not to refactor their code into a loop.

Part 3: Refactoring discussions extend throughout the classroom

Ash’s comment sparked reflection on refactoring across the classroom that provides crucial
context for the remainder of the classroom session. We highlight in brief the emergence
of these discussions about refactoring without examining them in fine-grained interaction
analysis detail.

At the front right table, Meg notices one student coding with a repeat-loop (Max) and
another student hard coding a sequence of commands (Kay). Meg remarks to the whole
class, “Interesting, I see some people using loops, and some people are not,” before gestur-
ing with open palms rising and falling like a weighted scale moving up and down. Meg’s
statement carries forward the discussion that Ash initiated; Meg is inviting students across
the classroom to identify themselves relative to different approaches to the challenge. Fur-
thermore, Meg divides all possible approaches into two buckets: using loops and not using
loops. In using the phrase “some people are not,” Meg does not provide a name for these
other approaches, and instead describes them relative to the absence of the loop. In terms
of impact on students’ approaches to the coding challenge, loops are now voiced in whole-
class discourse as a named approach, while alternative coding approaches (e.g., copy-and-
paste) are reified as “not” loops. At this same table, Kay, who has been hard coding a
sequence of commands, hears Meg and re-evaluates her code. She notices a pattern: “Wait!
I just realized something. It’s paint, turn right, forward, paint, turn left, forward–I don’t
care” (see Fig. 5.a for a screenshot of the code Kay is reading). Kay, who had experience
coding with for-loops in previous workshops, rhythmically describes a paint-turn-move
pattern, suggesting that she may see an opportunity to use a for-loop to refactor the code.
However, Kay sharply cuts herself off, positioning herself as someone who “doesn’t care”
about this prospect.

Nearly simultaneously, the other instructor, Ben, engages in conversation at the back
right table with a student, Sal, about why using the repeat-loop is better than using copy-
and-paste. With a smile, Ben describes how Sal is using the copy-and-paste approach,
and asks, “Is that the fastest strategy, Sal?” Sal says, “Yeah,” and Ben mirrors Meg’s ear-
lier comment to Ash: “If you’re doing the same thing over and over again, is there a better
way to do it?” When Sal responds, “Yeah it makes things faster so you won’t have to type
it,” Ben again pushes back: “Yeah, but you don’t even have to type it. You don’t even have
to copy-and-paste it.” Meg also walks to the back right table and begins a discussion with
two students, Rio and Ana, about noticing patterns and using loops, while Ben begins to

Contesting sociocomputational norms: Computer programming…

1 3

instruct Sal on how to use the loop. In this stretch of interaction at the back table, Ben and
Meg evaluate using the repeat-loop as the better way.

The short exchanges in Part 3 document how the topic of refactoring spread through-
out the classroom. First, we see a continued refinement of possible meanings behind the
sociocomputational norm of efficiency. Both Sal and Ben evaluate efficiency in terms of
time and effort required to complete the challenge (less typing versus no typing at all).
Meanwhile, Meg extends her stance that inefficiency is evident when recurring events
create a pattern that could be coded with a shorter repeat-loop instead. Second, there is
continued misalignment between instructors and students in their stances on refactoring.
Multiple students (Kay and Sal) publicly voice stances in support of continuing to code the
challenge in the way they had started. On the other hand, both instructors (Meg and Ben)
make explicit requests for students to revise their coding approaches and to evaluate using
the loop as either requiring less typing or requiring fewer lines of code. Despite appealing
to different sociocomputational norms of efficiency, both instructors align in their posi-
tioning of themselves in support of repeat-loops as a valued refactoring move. Third, this
stretch of classroom time reflects attenuated participatory inequity. Students and instruc-
tors are engaged in back-and-forth conversation about these coding approaches. Similarly,
by building classroom discussion around students’ approaches to the coding challenge, the
instructors enact a degree of attenuated relational inequity, demonstrating that students’
coding approaches have an impact on what the classroom centers in their reflections on
code. On the other hand, this discussion reflects a degree of amplified relational inequity in
terms of impact and praiseworthiness. In terms of impact, students are precipitously asked
to yield their coding approach to the instructors’ preferred approach. In terms of praise-
worthiness, the coding approaches students endorse are not valorized and unpacked, but
rather, described either in terms of the absence of a loop or in terms of inefficiency (e.g.,
“you don’t even have to copy-and-paste it”). While this discourse nudges students toward
the long-term learning objectives written into the curriculum, the binary sorting of “loops”
versus “not loops” reduces the possibility to explore the variety of ways “not loops” could
speak to alternative sociocomputational norms, including simply working as solutions that
get the job done or getting comfortable with a new technique.

Part 4: Misaligned stances on refactoring with respect to preference and efficiency

At the front right table, Nya and Max, who are both tinkering with the PixelBots repeat-
loop in their code, have not outwardly commented on the topic. The discussion at the
table picks up when Kay opens with a negative evaluation of the loop.

Kay spontaneously says, “I don’t ↑feel like using a for-loop it’s tOO much ↓WO::RK”
(Fig. 5.2–3) positioning herself against using the for-loop by evaluating it as something
she doesn’t “feel like” doing because “it’s too much work,” intensifying her point with
a head shake (Fig. 5b). Because Kay had learned how to code loops using the for-loop
syntax in a previous PixelBots workshop, she is using the phrase “for-loop” instead of
“repeat-loop.” In response, Nya provides subtle misalignment, dismissing Kay’s point
with a “TSs” remark and a smile (Fig. 5.5–6). Lou then expands on Kay’s evalua-
tion, picking up on the theme of “work,” with the statement, “LI:fe is too much work”
(Fig. 5.9). Lou’s parallel sentence structure and generalization do not outwardly align or
misalign with Kay’s stance. In contrast, Max, overlapping with Lou, evaluates his use of
the repeat-loop: “It’s ↑actually a lot ↓less work” (Fig. 5.10). In saying “actually,” Max
marks direct misalignment with Kay. All four students at the table have now entered the

 M. M. Fong et al.

1 3

discussion: Nya and Max mark direct misalignment with Kay, while Lou expands on the
topic at hand in a general way. What complicates this dialogue is that Kay and Lou are
presently using the sequential coding approach that is known to them, while Nya and
Max are presently using the repeat-loop approach that is known to them. The appeal to
efficiency in terms of less work, at least in the short term, is relative to skill: what might
be less work for Nya and Max is not necessarily less work for Kay and Lou.

In the coming turns, Kay maintains her stance. Though she temporarily signals align-
ment with Max (“Yeah:”), she repeats her evaluation, “but I don’t feel like doing it”
(Fig. 5.11–12), evaluating refactoring not relative to efficiency but now to personal

Fig. 5 Transcript detailing the conversation at the front right table regarding the loop

Contesting sociocomputational norms: Computer programming…

1 3

preference. Nya immediately responds, “For-loops is s::o worth it” (Fig. 5.13); Lou and
Kay both look up from their work and toward Nya (Fig. 5c). Nya’s positive, broad eval-
uation of using the for-loop (“so worth it”), not the repeat-loop, creates direct misalign-
ment with Kay.

Kay returns to the sociocomputional norm of efficiency to defend her stance. Kay
describes having to “↑LO::OK (0.4) in my journal” (Fig. 5.15) to find the for-loop syn-
tax she wrote five months ago (Fig. 5d), and demonstrably flips one journal page at a
time (Fig. 5.16). The sociocomputational norm of efficiency to which Kay is appeal-
ing is the amount of effort required to find, perhaps relearn, and then enact the for-
loop approach, not efficiency in terms of the number of commands needed to run a pro-
gram or the computational cost of running the program. Picking up on this thread, Max
counters by leaning toward Kay’s laptop (Fig. 5e) to point at and call out the repeat-
loop syntax on her screen (Fig. 5f, 19), then pointing to Kay in a matter-of-fact way
(Fig. 5.23–24).

When Kay accurately pushes back that the repeat-loop syntax on screen is not the
same as the for-loop syntax in her journal (Fig. 5.25), Nya notes that the repeat-loop
syntax would work, saying, “No:: you could use that” (Fig. 5.29). Max asserts that the
two types of loops are the same (Fig. 5.30). Up to this point, Nya and Max consist-
ently position themselves in favor of using the loop, regardless of which syntax, and
have publicly misaligned with each of Kay’s negative evaluations of using the loop. Kay
seems to agree with Nya and Max that the repeat-loop syntax could work (Fig. 5.32–33)
before voicing a sound, “Ttch” (Fig. 5.34), that perhaps marks misalignment again. Lou
then rejoins the conversation, referring to the loop possibility: “I think I might actually
do that BU::UT (.) I ↑already started so ah it’s > too late now < ” (Fig. 5.36–37,39). In
this statement, Lou momentarily aligns with the positive evaluations of using the loop,
but then returns to a negative evaluation of using the loop that emphasizes time effi-
ciency (“it’s too late now”). Kay directly aligns with Lou by stating, “I already started it
too” (Fig. 5.41), and evaluates the prospect of using the loop relative to the work she’s
already accomplished: “and I’m already DOne with it so” (Fig. 5.43) with a toss of her
hand (Fig. 5g).

At this point, the students temporarily cease talking about the loop. None of the stu-
dents have changed their approach to the challenge. Throughout this exchange, the students
adopt contrasting stances toward the loop. On one hand, Nya and Max provide a number of
positive evaluations from their experience using the loop: “a lot less work,” “so worth it,”
“it shows right here,” and “you could use that.” On the other hand, Kay and Lou provide
negative evaluations of the possibility of using a loop: “too much work,” “I don’t feel like
doing it,” “I already started,” and “I’m already done with it.” These stances are not passive
and independent expressions; the students are specifically responding dialogically to prior
stances. Phrases like “actually,” “yeah but,” “no that’s not,” “no you could,” “I might…
but,” and “…too” signal that the students are actively tracking and responding to how their
stances relate to one another. Prior evaluations are elaborated with new information (e.g.,
Kay says the loop is “too much work,” followed later with “cause I have to look in my
journal”) and then explicitly countered (e.g., Max shows that alternative syntax is readily
available on Kay’s screen).

In the above dialogue, we argue that participatory inequity between the students at this
table is attenuated because each student at the table accesses the conversational floor and
offers their evaluations on the topic. Similarly, this dialogue reflects a degree of attenu-
ated relational inequity in that students are actively demonstrating that their ideas have
enough impact to drive the focus of not only their collective reflections on code, but also

 M. M. Fong et al.

1 3

how they choose to proceed with the activity. In this exchange, the students are collabora-
tively reifying their sociocomputational norms. In terms of efficiency, one angle focuses on
the amount of effort needed to (re)learn the loop while the other focuses on the amount of
effort required to implement it once learned. Additional sociocomputational norms around
embracing difficulty versus resourcefulness as well as around generic value (“so worth it”)
raised during the exchange show that students are appealing to distinct rationales in their
evaluations when encouraging or resisting refactoring.

However, this discussion also reflects a degree of amplified relational inequity. As
this dialogue extends the process of nuancing the classroom’s sociocomputational norms
around efficiency, using what you know, and embracing difficulty, it bears noting that
some stances on these norms align with the public stances instructors have presented to
the whole class, and as a result, may have a privileged status. That is, at the time that Nya,
Max, Lou, and Kay were discussing the value of using loops, Meg had already made a
whole-class statement about using loops versus not using loops (see the above subsection).
In addition, about 30 seconds after Kay’s last statement in the above transcript, Ben stops
by this group’s table, leans in to look at Max’s code, and remarks, “Nice use of the loop,”
before walking away to a different table. This presents another angle on the amplified rela-
tional inequity in this context. Nya and Max align with the instructors, who have consider-
able influence in this classroom context to determine what coding activities students pursue
and what is publicly reified as a valuable approach to those activities. Kay’s stances on
what would be inefficient for her and what she would prefer not to use are repeatedly coun-
tered by two of her peers, while these same peers’ approach receives public praise from an
instructor.

Part 5: Further misalignment through discussion of nested loops

Shortly after the dialogue examined above, Nya finishes coding a solution that uses
two repeat-loops (see Fig. 6a for a screenshot of Nya’s code) and raises her hand. In
this classroom, raising one’s hand is typically done either to request help or to solicit
approval from an instructor to move on. Lou asks if Nya is “done already,” not only
indicating he thinks Nya is ready to move on, but also assuming Nya does not need help.
Nya confirms that she’s finished, and then Lou asks, “Oh, the loop?” In these turns, Lou
foregrounds efficiency in terms of rapid completion (“done already”), and makes visible
his awareness of the loop approach Nya used. When Meg visits the table to check on
why Nya is raising her hand (Fig. 6.1–3), the following exchange takes place:

Meg looks at Nya’s screen and remarks, “Nic::e” (Fig. 6.4). Both Nya and Meg
chuckle (Fig. 6.5–6), before Meg notes that Nya used the loop (Fig. 6.6). Meg then
marks surprise (“Oh”) that Nya “used ↑TWO loops” (Fig. 6.10). These statements
draw the attention of Kay and Lou (Fig. 6.7, b). With upward prosody indicative of
a questioning or uncertain tone, Nya says to Meg, “Yeah > I wanted to find out < if
I:: cou::ld ↑repEA:T like a loop ↑inSI:de a loop?” (Fig. 6.11–12, 14). Meg confirms
twice (Fig. 6.15, 17) while smiling at Nya (Fig. 6c). Max then joins in [“Oh yeAH”
(Fig. 6.19–20)], and Nya expresses more uncertainty about pursuing this approach
(Fig. 6.21), flipping her palms up and looking at Meg (Fig. 6.22–23). Alongside Meg’s
laughter and smiling (Fig. 6.27–28), Nya seems to continue expressing uncertainty
(Fig. 6d) as Max directly asks: “↑CAn yo::u do a loop inside a loop (.)” (Fig. 6.32–33,
35). Meg and Nya acknowledge Max’s question by looking at Max (Fig. 6.34). Meg
again confirms that nested loops are possible (Fig. 6.39–40), evaluating it as a tenable

Contesting sociocomputational norms: Computer programming…

1 3

Fig. 6 Transcript detailing Nya and Max’s inquiry about the possibility of using nested loops

 M. M. Fong et al.

1 3

target (Fig. 6.55, 60) and aligning with Nya and Max. Throughout this dialogue, Kay
and Lou continue looking at Nya, Meg, and Max (Fig. 6.13, 16, 24–25, 30, 36, 43).

By asking about nested loops and stating both interest in and existing effort to explore
nested loops (“I’m trying to”), Nya and Max introduce a fourth potential approach to the
classroom’s set of considerations (nested loops added to copy-and-paste, hard code, and
repeat-loop). These stances position Nya and Max as curious about the possibility of
refactoring using the nested loops. Meg’s confirmation of nested loops as possible posi-
tions herself as supportive of their inquiry and in alignment with Nya and Max’s curi-
osity. In the next turn of talk, Kay responds by affirming that nested loops are possible
(“You ca::n”), temporarily aligning with Nya, Max, and Meg, but follows with, “but it’s
too confusing” (Fig. 6.48, e), evaluating nested loops in a contrasting way and thus cre-
ating misalignment by positioning herself against the nested loops approach. Aside from
Meg glancing at Kay (Fig. 6.50), Kay’s comment is not outwardly addressed in the com-
ing turns. Instead, and overlapping with Kay, Nya contributes, “ > I wanna make myself
look < coo::l” (Fig. 6.51–52), which Kay then responds to with a wide smile (Fig. 6.54).
This statement from Nya, however playful, positions Nya in support of using nested
loops and evaluates it in relation to how pursuing the loop will “look” to others, instan-
tiating how the discussion and pursuit of the loop has become embedded in the social
space of the classroom. Meg directs the students, in particular Nya and Max (her eye
gaze is directed at them, Fig. 6.56), to try out the nested loops idea, linking this explora-
tion to curiosity: “You should- you guys should try if you- if you’re curious about thAT
(.) Definitely go for it” (Fig. 6.55, 60, 63).

Meg’s alignment with Nya and Max’s inquiry into nested loops, through affirming
statements and positive affect, presents a direct attenuation of relational inequity for Nya
and Max. Meg both demonstrates that their ideas have impact by encouraging them to
pursue that coding approach, and demonstrates that their ideas are praiseworthy. How-
ever, this discourse inadvertently continues to amplify relational inequity between Kay
and the instructors. The absence of discussion of Kay’s evaluation that nested loops are
confusing marks that this stance has less traction in the group’s discussion. In addition,
there is amplified participatory inequity for Kay and Lou during this stretch of dialogue.
All the turns of talk are between Meg, Nya, and Max; Kay’s one contribution does not
receive a response. From the perspective of sociocomputational norms, we also see that
this interaction picks up on the notion of fearlessness Meg highlighted at the outset of
the activity: When students pursue a coding approach that they want to “find out” and
“check out,” and which is viable and extends a position already publicly endorsed by the
instructors, the instructors actively encourage this computational exploration.

Part 6: Continued emphasis on refactoring using loops

Soon after this conversation, David, a researcher–instructor in the room (and as noted in
the Methods section, a co-author of this paper), walks over to the table. David proposes
to Lou that the loop “will save you a lot of time” and is “really cool,” aligning with the
stance on efficiency that highlights quickness and with Nya’s statement about being seen
as “cool.” David nudges Lou to work with Nya to “learn how to do it.” David then turns to
Kay and assists in helping refactor her code using the repeat-loop. David aligns with Kay,
noting the difference in syntax between the repeat-loop and the for-loop: “It’s a slightly
different syntax.” The researcher–instructor’s focus on refactoring Kay’s code into a loop
amplifies relational inequity; what could be seen as neutral instruction about a loop can be

Contesting sociocomputational norms: Computer programming…

1 3

seen in this context as stopping Kay from continuing to pursue an approach that she had
repeatedly defended.

In the middle of Kay’s refactoring, Nya completes the challenge using nested loops (see
Fig. 7c for her code). Once her code finishes running and correctly paints the target image,
Nya broadcasts her excitement by gasping, leaning back from her screen, and visibly lift-
ing her hands off her keyboard (Fig. 7.3–4, a). This reaction is not unlike Ash’s after his
copy-and-paste discovery. She turns toward Meg (Fig. 7.6), who had been walking between
tables, then marks the moment with a hushed statement, “°I feel so cool°” (Fig. 7.7),
appealing to the evaluation and status she stated earlier. After Nya’s statement, Meg walks
over to the table and again leans in to look at Nya’s screen (Fig. 7b). Nya laughs, and
the other students join in (Fig. 7.9). Meg broadcasts to the whole class, “Nya put a loop
inside a lo:op” (Fig. 7.11), and David shares excitement with, “Ya:ay” (Fig. 7.12). Meg
then places emphasis on being “°shook°” (Fig. 7.13), colloquial for shocked, by mock fan-
ning herself (Fig. 7.14), while the others at the table lightheartedly laugh along (Fig. 7.15).
Nya aligns with Meg by also stating, “°I’m shook°” (Fig. 7.16). Again, the instructors and
Nya publicly celebrate the nested loops solution, evaluating it as doable, path-breaking,
praiseworthy, and an overall better solution. In the coming minutes, Ben revisits the table
and alludes to the sociocomputational norm of efficiency with respect to quickness by say-
ing to Nya, “Oooh very fast.” Later, Nya responds to Kay’s question about why she used
nested loops with a similar evaluation on efficiency and ease of approach: “Cause it saves
you time. You just loop the loop.”

Ben, who had been helping other students at the back right table figure out how to use
the repeat-loop in Part 3, moved to the front left table while the discussion at Kay, Nya,
Lou, and Max’s table progressed in Part 4. At the front left table, Ben begins to guide

Fig. 7 Transcript detailing public celebration of Nya using the nested loops approach

 M. M. Fong et al.

1 3

Ash towards using the loop, similar to how David began to support Kay. Ash jokes with
Ben by dragging the opacity slider on the screen to feign completing the challenge. In
response, Ben remarks, “I know your trick, you’re not going to fool me again.” Ben then
says, “Let me see some repeat-loops.” In contrast to Meg’s earlier hedges in discussion
with Ash (“maybe think about using a loop”) and Nya and Max (“if you’re curious about
that”), Ben requests repeat-loops specifically. Ben then temporarily leaves Ash to work
on the loop and returns to supporting other students. Ash starts to explore using the loop,
but in this class session, does not publicly align with the instructors’ evaluation of the
loop as more efficient.

End of the activity

By the end of this session, Nya and Max use nested loops; Ash, Eva, Ian, and Kay attempt
using the loop; Rio uses copy-and-paste; and Lou, Ora, and Pat use hard code (without
using copy-and-paste). The remaining students’ approaches are unknown due to miss-
ing data. Only Nya, Max, and Rio complete the challenge. As Meg gathers the class back
together for a debrief of the activity, Meg invites students to raise their hands to share their
solutions with the whole class and calls on Max to start the discussion. After Max shares
his nested loops approach, Meg states that students do not “have to do the loop inside the
loop, but the important thing to know is that if you ever find that you’re copy and pasting
code a lot, think about a better way to do it—or a more efficient way to do it.” With stu-
dents in the class chiming in along the way, Meg then breaks down the components of the
loop and collaboratively writes code with a loop on a laptop that is screen projected at the
front of the room on the whiteboard.

Discussion

Summary of the refactoring classroom episode

Refactoring is not only a widespread practice in professional programming spaces
(Demeyer et al., 2005; Fowler, 2019; Ionescu et al., 2020), but also a common and val-
ued feature of programming learning environments (Romeike & Göttel, 2012; Stoecklin
et al., 2007). However, studies of the micro details of how refactoring conversations arise
in the classroom, including with critical attention to how students learn to decide when,
how, and why to refactor, are rare in the computer science education research literature,
a hole that warrants attention given persistent theoretical and empirical work on ineq-
uities regarding whose voices shape programming learning environments most (Ryoo
et al., 2020; Shah & Lewis, 2019; Turkle & Papert, 1990). To narrow this gap, we sought
in this case study to characterize how students and instructors in a classroom—includ-
ing a co-author of this paper—adopted contrasting stances on the value of refactoring
during classroom discourse, and we attended to participatory and relational inequity in
their conversations as well as the classroom’s refinement and application of particular
views on sociocomputational norms. In this session, Meg, the instructor, began by fram-
ing the coding activity around general classroom norms: be resourceful with what you
know; embrace difficulty/struggle, do not be afraid of it; and work quickly and efficiently
(Part 1). Over time, instructors and students shifted these norms into computing-specific

Contesting sociocomputational norms: Computer programming…

1 3

terms. What started broadly as goals of “embracing difficulty” and “working efficiently”
became tied to disrupting a known or working solution to pursue what most of the stu-
dents in the room considered a newer coding approach that instantiated a particular type
of efficiency (e.g., loops can be written in fewer lines of code) (Parts 2–4). In this way,
as the activity progressed, particular sociocomputational instantiations of these norms
gained unequal value across the room. The instructors and the researcher–instructor out-
wardly valued a solution they deemed efficient and elegant, nudging students to refactor
their code using loops (Parts 5–6).

On the one hand, we note as a strength that students in this classroom debated
code efficiency, voiced their preferred stances, and foregrounded a viable rationale
for moving from copy-and-pasting to using loops. Additionally, the students, not just
the instructors, engaged in defining and nuancing the classroom’s sociocomputational
norms. Indeed, throughout our analysis, we documented frequent instances of
attenuated participatory inequity and facets of attenuated relational inequity, evidenced
by students utilizing the conversational floor to voice their stance on refactoring, and by
students and instructors taking students’ written code and public stances as impactful
points of departure for continued discussions about refactoring. In short, this was a
classroom where students and instructors were contributing to the conversation and
responding (on the whole) to each other’s coding approaches and ideas. These features
of the class session, however, needed to be further examined relative to how classroom
discourse amplified participatory and relational inequity over time. That is, what began
as a suggestion (from Ash) to use the copy-and-paste technique turned into collective
reflection on whether to use a loop, and swiftly transitioned into the instructors
anchoring the coding challenge around a preferred way for students to complete it.
From the perspective of amplified relational inequity, particular sociocomputational
norms (e.g., fewer lines of code; fearlessness around particular coding approaches)
were foregrounded and endorsed in stances that gave less praise (e.g., responses without
words such as “nice,” “cool”, or “shook”) and less impact (e.g., students precipitously
being asked to consider alternative coding approaches) to ideas not centered on loops.
In addition, from a participatory inequity standpoint, discussions between instructors
and students eventually gave more voice to students coding or refactoring using loops,
including in the whole-class debrief activity.

In line with CSCL scholarship attending to the central role that (negotiations of) norms
play in collaborative learning (e.g., Danish et al., 2020; Overdijk et al., 2014; Siyahhan
et al., 2010), the detailed analysis in this paper speaks to the need for a careful reconsidera-
tion of how coding activities are framed, how students are invited to modify already work-
ing approaches, and how sociocomputational norms are introduced, nuanced, and applied.
In all, we argue that programming instructors and designers should reflect carefully on
when and how to approach discussion with students about refining working solutions and
disciplinary standards of elegance, efficiency, and communicability (K-12 Computer Sci-
ence Framework Steering Committee, 2016; Papert, 1980).

Implications for instructors and researchers

This analysis raises fundamental questions about how and when instructors of students
new to programming introduce and support refactoring. Ruminating on similar consider-
ations, Papert (1980) cautioned educators to wait until students were interested in refac-
toring code; the quote from our literature review captured a student stating, “I don’t think

 M. M. Fong et al.

1 3

I’ll do it that way.” However, this strong centering of students’ agency can be in ten-
sion with other considerations, such as a community’s learning goals, project or activity
goals, and resource and time constraints. An alternative move involves designing activi-
ties with constraints (e.g., see Abrahamson & Sánchez-García, 2016 work in mathemat-
ics and sports)—such as line limits used in future PixelBots activities—that require stu-
dents to explore new programming techniques. For example, Rich et al. (2018) proposed
a learning trajectory around the concept of repetition, beginning with students investigat-
ing “the idea that repetition is used for many tasks,” and then expanding to address “the
need to repeat instructions via a simple, countable loop” and eventually “recognizing
the power of repetition (‘Repeating things can have a cumulative effect.’) and how and
when to stop a repetition” (p. 52). Rich and colleagues acknowledge that trajectories like
these still need to be treated as cyclically revisable hypotheses about what will make
sense to students and when (e.g., Sikorski & Hammer, 2017). While instructor-designed
constraints may push students toward an expanded array of coding techniques at the
right moment in their learning trajectory, these moves may background opportunities for
students to notice and discuss when and why to refactor. This is because the decision
over whether a given coding approach is worthwhile is offloaded to the instructor or the
task designer who sets up a particular coding challenge to require a particular coding
technique.

An alternative approach to teaching refactoring in CS education is to acknowledge
that refactoring is inherently uncertain, and in turn, necessitates dedicated time and
pedagogical care toward inviting students into the process of explicitly reasoning
about refactoring. We suggest a blend of the two approaches described in the previous
paragraph, where instructors and students design goals and coding activities that
over time expand students’ knowledge of coding approaches, but where classroom
conversations along the way center students’ agency to discuss whether to refactor. What
would it mean to give students, especially students new to the practice, foundational
experiences and tools helpful to navigating refactoring, including a critical awareness
of how and why refactoring practices developed in the professional programming
world? While some learning trajectories suggest that discussions about refactoring
are “advanced” territory (Rich et al., 2019, p. 749), we anticipate that conversations
around sociocomputational norms and refactoring will happen early and often in
programming learning environments. If this conjecture is right, educators could support
new programmers to examine the perennially complex nature of deciding when to revise
working code. One approach may be to create programming learning activities in the
spirit of productive failure designs (Kapur, 2008; Kapur & Kinzer, 2009), in which
students could grapple with ill-structured problems that ultimately promote and value
the kinds of discussions around sociocomputational norms we saw in our data. These
discussions might prioritize educational values such as students’ rightful presence
(Calabrese Barton & Tan, 2019), epistemological pluralism (Turkle & Papert, 1990),
funds of knowledge (Shaw et al., 2020), and computational action (Tissenbaum et al.,
2019). Toward these ends, students may experience attenuated participatory and
relational inequity in classrooms when refactoring is presented as inherently difficult
to evaluate, a topic worthy of sustained argumentation in the classroom and reflective
of the goals centered by students and educators in CS education. Perhaps a transparent
discussion honoring the heterogeneous interpretations of efficiency, fearlessness, and
knowledge would have supported a deeper inquiry into the benefits and drawbacks of
each of the approaches taken by the students in our focal classroom. In this way, we
argue that students can better understand the value of refactoring when it is less of a

Contesting sociocomputational norms: Computer programming…

1 3

top-down expectation and more of a chance to explore for themselves the circumstances
when it is most useful. We hope that the interaction analysis and theoretical framework
in this paper invite design-based research-practice partnerships that attend carefully
to participatory and relational inequity relative to the sociocomputational norms that
motivate refactoring.

Over 30 years ago, Turkle and Papert (1990) conducted case studies of student
programmers and argued that computer science learning environments should embrace
epistemological pluralism. Through this charge, they foregrounded students’ agency to
choose a coding style over defaulting to canonical programming forms. More recently,
Sengupta et al. (2021) wrote, “Voicing Code in STEM: A Dialogical Imagination,”
in which they argued that code is a form of expression, enacted through the assembly
of multiple semiotic resources, and laden with the facets of power, communicative
purpose, and identity found in expressions with human language. In the same year,
Tissenbaum et al. (2021) pushed back on how “computing education has continued to
center economic paradigms” (p. 1165), and instead envisioned four alternative endpoints
for computing education: “impacting local communities and immediate needs,” “data
literate athletes and healthy citizens,” “means of personal expression and social creative
expression,” and “blue collar computing.” As the field of CS educators continues
to expand the array of possible valued endpoints, we hope that the framework and
findings from our paper can contribute to CS educators and researchers’ efforts to center
questions about sociocomputational norms and participatory and relational inequity.
For instance, for each of the four valued endpoints Tissenbaum et al. (2021) cover,
what sociocomputational norms might educators and students focus on in their coding
inquiries, what participation structures can best guarantee that students have voice and
impact along the way, and lastly, how do these considerations shape what role (if any)
refactoring would play in students’ coding activities? To continue to foreground the focus
in CSCL and learning sciences literatures on the nuances of stancetaking in collaborative
work (e.g., Philip et al., 2018; Simpson et al., 2017), we hope that CS education research
continues to align with a recent wave of research that foreground discourse in computer
science and robotics classrooms (Elliott, 2020; Ryoo et al., 2020; Shah & Lewis, 2019;
Silvis et al., 2022).

Attending to inequity in computing and beyond

In our analysis, we found that participatory and relational inequity shifted throughout
the stances students and instructors enacted in the classroom. In Parts 1–4, participatory
inequity was attenuated as many students entered the conversational floor to voice their
stances on how to navigate the coding challenge, even as they marked misalignment
with instructors. In these early moments, the sociodisciplinary norms in the classroom
were still open for negotiation, leaving space for students to use their preferred
approach to solve the challenge. However, as the activity progressed, relational
inequity remained amplified as the instructors and researcher–instructor consistently
endorsed the loop (Parts 3–6). The instructors’ endorsement of loops promoted
sociocomputational norms that aligned with the curricular learning objectives but
curtailed what was emerging as a potentially rich conversation about what constitutes
efficiency, when short-term efficiency might yield to long-term efficiency, and how to
balance these considerations during learning. With consistent nudging from instructors
that one pathway (loops) through the activity was most valuable, the students in the

 M. M. Fong et al.

1 3

classroom, eventually including Ash and Kay, stopped defending their stances against
the loop and started working on how to write a loop. The influence of the instructors
and researcher–instructor, and their vocal support of a few students who aligned
with using the loop, cut short the possibility for a generative discussion about the
sociocomputational norm of efficiency, resulting in what Philip et al. (2018) have
described as students’ “failed bids for ideological expansion” (p. 215), a form of
“too early ideological convergence, without adequate engagement with ideologically
expansive stances, [which] constrains learning” (p. 185, original italics). With a focus
on promoting a particular type of efficient coding and celebrating those approaches to
coding, the instructors and the researcher–instructor may have inadvertently limited
students’ outward interest in pursuing and defending stances on the activity that
misaligned with the discipline’s specific version of sociocomputational norms.

As an alternative approach, instructors could consider centering values such as right-
ful presence (Calabrese Barton & Tan, 2019), using status treatments (Cohen & Lotan,
1995), and attending to how students assert their agency in CS classrooms (Ryoo et al.,
2020; Vakil, 2020), all in service of elevating the positions of students who are choos-
ing coding approaches that may not align with disciplinary norms, to make space for
these students’ continued discussion and exploration of the value of these approaches
with their peers. The students’ efforts to contest these norms suggest that there are
opportunities in computing classrooms, for newcomers and experts alike, to have an
expanded discussion about where these norms come from, how they might operate in
the classroom, and how they can navigate these conversations in the professional world.
For example, in Part 3, how might the discussion between Ben and Sal ended differ-
ently if Ben instead agreed that copy-and-paste was a fast way to type repeating lines of
code? In Part 5, how might Kay be perceived differently by her peers if Meg agreed that
nested loops were confusing?

Taking a step back even further, this tension in differing interpretations of
sociocomputational norms between students and instructors are reminiscent of more
general tensions between students and “authentic” computer scientists. Though our
analysis focused on just one classroom session, we hope that this reflection on the
broader social and cultural context of computing can benefit others moving similar
work forward. Moreover, we argue that couching this work in broader computing
contexts is essential against the backdrop of calls within CS education to enact
professional disciplinary norms (Kolikant & Pollack, 2004) and the recognition that
there are persistent economic framings of the value of programming (see also Lee et al.,
2022; Tissenbaum et al., 2021). Computer science is not a neutral set of programming
techniques separate from the values of society. Indeed, Philip and Sengupta (2021) have
argued for learning theories to grapple with power through a lens that attends to features
of context (i.e., the historically situated features of learning design), consequentiality
(i.e., agency in the classroom to enact a particular stance), and contrapuntality (i.e.,
resistance to empire in society). They invite us to consider: “Who is simultaneously
integral and invisiblized through imperialism in our conceptualizations of learning?”
(p. 336). From a consequential lens, students whose stances misaligned with the
instructors continually experienced amplified relational inequity. As the rationales for
their stances faded into the background, and as the lesson became more focused on the
singular expectation that students should pursue a loop approach, we would also note
that the lesson carried an implicit contrapuntal message: default to canonical forms of
knowledge. While this message aligns with canonical sociocomputational norms and
may seem like a positive outcome for students in a classroom, considerations around

Contesting sociocomputational norms: Computer programming…

1 3

refactoring in the professional coding world are immensely complex (Ionescu et al.,
2020; Stoecklin et al., 2007) and tangled up in economic decisions and inequities in
the workforce (Philip & Sengupta, 2021). These angles on the data raise important
questions about whether uncontested sociocomputational norms have a meaningful
place in computer programming learning experiences.

Limitations

As with most interaction analysis studies, one limitation of this paper is that we
examined a brief stretch of interaction and cannot make claims about how social
and cultural influences from outside the classroom may have impacted interactions
or how these interactions may have shaped long-term outcomes related to students’
learning or computing identity formation. This limitation could be addressed by
future ethnographic and longitudinal studies of interaction that attend to emerging
and stable practices (see Keifert, 2021). In addition, the analysis attends to relational
and amplified inequity in terms of publicly observable features of interaction (Shah
& Lewis, 2019); follow-up work could additionally conduct video-cued reflections in
which participants have an opportunity to observe the data and share their thoughts
on what transpired (e.g., see DeLiema et al., 2023). This methodological move would
allow students to comment on how they feel in moments of amplified participatory and
relational inequity in classroom discourse. Even if these video-cued reflections were
used as a unique data source (e.g., not just as triangulated confirmation of what could
be seen in the classroom video), it might also shed light on what students notice and
find meaningful about negotiating stances such as this in the classroom. In addition,
this study focused on instructors and a researcher–instructor who were still in the early
stages of developing their teaching practice in computer science. Veteran instructors
may approach refactoring in the classroom in different ways. Nonetheless, we hope
that the cautionary findings from our study help support professional development for
educators learning to teach CS, and perhaps also open up new insights for veteran CS
educators. Lastly, as a study that emerged late in our design-based research partnership,
we were unable to redesign the learning environment with attention to the participatory
and relational inequities raised in this paper. Considerably more work is needed to
imagine and study computing learning environments for newcomers that empower
students to reflect on the complexity of refactoring decisions.

 M. M. Fong et al.

1 3

Appendix A

Table 2

Acknowledgements This work was supported by the National Science Foundation under grant nos.
1612770, 1607742, and 1612660. We wish to express deep gratitude to the students and educators who col-
laborated on this research. Our CSCL reviewers also provided generative feedback during the peer review
process, and we wish to thank them for their contributions. We are also grateful for the time that Geoffrey
Herman, Colleen Lewis, members of our NSF advisory board, and UMN graduate students in the “Debug-
ging Failure” course gave to share their helpful feedback on early analyses and drafts of this paper.

References

Abrahamson, D., & Sánchez-García, R. (2016). Learning is moving in new ways: The ecological dynam-
ics of mathematics education. Journal of the Learning Sciences, 25(2), 203–239. https:// doi. org/ 10.
1080/ 10508 406. 2016. 11433 70

Alves, N. S. R., Mendes, T. S., de Mendonça, M. G., Spínola, R. O., Shull, F., & Seaman, C. (2016).
Identification and management of technical debt: A systematic mapping study. Information and
Software Technology, 70, 100–121. https:// doi. org/ 10. 1016/j. infsof. 2015. 10. 008

Ames, M. G. (2018). Hackers, Computers, and Cooperation: A Critical History of Logo and Constructionist
Learning. Proceedings of the ACM on Human-Computer Interaction, 2(CSCW), 1–19. https:// doi. org/
10. 1145/ 32742 87

Bang, M., & Vossoughi, S. (2016). Participatory design research and educational justice: Studying learning
and relations within social change making. Cognition and Instruction, 34(3), 173–193. https:// doi. org/
10. 1080/ 07370 008. 2016. 11818 79

Table 2 Transcription Key

[] Left and right brackets indicate overlapping talk or action
(0.0) Numbers in parentheses indicate pause in seconds
(.) Dot in parentheses indicates a brief pause
word- A dash after a sound indicates a beat between utterances
:: Double colon indicates prolongation of prior sound
↑↓ Upward and downward arrow indicate a shift into higher or lower

pitch, respectively
? Question mark indicates a rise in pitch
WORD Upper case letters indicate louder sounds
°word° Degree signs surrounding talk indicates softer sounds
((action)) Description in bold, italicized font and surrounded by two pairs of

parentheses indicates action
 > < Right then left carats indicate hurried or faster talk
hhh Consecutive “h” letters indicate breathiness or gasping
(word) Parentheses containing word(s) indicate possibilities for what was said
() Empty parentheses indicate undecipherable speech. Wider space

indicates a longer period of unknown speech
#word# Pounds or hashtags surrounding talk indicates the speaker was smiling
£word£ British pound sterling symbols surrounding talk indicates suppressed

laughter

https://doi.org/10.1080/10508406.2016.1143370
https://doi.org/10.1080/10508406.2016.1143370
https://doi.org/10.1016/j.infsof.2015.10.008
https://doi.org/10.1145/3274287
https://doi.org/10.1145/3274287
https://doi.org/10.1080/07370008.2016.1181879
https://doi.org/10.1080/07370008.2016.1181879

Contesting sociocomputational norms: Computer programming…

1 3

Boaler, J. (2008). Promoting ‘relational equity’ and high mathematics achievement through an innovative
mixed-ability approach. British Educational Research Journal, 34(2), 167–194. https:// doi. org/ 10.
1080/ 01411 92070 15321 45

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of com-
putational thinking. Proceedings of the 2012 Annual Meeting of the American Educational Research
Association.

Calabrese Barton, A., & Tan, E. (2019). Designing for rightful presence in STEM: The role of making pre-
sent practices. Journal of the Learning Sciences, 28(4–5), 616–658. https:// doi. org/ 10. 1080/ 10508 406.
2019. 15914 11

Cohen, E. G., & Lotan, R. A. (1995). Producing equal-status interaction in the heterogeneous classroom.
American Educational Research Journal, 32(1), 99–120. https:// doi. org/ 10. 3102/ 00028 31203 20010 99

Cress, U., Rosé, C., Wise, A. F., & Oshima, J. (Eds.). (2021). International Handbook of Computer-Sup-
ported Collaborative Learning (Vol. 19). Springer International Publishing. https:// doi. org/ 10. 1007/
978-3- 030- 65291-3

Dahn, M., & DeLiema, D. (2020). Dynamics of emotion, problem solving, and identity: Portraits of three
girl coders. Computer Science Education, 30(3), 362–389. https:// doi. org/ 10. 1080/ 08993 408. 2020.
18052 86

Dahn, M., Deliema, D., & Enyedy, N. (2020). Art as a point of departure for understanding student experi-
ence in learning to code. Teachers College Record, 122(8), 1–42. https:// doi. org/ 10. 1177/ 01614 68120
12200 802

Danielak, B. (2022). How Code Takes shape: Studying a student’s program evolution. Cognition and
Instruction, 40(2), 266–303. https:// doi. org/ 10. 1080/ 07370 008. 2022. 20443 30

Danish, J. A., Enyedy, N., Saleh, A., & Humburg, M. (2020). Learning in embodied activity framework: A
sociocultural framework for embodied cognition. International Journal of Computer-Supported Col-
laborative Learning, 15(1), 49–87. https:// doi. org/ 10. 1007/ s11412- 020- 09317-3

Davies, B., & Harré, R. (1990). Positioning: The discursive production of selves. Journal for the Theory of
Social Behaviour, 20(1), 43–63. https:// doi. org/ 10. 1111/j. 1468- 5914. 1990. tb001 74.x

DeLiema, D., Dahn, M., Flood, V. J., Asuncion, A., Abrahamson, D., Enyedy, N., & Steen, F. (2020).
Debugging as a context for fostering reflection on critical thinking and emotion. In E. Manalo (Ed.),
Deeper Learning, Dialogic Learning, and Critical Thinking (1st ed., pp. 209–228). Routledge. https://
doi. org/ 10. 4324/ 97804 29323 058- 13

DeLiema, D., Hufnagle, A., Rao, V. N. V., Baker, J., Valerie, J., & Kim, J. (2023). Methodological inno-
vations at the intersection of video-based educational research traditions: Reflections on relevance,
data selection, and phenomena of interest. International Journal of Research & Method in Education,
46(1), 19–36. https:// doi. org/ 10. 1080/ 17437 27X. 2021. 20111 96

DeLiema, D., Kwon, Y. A., Chisholm, A., Williams, I., Dahn, M., Flood, V. J., Abrahamson, D., & Steen,
F. F. (2022). A multi-dimensional framework for documenting students’ heterogeneous experiences
with programming bugs. Cognition and Instruction, 41(2), 158–200. https:// doi. org/ 10. 1080/ 07370
008. 2022. 21182 79

Denner, J., Green, E., & Campe, S. (2021). Learning to program in middle school: How pair programming
helps and hinders intrepid exploration. Journal of the Learning Sciences, 30(4–5), 611–645. https://
doi. org/ 10. 1080/ 10508 406. 2021. 19390 28

Demeyer, S., Van Rysselberghe, F., Girba, T., Ratzinger, J., Marinescu, R., Mens, T., Du Bois, B., Jans-
sens, D., Ducasse, S., Lanza, M., Rieger, M., Gall, H., & El-Ramly, M. (2005). The LAN simulation:
A refactoring teaching example. Eighth International Workshop on Principles of Software Evolution
(IWPSE’05), 123–131. https:// doi. org/ 10. 1109/ IWPSE. 2005. 30

Derry, S. J., Pea, R. D., Barron, B., Engle, R. A., Erickson, F., Goldman, R., Hall, R., Koschmann, T.,
Lemke, J. L., Sherin, M. G., & Sherin, B. L. (2010). Conducting video research in the learning sci-
ences: Guidance on selection, analysis, technology, and ethics. Journal of the Learning Sciences,
19(1), 3–53. https:// doi. org/ 10. 1080/ 10508 40090 34528 84

Dickes, A. C., Farris, A. V., & Sengupta, P. (2020). Sociomathematical norms for integrating coding and
modeling with elementary science: A dialogical approach. Journal of Science Education and Technol-
ogy, 29(1), 35–52. https:// doi. org/ 10. 1007/ s10956- 019- 09795-7

Du Bois, J. W. (2007). The Stance Triangle. In R. Englebretson (Ed.), Stancetaking in Discourse: Subjectiv-
ity, evaluation, interaction (pp. 139–182). John Benjamins Publishing Company.

Elliott, C. H. (2020). “Run it through me:” Positioning, power, and learning on a high school robotics team.
Journal of the Learning Sciences, 29(4–5), 1–44. https:// doi. org/ 10. 1080/ 10508 406. 2020. 17707 63

Enyedy, N. (2005). Inventing mapping: Creating cultural forms to solve collective problems. Cognition and
Instruction, 23(4), 427–466. https:// doi. org/ 10. 1207/ s1532 690xc i2304_1

https://doi.org/10.1080/01411920701532145
https://doi.org/10.1080/01411920701532145
https://doi.org/10.1080/10508406.2019.1591411
https://doi.org/10.1080/10508406.2019.1591411
https://doi.org/10.3102/00028312032001099
https://doi.org/10.1007/978-3-030-65291-3
https://doi.org/10.1007/978-3-030-65291-3
https://doi.org/10.1080/08993408.2020.1805286
https://doi.org/10.1080/08993408.2020.1805286
https://doi.org/10.1177/016146812012200802
https://doi.org/10.1177/016146812012200802
https://doi.org/10.1080/07370008.2022.2044330
https://doi.org/10.1007/s11412-020-09317-3
https://doi.org/10.1111/j.1468-5914.1990.tb00174.x
https://doi.org/10.4324/9780429323058-13
https://doi.org/10.4324/9780429323058-13
https://doi.org/10.1080/1743727X.2021.2011196
https://doi.org/10.1080/07370008.2022.2118279
https://doi.org/10.1080/07370008.2022.2118279
https://doi.org/10.1080/10508406.2021.1939028
https://doi.org/10.1080/10508406.2021.1939028
https://doi.org/10.1109/IWPSE.2005.30
https://doi.org/10.1080/10508400903452884
https://doi.org/10.1007/s10956-019-09795-7
https://doi.org/10.1080/10508406.2020.1770763
https://doi.org/10.1207/s1532690xci2304_1

 M. M. Fong et al.

1 3

Erickson, F. (1992). Ethnographic Microanalysis of Interaction. In M. D. LeCompte, W. L. Millroy, & J.
Preissle (Eds.), The Handbook of Qualitative Research in Education (pp. 201–225). Academic Press.

Esmonde, I., & Booker, A. N. (Eds.). (2016). Power and Privilege in the Learning Sciences: Critical and
Sociocultural Theories of Learning (1st ed.). Routledge.

Fowler, M. (2019). Refactoring: Improving the design of existing code (2nd ed.). Addison-Wesley
Professional.

Gomez, K., Gomez, L. M., & Worsley, M. (2021). Interrogating the Role of CSCL in Diversity, Equity, and
Inclusion. In U. Cress, C. Rosé, A. F. Wise, & J. Oshima (Eds.), International Handbook of Computer-
Supported Collaborative Learning (Vol. 19, pp. 103–120). Springer International Publishing. https://
doi. org/ 10. 1007/ 978-3- 030- 65291-3

Goodwin, C. (2006). Retrospective and prospective orientation in the construction of argumentative moves.
Text & Talk, 26, 443–461. https:// doi. org/ 10. 1515/ TEXT. 2006. 018

Goodwin, C. (2007). Participation, stance and affect in the organization of activities. Discourse & Society,
18(1), 53–73. https:// doi. org/ 10. 1177/ 09579 26507 069457

Goodwin, C. (2018). Co-operative Action. Cambridge University Press.
Gutiérrez, K. D., & Jurow, A. S. (2016). Social design experiments: Toward equity by design. Journal of the

Learning Sciences, 25(4), 565–598. https:// doi. org/ 10. 1080/ 10508 406. 2016. 12045 48
Hennessy, E. C., Gendreau, C. A., Bush, J. B., Nixon, J., & Recker, M. (2023). Toward a debugging peda-

gogy: Helping students learn to get unstuck with physical computing systems. Information and Learn-
ing Sciences, 124(1/2), 1–24. https:// doi. org/ 10. 1108/ ILS- 03- 2022- 0051

Holland, D., Lachicotte, W., Jr., Skinner, D., & Cain, C. (2001). Identity and Agency in Cultural Worlds.
Harvard University Press.

Ionescu, T. B., Schlund, S., & Schmidbauer, C. (2020). Epistemic Debt: A Concept and Measure of Techni-
cal Ignorance in Smart Manufacturing. In I. L. Nunes (Ed.), Advances in Human Factors and Systems
Interaction (pp. 81–93). Springer International Publishing.

Jefferson, G. (2004). Glossary of Transcript Symbols with an Introduction. In G. H. Lerner (Ed.), Conversa-
tion Analysis: Studies from the First Generation (pp. 13–34). John Benjamins Publishing Company.

Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. Journal of the Learning
Sciences, 4(1), 39–103. https:// doi. org/ 10. 1207/ s1532 7809j ls0401_2

K-12 Computer Science Framework Steering Committee. (2016). K-12 Computer Science Framework.
ACM. https:// k12cs. org/

Kapur, M. (2008). Productive failure. Cognition and Instruction, 26(3), 379–424. https:// doi. org/ 10. 1080/
07370 00080 22126 69

Kapur, M., & Kinzer, C. K. (2009). Productive failure in CSCL groups. International Journal of Computer-
Supported Collaborative Learning, 4(1), 21–46. https:// doi. org/ 10. 1007/ s11412- 008- 9059-z

Keifert, D. T. (2021). Family culture as context for learning through inquiry. Cognition and Instruction,
39(3), 242–274. https:// doi. org/ 10. 1080/ 07370 008. 2021. 19131 62

Kobiela, M., & Lehrer, R. (2015). The codevelopment of mathematical concepts and the practice of defin-
ing. Journal for Research in Mathematics Education JRME, 46(4), 423–454. https:// doi. org/ 10. 5951/
jrese mathe duc. 46.4. 0423

Kolikant, Y.B.-D., & Pollack, S. (2004). Establishing computer science professional norms among high-
school students. Computer Science Education, 14(1), 21–35. https:// doi. org/ 10. 1076/ csed. 14.1. 21.
23497

Koschmann, T., Kuutti, K., & Hickman, L. (1998). The concept of breakdown in Heidegger, Leont’ev, and
Dewey and its implications for education. Mind, Culture, and Activity, 5(1), 25–41. https:// doi. org/ 10.
1207/ s1532 7884m ca0501_3

Langer-Osuna, J. M., & McKinney de Royston, M. (2017). Understanding Relations of Power in the Mathe-
matics Classroom: Explorations in Positioning Theory. In A. Chronaki (Ed.), Proceedings of the Ninth
International Mathematics Education and Society Conference (Vol. 2, pp. 645–653). University of
Thessaly Press.

Lee, U.-S.A., DeLiema, D., & Gomez, K. (2022). Equity conjectures: A methodological tool for center-
ing social change in learning and design. Cognition and Instruction, 40(1), 77–99. https:// doi. org/
10. 1080/ 07370 008. 2021. 20102 11

Leyva, L. A., McNeill, R. T., Marshall, B. L., & Guzmán, O. A. (2021a). “It seems like they purpose-
fully try to make as many kids drop”: An analysis of logics and mechanisms of racial-gendered ine-
quality in introductory mathematics instruction. The Journal of Higher Education, 92(5), 784–814.
https:// doi. org/ 10. 1080/ 00221 546. 2021. 18795 86

Leyva, L. A., Quea, R., Weber, K., Battey, D., & López, D. (2021b). Detailing racialized and gendered
mechanisms of undergraduate precalculus and calculus classroom instruction. Cognition and
Instruction, 39(1), 1–34. https:// doi. org/ 10. 1080/ 07370 008. 2020. 18492 18

https://doi.org/10.1007/978-3-030-65291-3
https://doi.org/10.1007/978-3-030-65291-3
https://doi.org/10.1515/TEXT.2006.018
https://doi.org/10.1177/0957926507069457
https://doi.org/10.1080/10508406.2016.1204548
https://doi.org/10.1108/ILS-03-2022-0051
https://doi.org/10.1207/s15327809jls0401_2
https://k12cs.org/
https://doi.org/10.1080/07370000802212669
https://doi.org/10.1080/07370000802212669
https://doi.org/10.1007/s11412-008-9059-z
https://doi.org/10.1080/07370008.2021.1913162
https://doi.org/10.5951/jresematheduc.46.4.0423
https://doi.org/10.5951/jresematheduc.46.4.0423
https://doi.org/10.1076/csed.14.1.21.23497
https://doi.org/10.1076/csed.14.1.21.23497
https://doi.org/10.1207/s15327884mca0501_3
https://doi.org/10.1207/s15327884mca0501_3
https://doi.org/10.1080/07370008.2021.2010211
https://doi.org/10.1080/07370008.2021.2010211
https://doi.org/10.1080/00221546.2021.1879586
https://doi.org/10.1080/07370008.2020.1849218

Contesting sociocomputational norms: Computer programming…

1 3

Lewis, C. M., & Shah, N. (2015). How equity and inequity can emerge in pair programming. Proceed-
ings of the Eleventh Annual International Conference on International Computing Education
Research - ICER ’15, 41–50. https:// doi. org/ 10. 1145/ 27876 22. 27877 16

Lopez, L. M., & Allal, L. (2007). Sociomathematical norms and the regulation of problem solving in
classroom microcultures. International Journal of Educational Research, 46(5), 252–265. https://
doi. org/ 10. 1016/j. ijer. 2007. 10. 005

Maxwell, J. A. (2013). Qualitative research design: An interactive approach (Third edition.). SAGE
Publications, Inc.

Nader, L. (1996). Naked Science: Anthropological Inquiry into Boundaries, Power, and Knowledge.
Routledge.

Overdijk, M., van Diggelen, W., Andriessen, J., & Kirschner, P. A. (2014). How to bring a technical
artifact into use: A micro-developmental perspective. International Journal of Computer-Supported
Collaborative Learning, 9(3), 283–303. https:// doi. org/ 10. 1007/ s11412- 014- 9195-6

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas (1st ed.). Basic Books, Inc.
Philip, T. M., & Azevedo, F. S. (2017). Everyday science learning and equity: Mapping the contested

terrain. Science Education, 101(4), 526–532. https:// doi. org/ 10. 1002/ sce. 21286
Philip, T. M., & Gupta, A. (2020). Emerging perspectives on the co-construction of power and learning

in the learning sciences, mathematics education, and science education. Review of Research in Edu-
cation, 44(1), 195–217. https:// doi. org/ 10. 3102/ 00917 32X20 903309

Philip, T. M., Gupta, A., Elby, A., & Turpen, C. (2018). Why ideology matters for learning: A case of
ideological convergence in an engineering ethics classroom discussion on drone warfare. Journal of
the Learning Sciences, 27(2), 183–223. https:// doi. org/ 10. 1080/ 10508 406. 2017. 13819 64

Philip, T. M., & Sengupta, P. (2021). Theories of learning as theories of society: A contrapuntal
approach to expanding disciplinary authenticity in computing. Journal of the Learning Sciences,
30(2), 330–349. https:// doi. org/ 10. 1080/ 10508 406. 2020. 18280 89

Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific
conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227.

Radkowitsch, A., Vogel, F., & Fischer, F. (2020). Good for learning, bad for motivation? A meta-analy-
sis on the effects of computer-supported collaboration scripts. International Journal of Computer-
Supported Collaborative Learning, 15(1), 5–47. https:// doi. org/ 10. 1007/ s11412- 020- 09316-4

Reason, J. (1990). Human Error. Cambridge University Press.
Rich, K. M., Strickland, C., Binkowski, T. A., & Franklin, D. (2019). A K-8 Debugging Learning Tra-

jectory Derived from Research Literature. Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, 745–751. https:// doi. org/ 10. 1145/ 32873 24. 32873 96

Rich, K. M., Strickland, C., Binkowski, T. A., Moran, C., & Franklin, D. (2018). K–8 learning trajecto-
ries derived from research literature: Sequence, repetition, conditionals. ACM Inroads, 9(1), 46–55.
https:// doi. org/ 10. 1145/ 31835 08

Romeike, R., & Göttel, T. (2012). Agile Projects in High School Computing Education: Emphasizing
a Learners’ Perspective. Proceedings of the 7th Workshop in Primary and Secondary Computing
Education, 48–57. https:// doi. org/ 10. 1145/ 24814 49. 24814 61

Ryoo, J. J., Tanksley, T., Estrada, C., & Margolis, J. (2020). Take space, make space: How students use
computer science to disrupt and resist marginalization in schools. Computer Science Education,
30(3), 337–361. https:// doi. org/ 10. 1080/ 08993 408. 2020. 18052 84

Scheuer, O., Loll, F., Pinkwart, N., & McLaren, B. M. (2010). Computer-supported argumentation: A
review of the state of the art. International Journal of Computer-Supported Collaborative Learn-
ing, 5(1), 43–102. https:// doi. org/ 10. 1007/ s11412- 009- 9080-x

Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., Shwartz, Y., Hug, B., &
Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific
modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6),
632–654. https:// doi. org/ 10. 1002/ tea. 20311

Sengupta, P., Dickes, A., & Farris, A. V. (2021). Voicing code in STEM: A dialogical imagination. MIT
Press.

Shah, N., Christensen, J. A., Ortiz, N. A., Nguyen, A.-K., Byun, S., Stroupe, D., & Reinholz, D. L.
(2020). Racial hierarchy and masculine space: Participatory in/equity in computational physics
classrooms. Computer Science Education, 30(3), 254–278. https:// doi. org/ 10. 1080/ 08993 408. 2020.
18052 85

Shah, N., & Lewis, C. M. (2019). Amplifying and attenuating inequity in collaborative learning: Toward
an analytical framework. Cognition and Instruction, 37(4), 423–452. https:// doi. org/ 10. 1080/ 07370
008. 2019. 16318 25

https://doi.org/10.1145/2787622.2787716
https://doi.org/10.1016/j.ijer.2007.10.005
https://doi.org/10.1016/j.ijer.2007.10.005
https://doi.org/10.1007/s11412-014-9195-6
https://doi.org/10.1002/sce.21286
https://doi.org/10.3102/0091732X20903309
https://doi.org/10.1080/10508406.2017.1381964
https://doi.org/10.1080/10508406.2020.1828089
https://doi.org/10.1007/s11412-020-09316-4
https://doi.org/10.1145/3287324.3287396
https://doi.org/10.1145/3183508
https://doi.org/10.1145/2481449.2481461
https://doi.org/10.1080/08993408.2020.1805284
https://doi.org/10.1007/s11412-009-9080-x
https://doi.org/10.1002/tea.20311
https://doi.org/10.1080/08993408.2020.1805285
https://doi.org/10.1080/08993408.2020.1805285
https://doi.org/10.1080/07370008.2019.1631825
https://doi.org/10.1080/07370008.2019.1631825

 M. M. Fong et al.

1 3

Shaw, M. S., Fields, D. A., & Kafai, Y. B. (2020). Leveraging local resources and contexts for inclu-
sive computer science classrooms: Reflections from experienced high school teachers implement-
ing electronic textiles. Computer Science Education, 30(3), 313–336. https:// doi. org/ 10. 1080/ 08993
408. 2020. 18052 83

Sikorski, T.-R., & Hammer, D. (2017). Looking for coherence in science curriculum. Science Education,
101(6), 929–943. https:// doi. org/ 10. 1002/ sce. 21299

Silvis, D., Clarke-Midura, J., Shumway, J. F., Lee, V. R., & Mullen, S. (2022). Children caring for
robots: Expanding computational thinking frameworks to include a technological ethic of care.
International Journal of Child-Computer Interaction, 33, 100491. https:// doi. org/ 10. 1016/j. ijcci.
2022. 100491

Simpson, A., Bannister, N., & Matthews, G. (2017). Cracking her codes: Understanding shared technol-
ogy resources as positioning artifacts for power and status in CSCL environments. International
Journal of Computer-Supported Collaborative Learning, 12(3), 221–249. https:// doi. org/ 10. 1007/
s11412- 017- 9261-y

Sinha, S., Rogat, T. K., Adams-Wiggins, K. R., & Hmelo-Silver, C. E. (2015). Collaborative group
engagement in a computer-supported inquiry learning environment. International Jour-
nal of Computer-Supported Collaborative Learning, 10(3), 273–307. https:// doi. org/ 10. 1007/
s11412- 015- 9218-y

Siyahhan, S., Barab, S. A., & Downton, M. P. (2010). Using activity theory to understand intergenerational
play: The case of Family Quest. International Journal of Computer-Supported Collaborative Learn-
ing, 5(4), 415–432. https:// doi. org/ 10. 1007/ s11412- 010- 9097-1

Stahl, G. (2006). Group Cognition: Computer Support for Building Collaborative Knowledge. MIT
Press.

Stevens, R., & Hall, R. (1998). Disciplined Perception: Learning to See in Technoscience. In M. Lampert &
M. L. Blunk (Eds.), Talking mathematics in school: Studies of teaching and learning (pp. 107–150).
Cambridge University Press.

Stoecklin, S., Smith, S., & Serino, C. (2007). Teaching students to build well formed object-oriented
methods through refactoring. SIGCSE Bulletin, 39(1), 145–149. https:// doi. org/ 10. 1145/ 12275 04.
12273 64

Suryanarayana, G., Samarthyam, G., & Sharma, T. (2014). Refactoring for software design smells: Man-
aging technical debt. Morgan Kaufmann.

Suzuki, H., & Kato, H. (1995). Interaction-Level Support for Collaborative Learning: AlgoBlock—An
Open Programming Language. The First International Conference on Computer Support for Col-
laborative Learning, 349–355. https:// doi. org/ 10. 3115/ 222020. 222828

Techapalokul, P., & Tilevich, E. (2019). Code Quality Improvement for All: Automated Refactoring for
Scratch. 2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
117–125. https:// doi. org/ 10. 1109/ VLHCC. 2019. 88189 50

The Politics of Learning Writing Collective. (2017). The learning sciences in a new era of U.S. nation-
alism. Cognition and Instruction, 35(2), 91–102. https:// doi. org/ 10. 1080/ 07370 008. 2017. 12824 86

Thompson, C. (2020). Coders: The making of a new tribe and the remaking of the world. Penguin Books.
Tissenbaum, M., Sheldon, J., & Abelson, H. (2019). From computational thinking to computational

action. Communications of the ACM, 62(3), 34–36. https:// doi. org/ 10. 1145/ 32657 47
Tissenbaum, M., Weintrop, D., Holbert, N., & Clegg, T. (2021). The case for alternative endpoints in

computing education. British Journal of Educational Technology, 52(3), 1164–1177. https:// doi.
org/ 10. 1111/ bjet. 13072

Tsan, J., Vandenberg, J., Zakaria, Z., Boulden, D. C., Lynch, C., Wiebe, E., & Boyer, K. E. (2021). Col-
laborative Dialogue and Types of Conflict: An Analysis of Pair Programming Interactions between
Upper Elementary Students. Proceedings of the 52nd ACM Technical Symposium on Computer Sci-
ence Education, 1184–1190. https:// doi. org/ 10. 1145/ 34088 77. 34324 06

Turkle, S., & Papert, S. (1990). Epistemological pluralism: Styles and voices within the computer cul-
ture. Signs, 16(1), 128–157.

Vakil, S. (2020). “I’ve always been scared that someday i’m going to sell out”: Exploring the relation-
ship between political identity and learning in computer science education. Cognition and Instruc-
tion, 38(2), 87–115. https:// doi. org/ 10. 1080/ 07370 008. 2020. 17303 74

Van Dormolen, J., & Zaslavsky, O. (2003). The many facets of a definition: The case of periodicity. The
Journal of Mathematical Behavior, 22(1), 91–106. https:// doi. org/ 10. 1016/ S0732- 3123(03) 00006-3

Vinner, S. (2002). The Role of Definitions in the Teaching and Learning of Mathematics. In D. Tall
(Ed.), Advanced Mathematical Thinking (pp. 65–81). Springer Netherlands. https:// doi. org/ 10.
1007/0- 306- 47203-1_5

https://doi.org/10.1080/08993408.2020.1805283
https://doi.org/10.1080/08993408.2020.1805283
https://doi.org/10.1002/sce.21299
https://doi.org/10.1016/j.ijcci.2022.100491
https://doi.org/10.1016/j.ijcci.2022.100491
https://doi.org/10.1007/s11412-017-9261-y
https://doi.org/10.1007/s11412-017-9261-y
https://doi.org/10.1007/s11412-015-9218-y
https://doi.org/10.1007/s11412-015-9218-y
https://doi.org/10.1007/s11412-010-9097-1
https://doi.org/10.1145/1227504.1227364
https://doi.org/10.1145/1227504.1227364
https://doi.org/10.3115/222020.222828
https://doi.org/10.1109/VLHCC.2019.8818950
https://doi.org/10.1080/07370008.2017.1282486
https://doi.org/10.1145/3265747
https://doi.org/10.1111/bjet.13072
https://doi.org/10.1111/bjet.13072
https://doi.org/10.1145/3408877.3432406
https://doi.org/10.1080/07370008.2020.1730374
https://doi.org/10.1016/S0732-3123(03)00006-3
https://doi.org/10.1007/0-306-47203-1_5
https://doi.org/10.1007/0-306-47203-1_5

Contesting sociocomputational norms: Computer programming…

1 3

Vossoughi, S., & Escudé, M. (2016). What does the camera communicate? An inquiry into the politics and
possibilities of video research on learning. Anthropology & Education Quarterly, 47(1), 42–58. https://
doi. org/ 10. 1111/ aeq. 12134

Wang, X. C., Flood, V. J., & Cady, A. (2021). Computational Thinking through Body and Ego Syntonicity:
Young Children’s Embodied Sense-Making Using A Programming Toy. In E. de Vries, Y. Hod, & J.
Ahn (Eds.), Proceedings of the 15th International Conference of the Learning Sciences (pp. 394–401).
International Society of the Learning Sciences. https:// repos itory. isls. org// handle/ 1/ 7494

Watkins, J., Hammer, D., Radoff, J., Jaber, L. Z., & Phillips, A. M. (2016). Positioning as not-understand-
ing: The value of showing uncertainty for engaging in science. Journal of Research in Science Teach-
ing, 55(4), 573–599. https:// doi. org/ 10. 1002/ tea. 21431

Weiner, B. (1985). An attributional theory of achievement motivation and emotion. Psychological Review,
92(4), 548.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions
of the Royal Society a: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725.
https:// doi. org/ 10. 1098/ rsta. 2008. 0118

Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics.
Journal for Research in Mathematics Education, 27(4), 458–477. https:// doi. org/ 10. 2307/ 749877

Yin, R. K. (2009). Case Study Research: Design and Methods (4th ed., Vol. 5). SAGE Inc.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Authors and Affiliations

Morgan M. Fong1 · David DeLiema2 · Virginia J. Flood3 · Oia Walker‑van Aalst4

 * Morgan M. Fong
 mmfong2@illinois.edu

 * David DeLiema
 ddeliema@umn.edu

 * Virginia J. Flood
 vflood@buffalo.edu

 Oia Walker-van Aalst
 oia.walker.van.aalst@berkeley.edu

1 University of Illinois Urbana-Champaign, Champaign, IL, USA
2 University of Minnesota, Twin Cities, MN, USA
3 University at Buffalo, SUNY, Buffalo, NY, USA
4 Present Address: University of California, Berkeley, CA, USA

https://doi.org/10.1111/aeq.12134
https://doi.org/10.1111/aeq.12134
https://repository.isls.org//handle/1/7494
https://doi.org/10.1002/tea.21431
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.2307/749877
http://orcid.org/0000-0003-1697-0856
http://orcid.org/0000-0002-2014-0313
http://orcid.org/0000-0003-1808-9923

	Contesting sociocomputational norms: Computer programming instructors and students’ stancetaking around refactoring
	Abstract
	Introduction
	Refactoring in computing and beyond
	The integral but potentially contentious place for refactoring in CS education
	Theoretical framework and central constructs
	Stancetaking: evaluate, position, (mis)align
	Sociocomputational norms
	Amplifying and attenuating participatory and relational inequity
	Summary of theoretical framework

	Methods
	Statement of positionality
	Setting and participants
	Software and curriculum
	Data sources
	Selection of data
	Data analysis

	Findings
	Part 1: Introducing general norms around knowledge, challenge, and efficiency
	Part 2: Launching refactoring—hackers and the loop
	Part 3: Refactoring discussions extend throughout the classroom
	Part 4: Misaligned stances on refactoring with respect to preference and efficiency
	Part 5: Further misalignment through discussion of nested loops
	Part 6: Continued emphasis on refactoring using loops
	End of the activity

	Discussion
	Summary of the refactoring classroom episode
	Implications for instructors and researchers
	Attending to inequity in computing and beyond

	Limitations
	Appendix A
	Acknowledgements
	References

