
The value of learning talk: applying a novel dialogue
scoring method to inform interaction design in an
open-ended, embodied museum exhibit

Jessica Roberts1 & Leilah Lyons2,3

Received: 3 October 2017 /Accepted: 25 October 2017 /Published online: 22 November 2017
# International Society of the Learning Sciences, Inc. 2017

Abstract Museum researchers have long acknowledged the importance of dialogue in infor-
mal learning, particularly for open-ended exploratory exhibits. Novel interaction techniques
like full-body interaction are appealing for these exploratory exhibits, but designers have not
had a metric for determining how their designs are supporting productive learning talk.
Moreover, with the incorporation of digital technologies into museums, researchers and
designers now have the opportunity for in situ A/B testing of multiple exhibit designs not
previously possible with traditionally constructed exhibits, which once installed were difficult
and expensive to iterate. Here we present a method called Scoring Qualitative Informal
Learning Dialogue (SQuILD) for quantifying idiosyncratic social learning talk, in order to
conduct in situ testing of group learning at interactive exhibits. We demonstrate how the
method was applied to a 2 × 2 experiment varying the means of control (full-body vs. handheld
tablet controller) and the distribution of control (single-user-input vs. multi-user-input) of an
interactive data map exhibit. Though pilot testing in the lab predicted that full-body and multi-
input designs would best support learning talk, analysis of dialogue from 119 groups’
interactions revealed surprising nuances in the affordances of each. Implications for embodied
interaction design are discussed.
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Introduction

As Bdesigned spaces^ for informal learning (National Research Council 2009), museums aim
to support learning in a social context, inspire curiosity, and engage visitors with new ideas and
phenomena that they can connect to their prior knowledge and understandings. Recent decades
have seen a shift in the design of museum environments from a traditional transmission
model—in which the museum presents content for visitors to absorb—to a dialogic model
(McLean 1999), encouraging visitors themselves to take a more active role in the learning
process by incorporating their own values and experiences into their interactions with exhibits
(Simon 2010). In addition to using exhibit design to support the more metaphorical
Bdialogues^ visitors have with the exhibits (and by extension, the designers and curators
who created them), museums are also more consciously designing exhibits to support the
literal dialogues between the visitors themselves (Ash 2004; Atkins et al. 2009; Humphrey,
Gutwill, and Exploratorium APE Team 2005; Leinhardt and Knutson 2004).

Full-body, multi-user interactive technologies are of particular interest to museums
seeking to engage their visitors in fun, novel activities that support exploratory learning in
a social setting. In museums learners can and do bring different objectives for their
learning experiences (Rounds 2006), and can even evolve new objectives as their partic-
ipation unfolds. They work toward these objectives sometimes in concert and sometimes
in parallel, but typically with an awareness of each other’s actions. Thus full-body
technologies—and the visibility of actions they afford—seem well aligned to support
the social aspect of a museum interaction, but we do not yet know how well they support
social learning. In other words: to what extent might full-body interactive experiences
facilitate intersubjective meaning-making, per Suthers (2006), wherein Bmultiple partici-
pants contribute to a composition of inter-related interpretations^ of a Bdynamically
changing context^. Much of the educational research into full-body interaction design
has explored how bodily movements and perceptions can facilitate an individual’s under-
standing of abstract concepts, for example, how learners acquire concepts from domains
like mathematics (Abrahamson and Sánchez-García 2016; Howison et al. 2011; Davidsen
and Ryberg 2017), physics (Enyedy et al. 2012, 2015; Johnson-Glenberg and Megowan-
Romanowicz 2017; Lindgren et al. 2016), or even social justice (Antle et al. 2013a), or
how movement can help learners interpret abstract representations like graphs
(Charoenying 2013; Lyons 2016; Lyons et al. 2012). These designs often focus on how
an individual learner’s physical activity can be mapped to an abstract phenomenon or
metaphor, an embodied approach where the internal mind-body connection has primacy in
the design of the full-body activity.

Some work has demonstrated that full-body interaction can be used in other, more directly
social ways, however. Full-body interactives transform human-exhibit interactions into shared
performances that can fuel dialogue and reasoning at exhibits (Meisner et al. 2007). In other
words, full-body performances can support dialogue by transforming the shared embodied
experience into Ban object to think with^ (Malinverni et al. 2016). While there has been some
research into how full-body interactives can facilitate social learning practices like coaching
(Tscholl and Lindgren 2016) and other forms of coordination (Malinverni and Burguès 2015),
more work needs to be done to better understand the potential benefits of exhibit designs that
consciously employ the bodies of visitors as shared, semiotic resources. The role of visitor
bodies in meaning-making has been explored by some researchers in art museums, as
both an experiential element of appreciating immersive art (Hindmarsh et al. 2005) as
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well as a relational tool for engaging with works of art that feature representations of
bodies (Steier 2014), but much more can be done, especially in other types of museum
settings.

One of the big barriers to fully evaluating the benefits of full-body interfaces for social
learning in a museum setting is that interpersonal interactions at exhibits have traditionally
been difficult to quantify (Block et al. 2015). Researchers Bview one of the richest forms of
learning in a museum to be evident in the patterns of discourse and activities that groups
engage in - such as labeling, theorizing, predicting, recognizing patterns, testing ideas, and
explaining observations^ (Atkins et al. 2009), but this very variety and richness poses
methodological challenges. Traditional methods for coding and quantifying dialogue, which
often structure codes around learning goals, can misrepresent the educational value of an
exhibit experience: by focusing only on the museum’s Bside^ of the visitor-exhibit dialogue,
such coding does not capture or honor what visitors bring to the discussion, in the form of their
own personal anecdotes or experiences, which we know to be valuable for forming lasting
connections to content. Visitors’ spontaneous dialogue during their interactions with an exhibit
is presumed to be the primary vehicle for learning (Allen 2002; Ash 2003; Falk and Dierking
2000), yet we have limited means for quantitatively analyzing this dialogue to support in situ
A/B testing, which is a critical method for establishing the ecological validity of an exhibit
design. In the past, when exhibits were large physically-constructed permanent or semi-
permanent structures, such testing was impractical – only one design (that was hypothesized
to be best based on formative testing) was built, and all but the most minor changes would be
cost-prohibitive after it was installed. Digital exhibits, however, can be recoded for seamless in
situ testing of even drastically different designs (Horn et al. 2017), making a new methodology
for conducting these tests crucial for conducting research in the modern museum environment.

This paper first describes a methodology, SQuILD, that solves three key problems in
quantifying spontaneous visitor talk: identifying socially productive learning talk in open-
ended dialogic activities, segmenting spontaneous dialogue to permit cross-group comparisons
of talk, and developing a scoring approach that allows alternate styles of learning conversa-
tions to be valued. We then describe the application of this methodology to an authentic
museum exhibit to reveal how competing interaction designs performed contrary to expecta-
tions. While developed to study a museum exhibit, this methodology provides designers with a
new technique for studying and comparing CSCL experiences that are intended to have a
significant Buser contribution^ component, wherein the users bring forward and work with
ideas of their own, ideas which may not have been specifically anticipated by designers.
Techniques for coding and counting dialogue are often used within CSCL because they allow
researchers to statistically cross-compare episodes, but the techniques often fail to fully
characterize intersubjective meaning-making (Suthers 2006). Intersubjective talk entails
learners echoing and reiterating ideas as well as introducing ideas of their own, which
depending on the coding categories and counting procedures can either over- or under-
represent the learning evidenced by the talk. SQuILD is designed to address these challenges
so as to give CSCL researchers a tool that comes closer to characterizing intersubjective
meaning-making than existing coding-and-counting techniques.

Research context

The CoCensus exhibit (Fig. 1) is an interactive census data map display designed to help
individuals see a Breflection^ of themselves as defined by census data. Census data is a rich

Intern. J. Comput.-Support. Collab. Learn (2017) 12:343–376 345



and inherently personal data set—it is, after all, a count of people—yet its complexity renders
it nearly inaccessible to casual exploration. Novices require contextualization to make sense of
the diverse tallies of the census – numbers alone do not tell a story.

Interactive digital technologies have the potential to introduce visitors to the scientific
practice of manipulating large, complex data sets like the U.S. census through visualizations.
Researchers are increasingly investigating design challenges of effective data visualizations
(e.g. Zhu 2007) including use by non-expert users (e.g. Liccardi et al. 2016) and beginning to
attend to how people interpret or misinterpret common data representations (Kay et al. 2016).
CoCensus is designed for museums, with the idea that personalizing census data and turning
data exploration into a social experience can help spark interest and promote dialogue to
engage visitors with what is otherwise a complex and dense corpus of data. Accomplishing
this requires presenting the data in a way that is relatable with little or no background
knowledge and creating an interactive experience that is as fun as it is purposeful.

Fostering relationships with census data

CoCensus displays four categories of U.S. Census data, reflecting different aspects of identity
that are relatable to visitors of all ages. Before interacting with the exhibit, visitors are asked to
complete a mock Bmini-census^ survey at a kiosk outside the interaction area (Fig. 2). This
survey consists of four questions adapted from the census: 1) What is your ancestry or ethnic
heritage? 2) How many people live in your household? 3) In what kind of house do you live?
4) In what industry do you work or want to work?

Fig. 1 Visitors interact with CoCensus
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Visitors select answers that represent them or that they find personally interesting, so they
are able to explore personally relevant data rather than a museum-curated narrative. When they
enter the exhibit interaction area, each visitor will see scaled centroids (Bbubbles^) on a large
map display representing the numbers of people who answered the question the same way as
that visitor (e.g., people who work in the Transportation industry). Spatializing data by
overlaying it onto a map of the local geography affords visitors the opportunity to relate the
data to authentic lived experiences of themselves and their companions. Two visitors
interacting together can compare the size and distributions of their populations (each repre-
sented by the visitors’ self-selected bubble color, see Fig. 3.).

Fig. 2 Screen capture of kiosk at which visitors create their census profile. Four census categories were
simplified to multiple-choice questions in a graphical user interface

Fig. 3 The CoCensus exhibit displays multiple visitors’ self-selected data as scaled centroids (Bbubbles^)
overlayed onto the local geography
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Physically engaging visitors through interactivity

The conceptual connections fostered by customization and spatialization of the data are
augmented with a physical connection – providing users control over the representation.
Allowing learners to manipulate visualizations can provide unique affordances for recognizing
patterns (Card et al. 1999), and giving agency to users lets them explore what they find most
interesting. Through a multi-year design-based research program we have investigated multi-
ple aspects of the interactivity (Cafaro et al. 2014b, 2013; Roberts et al. 2014). The exhibit
iteration discussed here affords three manipulations to the visualization: selecting a category of
census data (heritage, household size, housing type, or industry); choosing a census year
(1990, 2000, or 2010); and setting the aggregation level of the data (census tract, borough, or
city-wide, see Fig. 4).

It was an open question how best to allow visitors to perform these manipulations. As
introduced above and discussed in more detail below, embodied controls—including full-body
interactivity—seemed appealing for the potential to support intersubjective learning. Early
testing of full-body interaction designs showed great promise in a lab setting (Cafaro et al.
2013) and in situ (Roberts et al. 2014), but we couldn’t yet verify whether full-body
interactivity would support more variety and depth of learning talk than other means of
controlling the system, such as a handheld tablet. We also didn’t know whether individualized
control (each user independently manipulating her own representation) would produce greater
learning outcomes than a global controller allowing a single user to manipulate all data bubbles
together. These two factors, the means of control (full-body or handheld) and distribution of
control (single or multi input) have significant implications for the final implementation of the
exhibit, so we needed to experimentally determine the most favorable interaction design.
Standard metrics used in A/B testing of digital interfaces, such as hold time and click counts,
don’t speak to how well the designs are accomplishing the main objective of this exhibit –
getting people talking to each other about data. How could we compare dialogue by visitors of
varying ages, interests and background knowledge who saw unique and customized datasets,
the representations of which they selected themselves? We needed a new methodology for
understanding this idiosyncratic talk, where the inter-related interpretations constitutes the
learning (Suthers 2006).

Background

Sociocultural theories of learning posit that learning is a product not only of individual
cognitive processes but of the broader cultural, historical, and institutional context, asserting
that Banalytic efforts that seek to account for human action by focusing on the individual agent

Fig. 4 The CoCensus display at three aggregation levels of data: census tract (left), borough (center), and city
(right). Each representation affords different kinds of spatial and quantitative comparisons between the datasets
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are severely limited^ (Wertsch 1998). This perspective follows the Vygotskian view that
humans virtually always learn through dialogues, asking questions, and negotiating meaning
(Vygotsky 1978). Our study follows a large body of work adopting a sociocultural perspective
for museum learning (Allen 2002; Ash 2003; Atkins et al. 2009; Crowley and Jacobs 2002;
Leinhardt et al. 2002; Schauble et al. 2002; Steier et al. 2015) and views visitors’ meaning
making as a form of mediated action. The agents (the museum visitors) are constructing
meaning not individually, but through the interactions between themselves and their media-
tional means: other agents in the space, the exhibit and its control mechanisms, and the
perspectives they employ during the interaction. It is through the interactions between
individual and shared understandings through dialogue that meaning is collaboratively
made. Therefore the measure of learning considered by this research is visitors’ Blearning
talk^ (Allen 2002) produced during their interaction.

Supporting learning dialogues in museums with exhibit design

As the museum exhibit design community began embracing more social exhibit designs that
were intended to support visitor-visitor dialogue in addition to visitor-content dialogic inter-
actions (Ash 2004; Atkins et al. 2009; Humphrey et al. 2005; Leinhardt and Knutson 2004), a
number of exhibit designers began to turn to technology to facilitate these (often simultaneous)
dialogues. And as technologies have become increasingly ubiquitous, there has been an
explosion in the variety of designs to support social exhibit experiences, using technologies
as varied as large shared displays (e.g., Diamond et al. 1995; Macedonia 2003; Meisner et al.
2007), handheld mobile devices (e.g., Aoki et al. 2002; Cabrera et al. 2005; Hope et al. 2009;
Lanir et al. 2016; Yatani et al. 2004), combinations of shared displays and mobile devices (e.g.,
Dini et al. 2007; Kruppa and Aslan 2005; Lyons 2009; Scheible and Ojala 2005), interactive
tabletops (e.g., Angelo et al. 2015; Antle et al. 2013b; Davis et al. 2015; Lyons et al. 2015)
augmented reality (e.g., Beheshti et al. 2015; Schmitt et al. 2010; Wagner et al. 2006; Yoon
et al. 2012), and full-body interaction (e.g., Roberts et al. 2014; Tscholl and Lindgren 2016;
Uzzo et al. 2016; Yap et al. 2015). The foregoing designs were all intended to afford different
social behaviors – from spectating (e.g., Diamond et al. 1995; Tscholl and Lindgren 2016) to
coordinating (e.g., Lyons 2009; Angelo et al. 2015) to co-constructing (e.g., Antle et al. 2013b;
Lyons et al. 2015) – but vary in the degree to which the researchers examined the implications
of their designs for learning behaviors and outcomes. Full-body interaction exhibits are
becoming increasingly popular in museums, both because in some ways they can be easier
to deploy and maintain (fewer mechanical parts that visitors can scratch or damage, no
charging or other management of mobile devices needed) and because they may more
naturally support simultaneous use by groups of visitors. There is a need for more CSCL
research to explore how full body designs can support learning as well as social interactions.

Full-body interaction and situated learning

Full-body interaction is often described as a form of Bembodied interaction^ following
Dourish’s definition, which calls for designers to attend to the full scope of how a user is
situated within a context: within the user’s body’s own sense of itself and its motion
(proprioception/kinesthesia), within the physical setting, and within the social setting
(Dourish 2001). As a consequence, it can be confusing when confronted with competing
claims for how the Bembodied interaction^ found in full-body interaction designs can support
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learning, because the learning supported by two different designs might be relying on different
mechanisms. To clarify, we found it helpful to borrow from the Robbins and Aydede (2009)
description of the three major theses found in situated cognition: (1) embodiment, meaning that
cognition is rooted not just in the brain but in the body and its actions and sensations; (2)
embedding, meaning that cognition exploits structures found in the natural and social envi-
ronment; and (3) extension, which examines how cognition can span beyond individual
organisms. So, designs that rely on gestalt perception (Gibson 1979) and affordances
(Norman 1988) hew more closely to the embodiment thesis; while designs that attend to
how a learner and his or her actions are situated (Suchman 1987) and mediated (Wertsch 1994)
by physical or sociocultural aspects of the setting are more strongly aligned with the embedded
thesis; while designs that promote learning activities that are distributed across multiple
participants and tools (Engeström et al. 1999; Seifert and Hutchins 1992; Vygotsky 1978)
adhere more closely to the extension thesis. Using this framing, one can see how designs often
lumped together under the heading of Bembodied interaction^ pull more strongly from one or
more of these three theses. The next three sections will review existing Bembodied^ educa-
tional designs using each of these theses in turn.

Embodied full-body designs for education

The majority of research into the educational value of full-body interaction has taken more of
an embodied approach, where the internal mind-body connection has primacy in the design of
the full-body activity. For example, researchers have investigated how learners acquire
mathematics concepts by positioning their bodies to enact abstract concepts like ratios
(Howison et al. 2011) or scale (Fischer et al. 2011), thus constructing an abstract understanding
from bottom-up sensorimotor schema (Abrahamson and Sánchez-García 2016). Researchers
creating full-body interactives for physics education often use a similar embodied approach,
asking learners to enact phenomena like trajectories of meteors (Tscholl and Lindgren 2016) or
balls (Enyedy et al. 2015) by running along a path, or to trace particle vectors with gesture
(Johnson-Glenberg and Megowan-Romanowicz 2017). In all of these cases, motor engage-
ment is critical to the learning – the act of movement is a direct enactment of the conceptual
schema.

The designs above rely on a tight congruency between the full-body movement and the
abstract concept (Johnson-Glenberg et al. 2014), but there are examples of looser congruency
being used to help participants learn and employ abstract metaphors in areas as diverse as
social justice (Antle et al. 2013a), music (Antle et al. 2008), and comprehension of argumen-
tation in text (Kaschak et al. 2017). With all of these Benactive metaphors^ (Gallagher and
Lindgren 2015) learners acquire an analogic understanding of a concept via enacting it, similar
to Bimage schema^ (Lakoff and Johnson 1980).

Image schema (metaphors like Bup is more^ or Bback in time^) are the embodied
metaphors people form as a result of their earliest sensorimotor interactions with the
world, and are thought to be present in most humans thanks to our shared physiology
(Lakoff and Johnson 1980). Thus, rather than using full-body interaction design to help
learners build a new concept or a metaphor, some embodied design researchers have
approached the problem from the opposite direction by exploring if these pre-existing
image schema metaphors can be used to engineer full-body interactions that are more
usable (Antle et al. 2009) or that can encourage learners to assume different perspectives
(Roberts et al. 2014).
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Finally, some researchers have similarly used embodied design strategies to explore how to
help learners interpret abstract representations, linking differences in hopping frequency
(Charoenying 2013) or playground step counts (Lee and Drake 2013) to graphs of activity,
or perceived physical exertion to graphs representing the variability, magnitude, and rate of
climate change (Lyons 2016; Lyons et al. 2012). In these examples, the congruency is between
the physical action and aspects of the visual representation – while the visual representation
does not act as an Battentional anchor^ as it does in highly coordinative full-body enactments
(Abrahamson and Bakker 2016), it does act as an intermediary, helping learners connect their
physical movements or proprioceptive sensations to elements of abstract representations like
outliers and variability.

Embedded full-body designs for education

The preceding embodied full-body designs may have given primacy to the mind-body
connection in structuring the full-body learning activity, but several of them also attended to
how full-body movements are embedded within an external physical and social context. For
example, visual graphical representations are necessary to support learners’ ability to perceive
outliers and variability in performance data (Lee and Drake 2013; Lyons 2016), because these
phenomena arise from the aggregation of a number of learners’ enactments. A learner’s
singular physical experience of their own performance might give a window into the repre-
sentational space, but does not map onto the totality of the represented phenomenon – the
performance must be embedded in physical representation to allow learners to detect and
reflect upon the targeted concepts. In addition to supporting reflection, some physical design
decisions affect how learners direct future activities. For example, the presence of projected
representations of meteor trajectories on the floor (Lindgren et al. 2016) or ball forces
superimposed on video feeds (Enyedy et al. 2012) assist learners in interpreting their actions
and the effects of their actions. This support provided via the visualizations is a form of
cognitive offloading that has been conceptualized as a Bliminal blend^ (Enyedy et al. 2015),
wherein the sensorimotor/conceptual mapping targeted by the embodied design is enhanced by
an Boverlay^ of visualizations and physical objects that learners can use to develop their
conceptual understanding, allowing them to tune their performances to come closer to enacting
a targeted phenomenon.

Social embedding does not require that a full-body interaction design re-present the
performance of the enacting learner – the performances themselves (i.e., how the physical
actions are structured) can serve to embed the learner more thoroughly within a social context.
Research has shown that the design of exhibits can help transform human-exhibit interactions
into shared performances (Meisner et al. 2007), which can offer a number of potential benefits
for the social learning experience. For example, studies have shown how spectating visitors
gain a valuable Bpreview^ of how to interact with an exhibit by watching current exhibit users
(vom Lehn et al. 2001), and that witnessing companions’ actions at a shared exhibit can spark
conversations that support learning (Lyons et al. 2015). At a very simplistic level, full-body
interaction does not get Bin the way^ of usual human communication. A number of museum
professionals are concerned by the tendency of digital technologies (sometimes pejoratively
called Bscreens^) to capture visitor attention to the extent that visitors no longer attend to and
interact with companions (Lyons 2009). Full-body interaction is seen as a way to help visitors
keep their Bheads up^ and thus preserve visitor-visitor dialogue by remaining embedded in the
social context. In full-body interaction designs where the emphasis is on embedding the learner
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in a social setting, the embodied notion of tying an enacting learner’s sensorimotor perfor-
mance to a concept might be loosened or disregarded entirely. Rather, designing a full-body
interaction that supports communication is key.

Extended full-body designs for education

There is great potential for going beyond preserving to enhancing visitor-visitor dialogue
through creative full-body interaction design. For example, visualizations that embed a full-
body performance within a physical context can also be used to extend the cognitive activity to
include others in addition to the enacting learner, creating the possibility to support distributed
cognition or scaffolding. Tutors (Abrahamson and Bakker 2016), classmates (Enyedy et al.
2015), and parents (Tscholl and Lindgren 2016) have successfully used visualizations of
embodied performances to help coach the learners. Interpretive staff at a zoo used visualiza-
tions of visitors’ full-body performances as a jumping-off point to help both the enacting
learner and the watching audience to relate the performance to a range of concepts, from the
lived experience of polar bears in the wild to the mathematical concepts underpinning climate
change (Slattery et al. 2014). Even in the absence of visualizations of enactments, full-body
interaction translates the locus of visitor interaction with digital exhibits from Bscreen space^
into the physical, social space (Cafaro et al. 2014a), making visitor actions and choices more
visible. Some full-body interaction designs take the form of participatory simulations, engag-
ing learners as bees (Peppler et al. 2010) or residents of an ecosystem (Uzzo et al. 2016) to co-
construct an emergent system via their actions. By intentionally employing the bodies of
visitors as shared, semiotic resources that visitors can reason with and around, a full-body
interaction experience can be extended into Ban object to think with^ (Malinverni et al. 2016).
Extended full-body interaction designs also embed learners in a social context, but some of the
normal body positioning, pointing gestures, and symbolic gestures humans use as semiotic
resources within their conversations with others (Goodwin 2000) might be sacrificed in favor
of encouraging learners to enact physical actions that are highly recognizable and visible (but
might be mildly artificial). We took this latter approach in the full-body version of the
CoCensus exhibit: visitors enact symbolic gestures to control the exhibit.

Situating full-body interaction research in museums

The different situated cognition mechanisms (embodied, embedded, or extended) that can be at
play in full-body interaction designs have major implications for how to study the learning in
those experiences. Full-body interaction researchers have recommended first studying an
interaction design in the lab, only moving the research to the in situ location once the operative
mechanisms have been identified (Lindgren and Johnson-Glenberg 2013). While this might
work well for full-body interaction designs with a strong embodied focus, designs that rely
more heavily on the embedded or extended aspects of situated cognition are much harder to
examine in this way, because the physical setting, social setting, and interactions between
learners are essentially co-constructing the learning experience. Highly interactive museum
learning experiences are notoriously hard to study outside of their intended context of use – in
practice, the different design features can interact in unpredictable (and often undesirable)
ways (Allen 2004). To move forward with productive interaction designs for engaging visitors,
then, informal learning researchers and designers need to understand how different mediational
means work together—or in conflict—to affect learning outcomes. Researchers need to be able
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to conduct experiments that vary the combinations of different design features, and to conduct
those experiments, they need to develop methods to document and measure the emergent
learning that occurs at open-ended museum exhibits.

Measuring informal learning talk: The SQuILD method

Many scholars have addressed the challenge of measuring and quantifying learning in
museums. Some efforts have tried to measure individual knowledge gains via pre- and post-
tests or interviews (e.g., Falk and Storksdieck 2005). The accuracy of such measures depends
on visitors accessing that content during their visit, which is not assured to happen where
visitors pick and choose paths through an exhibition (Diamond et al. 2009). It is even less
reliable in customizable exhibits like CoCensus where visitors control what they see and how
they see it – even if questions were tailored to content they had seen. Exit interviews are also
problematic, as Bthere is little correspondence between people’s post hoc characterizations of
their experience and the activities in which they engage when visiting exhibitions^ (Heath and
vom Lehn 2008). Some research efforts have explored how observational data can serve as
proxies for learning. For instance, Borun et al. (1996) linked videorecorded behaviors of
family groups on a museum visit with the groups’ exit interviews about the exhibit content,
and found the frequency of certain observable Bsignificant behaviors^ could distinguish which
families had richer content engagement. Such measures and other countable metrics like hold
time have been used to experimentally test and compare multiple versions of an exhibit, for
example with and without augmented reality components (Yoon and Wang 2014).

From a sociocultural perspective, however, the most reliable and accurate indicator of
learning during an exhibit experience lies in the dialogue among group members as they
interpret content together. Schemes by researchers like Allen (2002) and Atkins et al. (2009)
have defined important conversational elements in museum Blearning talk^ (Allen 2002), but
they tell us only what to code, not how to create a measurement that reliably permits statistical
comparisons across conditions. We have identified three primary challenges associated with
identifying and measuring productive talk. Here we outline those challenges and describe a
novel methodology, SQuILD (Scoring Qualitative Informal Learning Dialogue), for address-
ing them.

Challenge 1: Identifying open-ended learning with interactive exhibits

Researchers have identified a number of features of productive learning talk, for example
reading text aloud, asking and answering questions, connecting new information to prior
knowledge, and giving explanations to companions (Allen 2002; Ash 2003; Leinhardt and
Knutson 2004; Kisiel et al. 2012). This prior work laid an important foundation, but these
schemes were largely developed before exhibits were highly-interactive. To study open-
exploration interactive exhibits, these schemes should be consolidated and extended to
embrace visitors’ agency in shaping their own interaction experiences.

Addressing challenge 1: Identifying learning in open-ended informal dialogue

We began by consolidating common threads in the literature to develop five categories of
substantive visitor talk applicable to interactive exhibits—management, instantiations,
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evaluations, integrations, and generations—described further below. We then used an open
coding process, informed by the literature of our exhibit’s content domain (data interpretation),
to determine specific sub-codes within each of those categories (as will be detailed under
Challenge 3). While our sub-codes were specific to our exhibit content, the five categories
could be adapted to a variety of interactive exhibits. Future work embracing this methodology
would likely find that developing unique sub-codes within these presented categories would
retain the structure of the method while adapting to the specific content focus of the research.

Manage codes

When multiple people are interacting with an exhibit, some talk will directly address the
interaction with the exhibit. Talk related to the establishment of joint attention, negotiation of
action, or scaffolding exhibit use was coded as management. These kinds of behaviors are of
interest because they speak to how visitors are working together and mediating each others’
experiences. For example, Allen (2002) categorized these kinds of actions as Bstrategic^ with
only two sub-codes: Buse^ and Bmetaperformance.^ Borun et al. (1996) attended to observable
coordination behaviors like Bcall over.^Multiple studies have attended to facilitative behaviors
such as explaining, asking and answering questions, and suggesting actions (Ash 2003;
Eberbach and Crowley 2005; Diamond et al. 2009; Atkins et al. 2009), all of which fall under
management in our scheme. Researchers of technology-based multi-user interactives who are
concerned with interpersonal interactions like interference (Falcão and Price 2009), negotiation
of exploration (Davis et al. 2015), and joint discovery of interactive possibilities (Williams
et al. 2005), could detect and characterize these behaviors via patterns in management codes.

Instantiate codes

The term Binstantiation^ indicates when a user says aloud a piece of information, providing
opportunities for other visitors to internalize that information (i.e., learn from the exhibit). Per
sociocultural learning theory, learners must articulate ideas via communication before individ-
ual learning can take place through internalization or personalization (Vygotsky 1978).
Instantiations are an important part of the social learning process as they can lay the foundation
for further reasoning among learners on a museum visit (Kisiel et al. 2012) and help establish
joint attention (also referred to as Bgrounding^). Processes of noticing and establishing joint
attention among visitor group members have been found to be productive in facilitating
learning talk in museums (Povis and Crowley 2015; Leinhardt and Crowley 1998), and
reading labels aloud was identified as a Bsignificant behavior^ linked to increased group
learning by Borun et al. (1996).

Evaluate codes

Evaluation statements make a judgment or assessment about a piece of information by
assigning some kind of value, whether qualitative or quantitative. Such personal qualitative
evaluations are very important in informal learning settings, where developing one’s
identity is seen as just as much of a goal of the meaning-making process as absorbing
content (Rounds 2006). In this context, evaluations can be simple standalone comments
(e.g. BThey are all spread out!^) or part of a more complex statement. The most common
evaluate sub-code in our exhibit was characterize. EVALUATE-characterize statements
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could be quantitative (e.g., Ba lot^ or Bnot very many^ of something), or spatial, e.g.
describing a population as being Beverywhere.^

Integrate codes

While evaluation statements refer to a single idea, the final two categories connect multiple
pieces of information in some way. Friel et al. (2001) refer to the act of looking for
relationships in data as Binterpretation.^ The SQuILD framework adopts the more precise
term integration from Murray et al. (1998) to describe the act of pulling together multiple
pieces of information presented in an exhibit. Statements that integrate are those that make
explicit connections or comparisons between multiple pieces of information: for example, in
our exhibit, between two different datasets, between a dataset and the geography, between a
dataset and itself over time, etc. Connections and comparisons are integrative talk widely
acknowledged to be valuable in museum settings (e.g. Allen 2002; Atkins et al. 2009; Falk and
Dierking 2000).

Generate codes

Generate statements B[go] beyond the data^ (Curcio 1987) to combine information
from the exhibit with visitors’ own prior knowledge and experiences. Falk and
Dierking’s (2000) Contextual Model of Learning posits that what learners gain during
a learning experience is inextricably tied to the personal context they brought into the
experience—prior knowledge, experiences, motivations, identities, etc. Allen (2002)
incorporates what she calls Bconnecting talk^ into her framework for analyzing visitor
conversations at an exhibit, but unlike the connections described above as an integrate
code, the type of connections she is referencing are making use of outside information,
by connecting an exhibit to life, prior knowledge, or other exhibits. She describes this
stitching together of information from different sources as Bpowerful and ubiquitous
means of learning in informal settings.^

Summary

Taken together, these five categories of codes capture the substantive talk visitors have during
exhibit interactions. These categories consolidate prior work studying museum dialogue and
are likely to apply to any interactive exhibit. The subcodes (Table 1) are exhibit-specific, so
researchers employing this method will likely adapt these and create new codes according to
their unique content and context. The next section discusses how these codes can be applied to
visitor dialogue.

Challenge 2: Segmenting dialogue to permit cross-group comparisons

The grain size for segmentation is a key decision in any analytical process. Due to
the spontaneous nature of joint exploration, many ideas are split among two or more
visitors as they work together to make sense of the content. Visitors interrupt each
other and in some cases interrupt themselves mid-idea as they notice new information.
The fragmented nature of museum dialogue is a known challenge for assessing
learning in this context (Allen 2002), particularly when an analysis aims to quantify
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talk by counting instances of a particular kind of speech act. Some analyses of visitor
dialogue address this challenge by coding simply for the presence or absence of a
particular kind of talk (e.g., making a prediction) at all during a session (Allen 2002;
Atkins et al. 2009), but such an analysis runs the risk of skewing the quantification
toward under-representation: a visitor group that had an in-depth conversation with
many predictions would receive the same score as a group that made only a single
prediction. Another common segmentation strategy, one that supports valid compari-
sons of sessions, is to divide speech into conversational turns and code and count
those turns to quantify them (Chi 1997). Because of the frequent interruptions and
repetitions common in informal learning talk, this delimitation technique could skew
the quantification toward over-representation of certain kinds of talk. Larger
delimitations, meanwhile, such as segmenting by theme or referenced data, would
obscure the intricacies of the productive dialogue. A new segmentation method is
necessary.

Addressing challenge 2: Segmenting dialogue through idea units

Dialogue is a group activity. Some ideas are spoken by only one visitor and are
contiguous and completed in a single conversational turn. Others are co-constructed
by multiple visitors as they collaboratively investigate the exhibit’s content. To reach
the appropriate level of granularity, this method adopts the idea unit (IU) as its unit of
analysis, introduced by Jacobs et al. (1997) as Bmarked by a distinct shift in focus or
change in topic.^ We amend this to more closely capture dialogue emerging in the
midst of a group activity by defining an idea unit as marked by a distinct shift in focus
or change in topic or purpose. This adjustment segments visitor conversation into
chunks according to what that speech is doing in the group interaction. Idea units
can range in length from a single word, e.g., reading aloud a category name, to a multi-
sentence utterance. To illustrate the concept, below are two excerpts of dialogue from
two visitor sessions. The first shows somewhat straightforward linear idea units, as
annotated below:

This excerpt was divided into four idea units. Lines 2–4 were considered to be one idea unit
because the fast pace of these conversational turns indicated that to the participants they
contributed one chunk of information. The same words spoken more slowly with significant
pauses in between turns could have been separated into individual units. This reliance on
pacing in the moment—how each speech unit would have been perceived by users in the
experience—illustrates the importance of completing this segmentation from videos rather
than from transcripts, as discussed in more detail below. The idea units in this example vary in
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length and in one case span multiple turns and speakers, but they are fairly straightforward.
Some idea units are less obvious, because they are detached and inter-spliced. Take this
segment from another pair:

A: So whatever’s, I’m assuming there must be railway or, oh wait, isn’t that a road? That
goes across, across the water. So there’s-
B: It’s a bridge.
A: So my guess is, oh it’s a waterway or a roadway or whatever. Waterway maybe. But
that area’s most likely industry.

Visitor A’s main goal is to pose his theory about the area being industrial but he keeps
interrupting himself trying to correctly describe the roadway, with an interjection from his
companion. This segment is counted as two overlapping idea units, as the participants are
doing two meaning-making moves in these three turns: decoding the map representation,
represented with an underline below, and posing an inference about the area based on the data
(BSo whatever’s… So there’s… So my guess is… But that area’s most likely industry,^
double-underlined below).

A: So whatever’s, I’m assuming there must be railway or, oh wait, isn’t that a road? That
goes across, across the water. So there’s-
B: It’s a bridge.
A: So my guess is, oh it’s a waterway or a roadway or whatever. Waterway maybe. But
that area’s most likely industry.

This segmentation into idea units prevents stutters and echoing (e.g., the repeated starts to
the inference BSo whatever’s^, BSo my guess is…^) from unfairly weighting a statement
beyond its contribution to the dialogue, which can occur in a speaking-turn-based quantifica-
tion of talk (Chi 1997). Idea-unit coding is particularly useful when characterizing the overall
educational quality of a group’s conversation, rather than trying to draw attention to the

Fig. 5 Coding directly from video maintains the context of the talk and facilitates segmentation of overlapping
idea units, shown here as white bars in the coding software MaxQDA
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individual contributions or cognitive acts of each speaker. Given the sociocultural perspective
much work in museum learning is taking (namely, learning is evidenced in the group’s talk,
and benefits the group as a whole), idea units are more appropriate than a turn-based approach.

Idea-unit coding is best done directly from video to retain the context of visitors’ comments
(see Fig. 5). Separating dialogue from the visitors’ experience by making—and later coding
from—a transcript removes the context in a way that obfuscates or even completely alters the
meaning of the statement. Context is particularly important for learning talk occurring at
dynamic interactive exhibits, where visitors can alter the exhibit state with their actions, and
their dialogue responds to the changing state of the display.

Challenge 3: Respecting socially-constructed learning when quantifying dialogue

In addition to the coding and segmentation challenges described above, a further complication
is the irreducible tension that while not all dialogue may be equally well aligned with exhibit
learning goals, all visitor groups are guaranteed to engage with exhibits in manners that suit
their current interests and level of understanding. What constitutes meaningful learning talk for
one group might not align with content goals for the exhibit. For example, it is widely accepted
that reading a label aloud is a productive form of talk in museums (Borun et al. 1996; Kisiel
et al. 2012; Allen 2002; Atkins et al. 2009), but should such reading merit the same
quantitative score as a comparison of two datasets, if the exhibit’s aim is to foster such
comparisons? But conversely, should a Bconversation^ where one visitor makes a single
comparison be valued more highly than an extended dyad conversation where both make
observations about exhibit content? An analysis should ideally respect the socially constructed
nature of museum learning and Bgive credit^ to both quality and quantity of talk, acknowl-
edging all productive talk while retaining qualitative distinctions among different kinds of talk.

Addressing challenge 3: Quantifying depth and nuance in visitor talk

Quantifying visitor talk begins by assigning the five categories of codes identified above to the
identified idea units. Any idea units that did not fit into a category and sub-code were marked

Table 1 Sub-codes were sorted according to their relevance to learning objectives

Low Relevance (1) Mid Relevance (2) High Relevance (3)

INSTANTIATE category
INSTANTIATE dataset
INSTANTIATE decade
INSTANTIATE geography
INSTANTIATE representation
INSTANTIATE self
INTEGRATE connect multiple
INTEGRATE connect simple
MANAGE ask interpretive question
MANAGE direct co-visitor’s

movements
MANAGE narrate intentionality
MANAGE negotiation of control
MANAGE purpose of exhibit
MANAGE suggest action

EVALUATE characterize
EVALUATE win
GENERATE contextualize
GENERATE identify knowledge gap
INTEGRATE challenge

interpretation
INSTANTIATE outside knowledge
MANAGE ask guiding question
MANAGE clarify
MANAGE direct co-visitor’s

attention

EVALUATE question census
categories

GENERATE confirm
GENERATE make prediction
GENERATE negotiate meaning
GENERATE notice surprising

pattern
GENERATE pose inference
INTEGRATE compare
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non-substantive and were disregarded in the analysis. Some idea units were coded with a
single code. Many idea units, however, were coded with multiple codes: though the statements
were one logical idea, they were deep and complex enough to warrant multiple codes. This
process of simultaneous coding (Saldaña 2009) maintains the richness of the talk, rather than
reducing a statement to a single code. For example, here one participant compares two groups
from the Heritage category, those who had identified as White, and those who had identified as
Mexican1:

BOkay, there’s a lot of White in 2000, rather than Mexicans.^

This statement as an overall idea unit compares the two heritage groups. Within that broad
goal, it does multiple things. It INSTANTIATES the datasets (BWhite^ and BMexicans^) and
decade (B2000^), it INTEGRATE-connects the dataset to the decade BWhite in 2000^, it
INTEGRATE-compares the datasets (BWhite^ and BMexican^) using Brather than,^ and it
EVALUATE-characterizes BWhite^ as being Ba lot.^ Coding the statement only as a single
code—in this case INTEGRATE-compare—would give it the same value as a much less rich
statement like, BIt looks like there are more of them.^ Only via simultaneous coding can we
give credit to the multiple Bhooks^ this complex statement provides for further discussion.

Assigning values to codes by tying them to exhibit learning goals

The coding framework described above flags conversational acts that are likely to contribute to
shared meaning making at an interactive data exhibit. In any open-ended exhibit, multiple
kinds of talk are considered to be highly relevant to the intended learning. Other kinds of talk
are important but less directly aligned with the learning goals. Therefore, this methodology
employs a form of magnitude coding (Saldaña 2009; Miles and Huberman 1994) by sorting
the sub-codes into high, medium, or low categories according to their relevance to the goals of
the exhibit, as determined by the research team (see Table 1; note that the weighting is
particular to this exhibit). Using magnitude coding as a way of Bquantizing^ a phenomenon
(Tashakkori and Teddlie 2010) permits the use of inferential statistics (Bernard 2006; Saldaña
2009) in order to compare the experimental conditions.

The subcodes assigned to the Blow relevance^ category—mostly INSTANTIATE and
MANAGE—are all activities that are useful for grounding and coordinating the group learning
experience and may serve as springboards for future dialogue, but are themselves not strongly
related to the learning goals of the exhibit. These statements were assigned a weight value of
one. BMid relevance^ codes took steps to make sense of the presented data by characterizing
and contextualizing it, clarifying the representational forms, and directing co-visitor’s attention
to an interesting element of the exhibit (which rises above a simple instantiate code because it
conveys to the listener that the targeted element is worthy of joint discussion). These codes
were given a weight score of two. BHigh relevance^ talk included statements that related
presented data to prior knowledge or expectations, predicted or inferred information, compared

1 The complex and often contested way the U.S. Census counts heritage information has posed numerous design
challenges in creating this exhibit that have been discussed elsewhere (Roberts et al. 2015). In the iteration of the
exhibit tested here, the designations provided by the census are preserved. In the Heritage category, visitors had the
option of selecting one option from any of the following categories: Race (e.g. BWhite^ or BJapanese^), Hispanic
status (e.g. BMexican^ or BPuerto Rican^), or Ancestry (e.g. BArab^ or BGerman^). This often resulted in pairs of
users exploring mismatched datasets when one user chose a race and another an ancestry or Hispanic group.
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datasets with each other or over time, and questioned the source of the data (such as how the
census counts a particular category). This kind of talk is exactly the kind of exploration and
meaning making the exhibit is intended to support, and thus were assigned a weight of three.
Overall Bcontent scores^ were calculated by summing the weighted values of all codes applied
to a session.

Validity and limitations of magnitude coding

The assumption being made by this approach is that the overall richness of codes corresponds
to the overall richness of the shared learning experience throughout the session, and that idea
units are used to avoid over- or under-representing that richness. There is no assumption that a
session’s value should be determined by the tally of Bhigh value^ (i.e. multi-coded) idea units
like the example above, or that calculating the average value of idea units over a session is a
meaningful measure. Other methodologies exist to closely scrutinize individual discourse
statements. Instead, we recommend summing all codings applied over a session to assign a
quantified value to what learners were able to do in the session. Looking at another example:

BOh yes, lots of West Indians in Brooklyn, that is true.^

This statement INSTANTIATES-dataset (BWest Indians^, weight of 1) + INSTANTIATES-
geography (BBrooklyn^, 1) + EVALUATES-characterize (Blots of^, 2) + INTEGRATES-
connect:simple (dataset to geography) (West Indians in Brooklyn^, 1) + GENERATES-con-
firm (Boh yes … that is true^, 3) = content score of 8. Whether delimited as one 8-point idea
unit versus a 3-point idea unit (BOh yes… that is true^) plus a 5-point idea unit (Blots of West
Indians in Brooklyn^), the impact on the session score is the same. Because of this flexibility
in segmenting idea units, the methodology does not recommend analyzing scores of individual
idea units (e.g., to compute metrics like Baverage value per idea unit^), but only the total
dialogue in a session.

Session scores illuminate differences between conditions in their ability to support visitors
in productive exploratory talk. Even the codes identified as Blow relevance^ are still
productive learning talk. In this context, high-value codes often (but not always) build on
low and mid-value talk, and a good statement often contains all three. A simple IU like "It
looks like there are more of them" is a high-level INTEGRATE-compare. But it adds far less
substance to the conversation than a richer statement like the 8-point IU described above.
The simpler high-level statement, which our method would assign a value of 3, gives the
speaker’s companions fewer Bhooks^ to build on: they can only respond to the comparison,
whereas the more complex statement gives companions a number of different directions to
take the conversation. Given the open-ended nature of the interactions and the underlying
assumption that each group will be approaching the exhibit from a unique background and
with unique goals, it is to be expected that productive interactions will not be the same for
each group. Five example sessions graphed in Fig. 6 below demonstrate different profiles of
conversation, demonstrating that visitor groups can attain high scores through a variety of
ratios of low/mid/high level talk.

In the study we present below, the average content score for all 119 coded sessions of
groups using our interactive data visualization exhibit was 69.4 (SD = 42.6). Example A in
Fig. 6 was a low-performing group, with a content score of 27. This interaction involved a
largely one-sided dialogue, with one active participant narrating her activities and making
some interpretive statements with very little input from her companion. Examples B, C, and D,
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by contrast, all scored roughly half a standard deviation above the mean, but they achieved
those scores in different ways. The pair in Example B had the highest proportion of high-
relevance talk of any of our examples but overall fewer codes applied, resulting in a session
score of 86. Examples C and D both had fewer high-relevance codings but made up for them
with more low- and mid-relevance codes, resulting in scores of 92 and 94. By comparison,
both members of the high-performing group in Example E were actively engaged in data
interpretation, building off each other’s comments and their own observations. The richness of
their discussion is evidenced by the high numbers of codes applied in all three categories and
their high overall score of 185. The utility of this weighted coding system is that it allows
different kinds of engagement (like Examples B, C, and D above) to be acknowledged as
productive while still distinguishing low (e.g. Example A) and high (Example E) performing
groups.

The final point to consider in applying a magnitude coding scheme is the numerical values
assigned to each code level. The research team felt values of 1–2-3 for low-mid-high codes
best reflected the relationship among code levels, but a full analysis vetted this assumption by
testing two alternative scoring proportions (1–3-5 and 1–5-10). In the 119 visitor sessions
analyzed for that study, the results of the A/B testing were consistent regardless of the scoring
proportion, i.e. the same design Bwon^ in all scoring, although some statistical significance
was lost in the 1–5-10 proportion. The SQuILD methodology, by meaningfully segmenting
dialogue and applying codes relevant to open-ended discussion and weighted according to
their alignment with the exhibit’s learning goals, provides a valid quantitative measure for
conducting A/B testing and informing exhibit design decisions.

Employing SQuILD: An in situ study

Here we present an in situ 2 × 2 experimental study exploring how changes to the control
device for an interactive census data map exhibit (Fig. 1) impact visitors’ learning talk as
measured by the SQuILD method. Specifically, this study varies the means of control (MoC)
for the interactivity—whether visitors use a handheld tablet or a full-body interactive system to
enact changes to the display—and the distribution of control (DoC) to a single user or multiple
users. Visitors’ dialogue and interactions with the system are measured in order to compare
conditions on their affordances for supporting productive learning talk (Fig. 7).

Fig. 6 The SQuILD method is not intended to value a particular ratio as Bbest.^ Instead, dialogue is evaluated
based on how well it aligns to learning goals and how many Bhooks^ visitors have to engage with each other and
the presented content
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Experimental conditions

The exhibit allows visitors to control three variables of the data visualization: decade, category,
and aggregation level. Two form factors for enacting these control actions were tested. The
handheld controller is a tablet-based interface that utilizes familiar touch controllers—buttons
and sliders—to manipulate the visualization (see Fig. 8). The full-body controller condition
places the locus of interaction and input in the user’s body instead of an external device
(Cafaro et al. 2014a, b).

Interaction design

Throughout the course of this design-based research project, multiple control gestures have
been tested in lab and museum settings, attending to embodied interaction concerns of
semantic mappings between movements and gesture, internal and external consistency of
gesture suites, and guessability (Cafaro 2015; Cafaro et al. 2013; Roberts et al. 2014). The

Fig. 7 Two-by-two study design. 119 groups of two or more visitors participated in this study, with 57 groups
using the full-body version and 62 in the handheld, and 57 groups using multi-input and 62 using single-input
control

Fig. 8 Screen capture of tablet controller for HH conditions. Users manipulated the data display by tapping
decades, swiping categories, or pinching aggregation levels
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study presented here addresses an emergent question in this line of research – whether the size
of a control action in an embodied interaction experience significantly impacts the users’
outcomes. That is, if semantic mappings are held constant, will a physically bigger control
action (i.e. using full-body control) support learning better than a smaller one? To test this, we
developed a suite of whole-body gestures drawn from lab studies in this project (Cafaro 2015;
Cafaro et al. 2013) that have congruous tablet-based counterparts.

To select the census year of their data (1990, 2000, or 2010), visitors in the full-body
condition step into marked areas on the floor, and visitors using the handheld controller push a
button. Changing categories (e.g. ancestry, household size) is accomplished with a sideways
swipe that in the handheld condition mimics the flick smart phone users utilize to browse
pictures in a camera photo gallery, and in the full-body condition is the same gesture but
bigger, as if the user is flipping through the pages of a very large book. Changing the
aggregation level is accomplished by a pinch motion on the handheld and by pulling both
hands apart or pushing them together in the full body condition, in a movement similar to that
of playing the accordion.

In all cases two participants completed the kiosk survey in order to view their own self-
selected data, but participants in the single-input conditions were given a single global
controller that manipulated both data sets simultaneously, i.e. a single control action would
change both datasets. Multi-input conditions allowed two participating visitors to indepen-
dently control their own datasets via individual tablets (HH) or gestures (FB).

Participants and research context

This study was conducted in situ in a museum using members of the general visitor population.
All visitors interested in using the exhibit were invited to do so, and all visitor groups who
orally consented to participate in the research and wear lapel microphones during their
interactions were assigned a group ID number. The analysis presented here examines the
119 visitor sessions in which at least two visitors interacted together, spoke English during
their interaction, and through their dialogue demonstrated that they understood what the data
map represented.

The exhibit is situated in a small, irregularly shaped room approximately 2.9 m × 6 m
separated from the museum’s main hall by a partial wall. A 90″ LCD flatscreen television
serves as the main display at the far end of the room, away from the main entry door. In the
full-body condition a rectangular Binteraction area^ is marked on the floor by a green floor mat
labeled with the decades of data available for exploration (Fig. 1).

Procedure

After pairs of participants completed their data profiles using the kiosk application (Fig. 2) they
were given lanyards with a clip microphone. Visitors in the handheld conditions were given
one or two Android tablets, depending on single- or multi-input condition, running the
controller application. If more than two visitors were present in the group, spectators (those
who did not complete the kiosk survey) were invited to watch from the back of the space
where they could see the display and participate in the conversation. Museum staff explainers
and members of the research team remained at the back of the room and only intervened in the
interaction to answer questions. To ensure consistency in the responsiveness of the technology,
we used a Wizard of Oz approach in the FB condition, where a member of the research team
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was ready to manually trigger events in response to valid visitor gestures. Participants were
allowed to remain in the interaction area as long as they wished. A video camera at the back of
the room recorded visitor interactions, and the video feed was synchronized with microphone
audio and a screen capture of the display for analysis.

Coding visitor sessions

Sessions were segmented and coded for talk as described above. The raw counts of codes
applied in each category and content scores from the magnitude coding were calculated for
each session. We also computed the total interaction length, the number of data manipulations,
the amount of time spent in silence, and the time spent learning to interact with the system (e.g.
asking for instructions or help).

Seven sessions comprising 151 idea units were coded for dialogue by a second coder. In
total, 467 codes were applied with an overall agreement of 85.65% (400 of 467 codes).
Cohen’s kappa was run and determined there was strong agreement, κ = .825, p < .001.

Findings

Comparing conditions: Learning talk

Visitors’ learning talk was measured through analysis of the raw number of codes applied per
session by condition, the content scores, and the rate of visitors’ talk (i.e. score per second).
The sections below identify statistical differences in these measures by the means of control
(MoC: full-body or handheld) and distribution of control (DoC: single or multi-input).

Differences in number and categories of codes applied

We first wanted to investigate if there were any characteristic differences in the nature of the
talk across the conditions, before attempting to assign value to the talk using our weighting
scheme. A two-way analysis of variance (ANOVA) yielded a main effect for MoC
F(1115) = 5.841, p < .02, indicating that the average number of codes applied to a session
was higher for handheld (HH) sessions (M = 56.61, SD = 29.23) than full-body (FB)
(M = 44.16, SD = 27.09). The main effect for DoC was non-significant, as was the interaction
effect. By category, a main effect was found for MoC on the number of instantiate and
integrate codes applied, with the HH conditions receiving more of each type. In both of these
categories, no main effect was found for DoC, nor was an interaction effect found. No
significant main or interaction effects for MoC or DoC were found for manage, evaluate, or
generate codes.

These findings suggest that the Means of Control somehow affected the character of
visitors’ conversations. The next section examines how those differences manifested in terms
of the exhibit learning goals.

Differences in quality of learning talk

To identify how well each condition was supporting the intended learning goals, each code
was assigned a weight according to its relevance (Table 1). Then the weights were summed to
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produce a content score for each session providing an overall picture of the quality of that
session’s learning talk. Content scores in this dataset ranged from 10 to 242, with a mean of
69.42 and a standard deviation of 42.60.

A two-way ANOVA on the scores yielded a main effect for MoC, F(1, 115) = 4.52,
p = .036, with a significantly higher weighted content score for HH sessions (M = 77.32,
SD = 43.93) than FB (M = 60.82, SD = 39.72). The main effect for DoC was non-significant,
as was the interaction effect. These findings reveal that, contrary to expectations, the handheld
condition better supported learning talk among visitors.

Rate of learning talk

Because the content scores represent a sum of all codes applied to a session’s dialogue,
differences in how long visitors spent interacting with the exhibit could affect their scores,
i.e. visitors who linger longer have more time to talk and build up their scores. A one-way
ANOVA was conducted to compare the four conditions on the duration of visitors’ sessions.
The ANOVA revealed that the effect of condition on session duration was significant,
F(3115) = 2.782, p = .044. The handheld single-input (HHS) condition had the shortest
average session duration at 145.8 s, compared to 191.9 s, 197.4 s, and 201.6 s for FBM,
FBS, and HHM, respectively, but a Tukey HSD post-hoc comparison showed that no
conditions were significantly different against any one other condition. However, when
normalizing content scores by session duration to calculate the rate at which visitors produced
substantive talk, significant effects were found.

The main effect of MoC yielded an F ratio of F(1115) = 32.47, p < .001, indicating that the
normalized session score was significantly greater for HH conditions (M = .464, SD = .160)
than for FB conditions (M = .311, SD = .133). The main effect of DoC yielded an F ratio of
F(1115) = 4.82, p = .030, indicating that the normalized session score was significantly greater
for single-input conditions (M = .421, SD = .187) than for multi-input conditions (M = .357,
SD = .132). The interaction effect was significant, F(1115) = 4.40, p = .038, indicating that the
MoC effect was greater in the single-input condition than the multi-input condition.

The combination of the higher content scores for HH conditions overall and the slightly
shorter interaction times for the HHS condition led to the handheld single-input conditions
producing the highest quality of data talk in the shortest amount of time, again contradicting
expectations.

Comparing conditions: Interactions

The measures of learning dialogue reported above indicate surprising findings that the
handheld controller better supported visitor learning talk as measured by content scores, and
did so especially efficiently when only one user had control. The next sections explore possible
factors in the exhibit interactions that may have been able to account for these results.

How much data did visitors see?

In this interactive exhibit, visitors were able to control not only what data were presented (via
their selections at the kiosk), but also the amount of data rendered (i.e. shown on the display
for at least 2 s) during their interactions due to the control actions they took. Upon stepping
into the interaction area, two datasets were initially rendered: each visitor saw his selected
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dataset for the first category (typically Heritage) in one decade (typically 2010). Any further
rendering of data was only accomplished through control actions to switch the category and
decades. Of the twenty-four potential data sets (4 categories × 3 decades × 2 visitors) multi-
input (M) condition users could render any whole number between 2 and 24 datasets; for
single-input conditions only even numbers of datasets (2, 4, … 22, 24) could be rendered
because the two sets were tied to each other.

Of the 119 sessions analyzed in this study, 44 (37%) rendered all 24 datasets. The minimum
number rendered was 8 (5 groups). The mean was 20, with a standard deviation of 4.7. A
moderate but significant correlation was found between the number of datasets rendered and
the content score of a session, r(119) = .346, p < .001.

To relate this finding to the controller designs, a two-way ANOVA on the number of
rendered datasets yielded a main effect for DoC, F(1, 115) = 4.14, p = .044, with a significantly
higher number of rendered datasets for single-input sessions (M = 20.84, SD = 4.77) than
multi-input (M = 19.0, SD = 4.76), which could possibly be explained by the Btwo-for-one^
rendering attained by using the single-input controls. The main effect for MoC was non-
significant, F(1, 115) = .043, p > .05, as was the interaction effect, F(1115) = 2.52, p > .05, so
the higher-quality data talk in the HH condition is not explained by a higher degree of
exposure to data.

Although differences in distribution of control were statistically significant, on average
single-input groups saw less than two additional datasets (M = 20.84, SD = 4.77) above their
multi-input counterparts (M = 19.0, SD = 4.76). This difference alone is unlikely to have
greatly impacted the overall learning talk of the session, but it may have been partially
responsible for differences among conditions. The next section looks more closely at engage-
ment by examining differences in numbers of control actions.

Did handheld users make more moves?

The two means of control tested here were both embodied in that they required physical
movements in order to complete, but the smaller HH gestures may have been easier. We
wondered whether movement was correlated with content scores, and if so, whether HH users
made significantly more moves. Because movements were independent between users in the
multi-input condition and linked in the single-input, we examine them separately here.

We first compared the overall number of control actions taken by each group. Independent
samples t-tests were conducted to compare number of control moves for the FB and HH
conditions. In the multi-input conditions, participants in the HHM condition made a higher
number of control actions (M = 55.59, SD = 27.69) than did those in the FBM condition
(M = 39.00, SD = 14.38), t(42.40) = −2.85, p = .007. A t-test on the single-input conditions
indicated that no significant difference existed between HH (M = 32.24, SD = 20.88) and FB
(M = 33.59, SD = 19.73) conditions, t(60) = .259, p > .05.

Session scores and total number of control moves were moderately positively correlated in
the multi-input conditions, r(57) = .51, p < .01 and were strongly correlated in single-input
conditions, r(62) = .62, p < .001. In particular, a strong correlation existed between the number
of decade moves and session score in the single-input condition, r(62) = .61, p < .001. Decade
moves were positively but weakly correlated with session scores in the multi-input condition,
r(57) = .27, p = .042.

These correlations suggest that physical interactions with an exhibit may provide an
advantage for supporting learning talk. This finding would be in alignment with both theories
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of the affordances of interactive data visualizations (e.g. Card et al. 1999) and of embodied
cognition. However, this dataset does not support an analysis to tease apart which of these
theories is more at play in this scenario; further work in this area is warranted.

If learning talk is correlated with control actions, the ease of completing those control
actions is an important consideration for exhibit designers. While full-body interaction may
have inherent affordances for cognition, those affordances may be negated by difficulties in
completing the actions. Visitors were not directly surveyed about perceived difficulty of
controlling the exhibit, so impacts of physical barriers cannot be measured using this dataset.
The difficulty visitors had in understanding the control actions can be examined, however. A
proxy for measuring this concern with the available data is presented next.

Did FB users have a harder time learning the controls?

Any novel interactive system will require some amount of time for users to learn and become
comfortable with the controls and basic operation of the interactive features. From the videos
we marked out the time visitors spent talking to each other or the researchers about working
the controls, which could affect the amount of productive data talk visitors could do and
therefore impact visitors’ session scores. In particular, we hypothesized that visitors in the FB
conditions likely had a more difficult time learning the mechanics of the novel interaction than
those in the HH conditions, and that multi-input users may have had to devote more talk to
understand the control actions than single-input users, where one visitor in the interaction
could Bdrive^ the session. This measurement provides a proxy for assessing how difficult it
was for visitors to understand how the exhibit worked.

To account for variation in average session duration, we computed Bmechanical^ time as a
proportion of total session time. A two-way analysis of variance yielded a main effect for
MoC, F(1115) = 52.55, p < .001, indicating that users in the HH condition indeed devoted a
smaller percentage of their interaction to figuring out the mechanics of the system (M = 7.94,
SD = 7.66) than those in the full-body condition (M = 19.47, SD = 9.50). No significant DoC
or interaction effects were found. If participants in the full-body interactive conditions spent on
average 20% of their interaction time dealing with the mechanics of the system, it could follow
that their content scores would be affected. Indeed, a significant but weak negative correlation
was found between content scores and percentage of mechanical time across all sessions,
r(119) = −.248, p = .007.

Subtracting the mechanical time from the active session times can therefore give an
adjusted metric for viewing session length. A two-way ANOVA comparing MoC and DoC
on adjusted duration found the no significant differences on main effect of MoC, DoC, or
their interaction, indicating that once the time spent talking about the mechanics of the
system was subtracted from the amount of time spent interacting, all conditions spent a
comparable amount of time during which they could have been engaging in productive
learning talk. Rather than accounting for the variations in session scores, this finding makes
these content score differences—particularly between FB and HH conditions—even more
striking.

In fact, a two-way analysis of variance examining session scores normalized by the active,
non-mechanical time (in seconds) yielded a main effect for MoC, F(1115) = 14.97, p < .001,
indicating that even when subtracting out the time spent learning the control of the system,
visitors in the handheld sessions had a higher score-per-second (M = .50, SD = .17) than those
in the full-body conditions (M = .39, SD = .16). The main effect for DoC was non-significant,
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but the interaction effect was significant, F(1115) = 4.20, p = .043, indicating that the MoC
effect was greater in the single-input condition than in the multi-input condition.

These results suggest that it was not the time spent learning the control of the system that
accounts for variations in learning talk among conditions. Implications for these findings are
discussed next.

Discussion

The field of CSCL has taken great interest in the role of the body in supporting collaborative
learning (Davidsen and Ryberg 2017; Enyedy et al. 2012, 2015; Yoon et al. 2012). Advances
in motion-sensing and augmented reality technologies have opened many doors for creating
whole-body interactive computer supported learning environments in museums (Lyons 2016;
Tscholl and Lindgren 2016; Uzzo et al. 2016; Yoon et al. 2012), but many methodological and
theoretical questions remain. We have presented here a method, Scoring Qualitative Informal
Learning Dialogue (SQuILD), that meets a need faced by many researchers examining
intersubjective learning (Suthers 2006) in open-ended exploratory environments where indi-
vidual cognitive assessments such as pre- and post-tests cannot fully capture the learning (Stahl
2015). We then applied that methodology to an in situ study of an interactive museum exhibit,
CoCensus, to find that our expectations were wholly contradicted by the results. In this
discussion we will reflect on additional factors that may have been at play in the design of
the exhibit, and we will conclude with considerations for employing this methodology in
future studies.

Framing embodiment

CoCensus is designed to support intersubjective learning (Suthers 2006) as users interact with
data and each other. To encourage dialogue, the exhibit was conceptualized as a multi-user
interactive exhibit drawing on theories of embodied cognition. Embodied interaction designs
can influence learning via the embodiment, embedding, and extension of cognition. The
CoCensus exhibit, like many other full-body interaction designs, contained elements of all
three perspectives in its design. We held the embodied interaction design more or less constant
across the tablet and the full body CoCensus designs: in both conditions, the visitor control of
the data visualization was designed to be aligned with the same embodied schemata (moving
forward and backward through time, scaling up and down as stretching or squashing, and
selecting a new item by pushing aside the current item), although more sensorimotor action
was required in the full body design than in the tablet design. With the full-body version of the
CoCensus exhibit, we made sure that the physical movements were designed to be highly
visible so as to embed the visitor actions more completely in the physical and social context to
spur more collective dialogue. In the multi-user control versions of CoCensus, by allowing
multiple learners to co-construct the state of the exhibit, learners should have been able to
extend their reasoning about the exhibit to embrace both their and their companions’ actions.
By capitalizing on all three embodied, embedded, and extended aspects of situated cognition,
the multi-user full-body condition should have more productively mediated learner interac-
tions, but in the study presented here, this was not the case. Visitors in the full-body controller
conditions produced significantly less learning talk as measured by content scores than those in
the handheld conditions, whether in the single-input or multi-input variations. Analysis of
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interactions attempted to account for these differences by examining differences in how people
interacted with the exhibit in the conditions, including the amount of data rendered, the number
of control actions made, and difficulties operating the exhibit. None of these factors were fully
able to explain the results.

The CoCensus gesture suites for the full-body and handheld conditions were designed to be
parallel to each other in an attempt to isolate the size of the gesture—the amount of
sensorimotor engagement in the action—as the independent variable. However, this may have
led to an unintended confound where full-body controls were less intuitive than their handheld
counterparts. Participants in the handheld conditions of our study may have—by virtue of
being handed a familiar tablet device—inadvertently been given a Bframe^ (Lakoff 2008) for
how to interact with the system. They were able to employ a suite of familiar gestures
commonly used with touchscreen devices: swiping, pinching, and button pressing. Perhaps
more importantly, these gestures mapped clearly to familiar outcomes: swiping changed the
Bpicture^ of the map to another category just as swiping photos in a camera’s gallery
application changes to a new picture, pinching the tablet controller was somewhat akin to a
zoom that would be expected in a photo or map application (and in fact many visitors referred
to aggregation changes as Bzooming^), and tapping a decade button selected that decade as
one would expect in any menu. Because these gestures are commonly used together as part of
the suite of standard tablet gestures, successfully performing one of these gestures would allow
a user to make inferences about which other gestures would be valid to use, and to seamlessly
interleave their use of gestures. No comparable frame exists for the full-body equivalents of
these gestures, although in our later work (Cafaro et al. 2014a, b) we pursued new methods for
generating a unified suite of full-body actions that would seem to users to be part of normal life
like those on a touchscreen, and preliminary results show that these suites do seem to be more
discoverable.

Continuous gestures for discrete system responses

A related issue with the embodied nature of CoCensus exhibit design is that the control actions
in this exhibit activated discrete, not continuous, responses from the system, which may have
interfered with visitors’ ability to fully embrace the full-body controls (Cafaro et al. 2014a, b).
Completing any of the three control gestures triggered a change, but until the event was
triggered the user received no feedback from small movements, potentially decreasing their
ability to develop fluency of control (Snibbe and Raffle 2009). This is unlike full body systems
in which the user’s sensorimotor manipulations are tightly coupled with system outputs,
wherein the user can reflect on both proprioceptive information as well as system feedback
to tune manipulations.

We have some evidence for this explanation being viable in the form of earlier design
iterations of CoCensus (Roberts et al. 2014). In these early iterations, two types of visitor
movement were directly and continuously linked to system responses: visitors’ distance from
the display directly controlled the transparency of an individual’s data bubbles (fully opaque
when the visitor was at the front of the room and nearly fully transparent at the back), and the
speed of a visitor’s movements directly controlled the amount of animated jiggling of their data
bubbles. The initial idea behind altering the transparency was that it would allow visitors to
focus on either the data or the underlying map geography by making one or the other more
visible. The bubble jiggling effect was present to help the visitors understand who was
controlling each data set. These interaction components were abandoned following findings
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that the front-to-back timeline configuration was more intuitive and enjoyable for users
(Roberts et al. 2014), so movement perpendicular to the display became the timeline controller
rather than a transparency controller. Because the timeline made clear which visitor was
controlling which data set, we also removed the jiggling effect. We now suspect that these
earlier design decisions had the side effect of fostering stronger physical and conceptual links
between the person and data. Interaction design utilizing continuous feedback likely takes
better advantage of the affordances of full-body interaction, suggesting that comparing discrete
versus continuous full-body controls would be valuable future work.

Conclusions

This application of the SQuILD method reveals the value of using quantitative measures of
learning talk in an open-ended, collaborative museum exhibit to force researchers to
confront their assumptions about theory-grounded designs. Via our methodology, we
discovered that full-body interaction designs do not always perform as theory might
predict, and brought to light several intersecting design considerations and areas for future
research. In interpreting these findings, it is important first to recognize two caveats. (1)
This research was structured as an experiment where the measured outcome was learning
talk, so we did not dive into the mechanics of how their physical actions may have affected
their social embedding. It could be valuable to examine their actions and talk to determine
the extent to which visitors used one another’s actions as semiotic resources. (2) This
research was structured using a sociocultural framework, meaning that we did not collect
individual-level measures that could speak to how the physical embodiment affected
individual users. For example, we did not collect affective measures, such as visitors’
enjoyment of the system. This metric could be studied qualitatively through exclamations
and other affective responses (Allen 2002), and may show a preference of museum visitors
for more highly physical interactions.

One mother in the HHS condition, for example, said sarcastically as her son was handed the
tablet controller, BWow, I’m so glad we came to the museum today to get you away from your
iPad,^ and some participants in the full-body conditions—particularly younger users—clearly
enjoyed jumping around the timeline. Measures of individual cognitive gain could also
demonstrate affordances of full-body interaction on cognition that may not have manifested
in dialogue. Similarly, this analysis did not look at individual interactions to measure
Bparticipation equity^ (Kapur and Kinzer 2007) or Btask division^ (Lyons 2009). An analysis
narrowing the focus to individuals’ contributions within sessions, particularly in relation to
their movements and gestures, could deepen our knowledge of how movement mediated
individuals’ experiences.

These potential future lines of research point to the limitations of the SQuILD methodology.
Specifically, SQuILD does not replace other methodologies for understanding how people
learn – in fact, it does not help us understand the process of intersubjective meaning-making,
which has been proposed as a goal for CSCL methods (Suthers 2006). By distilling rich talk
into a single number, SQuILD glosses over key nuances in dialogue and obfuscates the process
of knowledge building among group members over the course of an interaction. Instead,
SQuILD fills another important need. As the possibilities for CSCL expand off the desktop and
into user-driven, open exploration contexts, the methodologies often used to study learning
(e.g., individual measures like pre- and post-tests or coding of individual utterances) need to be
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re-examined and refined (Stahl 2015). Here we have argued that empirical measurements and
statistical analyses can reliably be applied to the evaluation of open-ended group collaborative
learning. This methodology permits direct comparisons of competing designs in intersubjec-
tive CSCL studies focusing on supporting learning talk, providing empirical results to guide
ongoing design.

It is worth noting in the example study presented here that even after having completed the
dialogue coding, the research team still expected the full-body multi-input condition to have
been the most successful in supporting learning talk. It was our favorite, it was grounded in
exciting theories and promising lab studies, and we’d seen enough compellingly successful
FBM sessions in situ to allow confirmation bias to set in. It was only after the statistical tests
were run (and re-run and double-checked, and the coding triple-checked) that we were able to
admit that our assumptions about the design’s affordances didn’t play out in the authentic
museum context. Researchers can usually find exemplars of how a new design meets
expectations if they look hard enough – but these cherry-picked examples don’t speak to
how consistently the design works as intended. We hope that this methodology—and addi-
tional work building on and refining it for broader applications—will similarly allow re-
searchers to question their assumptions as they assess the ecological validity of their design
decisions in CSCL research.
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