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Abstract

The increasing use of digital learning tools and platforms in formal and informal
learning settings has provided broad access to large amounts of learner data, the
analysis of which has been aimed at understanding students’ learning processes,
improving learning outcomes, providing learner support as well as teaching. Present-
ly, such data has been largely accessed from discussion forums in online learning
management systems and has been further analyzed through the application of social
network analysis (SNA). Nevertheless, the results of these analyses have not always
been reproducible. Since such learning analytics (LA) methods rely on measurement
as a first step of the process, the robustness of selected techniques for measuring
collaborative learning activities is critical for the transparency, reproducibility and
generalizability of the results. This paper presents findings from a study focusing on
the validation of critical centrality measures frequently used in the fields of LA and
SNA research. We examined how different network configurations (i.e., multigraph,
weighted, and simplified) influence the reproducibility and robustness of centrality
measures as indicators of student learning in CSCL settings. In particular, this
research aims to contribute to the provision of robust and valid methods for measuring
and better understanding of the participation and social dimensions of collaborative
learning. The study was conducted based on a dataset of 12 university courses. The
results show that multigraph configuration produces the most consistent and robust
centrality measures. The findings also show that degree centralities calculated with
the multigraph methods are reliable indicators for students’ participatory efforts as
well as a consistent predictor of their performance. Similarly, Eigenvector centrality
was the most consistent centrality that reliably represented social dimension, regard-
less of the network configuration. This study offers guidance on the appropriate
network representation as well as sound recommendations about how to reliably
select the appropriate metrics for each dimension.
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Introduction

Research in computer-supported collaborative learning (CSCL) focuses on learning processes
that take place through group practices and interactional processes mediated by computers
(Stahl et al. 2014a, b). CSCL typically promotes collaboration where students can share,
discuss, and exchange ideas via, for example, text-based discussion boards (Dillenbourg et al.
2009; Stahl et al. 2014; Weinberger and Fischer 2006). In many constructivist pedagogical
approaches, including problem-based learning, students are expected to make joint decisions,
negotiate roles, as well as regulate and modify learning strategies and group work through
dialogue (Hennessy and Murphy 1999), which relates to the important participation and social
dimensions of collaborative learning. Yet, organization of dynamic collaborative learning
imposes several challenges and problems, especially in terms of the group dynamics and
formation (Kreijns et al. 2013; Naykki et al. 2014). To be able to address these challenges, we
need to better and more accurately understand various aspects of CSCL, and the present
advances in the fields of learning analytics and social network analysis have proven to be
valuable in this regard.

Scholars posit that the collaborative learning process in CSCL settings is a complex
knowledge construction process that can be analyzed along several dimensions. For example,
Kreijns et al. (2013) suggest that collaborative learning has both a cognitive dimension (e.g.,
acquisition of knowledge and skills) as well as a socioemotional dimension that underlies these
cognitive processes (e.g., group interactions and dynamics). In other words, stimulating and
building valuable as well as sound relationships serves as a catalyst for students’ cognitive
gains. Others have operationalized collaborative learning through the following four dimen-
sions: the participation dimension, the argumentative dimension, the epistemic dimension and
the dimension of social modes of co-construction (Weinberger and Fischer 2006). While many
studies involving the use of text-based discussion forums have examined argumentative and
epistemic dimensions of collaborative learning (Fu et al. 2016), this study aims to contribute to
a deeper understanding of the participation and the social dimensions and in particular, to the
validation and reproducibility of the (computational) centrality methods to measure, under-
stand, and reliably represent these dimensions of collaboration. This is critical, since the
reproducibility of research findings regarding centrality measures is a problem stressed by
many scholars (for more, see Sections 2.3 & 2.4).

As the effectiveness of CSCL depends both on participant and idea interaction, under-
standing of both the participation and the social dimensions is essential for creating good
conditions that facilitate productive knowledge co-construction among students (Hong et al.
2010). To uncover the complex dynamics of these dimensions, this study takes advantage of
the recent advances in: (1) the learning analytics (LA) field, which refers to the “measurement,
collection, analysis and reporting of data about learners and their contexts, for purposes of
understanding and optimizing learning and the environments in which it occurs” (Siemens
and Long 2011, p. 34), and (2) social network analysis (SNA). In the context of CSCL,
advances in SNA and LA have provided new tools to explore the collaborative learning
processes by tracking, collecting, analyzing, and reporting data about how a student contrib-
utes to the joint activities, externalizes their own ideas, comments on and responds to peers
(i.e., the participation dimension) and builds on the ideas and contributions of others in
knowledge co-construction (i.c., the social dimension) (Berland et al. 2014; Fincham et al.
2018; Gasevi et al. 2015; Schneider and Pea 2014) Such improved understanding of the both
dimensions provides researchers, teachers and students with fundamentally new, data-driven
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ways to: (1) view and support the critical phases of collaborative learning, (2) find evidence of
critical moments of success or failure, and finally, and (3) to act upon this information to
improve conditions for learning and collaboration (Noroozi et al. 2019).

The use of SNA in combination with LA requires researchers to make several critical
decisions with respect to selected techniques for accurately measuring complex dynamics of
participation and social interaction. However, despite the critical importance of using validated
methods to measure collaborative learning, only few LA research studies have hitherto
addressed the validity of the employed methods (see, e.g., Kovanovic et al., 2015; Fincham
et al. 2018). Given the significance of the participation and the social dimensions of collab-
orative learning, this study seeks to extend the work on methodological choices by focusing on
the validation of centrality measures (i.e., outdegree, indegree, closeness, betweenness and
eigenvector centralities) in CSCL settings.

The study aims to answer the following research questions:

How do different network configurations influence the reproducibility and robustness of
centrality measures as indicators of student learning in collaborative learning settings?

What are the most robust centrality measurements that are least sensitive to different
network configurations?

What are course network structural factors that could explain the variability of findings?

This article starts by discussing the concept of centrality measures and how they have been
operationalized to indicate students’ participatory efforts, to identify roles, predict learning
gains, as well as monitor interactivity. Then, it presents a review of the issues with current
methods and discusses how different network configurations influenced the reproducibility
and robustness of centrality measures as indicators of student learning. The article concludes
by arguing that the accurate representation of SNA centrality measures is vital for facilitating
students’ participation and interaction, and also for understanding of the complex dynamics
and patterns of participation in productive knowledge construction.

Background

Several studies have sought to automate the analysis of CSCL using computational methods.
One such method is interaction analysis, which offers analysis of students’ posting behavior,
comparative statistics or visualizations (e.g., Martinez-Monés et al. 2011; Rodriguez-Triana
et al. 2013). SNA is another computational method that has been similarly implemented to
analyze the participatory and the social dimensions of CSCL through indicators known as
centrality measures. These measures have been used to: indicate students’ participatory efforts,
monitor engagement, identify participatory roles (e.g., active, coordinators and isolated) or
forecast learning gains. In the next sections, we will discuss the concept of centrality measures
and how they have been operationalized to explain the participatory and social dimensions of
CSCL. Finally, we conclude by discussing why methodical refinement is needed, and why the
existing methods are insufficient.

The concept of centrality measures
Centrality is a concept used to indicate the importance, relevance, or value of an actor (e.g., the
learner or the teacher) in a network It is computed from network representations using

mathematical formulae. The concept of centrality was applied to human communications
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and dates back to late 1940s at MIT, where Bavelas and his colleagues studied the association
between structural position and influence in group processes (Bavelas 1948). In his seminal
article, Freeman (1978) stresses that an important actor in a network has more connections
(i.e., higher degree centrality), can reach others (i.e., higher closeness centrality), and connects
between others (i.e., high betweenness centrality). Since the concept of value or relevance may
have different meanings in different learning settings, there are various centrality metrics that
reflect this diversity (Borgatti and Everett 2006; Freeman 1978).

Operationalization of centrality measures in CSCL

Centrality measures have been used as indicators for several aspects of CSCL, including the
participatory- and social dimensions. Measures of the participatory dimension include
outdegree centrality, which is frequently calculated as the number of out-posts generated by
a learner, or the number of the learner’s contacts. It serves as an indicator of quantity of
participation in the collaborative knowledge (co)-construction (Cadima et al. 2012; Joksimovic
et al. 2016). The pace of outdegree centrality has also been linked to self-regulation in learning
and better achievement (Saqr et al. 2019a). Indegree centrality is commonly used to demon-
strate the importance and worthiness of a learner contribution, prestige and authority in
knowledge construction as well as the popularity of the learner. /ndegree measures the times
a learner has been responded to. In other words, it serves as an indicator of social interaction in
which the learner connects, elaborates and integrates ideas by referring to contributions of the
learning partners (Hershkovitz 2015; Hong et al. 2010; Reychav et al. 2018; Romero et al.
2013).

The measures that reflect the social dimension of CSCL include closeness centrality,
betweenness centrality and eigenvector centrality. Closeness centrality refers to the degree to
which an individual is close to all other members in a given network. It measures the
engagement level of the learner, the distance to all others in the discourse, and closeness to
the collaborators. It is often operationalized as the ease of reachability and the ease of access to
information (e.g., Hernandez-Garcia et al. 2015; Liu et al. 2019; Osatuyi and Passerini 2016).
Betweenness centrality represents learner engagement in the discourse. Higher values of
betweenness reflect access to opportunities to control information exchange and diversity of
information and its novelty (Cadima et al. 2012; De-Marcos et al. 2016; Reychav et al. 2018;
Saqr et al. 2018b). It measures when a learner has been on the shortest path between others, or
connected others. The last centrality measure used in this study is eigenvector centrality; it
considers the centrality scores of the collaborators; therefore, it reflects the selectivity of the
learner and quality of connections. Eigenvector centrality is expected to be higher in students
engaged in discourse with active and engaged collaborators. It has frequently been operation-
alized as influence, connectedness and building significant social capital (De-Marcos et al.
2016; Liu et al. 2018; Putnik et al. 2016; Traxler et al. 2016).

The need for validated methods

Decades of research on social networks have contributed to several revisions and refinements
of the centrality concept (Borgatti 2005; Borgatti and Everett 2006; Freeman 1978; Liao et al.
2017; Opsahl et al. 2010). In several research areas, to achieve more robust results, scholars
were able to identify the relevant centrality measures optimal for specific problems, devise
better computational algorithms, and develop standardized data operationalization techniques
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(e.g., Liao et al. 2017; Lii et al. 2016). A popular example is the development of the PageRank
centrality used by Google to identify relevant search results (Liao et al. 2017). Nevertheless,
many challenges remain, for example, which metrics are more efficient in ranking actors in a
particular context, and how weighting affects node centrality (Liao et al. 2017; Lii et al. 2016).
Each network representation method can result in a different network configuration and
different centrality metrics. Consequently, it is important to identify which methods yield
the representative and the most robust centrality measures of the dimension or phenomenon
they are thought to represent. In this study, we in particular focus on the validation of the
centrality measures — in terms of their reliability and consistency — used to measure and explain
the important participatory and social dimensions of CSCL.

Issues with current methods
Variability of results

The variability of findings regarding centrality measures is a problem identified by many
researchers (e.g., Agudo-Peregrina et al. 2014; Fincham et al. 2018; Hernandez-Garcia et al.
2015; Joksimovic et al. 2016; Rogers et al. 2016; Saqr et al. 2018a). In the context of CSCL,
indegree centrality was, for example, reported to be positively correlated with learners’
performance in several studies (Herndndez-Garcia et al. 2015b; Liu et al. 2018; Saqr et al.
2018a; Wise and Cui 2018). Others have reported no significant correlations (Reychav et al.
2018; Sagr and Alamro 2019). Outdegree centrality was also found to correlate with learner
performance (Hernandez-Garcia et al. 2015; Saqr et al. 2018; Saqr and Alamro 2019).
However, others (Liu et al. 2018; Reychav et al. 2018) have shown no significant correlations.
The problem extends to other centrality measures, such as closeness and betweenness central-
ity, that were indicated on the one hand to be positively correlated with performance
(Hernandez-Garcia et al. 2015; Liu et al. 2018), but on the other hand were not (e.g.,
Reychav et al. 2018; Saqr and Alamro 2019). The reasons for this variability were attributed
to contextual and network operationalization factors (Agudo-Peregrina et al. 2014; Fincham
et al. 2018; Joksimovic et al. 2016), explained in the sections below.

Operationalization of data

There are three main factors in network representation to consider: (1) what a tie is, (2) what
the weight (strength) of a tie is, and (3) how the whole network is aggregated (Lii et al. 2016;
Opsahl et al. 2010). Few studies have been devoted to the examination of the role of different
network configurations (Fincham et al. 2018; Wise et al. 2017) in the field of education.
Recently, LA researchers have started to address this gap (Bergner et al. 2018). Fincham et al.
(2018), for example, examined the influence of different tie extraction methods on a network
structure and statistical metrics. The findings exhibit a significant influence of each tie
extraction method and the information derived from the network. The authors also found that
the correlation between centrality measures and academic performance varied significantly
with each tie extraction method, and stressed the importance of transparency of the tie
definition. For any SNA analysis, the definition of a tie is crucial since each definition carries
with it a set of beliefs about the nature of social interactions: while most scholars define ties on
the basis of direct replies, others rely on co-presence, where a tie within a network is explained
as being present in the same part of the discussion (Fincham et al. 2018).
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Equally important to the definition of the tie, is the weight assigned to the tie, and how
duplicate ties or loops are dealt with to form the final configuration of the network (Opsahl
2009; Opsahl et al. 2010; Shafie 2015; Tsugawa et al. 2015; Wei et al. 2013). In CSCL — the
focus of this study — a tie is usually considered when a learner replies to another learner and is
operationalized as an edge from the source (the post writer) to the target (the replied-to)." Ties
have been used to, for example, construct an aggregated network (Dado and Bodemer 2017).
Forming such a network requires the researcher to make decisions on the aggregation of ties,
such as duplicate ties (i.e., when two users exchange multiple interactions), the loops (i.e.,
when a user replies to self), the weight of the ties (i.e., whether the ties have a strength or not
such as the size of the post), and lastly, whether to keep every tie or extract the backbone
network (a sub-network with only important ties of a certain strength or threshold).

To demonstrate the network configuration, Fig. 1 introduces the same network with three
representations. Figure 1a presents a multigraph network, where duplicate ties and loops are
allowed. Figure 1b shows a simplified weighted network (loops and multiple ties removed); the
thickness of the ties represents the weight of the tie. In the figure, the weight corresponds to the
frequency of interactions among nodes. Figure 1c is a representation of a simplified network
where all duplicate edges and loops were removed. Each of these configurations underscores a
certain aspect. Multigraph configuration highlights quantity and effort. Weighted configuration
emphasizes the tie strength or quality. The simplified graph highlights diversity over multi-
plicity (Opsahl 2009; Shafie 2015; Tsugawa et al. 2015).

Contextual factors

The contextual variability is a widely recognized aspect in the field of LA in general and in
SNA studies in particular (Bergner et al. 2018; Joksimovic et al. 2016). Interactions between
students, teachers and learning tools in a course frequently vary by context and/or instructional
conditions (Gasevi¢ et al. 2016; Rogers et al. 2016). These variations result in a substantial
heterogeneity of learners’ interactions (Lockyer et al. 2013). For instance, networks derived
from a collaborative discussion among students are expected to be different from a question/
answer forum with a teacher (Lockyer et al. 2013). In the former (collaborative discussion),
outgoing interactions (outdegree), as well as incoming replies (indegree) are expected to
correlate with students’ engagement in a collaborative learning activity. While in the latter
(discussion with the teacher) outdegree matters more as it signifies students’ answers. One of
the possible shortcomings is that the operationalization of ties and their relation to learning
outcomes are not ‘measured.” Furthermore, some ties might not be accurately defined,
especially when students address each other directly in the text (by mentioning their names)
or indirectly through addressing their contribution while replying.

Motivation for this study

Since LA relies on measurement as a first step of the process (Siemens and Long 2011), the
robustness of selected techniques for measuring (collaborative) learning activities is critical for
several reasons. First, adequate measurements help generalizability and replicability of re-
search findings. Secondly, theory and measurement are interdependent. For a theory to

! There are other tie definitions too. For a review and methodological discussion, please see the study by
Fincham et al. (2018)
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advance our understanding of the complex nature of learning and teaching processes, there is
an evident need for valid measurements and testable models that can deliver reproducible
results (Loken and Gelman 2017; Smaldino and McElreath 2016). As stressed by Bergner
et al. (2018), “It can safely be assumed that without foregrounding methodological choices in
learning analytics we run the risk of generating more doubt” (p. 3).

Through the validated SNA measures applied to CSCL, scholars can uncover and explain
better the participation and social dimensions of collaborative learning using the centrality
measures of degree, closeness, betweenness and eigenvector centralities. These measures
represent, for example, quantity, ego network size, diversity, positioning, sociability and role
in information exchange (Rienties et al. 2009; Weinberger and Fischer 2006). Consequently,
they are used, for instance, to monitor students’ engagement, forecast learning gains and
identify roles in a learning network. Each of these centralities is expected to have a different
value in each network configuration and with different weight choices (Fincham et al. 2018;
Opsahl 2009; Shafie 2015; Tsugawa et al. 2015; Wei et al. 2013). Therefore, it is critical to
examine the influence of different network configurations on the resulting network, and this
study aims to fill this gap.

This study aims at establishing sound methodological guidelines regarding operationalizing
of the important participatory (behavior) and social dimensions of CSCL using SNA to
accurately reflect what it is supposed to measure. More importantly, we aim to examine the
reliability and reproducibility of the frequently used measures. Results aim to guide the choice
of adequate and robust methods for construct operationalization and better reproducibility.
Given the importance of research on the methodological choices in SNA and LA in education,
we argue that studies are needed to fill such a gap that helps to test the measurements, their
reproducibility and their influence on findings. As Wise and Schwarz posit, the substantial
question in using computational methods to understand CSCL is “how to develop practices
and norms around their use that maintain the community’s commitment to theory and
situational context” (Wise and Schwarz 2017, p. 448).

Method
Context

The study was conducted based on a dataset of four university courses (in medical higher
education) over three iterations (12 courses in total) during the years 20162018 (Table 1). The
courses were chosen so that we could compare different iterations of the same course by
different students and compare the same students taking different courses. To minimize the
effect of a specific learning design, the courses were chosen based on essentially the same
design of problem-based learning (PBL), expecting students to engage in discussion forums
with the same rules. The examined courses also had the same duration (i.e., eight weeks) and
similar weight of credit hours (i.e., eight hours each).

In the targeted courses, students were assigned to small groups (five groups per course of
seven to eleven students) with a tutor. On a weekly basis, they were offered a problem (online)
aimed to act as a trigger for further discussions. The problems were real-life scenarios of
complex patients’ problems that did not have any single direct solution. The problems were
formulated to stimulate the discussion about gaps in students’ current knowledge and identify
new topics they have to learn, collaboratively work together to learn these issues, share their
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Fig. 1 Three different representations of the same network

understandings, argue, and comment on their work. By the end of the week, students were
expected to: (1) have reached a common understanding of the problem, (2) have reflected on
their collaborative work, and (3) have received feedback from their tutor and peers. The
interactions took place online in the Moodle learning management system (LMS) forums. A
thread was created for each group for each weekly problem. An abridged sample of the
discussions from the course Principles of Dental Sciences 2016 is shown in Fig. 2.

The performance was measured by the grades given for a PBL task, consisting of a
multiple-choice knowledge test that assessed students’ acquisition of the knowledge of the
PBL objectives and the performance of the individual student as evaluated by the tutor. The
tutor evaluated the students’ contributions based on three criteria: (1) their contributions to the
discussions and presentation of their arguments, (2) their engagement with other peers in the
group, as well as (3) their reflection on their performance. To minimize subjectivity, the
evaluating tutor was unified for all groups for each week. Each knowledge exam is reviewed
for quality by the assessment committee and a post-exam psychometric analysis; grades were
adjusted accordingly.

Table 1 Characteristics of the selected courses

Course Code N Edge count*  Average degree

Multigraph ~ Simplified ~ Weighted

Body Systems 2016 Cl 48 1476 54.35 6.75 8875.02
Dental Surgery 2016 Cc2 48 439 16.48 344 3295.19
Dental Neuroscience 2016 C3 49 696 25.16 5.00 7226.67
Principles of Dental Sciences 2016 ~ C4 47 810 31.55 4.77 5364.62
Body Systems 2017 C5 54 1210 41.74 10.59 21,258.91
Dental Surgery 2017 C6 53 1033 36.83 11.30 21,928.06
Dental Neuroscience 2017 Cc7 54 1116 39.72 11.76 19,793.02
Principles of Dental Sciences 2017 C8 54 3134 109.63 16.31 45,961.20
Body Systems 2018 Cc9 50 731 23.98 7.52 6741.84
Dental Surgery 2018 C10 50 567 19.44 5.16 2505.02
Dental Neuroscience 2018 Cl11 45 1497 46.78 10.04 8720.80
Principles of Dental Sciences 2018 ~ C12 46 719 23.15 6.30 3913.30

* The number listed is for multigraph representation
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Carmen to Emma on Mar 22 14:15:25 EET 2020
The problems of X-ray exposure may take time. There is some delay between exposure and the biologic damage (latent period), this delay of alarming
symptoms could be problematic. Caution and prevention should be practiced what do you think ?

Emma to Carmen on Mar 22 13:25:25 EET 2020
Yes, one has to advise the patient and team. This-should be always emphasized, and One has to have distance, shielding, to reduce exposure.

Vera to Emma on Mar 22 18:19:25 EET 2020
Thank you Emma, | would also add that wrong exposures or long exposure must be avoided, faulty techniques are also dangerous, These may
result in retakes and unnecessary exposure.

Carmen to Vera on Mar 23 8:15:25 EET 2020

Yes, | agree preventing needless multiple exposures should be prioritized

Layla to Vera on Mar 24 11:15:25 EET 2020
But wouldn’t shields and protective measures help decrease exposure ?

Vera to Layla on Mar 22 18:19:25 EET 2020
No, Not enough, every exposure matters especially in the long run

Carmen to Vera on Mar 24 11:15:25 EET 2020
1 would add that not prescribing needless x-rays is as important as other protective measures or what do you think ?

Vera to Carmen on Mar 23 8:15:25 EET 2020
Exactly, since every exposure counts, and it might not go well or so then one should be cautious not to prescribe it unless necessary

Fig. 2 An abridged sample of the discussions from the course Principles of Dental Sciences 2016, shows
students discussing the problem of exposure to X-rays. Names have been changed for privacy

Data collection and data analysis

Data were extracted from the LMS log system. The collected data included the username, the
forum ID, the post ID, the post writer, the post target, the post content, the post subject, the
thread ID, and the group ID. Posts that were outside the PBL discussions (i.e., news,
announcements, social interactions) were excluded. The data were used to construct the
networks by considering an edge as when a student replies to another student. As each online
group was separate, a network was generated for each group.

Three types of networks were created:

Multigraph network, where all interactions were compiled, loops and multiple edges were
retained.

The simplified network where loops and multiple edges were removed.

Weighted, where each edge was assigned the weight of the number of characters a student
has posted.

For each student in each course, the five most-used centrality measures were calculated for
each network.

Outdegree centrality: refers to the number of messages a student posted (multigraph), or the
number of unique users a student contacted (simplified), or the total volume of text a student
posted (weighted) (Liao et al. 2017; Opsahl et al. 2010; Stephenson and Zelen 1989; Wei et al.
2013). Outdegree is commonly operationalized as the effort and participation of a learner in
forums (Hernandez-Garcia et al. 2015; Saqr et al. 2018a; Saqr and Alamro 2019).

Indegree centrality: refers to the number of replies a student gets (multigraph), or the
number of unique users who have replied to the student (simplified), or the total volume of text
a student has received from all contacts (weighted) (Csardi and Nepusz 2006; Liao et al. 2017;
Opsahl et al. 2010; Stephenson and Zelen 1989; Wei et al. 2013). Indegree is always
operationalized as prestige, leadership or worthiness of argument to discuss, debate or be
replied to (Liao et al. 2017; Liu et al. 2018; Lu et al. 2017; Saqr et al. 2018a).
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Betweenness centrality: is the number of times a student has connected to unconnected
users (on the paths between them), the multigraph variant considers all interactions. While the
simplified variant considers only the unique variant, the weighted variant is calculated as
weighted by the post size (Lii et al. 2016; Stephenson and Zelen 1989). Students who have
high betweenness centralities control the flow of information as well as have access to diverse
perspectives and resources.

Closeness centrality: represents the closeness of a student to all others in a network (inverse
distance). The multigraph variant takes into account all interactions; the simplified variant
considers only the unique interactions, and the weighted variant is calculated as weighted by
the post size (Lii et al. 2016; Stephenson and Zelen 1989). Closeness centrality is a sign of ease
of accessibility to all others and reachability (Lii et al. 2016; Stephenson and Zelen 1989).

Eigenvector centrality: in contrast to degree centrality that counts only the number of
contacts. Eigenvector centrality calculates the number of contacts and their cumulative
strength; as such it is computed as the sum of all centralities of a student’s contacts. In a
CSCL context, it reflects student positioning, selection of peers and relations. It is expected to
be higher if a student interacts with others who are engaged in discourse and lower in students
who interact with disengaged and/or isolated students. Therefore, Eigenvector centrality
captures the social positioning of the students more reliably than the other centrality measures
(De-Marcos et al. 2016; Liu et al. 2018; Putnik et al. 2016; Traxler et al. 2016).

For each network, we calculated the average degree as the mean number of edges that
represent messages posted or received by a participant in the course, and we calculated the
network density as the proportion of actual edges among students to the maximum possible. In
this study, all centrality measures were calculated with the Igraph library (Csardi and Nepusz
2006) implemented in the R programming language version 3.52 (R Core Team 2018). Since
centrality measures were estimated from groups with different sizes, two versions were
calculated for each centrality measure: (1) A normalized centrality, i.e., the centrality measure
is divided by the number of students to balance the influence of group size on the number of
possible interactions in the group (Saqr et al. 2019b), and (2) an unmodified version, raw or
non-normalized version, in which we report the centrality measure as it is, with no modifica-
tion. Both methods are reported and compared to test the influence of group size on the
robustness of the methods.

Ethics

The study was approved by the college ethical committee. Data utilized in this study were
anonymized, and personal information was removed during analysis. The researchers of this
study did not participate in teaching or grading the studied courses and the analysis started after
courses ended.

Results

Participants

The study was performed on a dataset from 12 courses consisting of 13,428 interactions from
598 students. The number of students in each course ranged from 45 to 54, with a mean of

49.83 (Table 1). The median frequency of interactions in a course was 921.5 and ranged from
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439 to 3134. The mean strength was 201.48 (SD 15.99); the mean degree was 9.36 (SD 4.02);
the mean size of the post was 1096 characters, while the median was 329.

How do different network configurations influence the reproducibility and robustness of
centrality measures?

Indegree centrality

The Spearman correlation between indegree centrality calculated with the multigraph method
proved to be consistently positively correlated, and with higher strength of correlation
coefficient with performance, in the 12 studied courses (Fig. 3). The correlation coefficient
ranged fromr=0.54, p <0.01 tor=0.77, p < 0.01; the coefficient value was also stronger than
the other configurations in eight courses. The simplified configuration was positively and
significantly correlated with performance in nine courses, with a correlation coefficient that
ranged from r=0.42, p<0.05 to r=0.7, p <0.01, while not correlated with three courses: C2
(r=0.22,p=0.13),C4 (r=0.15, p=.33), C10 (r=0.03, p = 0.85). The weighted configuration
was positively correlated with 10 courses, with a correlation coefficient ranging from r = 0.29,
p<0.05 to r=0.7, p<0.05 and not correlated with two courses: C2 (r=0.03, p=0.83) and
C10 (r=-0.05, p=0.73).

Similar results were obtained when the indegree centrality (multigraph) was normalized.
However, the simplified and weighted variant were not correlated with the two courses (C4 &
C10) and positively correlated with the remaining 10 courses. The notable difference is that C2
(in the simplified configuration) showed significant positive correlation (r=0.41, p <0.01)
compared to (r=0.22, p=0.13) in the non-normalized version. These results indicate that the
multigraph indegree (whether normalized or not) produces a consistent stronger correlation
with grades regardless of the studied course or the batch. This also demonstrates that
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Fig. 3 Plot of indegree centrality correlation coefficient with performance in each course *Each significant
correlation is plotted against the Y-axis in each course. Non-significant correlations are plotted as 0 on the Y axis.
The plot shows the multigraph (blue line) is consistently positively and significantly correlated in the 12 studied
courses in both plots (normalized and raw).
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normalization offers some improvement as C2 became significantly correlated after
normalization.

Outdegree centrality

Similar to the indegree centrality, the correlation between outdegree centrality (calculated
with the multigraph method) proved to be consistently positively correlated with student
performance in all courses, with a higher correlation coefficient in 10 courses compared to
other configurations; the coefficient ranged from r=0.57, p<0.01 tor=0.78, p<0.01. In
the simplified configuration, outdegree was correlated with six courses only (C1, C5-8,
C11), with a correlation coefficient that ranged from (r=0.34, p=0.02) to (r=0.73,
p<0.01). In the weighted configuration, the correlation was positively significant in six
courses (C1, C 5-8 & C11), with a coefficient that ranged from r=0.32, p=0.02 to r=
0.78, p<0.01, while negatively and significantly correlated in two courses C9 and C10
(Fig. 4).

Similarly, when the outdegree was normalized, in the multigraph configuration, the
correlation was consistently and significantly positive in all examined courses. In the simpli-
fied configuration, the correlation was relatively better than the ‘raw’ results and showed a
positive correlation in eight courses, compared to six. The weighted variant demonstrated a
positive correlation in six courses (C1, C5-8 & C11) and a negative correlation in C10. Both
the simplified and weighted variant showed slightly better results in terms of the number of
positive correlations.

In summary, the results show that the multigraph outdegree is the most robust and has the
highest correlation with performance (Fig. 4). Normalization by group size improved other
configurations.

Outdegree

Normalized outdegree

Fig. 4 A plot of outdegree centrality correlation coefficient with performance in each course *Each significant
correlation is plotted against the Y-axis in each course. Non-significant correlations are plotted as 0 on the Y-axis.
The plot shows the multigraph (blue line) is consistently positively and significantly correlated in the 12 studied
courses in both plots (normalized and raw).
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Closeness centrality

An almost similar pattern to indegree and outdegree centralities was observed in closeness
centrality. The multigraph configuration was positively and significantly correlated with
student performance in eleven courses with a correlation coefficient that ranged from r=
0.57, p<0.01 to r=0.74, p<0.01 except for C8 (r=—-0.032, p=0.82). The simplified
configuration was positively correlated in seven courses (C1, C2-4, C9, C10 & Cl12),
negatively and significantly correlated in C8 (r=—0.52, p<0.01), and non-significant in four
courses (C5-7, & C11).

However, the normalized closeness centrality was more consistent than the ‘raw’ methods.
In the multigraph method, normalized closeness centrality was positively correlated with
student performance in eleven courses (except for C8); the simplified configuration was
statistically significant in nine courses (C1-7, C9 & C10), and non-significant in two courses
(C8, C11), while negative in one course (C12). While the weighted variant was positively
correlated with performance in four courses (C2—4, C10), it was negatively correlated in C12
and insignificant in the other courses. The raw centralities (Fig. 5) showed inconsistent results
among courses except for the multigraph configuration. In summary, the multigraph config-
uration produces the most consistent results in most courses, especially when normalized by
group size.

Betweenness centrality

Contrary to the previous centralities, betweenness centrality in all configurations was largely
inconsistent, showing only C8 as positively and significantly correlated with student perfor-
mance in the multigraph configuration (r=0.35, p<0.01) and similarly in the normalized
multigraph configuration (r=0.33, p=0.02), while negatively and significantly correlated in
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Fig. 5 A plot of closeness centrality correlation coefficient with performance in each course. *Each significant
correlation is plotted against the Y-axis in each course. Non-significant correlations are plotted as 0 on the Y axis.

The plot shows the multigraph (blue line) is consistently positively and significantly correlated in the 12 studied
courses in both plots (normalized and raw)
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C5, C7, C9 and C10 in the multigraph configuration, and similarly in the normalized variant in
C5, C7 and C9. Other configurations showed either negative correlations (e.g., C2, C5 & C10)
in the simplified configuration or insignificant correlation (C6-9). The simplified normalized
betweenness centrality was statistically insignificant in all courses (Fig. 6).

Eigenvector

The eigenvector centrality was positively and statistically significant in 11 courses in the
multigraph configuration, as well as the simplified configuration, except for C2. In the
weighted example, it was statically and positively significant in 10 courses, except C2 and
C8 (Fig. 7). Interestingly, regardless of the configuration, the normalized eigenvector centrality
was statistically and positively correlated with performance in all courses, pinpointing the
robustness and consistency of eigenvector centrality in different network configurations.

What are course network structural factors that could explain the variability of findings?

We plotted the centrality measures along with the course characteristics as it may offer a
clue to why some predictions have not been accurate in some courses. As seen in Fig. 8, C2
had fewer interactions than all other courses (n = 439), as well as the insignificant correlations
on simplified indegree, outdegree, and eigenvector centrality. It was also statistically insignif-
icant in the weighted outdegree and Eigen centralities. In C10, which was mostly either
insignificant or negatively correlated in most configurations, the count of interactions was
also low (n= 567). One can see the mixed results for C4 as well with a low count of
interactions (810).

Discussion and conclusions

SNA and LA methods are useful to uncover several aspects of the students’ collaborative roles,
including cooperative behavior, brokerage of information, reach and sphere of influence, as
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Fig. 6 A plot of betweenness centrality correlation coefficient with performance in each course

@ Springer



International Journal of Computer-Supported Collaborative Learning

24

053
049

Eigen

Eigen normalized

c

3 c 8 o

€10

0.60
053

2
046050 g4
[ T4

a1 a2
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well as mapping the relations to other collaborators (learners and teachers) through visualiza-
tions (Saqr et al. 2018a; Saqr et al. 2018c). The accurate identification and further adequate (in-
time) learner support in CSCL settings can and should significantly enhance the success of the
collaboration process, thus creating better conditions for students’ learning, ultimately leading
to their improved academic performance. This study builds on previous research efforts
(Fincham et al. 2018; Wise et al. 2017) and continues the line of methodological refinement.
In doing so, we have investigated the methods that reflect an accurate view of students’ roles
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Fig. 8 A plot of course network properties and different centrality measures to show the relationship between
centrality measures and their corresponding course characteristics
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and interactions that constitute the relational aspect, a key component of both participation —
and social dimensions of collaborative learning.

How do different network configurations influence the reproducibility
and robustness of centrality measures as indicators of student learning
in collaborative learning settings?

This study has examined how different network configurations influence the reproducibility
and robustness of centrality measures as indicators of student learning — especially the
participation and social dimensions of collaborative learning — in CSCL settings. Overall,
our findings indicate that the multigraph configuration produces the most consistent and
robust centrality measures, suggesting that these measures can be used to generalize relevant
results across courses. One explanation to this finding is the fact that such a configuration
retains the information about the frequency of students’ participation and hence presents a
more accurate view of students’ efforts, especially in quantitative centrality measures (i.e.,
indegree and outdegree), compared to the weighted and simplified configurations. It is
important, since the frequency of interactions among students bears valuable information
about learner engagement (both static and continuous) and is “regarded as an important
indicator of knowledge construction” (Weinberger and Fischer 2006, p. 73).

Moreover, research has shown that reciprocity is an important building block of social and
learning networks: the frequency of reciprocal interactions are indicative of the strength of
mutual trust and the perceived value of the interaction (Block 2015). Our results have shown
that simplifying the network (i.e., removing multiple edges and loops) is reductionist. The
simplified configuration came next in robustness. While it accurately reflects (and possibly
rewards) the diversity and multiplicity of students’ connections, it turned out that it may have
been over-simplifying and thus detrimental to the quality it is expected to represent (i.e., the
participatory dimension of collaborative learning). These results are congruent with earlier
research efforts, in which simplified network correlations between centrality and final grade
were used (Traxler et al. 2016).

The findings have also demonstrated that post size was not a reliable weight. A possible
explanation may be the possibility that students who posted large chunks of text tended to care
less about text quality and/or they copy-pasted content from the Internet. Nonetheless, such
posts received fewer interactions. Therefore, the indegree centrality (i.e., how students value
the post and select to reply to it, giving rise to high indegree) is more important than the mere
count. While we have tested the weighted network by post size, it may be useful to try other
types of weight.”

Similar results were found with closeness centrality. The multigraph configuration was
found to be far more robust in most courses, confirming the idea that reducing networks may
be at the cost of the consistency. Betweenness centrality showed the least consistent results
among all centrality measures in all configurations. On the contrary, eigenvector centrality
showed the most robust centrality across all configurations. Regardless of the configuration
and the way it was represented, eigenvector centrality was positively correlated and statisti-
cally significant with student performance. As eigenvector centrality takes into consideration

2 An initial analysis of this study tested the weight as a function of number of duplicate links, which resulted in
identical results for the indegree and outdegree centralities, and similar (but less robust) correlations for other
centrality measures.
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the strength of connections of all connections of a student, it samples both the size and the
quality of the network of the students. Such a range of data makes the centrality more robust to
changes compared to the local centrality measures (i.e., indegree and outdegree).

A learner who interacts with ten peers has the possibility to have a larger network size than
another in a group of five, and consequently, a higher centrality measure. This imbalance
requires researchers to carefully consider normalization when comparing students in groups or
classes of different sizes. Our results have shown an improvement of centrality robustness with
normalization and pinpoint that the number of interactions in a course may affect the
robustness of the derived centrality measures. Consequently, caution should be exercised in
interpreting centrality measures in courses with a small number of interactions or low
engagement. However, it is important to note that eigenvector centrality was consistently
positively correlated even in such small courses. Therefore, the answer to the first research
question is: whereas closeness and betweenness centralities are more sensitive to network
configuration methods, degree and eigenvector centralities are more robust measures, espe-
cially when calculated with the multigraph configuration. Our findings also support multigraph
as the recommended configuration in general.

Is there guidance on which centrality to choose to better understand
the participatory and social dimension in CSCL environments?

As discussed earlier, the degree centralities in the multigraph configuration reflect the efforts
and contributions of students and, therefore, should be considered when evaluating the
participatory dimension of collaborative learning. The eigenvector centrality was found to be
a more reliable measure of the social dimension of CSCL because it considers both the number
and the strength of relationships. Our results demonstrated that eigenvector centrality was the
most consistent measure of the social dimension, demonstrating a consistently positive and
significant correlation in all selected network configurations. These findings stress the
robustness and the reliability of this method as an indicator of building sound and valuable
social relationships that are considered as an essential element of the collaborative process.
Kreijns et al. (2013) point out that although a focus on the social space might emphasize the
structural aspects, “these structures must exist to some degree before a group may become a
performing group” (p.234). In other words, stimulating and building valuable and sound
relationships serves as a catalyst for achieving the promise and potential of CSCL. In
summary, the following answers the study’s second research question: Whereas degree
centralities are robust indicators of students’ participation in CSCL, eigenvector centrality
reliably reflects students’ social positioning and relationships.

What course network structural factors could explain the variability of findings?

In our study, we found that courses with a low number of interactions had inconsistent results
regarding the participatory dimension, but not so for the social dimension, as reflected by
eigenvector centrality. This stresses the importance of active social interactions in the course
before relying on SNA measures. Of course, this is not the only factor, the accuracy of
students’ assessment as measured by test grades depends on students’ characteristics (e.g.,
knowledge, motivation and effort), task characteristics and assessment methods (e.g., exam
difficulty, the standards and criteria of the assessment) as well as on teacher expertise and
accuracy of teacher judgment (Siidkamp, Kaiser and Moller 2012). Therefore, the
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inconsistency of results may be partly a reflection of the quality and accuracy of the assessment
process. Further research may need to explore the reliability and validity of learning measures
in combination with reliability and validity of interaction/social relation measures.

Implications

Centrality measures have been used to identify students’ roles (e.g., leaders, collaborators,
animators or peripherals). Correctly identifying these roles is therefore critical to inform
learners and their collaborative partners about their own and others’ participation on the one
hand, and the teacher or instructor on the other. Similarly, centrality measures have been used
to indicate students’ engagement and effort to build on peer contributions in knowledge co-
construction. While contributions by the learners serve as an indicator of the effort of
participation, some contributions may be connected, elaborated and synthesized more inten-
sively than others (Hong et al. 2010). For example, the results of this study indicate that
receiving interactions may be more indicative of the value of an interaction over the interaction
size. Consequently, it is important to compute valid centrality measures and to select the
appropriate measures that allow exploring complex dynamics and patterns between contribu-
tions in productive knowledge building. Another implication is that researchers aiming to
implement a predictive algorithm in the context of CSCL could find guidance in the methods
examined in this study (e.g., which centrality measures are replicable and which are robust
against course variations). In summary, the study emphasizes that network centralities can be a
reliable indicator for students’ participatory efforts, social relations as well as a predictor of
their performance when calculated with appropriate methods (Kreijns et al. 2013).

The results emphasize the need for researchers who report on SNA to present in detail their
methodological choices so that research is better able to be compared, replicated, and
ultimately generalized. Based on this study’s results, we suggest that the following items
should be reported:

Tie definition: what is considered to represent a tie and any assumption made for a tie
definition;

Direction: whether the network is directed, undirected or mixed;

Network mode: e.g., unipartite or bipartite;

Weight: network is weighted, simplified or a backbone with a certain threshold;

Number of nodes, edges in each of the studied networks;

Aggregation method and duration of aggregation;

Software and version used for calculation of network centralities;

Software used for network visualization and layout;

Community finding method and parameters used.

Future research

In this study, we have used specific settings of problem-based learning design in medical
higher education where research on LA is lacking (Saqr 2015, 2018). Since the contextual
aspect is important in SNA studies (Gasevi¢ et al. 2016), we suggest that future research
should replicate this study in other disciplines, with other kinds of learning designs, as well as
in other educational levels and forms (e.g., K-12 education and MOOCs). This will enable
better understanding of whether the multigraph configuration generates equally robust and
consistent centrality measures of student learning across divers CSCL settings. Moreover,

@ Springer



International Journal of Computer-Supported Collaborative Learning 245

simulation is an area that has not been explored in education research. Consequently, it would
be interesting to simulate different network structures and study how different simulations
influence learning. Content analysis could be incorporated in graph measures as a weight for
ties. It can also be used as a validation of the different assumptions inherent within different
centrality measures.

In sum, while proving the multigraph configuration produces the most consistent and robust
centrality measures of student learning, we call for further research to test other network
configurations, apply other tie definitions, and verify our results in similar learning settings, or
some others, and further build upon them to continue the line of methodological refinement in
the fields of social network analysis and learning analytics.
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