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Abstract
Collaborative problem solving (CPS) enables student groups to complete learning tasks, 
construct knowledge, and solve problems. Previous research has argued the importance 
of examining the complexity of CPS, including its multimodality, dynamics, and synergy 
from the complex adaptive systems perspective. However, there is limited empirical re-
search examining the adaptive and temporal characteristics of CPS, which may have led 
to an oversimplified representation of the real complexity of the CPS process. To expand 
our understanding of the nature of CPS in online interaction settings, the present research 
collected multimodal process and performance data (i.e., speech, computer screen record-
ings, concept map data) and proposed a three-layered analytical framework that integrated 
AI algorithms with learning analytics to analyze the regularity of groups’ collaboration 
patterns. The results surfaced three types of collaborative patterns in groups, namely the 
behaviour-oriented collaborative pattern (Type 1) associated with medium-level perfor-
mance, the communication-behaviour-synergistic collaborative pattern (Type 2) associated 
with high-level performance, and the communication-oriented collaborative pattern (Type 
3) associated with low-level performance. This research further highlighted the multi-
modal, dynamic, and synergistic characteristics of groups’ collaborative patterns to explain 
the emergence of an adaptive, self-organizing system during the CPS process. According 
to the empirical research results, theoretical, pedagogical, and analytical implications were 
discussed to guide the future research and practice of CPS.

Keywords  Collaborative problem solving · Computer-supported collaborative learning · 
Complex adaptive systems theory · Collaborative pattern · Learning analytics · AI-
driven learning analytics
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Introduction

Grounded in the social, cultural, and situated perspectives of learning (Vygotsky, 1978), 
collaborative problem solving (CPS), as one of the computer-supported collaborative learn-
ing (CSCL) modes, has been widely used in K-12 and higher education to foster active 
learning (Hmelo-Silver & DeSimone, 2013; Roschelle & Teasley, 1995; Stahl, 2009). CPS 
is a multimodal, dynamic, and synergistic phenomenon, where interactive, cognitive, regu-
lative, behavioural, and socio-emotional aspects of collaboration take place synergistically, 
intertwine inseparably, and influence each other dynamically (Stahl & Hakkarainen, 2021; 
Vogler et al., 2017). These characteristics of CPS make it compatible with the complex 
adaptive systems theory, viewing education as a system containing various interdependent 
elements as well as dynamic and adaptive interactions between these elements (Byrne & 
Callaghan, 2014; Holland, 1996). Drawing upon the complex adaptive systems theory, 
therefore, traditional educational research methods (e.g., correlational analysis, regression, 
hierarchical linear modelling) may not be enough to holistically model and monitor the non-
linear and dynamic characteristics of CPS (Amon et al., 2019; Vogler et al., 2017). Analytics 
of multimodal process data can be more beneficial for understanding the complexity of CPS 
(Janssen et al., 2013; Medina & Stahl, 2021; Wise et al., 2021). However, there is limited 
research examining the dynamic and temporal characteristics of CPS, which may have led 
to an oversimplified representation of the actual complexity of the CPS process. To fill this 
gap, the present research proposes a three-layered analytical framework that integrates AI 
algorithms with learning analytics methods to examine multimodal data collected during 
groups’ CPS processes. This research reveals different types of collaborative patterns of 
group behaviour, and further examines the associated performance as well as the regularity 
of each type. Based on the empirical research results, theoretical, pedagogical, and analyti-
cal implications will be discussed to interpret CPS from a complex adaptive systems theory 
perspective.

Literature review

Collaborative problem solving and complex adaptive systems theory

Collaborative problem solving (CPS) requires student groups to solve complex and ill-
structured problems without fixed answers in order to achieve the goal of collective knowl-
edge co-construction (Barron, 2000; Roschelle & Teasley, 1995; Vrzakova et al., 2020). In 
the past decade, CPS has been widely conducted to promote students’ active learning and 
meaning-making through various learning activities in order to enable students to connect 
and construct knowledge in a structured manner and create collective knowledge artifacts 
(Farrokhnia et al., 2019; Wang et al., 2017). CPS involves multiple levels of dynamic inter-
actions between (1) individual students, (2) individual students and the student group(s), (3) 
individual students and the learning environment or a knowledge artifact, and (4) the stu-
dent group(s) and the learning environment or knowledge artifact(s) (Stahl & Hakkarainen, 
2021). This multilevel and multilayered nature of CPS indicates a certain level of complex-
ity (Damşa, 2014; Stahl, 2013; Stahl & Hakkarainen, 2021).
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Complex adaptive systems theory, originating from the field of biology, emphasizes that 
a system is a complex emergent entity that arises from the interactions between microscopic 
entities (Byrne & Callaghan, 2014; Holland, 1996; Lansing, 2003). When this concept is 
applied to the field of education, the teaching and learning processes can be viewed as a 
complex, self-organizing system, which emerges from interdependent interactions between 
individuals, groups, and teaching and learning components (Amon et al., 2019; Jacobson et 
al., 2016; Mitchell, 2009) (see Fig. 1). Furthermore, the CPS process is a complex phenom-
enon where a group of students constantly coordinates interactive, cognitive, regulative, 
behavioural, and social-emotional aspects through conversations and actions to adapt to the 
complex and dynamically changing collaborative context, eventually forming a self-orga-
nizing system. Therefore, the complex system perspective breaks the traditional educational 
research paradigms such as causal models or linear predictability and highlights the use of 
organic, nonlinear, and holistic approaches to understanding the nonlinear, dynamic evolu-
tion of CSCL (Amon et al., 2019; Holland, 1996).

The conception of complexity is not new to empirical research in the CSCL commu-
nity. For example, Zuiker et al. (2016) combined complex adaptive systems theory as well 
as situated cognition theory to understand and explain collaborative learning as a system-
level social activity. Vogler et al. (2017) used complex adaptive systems theory to explore 
how a message is shared by students in synchronous online discussions such that it trig-
gered students’ meaningful engagement in knowledge co-construction. Amon et al. (2019) 
investigated the system-level team dynamics in collaborative programming from a com-
plex systems theory perspective in order to describe the dynamic, multimodal, and complex 
nature of collaboration. From the perspective of complex adaptive systems theory, these 
studies started to examine and illuminate how, in the dynamic process of CSCL, collab-

Fig. 1  The framework of complex adaptive systems theory. (adapted from Holland, 1996)
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orative meaning-making processes are interwoven with the multimodality and dynamics of 
individuals, groups, learning environments, technologies, and resources during the CSCL 
process. Moreover, the CSCL community has paid attention to analyzing and understand-
ing CSCL processes from the group or system perspectives, such as collaborative cognitive 
load, group-level metacognition, or group cognition (Dindar et al., 2020; Kuhn et al., 2020; 
Zheng et al., 2021). Overall, complex adaptive systems theory has the potential to contribute 
new perspectives to our understanding of educational phenomena, particularly the collab-
orative learning process, from a holistic, systematic, and non-linear perspective (Amon et 
al., 2019; Holland, 1996; Vogler et al., 2017).

The characteristics of CPS from the perspective of the complex adaptive systems 
theory

Grounded in the complex adaptive systems theory, group members in the CPS process form 
an adaptive, self-organizing system that has a multi-dimensional nature, synergistic rela-
tions, and a dynamic evolutionary character (Amon et al., 2019; Barron, 2000; Curşeu et 
al., 2020; Jacobson et al., 2016; Mitchell, 2009; Stahl & Hakkarainen, 2021). CPS’s mul-
timodal characteristics are reflected in the interactive, cognitive, regulative, behavioural, 
and socio-emotional aspects of the learning process (Fiore et al., 2010; Kwon et al., 2014; 
Malmberg et al., 2017; Zemel & Koschmann, 2013). On the interactive dimension, the 
multimodal interaction in CPS is built through students’ discourse interaction, text interac-
tion, and behaviour interaction, which together comprise the foundation of collaboration 
(Ouyang & Xu, 2022; Zemel & Koschmann, 2013). On the cognitive dimension, to solve 
ill-structured tasks, students need to share information and propose ideas to co-construct 
knowledge with group members (Barron, 2000; Ouyang & Chang, 2019; Vrzakova et al., 
2020). On the regulative dimension, students need to understand the task, negotiate and plan 
the goal of the group, and monitor and reflect on their collaborative progress (Malmberg et 
al., 2017). On the behavioural dimension, students solve problems through online activities 
and coordinate their creation of knowledge artifacts as they regulate each other’s behaviour 
(Fiore et al., 2010; Stahl, 2017). On the socio-emotional dimension, students need to engage 
in active listening, encourage participation, and contribute towards the creation of cohesive 
groups in order to foster active engagement, relaxation of tension, and the emergence of 
social motivation (Kwon et al., 2014; Rogat & Adams-Wiggins, 2015). More importantly, 
during the CPS process, this multiplicity of dimensions come together to form a complex, 
interdependent set of relationships that ultimately contribute to an adaptive, self-organizing 
system with multilevel and multilayered characteristics (Byrne & Callaghan, 2014; Hilpert 
& Marchand, 2018).

Furthermore, CPS is a dynamic process, where the relations between elements change 
over time, and ultimately affect the quality of collaboration (Holland, 1996; Hoppe et al., 
2021; Koopmans & Stamovlasis, 2016; Saqr & López-Pernas, 2022). During the CPS pro-
cess, students are required to adjust and coordinate interaction, behaviour, cognition, and 
emotional contributions to the evolving task context. As they do, they strive to achieve 
high-quality collaboration reflected in their knowledge construction process as well as the 
resulting knowledge artifacts (Amon et al., 2019; Barron, 2000; Wiltshire et al., 2019). For 
example, Amon et al. (2019) found that the regularity of coordinative patterns in students’ 
speed of communication, body movement, and screen interaction over time in pair program-
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ming can influence their collaborative learning outcomes. Saqr et al. (2021) applied various 
methods (e.g., process mining, sequence mining map, and temporal networks) to investi-
gate the relational and temporal dynamics of students’ self-regulated learning behaviours 
during online collaborative academic writing. Curşeu et al. (2020) proposed a multi-level 
dynamic model to examine how the variations of core self-evaluations, study engagement, 
group development, and relational conflict influences group identification in collaborative 
learning. In summary, there is emerging evidence that CPS is a multimodal, dynamic, and 
synergistic phenomenon, which might be better interpreted through the lens of the complex 
adaptive systems theory. However, studying CPS through this lens poses significant meth-
odological challenges to traditional statistics, which are typically applied to homogenous, 
unimodal data sources that are frequently used in CSCL research.

The multimodal collaborative learning analytics of CPS

Collaborative learning analytics (CLA), an integration of CSCL and LA, is used to explain, 
diagnose, and promote collaborative learning processes (Wise et al., 2021). Due to the com-
plexity of CPS, merely focusing on one dimension or perspective of collaboration may 
cause inconclusive and incomprehensible results. Therefore, CLA advocates the possibility 
to collect complex and multimodal data (e.g., behavioural, physiological, representational 
data) to develop comprehensive computational, algorithmic models of collaboration (Blik-
stein, 2013; Borge & Mercier, 2019; Mu et al., 2020; Ouyang et al., 2022; Sullivan & Keith, 
2019). Echoing this trend, recent CSCL research has started utilizing multimodal learn-
ing analytics (MMLA), integrating multimodal data collection, learning analytics, and AI 
algorithm-enabled modelling to analyze and mine the complex, dynamic characteristics of 
CSCL processes (Gorman et al., 2020; Khan, 2017; Olsen et al., 2020; Sharma & Gianna-
kos, 2020; Wiltshire et al., 2019). For example, Khan (2017) proposed a hierarchical com-
putational approach to analyze multimodal data (including audio, video, and activity log 
files) and modelled the temporal dynamics of student behaviour patterns in collaboration. 
Wiltshire et al. (2019) used growth curve modelling to examine how students’ multiscale 
movement coordination (e.g., speech, gestures, mouse and keyboard movement) changed 
across the duration of CPS. Gorman et al. (2020) used computational, quantitative models 
(including discrete recurrence, non-linear prediction algorithms, and average mutual infor-
mation) to detect real-time changes in group communication reorganization patterns during 
collaborative training. The main premise of this emerging research stream is that, compared 
to traditional learning analytics, such as social network analysis (e.g., Ouyang, 2021) or 
content analysis (e.g., Jeong, 2013), integration of algorithm-enabled methods in learning 
analytics and educational data mining can better deal with complex, nonlinear information, 
as well as extract and represent multi-level and high-dimensional features of CSCL (de 
Carvalho & Zárate, 2020; Ouyang et al., 2023).

In this research, we present the results of our investigation of groups’ collaborative pat-
terns during CPS in an online, synchronous collaboration platform. Taking a complex adap-
tive systems theory perspective to interpret CPS, we collect and analyze the multimodal 
process and performance data of student groups, including verbal audios, computer screen 
recordings, and concept map data. Furthermore, we propose a three-layered analytical 
framework that integrated learning analytics and AI algorithm-driven methods to examine 
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the collaborative patterns and the regularity of those patterns. We aim to answer two main 
research questions:

1)	 What types of collaborative patterns can be detected from students’ multimodal data 
during their CPS activities in an online synchronous collaboration platform?

2)	 What are the performance differences of groups with different types of collaborative 
patterns observed during the CPS process in terms of their collaborative products?

Methodology

Research context and participants

The research context was two graduate-level seminar courses, titled Distance and Online 
Education and Online Learning Analytics offered by the Educational Technology (ET) pro-
gram at a top research-intensive university in China. The course was designed and facili-
tated by the same instructor (the first author). She designed a series of CPS activities for 
small groups (3 or 4 students per group) to work on (see Table 1). Groups were asked to 
complete one open-ended, ill-structured problem related to the course content in an online, 
synchronous collaboration platform named huiyizhuo (see Fig.  2). The current research 
dataset consisted of 24 datasets; each dataset included the group’s audio recordings of ver-
bal communication data (about 2,160 min in total), computer screen recordings of click 
stream data (about 2,160 min in total), text-based chatting, and the final product of concept 
map data. The instructor occasionally engaged in the CPS activities and her engagement 
was not the focus of this research; therefore, to maintain data consistency, the instructor 
data were all removed.

The instructional design of CPS activities followed the problem-based learning cycle 
(Hmelo-silver, 2004): students first analyzed the problem scenario, then identified the 
knowledge gap needed for solving the problem, and finally generated possible solutions 
through collaboratively building a concept map. Problems were all open-ended, ill-struc-
tured problems that did not have a fixed solution. For example, one CPS activity asked 
the groups to work as a teaching team to design online learning resources for high school 
classes. The online collaboration platform Huiyizhuo (https://www.huiyizhuo.com/) was 
used, which provides functions of text chatting, audio and video communication, concept 
map, note and comment, and resource sharing. In the CPS process, members first commu-
nicated through audio and text chatting, then shared resources and kept communications 
to share knowledge, and finally constructed a concept map to solve problems and propose 
solutions (see Fig.  2). The concept map was used as the main tool for the collaborative 
problem-solving process (Novak & Cañas, 2008).

The analytical framework, procedures, and methods

We proposed and used a three-layered analytic framework to examine the characteristics of 
collaborative patterns during CPS activities (see Fig. 3). AI algorithms were incorporated 
into that framework using multiple learning analytic approaches (e.g., quantitative content 
analysis, clickstream analysis, epistemic network analysis). In Layer 1 of data pre-process-
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ing and analysis, we coded the interactive, cognitive, behavioural, regulative, and socio-
emotional dimensions of CPS (see Table 2). In Layer 2, featuring a multichannel sequence 
analysis (MCSA), we examined the similarity of groups’ CPS sequences in order to detect 
distinct clusters of collaboration patterns. In Layer 3, we used a multi-method approach 
(including statistical analysis, epistemic network analysis, and hidden Markov modeling) 
to further examine the regularities among different types of collaboration pattern clusters 
associated with particular student groups.

Layer 1: data pre-processing and analysis

The screen-capture data (with audio) was transcribed by two researchers in order to docu-
ment temporal patterns in participants’ verbal communications and online behaviours. The 
unit of analysis adopted for the transcription was the sentence (i.e., a full sentence spoken by 

Group Participant Gender Age Status Course
Group 
A

A1 Female 32 Graduated 
student

Distance 
and 
Online 
Education

A2 Male 41 Part-time 
Master 
student

A3 Male 25 Potential 
graduate 
student

Group 
B

B1 Female 24 Full-time 
Master 
student

Distance 
and 
Online 
EducationB2 Female 36 Full-time 

Ed.D. 
student

B3 Male 23 Full-time 
Master 
student

Group 
C

C1 Female 24 Potential 
graduate 
student

Distance 
and 
Online 
EducationC2 Male 31 Full-time 

Ph.D. 
student

C3 Female 27 Full-time 
Master 
student

Group 
D

D1 Female 26 Full-time 
Ph.D. 
student

Online 
Learning 
Analytics

D2 Female 23 Full-time 
Master 
student

D3 Female 23 Full-time 
Master 
student

D4 Female 23 Full-time 
Master 
student

Table 1  Student information 
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a student) and the unit of analysis for the clickstream behaviour was a student’s mouse click 
or mouse movement on the platform). After the transcription, 24 datasets included 11,477 
units of verbal and behaviour data in total (Mean = 478.21; SD = 79.18). Drawing from 
the previous relevant literature, a coding framework was proposed to analyze the group’s 
process data on the interactive, cognitive, regulative, behavioural, and socio-emotional 

Fig. 3  The proposed three-layered analytical framework

 

Fig. 2   A screenshot of a CPS activity on the Huiyizhuo platform
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dimensions (see Table 2). It is worth mentioning that students may exhibit all these five 
dimensions as reflected through both verbal communications and online communication 
within their respective teams. There are two ways to address this multimodal nature of CPS. 
One way is assigning students’ online behaviours to the cognitive and regulative dimensions 
(e.g., creating concepts or building on ideas on a concept map can be coded as the cognitive 
dimension, or moving the mouse to a concept map to observe can be coded as the regulative 
dimension). In this way, the original behavioural dimension is not recorded (see for instance 
in Ouyang & Xu, 2022). The second way is to maintain the behaviour as a separate dimen-
sion from the cognitive and regulative dimensions. Obviously, there is a tradeoff between 
these two strategies in terms of dealing with the overlaps of multiple dimensions during 
the CPS processes. After careful consideration, we decided to adopt the second strategy to 
retain and demonstrate the analysis results of students’ behaviours. This decision is mainly 
driven by our theoretical positioning of CPS processes as complex and synergistic. The 
behavioural codes of online behaviours used are not just behaviour-oriented collaboration 
indicating students work on concept maps, but indirectly involve cognitive and regulative 
processes (see Table 2). With this strategy, more multimodal and complex characteristics 
can be captured, as compared to the first strategy.

Here we further explain the coding framework that includes the interactive, cognitive, 
regulative, behavioural, and socio-emotional dimensions of student groups’ CPS processes 
(see Table 2). The interactive dimension recorded students’ social interactions through peer 
communications and online behaviours of the concept map (Ouyang & Xu, 2022). The 
cognitive dimension analyzed students’ knowledge contributions at the superficial, medium, 
and deep levels (Ouyang & Chang, 2019). The regulative dimension represented students’ 
regulation of their collaborative processes, including task understanding, goal setting and 
planning, as well as monitoring and reflection (Malmberg et al., 2017). The behavioural 
dimension analyzed students’ online behaviours, including resource management, concept 
mapping and observation. The socio-emotional dimension included active listening and 
respect, encouraging participation and inclusion, as well as fostering cohesion during the 
CPS processes (Rogat & Adams-Wiggins, 2015). It is important to note that although these 
theory-driven dimensions are indeed useful to label student interactions, they are proxies 
for tacit learning processes and certain levels of overlap between them are expected. For 
instance, the behavioural dimension, to a certain extent, might reflect the cognitive (i.e., 
KS, KM, KD) and regulative (i.e., MR) dimensions (see Table 2). Therefore, the behav-
ioural dimension in this research not only refers to students’ online behaviours, but may also 
reflect their cognitive and regulative efforts. During the coding process, if one unit included 
multiple dimensions (e.g., both interactive and socio-emotional dimensions in one unit of 
verbal communication), we assigned multiple codes in the corresponding unit. When the 
behavioural unit included the cognitive or regulative dimensions, we not only coded it at the 
behavioural dimension but also further examined the cognitive and regulative attributes of 
online behaviours (see 4.1 in the Results section).

Three raters completed the coding procedure. Rater 1 first coded 30% of the dataset 
based on the proposed coding scheme. Next, rater 2 coded the data again and then partici-
pated in multiple meetings with rater 1 to solve discrepancies. Krippendorff’s (2004) alpha 
reliability was 0.802 among two raters at this phase. Finally, rater 1 completed the coding 
of the rest of the dataset, then rater 3 double-checked the coding results, and consulted with 
rater 1 to decide the final codes if there were any conflicts.
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Layer 2: Multichannel sequence analysis

After data pre-processing and analysis, we applied multichannel sequence analysis (MCSA) 
to examine the similarity of groups’ CPS activities in order to detect types of collaborative 
patterns. MCSA, as a sequence analysis method generated from the field of bioinformatics, 
is used to analyze multiple parallel trajectories (e.g., dimension, status) of time sequences 
simultaneously (Eisenberg-Guyot et al., 2020; Gauthier et al., 2010).

There were three steps for MCSA. In Step 1, the five-dimensional codes were transformed 
into five-channel sequences, and 24 five-channel sequences were created in total. Because 

Table 2  The coding framework
Dimension Code Descriptions
Interactive 
(Ouyang & 
Xu, 2022)

Peer interaction 
through communica-
tions (Int-C)

A student interacted with peers through verbal communication 
(i.e., one student responded to others through audio) and texting 
(i.e., one student replied to others through text)

Peer interaction 
through behaviours 
(Int-B)

A student interacted with peers by building on or modifying oth-
ers’ ideas on the concept map

Cognitive 
(Ouyang & 
Chang, 2019)

Superficial-level 
knowledge (KS)

A student shared existing information about the topic without 
further explanations or elaborations

Medium-level 
knowledge (KM)

A student explained the details of the topic content without further 
elaborations

Deep-level knowl-
edge (KD)

A student explicitly elaborated the details of the topic content with 
detailed explanations, support of resources, statistics or personal 
experiences

Behavioural Resource manage-
ment (RM)

A student searched or shared resources on the platform or through 
the Internet

Concept mapping 
(CM)

A student created, modified, or moved nodes created by himself/
herself in the concept map; CM also indirectly reflected students’ 
cognitive processes, including KS (the first-level node created on 
the concept maps), KM (arguments and explanations added to the 
second level of the concept map), and KD (examples added to the 
concept map to further support the arguments as the third level or 
above)

Observation (OB) A student moved the mouse over the platform to observe without 
any operations; OB also indirectly reflected students’ regulative 
dimension (i.e., monitoring and reflection; MR)

Regulative 
(Malmberg et 
al., 2017)

Task understanding
(TU)

A student read and explained the problems or questions of the 
tasks

Goal setting and 
planning (GSP)

A student discussed the purpose of the task, divided the task into 
specific steps, and planned what to do next

Monitoring and 
reflection
(MR)

A student monitored the progress of tasks, evaluated the timeline 
for completing the task, and summarized what had been done and 
what needed to be done

Socio-emo-
tional (Rogat 
& Adams-
Wiggins, 
2015)

Active listening and 
respect (ALR)

A student conveyed attention to other group members by respond-
ing to peers after careful listening

Encouraging partici-
pation and inclusion 
(EPI)

A student encouraged the sustained involvement and contributions 
of group members

Fostering cohesion 
(FC)

A student conveyed that the group functions as a team (rather than 
as individuals) by working together, referring to the group as “we”

Note. The coding framework clearly describes the codes we used as well as cites the previous literature 
from which the codes were derived
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the CPS activities occurred in an authentic, natural collaborative context, the lengths of the 
24 five-channel sequences were different. We decided not to truncate the sequences in order 
to standardize the length of sequences because we wanted to avoid information loss.

In Step 2, the optimal matching (OM) algorithm was used to calculate and align 24 five-
channel CPS sequences in order to identify similar subsequences across them. In particular, 
the OM algorithm employed Levenshtein distance to measure the alignment between each 
pair of sequences in terms of edit distance (Abbott & Tsay, 2000). Thus, edit distances were 
computed in terms of the transformation steps (insertion, deletion, and substitution) that 
convert one sequence into another. The similarities between sequences were determined 
according to the generalized Hamming distance with user-defined transformation costs. The 
costs for insertion, deletion, and substitution were set to be the same (i.e., 1) in all dimen-
sions to give them equal weight. No cost was set up for substituting missing states since we 
only detected similarities based on the observed trajectories. OM was implemented using R 
packages TraMineR (Gabadinho et al., 2011) and seqHMM (Helske & Helske, 2019).

In Step 3, Ward’s clustering (WC) algorithm was used to cluster CPS activities into types 
with similar collaborative patterns. WC is a hierarchical bottom-up algorithm that computes 
similarities between sequences and clusters them into similarity-based groups (Murtagh 
& Legendre, 2014). WC was chosen because comparing to other clustering methods, it 
produces usable and relatively even-sized clusters. The choice of clusters was based on 
goodness-of-fit statistics, the dendrogram, and the interpretability of the clusters. WC was 
carried out through the R package cluster (Maechler et al., 2015).

Layer 3: Collaborative pattern analysis

In Layer 3, three analytic methods were used to reveal the quantitative, structural, and 
transitional characteristics of the collaborative patterns identified in step 2. First, from a 
quantitative perspective, statistical analysis (SA) was used to analyze the frequency of inter-
active, cognitive, regulative, behavioural and socio-emotional dimensions. Subsequently, a 
one-way analysis of variance (ANOVA) was conducted to test for significant differences 
between clusters.

Second, from a structural perspective, epistemic network analysis (ENA) was performed 
to reveal the inter-connections between patterns within and between the interactive, cogni-
tive, regulative, behavioural, and socio-emotional dimensions. ENA is able to pinpoint and 
enumerate connections among elements in coded data and represent them within dynamic 
network models (Shaffer et al., 2016). An ENA Webkit (epistemicnetwork.org) was used to 
perform ENA analysis and its visualization (Marquart et al., 2018). However, the structure 
did not merely focus on the cognitive dimension, but in fact included all five dimensions.

Third, from a transitional perspective, a probabilistic approach referred to as hidden Mar-
kov modeling (HMM) was used to describe Markov Chains incorporating implicit parame-
ters, detect latent processes with some number of hidden states, and find expected transition 
patterns between hidden states (Eddy, 1996). Compared to other algorithms for dynamic 
analysis (e.g., dynamic Bayesian networks), the advantage of the HMM is its ability to 
compress observed sequence data into simpler representations using hidden states (i.e., in 
our case the latent states are assumed to represent collaboration stages). HMMs capture 
the dynamic changes between states, which are implicit within the observed sequences and 
therefore unobserved (Eddy, 1996; Felsenstein & Churchill, 1996; Fine et al., 1998). The 
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R package seqHMM (Helske & Helske, 2019) was used to induce HMMs over clusters of 
sequences. In particular, a separate HMM was created and fitted for each type of collabora-
tion pattern detected. The dataset included 15,750 codes for Type 1, 32,130 codes for Type 
2, and 13,000 codes for Type 3. For each type, we set the desired number of states (between 
2 and 9) for the target HMM, determined based on tuning for best fit. The expectation-max-
imization (EM) algorithm was used to estimate parameters through the process of fitting the 
HMM models. In order to reduce the risk of locally optimal solutions, the best fitting HMM 
was selected out of 100 runs with the R package seqHMM, each using a different random 
seed. The Bayesian information criterion (BIC) as the measure of fit used for choosing the 
optimal number of hidden states in each HMM, where lower values indicate better fit.

As a final performance measure, a validated assessment framework (Novak & Cañas, 
2008) was utilized to evaluate each group’s concept map data (see Table 3). The assessment 
included three dimensions, i.e., proposition, hierarchy, and example. Proposition refers to 
the basic themes and concepts associated with the topic (a meaningful proposition received 
1 point); hierarchy refers to the hierarchical structure of a concept map based on connec-
tions between themes and concepts (an effective hierarchy received 5 points); and example 
refers to the use of an example to illustrate the corresponding themes and concepts (a valid 
example received 1 point). The final score of a concept map was the sum of scores across 
these three dimensions. Two raters evaluated each concept map individually and reached an 
interrater reliability of Krippendorff’s (2004) alpha value of 0.912. After consulting with the 
first author, the final scores were confirmed.

Results

After Layer 1 of pre-processing and analysis, five dimensions (i.e., interactive, cognitive, 
regulative, behavioural, and socio-emotional) were coded for each CPS activity and trans-
formed into 24 five-channel sequences. The optimal clustering results generated from Layer 
2 revealed three types of collaborative patterns, consisting of 5, 14, and 5 CPS activities for 
Type 1, Type 2, and Type 3, respectively (see Figs. 4 and 5). As we can see from Figs. 4 
and 24 datasets were generated from four groups (Groups A, B, C, and D), the distribution 
of four groups in the three types was relatively equal. Regarding the final performances of 
collaborative concept maps, although there was no statistical difference identified with the 

Dimension Description Scoring rules
Proposition Did the concept map reflect 

basic themes and concepts? Was 
the relationship between topics 
correct and appropriate?

Each mean-
ingful idea, 
concept, or 
argumentation 
received 1 point

Hierarchy Did the concept map show a 
certain hierarchy? Was each 
subordinate concept more spe-
cific than the previous one?

Each effective 
hierarchical 
structure re-
ceived 5 points

Example Did examples in concept maps 
reflect their corresponding 
themes, concepts, or labels? 
Were examples used effectively 
and properly?

Each appropri-
ate example or 
provided piece 
of evidence 
received 1 point

Table 3  Assessment of concept 
map. (adapted from Novak & 
Canas, 2008)
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ANOVA tests, Type 2 had the highest score of concept maps (Mean = 105.29, SD = 33.64), 
followed by Type 1 (Mean = 92.60, SD = 23.67), and Type 3 (Mean = 77.60, SD = 28.18). In 
summary, Type 1 was associated with medium-level performance, Type 2 was associated 
with high-level performance, and Type 3 was associated with low-level performance.

From a quantitative perspective

ANOVA with the Bonferroni correction was conducted to test for significant differences 
between the three types on the five dimensions. Before ANOVAs, Levene tests were con-
ducted; and the results confirmed the homogeneity of variance. Moreover, a series of post-
hoc pairwise comparisons were conducted to further reveal significant differences between 
types (see Table 4). Considering that some data (e.g., TU, RM, OB, and EPI) were not nor-
mally distributed, a non-parametric test was conducted to cross-check the ANOVA results. 
The results showed that there were significant differences in the frequency of Int-B, KS, KM, 
TU, RM, CM, and OB (p < .05) with a Bonferroni correction using the Kruskal-Wallis test. 
Specifically, there were statistically significant differences between the three types along the 
behavioural dimension (RM, CM, OB). Regarding the main behaviours of concept mapping 
(i.e., CM), Type 1 ranked first among the three types, followed by Type 2 and Type 3. CM 
indirectly reflected students’ cognitive engagement (i.e., KS, KM, and KD) when creating 
and editing nodes in the concept maps (Type 1: KS: Mean = 9.40, KM: Mean = 18.80, KD: 
Mean = 61.40; Type 2: KS: Mean = 7.64, KM: Mean = 16.07, KD: Mean = 51.14; Type 3: 
KS: Mean = 4.00, KM: Mean = 9.60, KD: Mean = 17.20). In Type 3, more OB behaviors 
(Mean = 146.8, SD = 53.38) were detected than interactive behaviors (RM: Mean = 20.6, 

Fig. 4  Ward’s clustering results for 24 CPS sequences
Note: In Type 1, no. 1 was Group D, no. 8 and 14 was Group B, no. 10 and 16 was Group A; In Type 2, 
no. 2, 3, 4, 5 were Group D, no. 6, 11 were Group B, no. 7, 9, 12, 15, 21 was Group C; no.13, 19, 22 was 
Group A; In Type 3, no. 17, 20, 23 was Group B, no. 18, 24 was Group C.
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SD = 13.70; CM: Mean = 42.2, SD = 7.19). Moreover, OB, to some extent, also reflected stu-
dents’ monitoring of others’ operations in the regulative dimension. Moreover, on the inter-
active dimension, statistical significance was found on Int-B, where Type 1 had the highest 
frequency, followed by Type 2 and Type 3; but no significant difference was found on Int-C, 
where all three types had a high level of Int-C. On the cognitive dimension, significant dif-
ferences were found on KS (Type 2 > Type 1) and KM (Type 3 > Type 1, Type 3 > Type 2), 
except KD (all three types had a low level of KD). On the regulative dimension, significant 
differences were found on TU (Type 1 > Type 2, Type 1 > Type 3), while no significant dif-
ference was found on GSP and MR. In addition, no significant difference was found in the 
socio-emotional dimension, possibly due to sparsity. We thus concluded that in general there 
were different collaborative patterns among the three types.

From a structural perspective

From a structural perspective, three types were characterized by a representation indicating 
the connection values and the locations of the centroid of the ENA plots (see Fig. 6). First, 
representations of the regularities represented by each type were constructed using three 
pairs of connected codes (connection values > 0.40). They were Int-C – KM, Int-C – OB, 

Fig. 5  Three types of collaborative patterns from optimal clustering results
Note: Each channel represents how the codes of a dimension change over time. Specifically, the first chan-
nel (yellow) represents the interactive dimension (Int-C and Int-B); the second channel (pink) represents 
the cognitive dimension (KS, KM, and KD); the third channel (blue) represents the regulative dimension 
(GSP, MR and TU); the fourth channel (green) represents the behavioural dimension (CM, OB, and RM); 
the fifth channel (orange) represents the socio-emotional dimension (ALR, EPI, and FC). The blank part 
indicates that no code was generated.
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Table 4  Results of frequencies and one-way ANOVAs of the three types
Type 1
(n = 5)

Type 2
(n = 14)

Type 3
(n = 5)

Post-hoc 
pairwise 
comparison

Code Mean (SD) Mean (SD) Mean (SD) ANOVA
F p

Interactive
Int-C 215.20 

(103.38)
213.93 (67.91) 239.60 (60.72) 0.23 > 0.10

Int-B 176.20 ( 
19.83)

105.43 (42.95) 52.40 (20.98) 14.91 < 0.001*** Type 1 > Type 
2 > Type 3

Cognitive
KS 23.60 (17.95) 56.36 (21.68) 39.60 (13.72) 5.43 < 0.05 ** Type 2 > Type 

1
KM 54.20 (32.51) 59.14 (27.25) 105.00 (29.73) 5.36 < 0.05 ** Type 3 > Type 

1, Type 
3 > Type 2

KD 17.40 (12.74) 20.64 (16.09) 11.60 ( 5.41) 0.77 > 0.10
Regulative
TU 28.80 (12.76) 7.36 ( 6.34) 11.00 ( 6.36) 13.44 < 0.001*** Type 1 > Type 

2, Type 
1 > Type 3

GSP 49.60 (21.95) 46.71 (23.88) 70.40 (27.32) 1.80 > 0.10
MR 39.80 (18.90) 24.50 (17.30) 31.40 (10.43) 1.63 > 0.10
Behavioural
RM 20.20 (17.66) 6.86 ( 7.77) 20.60 (13.70) 4.04 < 0.05 ** Type 1 > Type 

2, Type 
3 > Type 2

CM 160.80 
(37.31)

97.36 (34.18) 42.20 ( 7.19) 17.67 < 0.001*** Type 1 > Type 
2 > Type 3

OB 154.20 
(75.62)

54.29 (26.77) 146.80 (58.38) 12.41 < 0.001*** Type 1 > Type 
2, Type 
3 > Type 2

Socio-emotional
ALR 35.00 (11.64) 36.43 (13.30) 35.00 (13.51) 0.04 > 0.10
EPI 24.80 (24.66) 19.64 (15.55) 10.80 ( 5.45) 0.94 > 0.10
FC 36.40 (23.42) 28.29 (20.41) 32.40 (18.80) 0.30 > 0.10
Note. * p < .10, ** p < .05, *** p < .001
For simplicity, although the cognitive and regulative dimensions were reflected in patterns of online 
behaviours, the details of the results related to cognitive (KS, KM, and KD) as well as regulative (MR) 
dimensions were only described in the text and not shown in Table 4.
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and Int-C – Int-B. The socio-emotional dimension was weakly associated with other codes 
(connection values < 0.40) in the representations associated with each of the three types.

Fig. 6  The epistemic network analysis of the three types of collaboration patterns
The colours of the codes are not automatically generated through ENA Webkit, but set manually by research-
ers according to the code colour

Different characteristics were identified among the three types of collaboration pattern 
clusters, reflected by the respective locations of the centroid in each epistemic network 
(shown as red circles in Fig.  6). For Type 1, the centroid of the epistemic network was 
located at the upper left corner, focusing on the behaviour-related codes (including OB, 
CM, and Int-B). The connection between Int-B and OB was 0.74; the connection between 
Int-B and CM was 0.72; and the connection between OB and CM was 0.69. For Type 2, 
the centroid was located at the bottom of the epistemic network, focusing on the behaviour 
and communication-related codes (including CM, KM, KS, Int-B, and Int-C). The connec-
tion between Int-B and Int-C was 0.71; the connection between Int-C and CM was 0.67; 
the connection between Int-C and KM was 0.62; the connection between Int-C and KS was 
0.61; and the connection between Int-B and CM was 0.60. For Type 3, the centroid of the 
epistemic network was located on the right side, mainly focusing on communication-related 
codes (including KM, GSP, and Int-C). The connection between Int-C and OB was 0.90; the 
connection between Int-C and KM was 0.73; and the connection between Int-C and GSP 
was 0.59. In summary, Type 1 concentrated on the behaviour-related codes; Type 2 focused 
on both communication-related and behaviour-related codes, and Type 3 concentrated on 
the communication-related codes.

From a transitional perspective

From a transitional perspective, similar characteristics among the three types of collabora-
tion pattern clusters were observed in the HMM results. Specifically, a 5-state HMM of 
Type 1, a 7-state HMM of Type 2, and a 5-state HMM of Type 3 were selected based on fit, 
where the lowest values for BIC are preferred (see Table 5; Fig. 7, and Fig. 8). Among the 
HMM results, a regular transition pattern was observed such that communication (State 1 in 
Type 1, 2, 3), moved to behaviour (State 2 in Type 1, 3 and State 2, 4 in Type 2), and finally 
returned to communication (State 3, 4 in Type 1, 3 and State 5, 6 in Type 2) (see Table 5; 
Fig. 7).
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Note  HMMs are shown as directed graphs, where the pies represent hidden states and the 
slices show the probabilities of observed states within each hidden state. Observed states are 
shown as labels, which represent the codes observed at the same time from five dimensions 
(probabilities > 0.05 is shown). The arrows indicate transition probabilities between the hid-
den states; the thicker the arrow, the higher the probability. No code is detected when no 
code is generated across all five dimensions.

A regularity was detected in the transition patterns such that where Type 1 was characterized 
as a behaviour-oriented transition, Type 2 was characterized as a communication-behav-
iour-synergistic transition, and Type 3 was characterized as a communication-oriented 
transition. In Type 1, groups were more likely to transition from other states to the behav-
iour-related states (State 2, 4) (see Fig. 7). Additionally, states related to peer communica-
tions (State 1, 3) were short and infrequent, while states of peer behaviours (State 2, 4) were 
long and frequent (see Fig. 8). In Type 2, students had a high probability of transitioning 
to State 4 and State 6, which included both communication-related and behaviour-related 
codes. Except for State 3 and State 4, each state in Type 2 shared a balance of time and 
frequency across the CPS processes. In Type 3, groups had the highest probability of tran-

Hid-
den 
state

Type 1 Type 2 Type 3

1 Students com-
municated with 
each other

Students interacted 
with each other through 
communication and 
behaviours

Students com-
municated with 
each other and 
sometimes 
observed

2 Students oper-
ated the concept 
map together 
and sometimes 
observed

Students operated the 
concept map together 
while sometimes 
observing others or 
communicating with 
each other

Students 
observed oth-
ers, sometimes 
communicated 
with each other, 
operated the 
concept map, 
or managed 
resources

3 Students 
constructed 
knowledge 
through peer 
communication

Students communicated 
with each other to set 
goals and plans

Students 
constructed 
knowledge 
through peer 
communications

4 Students mainly 
operated the 
concept map and 
sometimes com-
municated with 
each other

Students operated and 
modified the concept 
map and sometimes 
observed others

Students com-
municated with 
each other and 
sometimes 
observed

5 Collaboration 
ended

Students communicated 
with each other

Collaboration 
ended

6 Students interacted 
with each other through 
communication and 
behaviours

7 Collaboration ended

Table 5  Descriptions of hidden 
states in HMMs of the three 
types
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sitioning to a communication-related state (State 3). States dominated by peer communica-
tions (State 1, 3) were long and frequent, while states dominated by peer behaviours (State 
2, 4) were short and infrequent.

Fig. 8  Most probable HMM paths among the three types

 

Fig. 7  HMM graphs of the transitional structures among the three types
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Discussion

Addressing research questions

Due to the complexity of CPS (Amon et al., 2019; Jacobson et al., 2016; Stahl & Hakkara-
inen, 2021), unimodal data and traditional statistics may be limited for holistically mod-
elling it (Ouyang et al., 2022). This research collects multimodal data, including speech, 
screen-capture recordings, and concept map data, and proposes a three-layered analytical 
framework integrating learning analytics and AI algorithm-driven methods to investigate 
the collaboration patterns of groups working through an online collaboration platform. 
Compared to previous studies, this approach proposes a multilayered approach to better 
understand the complex nature of CPS from an organic, nonlinear, and holistic perspective 
that is aligned with the complex adaptive systems theory (Vogler et al., 2017; Zuiker et al., 
2016). To answer the research questions, three types of collaborative patterns were detected 
with different levels of the final concept map performance: Type 1 was characterized as a 
behaviour-oriented collaborative pattern and associated with medium-level performance, 
Type 2 was characterized as a communication-behaviour-synergistic collaborative pattern 
and associated with high-level performance, and Type 3 was characterized as a communi-
cation-oriented collaborative pattern and associated with a low-level performance. More 
importantly, the attributes of the three types were together demonstrated through the quan-
titative frequency, structural, and transitional aspects as the results showed. Regarding the 
behaviour of concept mapping (i.e., CM), Type 1 ranked first among the three types, fol-
lowed by Type 2, and Type 3. Since the complexity of CPS, the cognitive dimension was 
also reflected through students’ online behaviours as knowledge sharing and construction 
during the concept mapping process, which partially explained the relations between the 
groups’ behaviours and final performances. For example, Type 3 had the lowest level of 
cognitive engagement (KS, KM, and KD) through online behaviours, which also resulted in 
the lowest score of the final performance among the three types. The ENA and HMM results 
also indicated different characteristics of the three types. For example, Type 2 shared strong 
connections between communication-related and behaviour-related codes with a commu-
nication-behaviour-synergistic transition; Type 1 generated strong connections only within 
the behaviour-related codes with a behaviour-oriented transition; Type 3 generated strong 
connections only within the communication-related codes with a communication-oriented 
transition. Overall, this research revealed three types of collaborative patterns in CPS as 
well as their characteristics to further verify the multimodality, dynamics, and synergy of 
the CPS process.

Theoretical implications: the complexity of collaboration

The complexity theory, as an emerging paradigm in educational research (Morrison, 2002), 
looks at and examines the educational system in ways that break with the simple cause-and-
effect models, linear modelling, and regression and replaces them with organic, non-linear, 
and holistic approaches (Cohen et al., 2013). The recently published international handbook 
of computer-supported collaborative learning calls for the application of AI algorithm-based 
models to model complex systems and learner self-organization for collaboration at various 
scales (Cress et al., 2021). From the perspective of complex adaptive systems theory, CPS 
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is a complex phenomenon, in which group members interact with each other, the learning 
environment, or the knowledge artifacts adaptively to form a group-level, collaborative pat-
tern and collective intelligence (Jacobson et al., 2016). This research provides a new method 
to explain the emergence of a self-organizing system during the CPS process by integrating 
AI algorithms with learning analytics and various modalities of data to analyze multimodal, 
dynamic, and synergistic characteristics of collaboration.

First, the results demonstrated the multimodal characteristics of collaborative learning, 
reflected by the interactive, cognitive, regulative, behavioural, and socio-emotional dimen-
sions, which formed the foundation for the emergence of an adaptive, self-organizing sys-
tem as observed within Markov models’ distinctive state-transition patterns associated with 
different types. Consistent with previous studies (e.g., Ouyang & Chang, 2019; Park et al., 
2015), we found that groups’ peer interactions were primarily reflected in students’ verbal 
communications, and the cognitive and regulative dimensions were closely related to peer 
interactions via verbal discourses. In other words, active peer communications formed a 
foundation for deep-level knowledge construction and group regulation (Zemel & Kos-
chmann, 2013). On the behavioural dimension, collaborative patterns with high and medium 
performance had more active behaviours (i.e., concept mapping, and resource management), 
while low performing patterns were associated with more passive behaviours (i.e., observa-
tion). In addition, the cognitive dimension was also reflected in students’ online behaviours 
as knowledge construction in concept mapping, which might partially explain the relations 
between groups’ behaviours and final performance. For example, our results showed that 
Type 3 had the lowest level of knowledge construction through students’ online behaviours, 
which also resulted in the lowest collaborative performance among the three types. More-
over, more deep-level knowledge was generated through concept mapping behaviours than 
verbal communications. Therefore, in the multimodal CPS process, we are able to infer that 
online behaviour might play a critical role in transforming students’ superficial-level and 
medium-level knowledge in verbal discourse into a deep-level knowledge co-construction 
(Ouyang & Xu, 2022). However, inconsistent with previous studies that highlighted the role 
of social emotions (e.g., Kwon et al., 2014; Rogat & Adams-Wiggins, 2015), no signifi-
cant difference was found between collaborative patterns on the social-emotional dimen-
sion. Apart from that, the socio-emotional dimension was weakly-connected with other 
dimensions. One of the potential reasons is that there may be a cultural aversion to students 
expressing their social emotions during collaboration (Zhang, 2007, 2013). These results 
indicate the complex connections between multiple dimensions emerging into the multimo-
dality of CPS, which in turn influences the collaborative outcomes of group interactions.

Second, the dynamic characteristics uncovered how an adaptive, self-organizing sys-
tems emerged within groups during the CPS processes as observed in Markov models’ dis-
tinct states for each type of pattern. When confronted with a new problem, groups tended 
to discuss it together to understand the task and set a specific goal (i.e., communication 
state). Initial verbal communications in this stage helped groups of students adapt to the 
social-collaborative environment and become familiar with their group members, which is 
beneficial to transitioning students into active collaborators (Kwon et al., 2014). However, 
less cognitive engagement was found in the initial communication stage. Since meaningful 
knowledge construction belongs to a relatively higher level in CPS, it might require more 
complex factors (Roschelle & Teasley, 1995). It might also appear based on enough peer 
interaction and the feeling of safety and collaboration (Schindler & Bakker, 2020; Zemel & 
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Koschmann, 2013). After that, some students started operating concept maps or managing 
resources, and others kept observing (i.e., behaviour state). In this stage, students’ cognitive 
engagement and metacognitive regulation are mainly reflected through their online behav-
iours and sometimes presented by means of verbal communication. When new difficulties 
or bottlenecks appeared, students would suspend their work in order to make time to discuss 
it again and reflect on how to solve the problems (i.e., communication state). This research 
demonstrated how groups evolved through the developmental stages (i.e., from communi-
cation to behaviour and back to communication) to adapt to the ongoing changes in collabo-
ration demands and finally form a self-organizing system with relatively stable states and 
their associated transition probabilities.

Third, as one of the keys to succeed in forming an adaptive, self-organizing system dur-
ing collaboration, the synergistic characteristics were embodied in groups’ coordination 
between communication and behaviour. Similar to previous studies (e.g., Amon et al., 2019; 
Ramenzoni et al., 2012; Wiltshire et al., 2019), these findings indicated that high-perform-
ing groups (i.e., Type 2) gave rise to synergistic collaboration across verbal discourses and 
online behaviours in order to adapt to the shifting task demands. However, considering 
the external factors (e.g., task difficulty, group configuration, social learning context), it 
is challenging for all groups to collaborate synergistically and to achieve a high quality 
of collaboration. For example, the medium-performing groups (i.e., Type 1) were more 
likely to involve online behaviours (e.g., concept mapping) to drive CPS activities, while 
the low-performing groups (i.e., Type 3) were more likely to conduct CPS activities through 
verbal discourses. Furthermore, the ENA connection values were relatively stronger in Type 
1 and Type 3 than in Type 2, which to some extent verified the difficulty of achieving a 
high-quality synergy between communication and behaviour in the CPS processes. Overall, 
this research highlights the complex characteristics of collaborative learning, which further 
argue for multi-dimensional, multi-level, and multi-perspective analytical approaches to 
collaborative learning research (Cohen et al., 2013; Jacobson et al., 2016; Morrison, 2002). 
This research builds a bridge between the complex adaptive systems theory and analytics 
of collaborative learning to guide future empirical studies in the CSCL field that would take 
similar approaches to the investigation of students’ group interactions.

Analytical implications

Since collaborative learning is a complex, adaptive process, this research extends investiga-
tions on using AI-driven learning analytics to understand multimodal, dynamic, and syner-
gistic characteristics of groups’ collaborative patterns during a complex collaborative task. 
On the one hand, multimodal data collection and analysis are suggested for the investigation 
of complex educational phenomena and problems (Cukurova et al., 2020; Michail Gianna-
kos, Roberto Martinez-Maldonado; Stahl & Hakkarainen, 2021; Vogler et al., 2017). Recent 
research has used multimodal data (e.g., speech rate, gesture, body movement, eye move-
ment) to examine the collaboration patterns and characteristics in CSCL, which can comple-
ment analysis results from traditional discourse, online content, and product data (Amon 
et al., 2019; Blikstein, 2013; Mu et al., 2020). More importantly, due to the complexity of 
CPS, the multiple dimensions (e.g., interactive, cognitive, regulative) might be reflected 
through communication and the behaviour of collaboration. For example, the behaviours in 
this research also indirectly reflected the cognitive engagement and metacognitive regula-
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tion of the groups of students during the CPS processes. On the other hand, this research 
verified that the AI algorithm-enabled learning analytics and data mining approach can help 
to reveal complex characteristics of CPS from quantitative, structural, and transitional per-
spectives. Compared to traditional learning analytics methods, the integration of learning 
analytics approaches and algorithm-enabled methods can better process multimodal and 
nonlinear data in order to extract and represent the complex and dynamic structure of CSCL 
(de Carvalho & Zárate, 2020). For example, HMMs have the potential to capture the stable, 
distinct states of CPS as well as dynamic movements between and within them, which 
has the particular ability to reveal the adaptive, self-organizing character of collaborative 
learning. Furthermore, advanced AI algorithms (e.g., multidimensional recurrence quanti-
fication analysis, natural language processing, genetic programming) have been applied in 
CSCL to analyze and reveal the complexity and dynamics of collaboration (Amon et al., 
2019; de Carvalho & Zárate, 2020; Hoppe et al., 2021; Sullivan & Keith, 2019). Future 
work can further integrate these advanced AI algorithms with learning analytics and data 
mining to reveal the multilevel, multidimensional characteristics of CSCL. There is a call 
for the application of technological advances (such as machine learning) to foster real-time 
feedback and assessment of group work, identify collaboration patterns to effectively guide 
productive collaboration, and accurately predict collaborative outcomes (Amon et al., 2019; 
Eloy et al., 2019; Xu & Ouyang, 2022).

Pedagogical implications

CPS is a complex process that is unlikely to follow a particular model of linear sequences of 
actions. Therefore, during the CPS process, instructors should provide dynamic scaffolding 
as well as adaptive support to promote students’ collaboration. First, instructors can pro-
vide different scaffolding to enhance groups’ collaboration quality based on the multimodal 
characteristics of CPS. For example, the foundational role of active communications was 
reinforced by the research results, therefore, instructors are able to regulate group commu-
nications through metacognitive scaffoldings (e.g., monitor and stimulate student tasks) to 
foster students’ cognitive and regulative engagement (Ouyang et al., 2021; Van Leeuwen 
et al., 2015). In addition, due to the weak connection with the socio-emotional dimension 
as indicated above, the instructor’s social support, such as encouragement and affirmation, 
might ease the atmosphere and mobilize students’ social emotions (Ouyang & Scharber, 
2017; Ouyang et al., 2020). Second, instructors are supposed to provide flexible and change-
able support (Park et al., 2015; Van de Pol et al., 2010) in terms of student groups’ dynamic 
evolvement in CPS (i.e., from communication to behaviour and back to communication) 
we detected in the current study. To be specific, in the initial stage, instructors can regulate 
students to organize discussion about the topic; in the middle stage of online operation, 
instructors can reduce intervention, observe students, and provide specific support accord-
ing to the particular needs of the group; in the latter stage, instructors can guide students 
to solve problems through information relevant to the topic (Kaendler et al., 2015; Ouyang 
& Xu, 2022; Van Leeuwen et al., 2015). Third, it is challenging to achieve the high-quality 
synergy between communication and behaviours of student groups. Thus, instructors should 
pay attention to groups’ inactive moments in verbal communication or online behaviour to 
foster synergistic meaning co-construction (Barron, 2000; Brown et al., 1989; O’Donnell 
& Hmelo-Silver, 2013). When students only focus on the discussion and neglect operating 
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the task, the instructor can remind them to return to online operations to drive the task; 
when students lack enough communication, instructors can guide them to discuss the topics 
together. Taken together, from a pedagogical perspective, instructors should be aware of 
groups’ dynamic and synergistic status, and support their work appropriately with varied 
scaffoldings to promote students’ CPS.

Limitations and future directions

There were four major limitations in the current research. The first limitation of this research 
is the sample size of student groups (4 groups generated 24 collaborative activities), with 
a limited range of demographic backgrounds. The small sample size might be a reason for 
causing the insignificant differences in the final concept map products. Therefore, future 
empirical research needs to expand the sample size and experiment with different courses to 
test, validate, or modify the implications. The second limitation is that we do not control the 
instructor’s participation during the CPS processes. The instructor occasionally participated 
in the collaboration to provide social, cognitive or regulatory support, which might influ-
ence students’ collaborative patterns. Due to the authentic and natural instructional context, 
we cannot control all external factors in the CPS processes; in the future, a quasi-experi-
mental approach can be considered to compare collaborative patterns occurring in two con-
trasting conditions. The third limitation is that we only collected students’ communication 
discourse and online behaviours to analyze the CPS processes. There are complex, interre-
lated connections between dimensions. For example, a student’s operation on a concept map 
is coded as the behavioural dimension in the current study, which also involved cognitive 
and regulative dimensions (e.g., searching for information). Detailed analytics are needed to 
further uncover complex interrelationships. Moreover, due to the complexity of CPS, other 
modalities of data (e.g., physiological, and eye tracking data) might provide further insights 
into CSCL processes. Finally, regarding the AI algorithms, we only used HMMs to detect 
the temporal patterns in the collaborative process, which might not be the most efficient and 
accurate algorithm-enabled method. However, this is a significant initial attempt, consider-
ing that HMMs have rarely been applied to multichannel social sequence data, especially in 
the field of education. Future work is encouraged to apply various AI algorithms to compare 
the relative efficiency and accuracy they might achieve. In addition, other machine learning 
techniques can be used to guide real-time feedback and predictions of collaboration patterns 
and outcomes.

Conclusion

Complex adaptive systems theory emphasizes using a multidimensional, microscopic, and 
nonlinear perspective to explore the complex components and their interactions in a system 
(Byrne & Callaghan, 2014; Holland, 1996). Because of the complex and adaptive charac-
teristics of the processes involved, CSCL research calls for multi-dimensional, multi-level, 
and multi-perspective analytical approaches. Addressing the call, this research integrates 
AI algorithms with learning analytics and various modalities of data to analyze multimodal, 
dynamic, and synergistic characteristics of collaborative problem-solving. Our findings ver-
ify that the method proposed here can indeed be valuable for explorations of CPS from the 
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complex adaptive systems theory perspective, leading to significant theoretical, analytical, 
and pedagogical implications.
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