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Abstract AMOEBA is a unique tool to support teachers’ orchestration of collaboration among
novice programmers in a non-traditional programming environment. The AMOEBA tool was
designed and utilized to facilitate collaboration in a classroom setting in real time among novice
middle school and high school programmers utilizing the IPRO programming environment.
AMOEBA’s key affordance is supporting teachers’ pairing decisions with real time analyses of
students’ programming progressions. Teachers can track which students are working in similar
ways; this is supported by real-time graphical log analyses of student activities within the
programming environment. Pairing students with support fromAMOEBA led to improvements
in students’ program complexity and depth. Analyses of the data suggest that the data mining
techniques utilized in and the metrics provided by AMOEBA can support instructors in
orchestrating cooperation. The primary contributions of this paper are a set of design principles
around and a working tool for fostering collaboration in computer science classes.
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Constructionism

Basic computer skills are not enough to meet the needs of today’s increasingly technical
society. The ability to harness the computational power of computers for creating, editing, and
analyzing information is a necessary skill for many professions, making computational literacy
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an essential component of a 21st century education. However, we have long known that
learning computer programming is not easy (Soloway and Spohrer 1989). Traditional instruc-
tional approaches involve students working individually manipulating simple content such as
numbers or strings (Guzdial 2007). As computer science (CS) educators work to reform
curriculum, there has been an emphasis on collaborative (Braught et al. 2011; Preston 2005;
Sanders 2002) and non-traditional programming environments (Berland et al. 2013b; Blikstein
et al. 2005; Kelleher and Pausch 2007). In this work, we attempt to expand ways in which
learning analytics tools can better support teachers as they use constructivist or constructionist
curricula. To that end, we developed AMOEBA, a tool to help teachers make real-time
decisions about how to best group students to allow for productive collaboration in a non-
traditional programming environment. AMOEBA provides multiple unique affordances for
facilitating and evaluating collaboration. These affordances build on data mining analyses that
provide real time metrics for identifying potentially successful partners and for determining the
success of pairings including measures of participation and learning transfer. In this paper, we
will outline the design principles that guided the development of AMOEBA, describe a user
study, and evaluate the design of AMOEBA both for adherence to design principles and the
effectiveness in helping students learn and helping teachers teach. The primary contributions
of this paper are a set of design principles around and a working tool for fostering collaboration
in computer science classes.

Co-constructionist design principles for CS classroom orchestration (C3P)

There has been an increasing push towards collaboration in CS for many reasons. Much of the
motivation arises in attempts to curb the significant underrepresentation of many demographic
groups in CS including women and ethnic minorities (Margolis et al. 2008). Collaboration in
the classroom has been noted as especially significant for underrepresented students in CS (Li
et al. 2013; Werner et al. 2004) as it may contribute to a Bsense of belonging and security^
(McKinney and Denton 2006, p. 138), the lack of which represents a significant deterrent to
underrepresented students in CS (Margolis and Fisher 2003b; Teague 2009). As such, we have
distilled existing literature on design for collaboration and computer science education to four
core design principles:

C3P 1. Iteratively integrate feedback from working CS classrooms.
C3P 2. Optimize for student and teacher co-construction of mutually useful artifacts.
C3P 3. Maximize meaningful student-student interaction around data-rich artifacts.
C3P 4. Use analytics to leverage students’ different skills and proficiencies.

C3P 1: Iteratively integrate feedback from working CS classrooms

One of the most salient ways to address real problems in computer science classrooms is by
helping real teachers. Teachers in K-12 CS classrooms have only limited access to resources,
training, other teachers in the same discipline, or outside support (Guzdial et al. 1997). That
said, a variety of research over many years has shown that responsive teaching can radically
alter both class makeup and class outcomes (Darling-Hammond 1997). Supporting CS
teachers in the classrooms can be hard, as features specific to CS classrooms can make it
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difficult to teach (Ben-Ari 2001): the content is technical; students often look at screens
through class; program code takes a lot of time to read, and it can be intricate; content and
contexts change frequently; and few material resources explicitly support CS teachers’ use of
collaborative approaches. Moreover, many of the existing advanced tools for teaching com-
puter science are designed for content experts rather than expert teachers (Koehler and Mishra
2005) – a deficit that is exacerbated in CS classrooms as content experts are much more likely
to be hired away by industry before they become expert teachers (Ericson et al. 2007) .

Consequently, to be a useful tool for a real classroom, the tools must lend themselves to
good teaching practice, be accessible to expert teachers who are not themselves content
experts – i.e., they must be teacher intuitive and teacher compatible. More importantly, the tools
must not get in the way of good teacher practice: they must allow teachers to see students’ faces;
not require the full attention of either teachers or students; and allow for movement and group
work. In adhering to this principle of design in and with real classrooms, a small tradeoff is
made. It is easier and often more fruitful to iterate on design that is tested in a real-world setting,
even if it Bmuddies^ results more than a carefully controlled lab study might. This deference to
naturalistic testing is a core tenet of design and design-based research (Barab and Squire 2004;
Edelson 2002).

C3P 2: Optimize for student and teacher co-construction of mutually useful artifacts

Constructionism (Papert and Harel 1991; Papert 1980) is a framework for action (diSessa and
Cobb 2004) for constructivist design with real learners. Constructionism has proven to be a
remarkably helpful model for teaching computer science (Papert 1980). This may be due to a
fundamental connection between learning through the programming and design of artifacts (as
per constructionism) and teaching in a discipline in which programming and the design of
software artifacts are part of the broader curriculum. That said, even many good constructionist
projects can insufficiently motivate the Bshared meaning^ aspects of constructionism (Papert
and Harel 1991; Shaffer and Resnick 1999). By emphasizing social elements of programming
projects, i.e., creating with and around other people, students may become more engaged and
achieve greater mastery of the content (Fosnot 2005).

C3P 3: Maximize meaningful student-student interaction around data-rich artifacts

BMeaningful collaboration^ is purposely bidirectional: the collaboration itself should be salient
and useful to the participants and the collaborative work should focus on projects personally
meaningful to all participants. Researchers have noted various benefits to collaboration – and
pair programming in particular – including: improved program quality (Nagappan et al. 2003);
increased understanding and transfer of programming concepts (Braught et al. 2008); im-
proved engagement with; and more positive affect towards programming (Martin et al. 2013).
For paired programming to support learning, students must be paired effectively. Often this
pairing is done by students themselves or by teachers without referring to data. The assessment
of group and pair efficacy in CS often only occurs across long time frames, meaning that an
ineffective pairing might not be discovered until the end of a project (Srikanth et al. 2004).
Research on collaborative learning in other settings has also shown that dysfunctional pairings
can hinder collaborative learning (Salomon and Globerson 1989). As such, determining how
to create pairs that support collaboration, learning, and engagement is a critical challenge for
CS teachers.
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Many researchers have indicated that skill level is an important factor in creating successful
programming pairs (Cao and Xu 2005; Chaparro et al. 2005; Sanders 2002).1 However,
identifying a student’s skill level is not a straightforward task as there has been little agreement
on adequate measures of CS skill suitable for such purposes. To date, researchers have sought
various methods to identify programming skill similarity (e.g., Cao and Xu 2005; Chaparro
et al. 2005; Katira et al. 2004; Radermacher et al. 2012; Watkins and Watkins 2009) with
varying results. A common approach to quantifying programming skill, has been to rely on
course grades (Cao and Xu 2005; Watkins and Watkins 2009), though grades do not correlate
significantly to either CS or programming skill (Byckling and Sajaniemi 2006). Other
researchers have used more elaborate measures to identify students’ skill. For exam-
ple, Katira et al. (2004) utilized midterm grades, GPA, and SAT scores, which offer
only limited help in identifying programming skill (Byckling and Sajaniemi 2006).
Moreover, such overarching, broadly encompassing measures shed little insight on
relationships among CS partner pairing, learning to program, or computational literacy
more broadly.

One aspect affecting the accessibility of student-student interaction is also referred to as
‘visibility’ (Lyons et al. 2015). That is, participants (both students and teachers) must be able to
discern, with minimal effort, how to begin collaborative engagement. This is closely related to
work in science education by Roth et al. (1996), who indicate that students most frequently
engage in Bmeaningful^ sensemaking practices (around computers and computation) when
students perceive clear value in task completion.

C3P 4: Use analytics to leverage students different skills and proficiencies

Given existing findings on collaboration in computer science contexts (e.g., Chaparro et al.
2005; Katira et al. 2005; Van Toll et al. 2007), educators and researchers may benefit from
utilizing a more appropriate operationalization of Vygotsky’s (1978) Zone of Proximal
Development specifically for learning Computer Science (BCS-ZPD^). As in all domains,
the tools and processes in which they engage differentiate the material ways in which students
collaborate and teach each other in computer science. Perhaps because many tools exist for
computer programmers to collaborate in pairs but few tools exist to help programmers learn
together, processes of collaboratively learning computer science (especially in pairs) may not
correspond exactly to collaboration from other domains. In particular, much of the focus in
collaboration around programming focuses on programming in pairs.

As such, computer science education researchers (e.g., Katira et al. 2004; Salleh et al. 2010)
have sought to identify partner characteristics that promote successful pairing and have worked
to assess the impact of varying student characteristics on pair work, e.g., the effects of
similarities and differences among socio-cultural characteristics, such as, personality traits,
as well as measuring the effects of cognitive elements, such as, Bprogramming mental models,^
programming skill, or proficiency. Though various readiness, aptitude, and personality tests
may highlight characteristics potentially relevant to successful pairings (Radermacher et al.
2012; Salleh et al. 2010), there are a myriad of other confounding factors e.g., ethnicity and
gender that may impede or benefit collaboration (Katira et al. 2005).

1 Within the literature of pair programming understanding, competence, aptitude, and skill are frequently used
near synonymously. Here the term Bskill^ will be used for this amalgam and the term Bproficiency^ will be used
for a superset of skill and contextual comprehension.

428 M. Berland, et al.



As with other collaborative learning endeavors, collaborative programming suffers com-
monly from Bsucker^ and Bfree riding^ effects, whereby difficulties and incompatibilities arise
as students respond to and exploit perceived skill discrepancies; for example relying on more
skillful students to solve problems and complete assignments (Kangas 2004). Though students
frequently indicate a preference for working with other students of similar skill in pair
programming groups (e.g., Cao and Xu 2005; Katira et al. 2004, 2005), a difference in skill
may be beneficial (Chaparro et al. 2005; Van Toll et al. 2007).

Katira et al. (2004) equates such findings to observed benefits of utilizing ZPD for partner
pairing, which aligns such discussions with a history of educational discussion emphasizing
the importance of students’ ZPD (Fosnot and Perry 2005). Though Katira et al. (2004) indicate
that while students significantly indicate a preference for partners of perceived similar profi-
ciency, they do not indicate such a preference for such similarity of technical skill level as
measured by midterm grades. That said, grades are not a reliable indicator of students’
programming understanding (Byckling and Sajaniemi 2006). Radermacher et al. (2012),
noting this, suggested a more CS-specific post-hoc assessment of ZPD, but we found no prior
work that attempted to operationalize anything similar to live CS-ZPD.

CS-ZPD: Operationalizing our design principles

Operationalizing the preceding design principles is not straightforward. Vygotsky considered
measures of an isolated individual’s problem solving skill as inadequate; rather, it was more
meaningful to determine what a student could accomplish with a more capable peer (Fosnot
and Perry 2005, p. 23). As such, any tests taken in isolation and not measuring specific
learning changes in relation to work with others are at best, predictive estimates of students’
potential ZPD. If CS-ZPD is to be operationalized further, more nuanced methods, preferably
over time and in consideration of pair effects, such as our Bsurprising program similarity^
metric, may be more appropriate for CS and programming should be identified.

Our project uses a metric of Bsurprising similarity^ because it suggests that two students are
solving a problem in similar ways and that those similar problem approaches are not themselves
common. In Berland et al. (2013a), we describe this in terms of the programming language, C++:

Program code, even in a limited language like IPRO, can vary enormously. In C++, there
are infinite variations of source code that could produce ‘hello world’. That said,
(almost) every one of those programs will have ‘int main (…)’ at the beginning – that
code is common to almost every C++ program ever written. By using a similarity metric
that matches isomorphic code but discounts code provided by teachers, required code,
common code, or obvious code (such as ‘int main (…)’ in C++), we can find students
who are using similar logic and approaches.

Matching students based on their similar approaches is situated in our operationalizing of
ZPD. In particular, we suggest that:

1. Students perceiving and attempting to solve a problem in similar ways – as per our
surprising similarity metric – will be able to understand and support each other more
effectively than students who have trouble understanding each others’ approach;

2. This will be especially true across students having different levels of success (as described
by program quality, another metric described below); but
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3. This is not desirably measurable in a lab (or randomized control) setting, so data must be
authentically contextual; and

4. This tool for pairing will be both authentically useful and meaningful to an actual teacher.

There is a variety of supporting evidence for these suggestions, including students’
improved effectiveness in communicating and co-constructing of understanding owing to their
ability to perceive the problem similarly (Goos et al. 2002, p. 196).

Fundamentally, however, this work is not theory verification but rather design-based
research (Barab and Squire 2004), in that we are evaluating whether and how a specific
design (organized around a set of design principles) affected actual classroom environments.
Teacher compatibility (as per CS-CPD 1) is paramount. As per CS-CPD 3, matching students
based on similarity of code is not necessarily the best way of creating groups for every group in
every classroom – that is far more contextual than provable and no such thing likely exists.
However, it is a very comprehensibleway of matching students, it has both theoretical and face
validity in that it is easily explicable to teachers, and, at worst, prompts teachers to create
structured groups where there had been none (which, as we shown above, has generally
positive effects).

Note that the metrics are described in technical detail in the Measures section below.

Mining collaboration

Large scale, yet nuanced inquiries related to facilitating classroom collaboration, similar to the
AMOEBA project described here, are gaining support from data mining and learning analytics
researchers (Anaya and Boticario 2011; Talavera and Gaudioso 2004). Owing to greater
accessibility to vast amounts of data and data processing power previously untenable, data
analysis tools and techniques are being increasingly adopted in learning analytics approaches
to better identify and disaggregate potentially significant learning trends within large corpora
of data (Baker and Yacef 2009; Romero and Ventura 2010). Grounded in such practices,
researchers have pointed out potential benefits to facilitating and analyzing collaboration with
data mining techniques (Gaudioso et al. 2009). As unstructured environments may be cum-
bersome to analyze due to difficulties in parsing natural language (Soller et al. 2005),
researchers have sought and developed alternatives to unstructured text in order to simplify
natural language processing (Barros and Verdejo 2000). These include providing established
prompts and sentence frames to students to articulate their responses, which substantially
lightens the difficulty of analysis without significantly detracting from cognitive content
(Barros and Verdejo 2000).

Researchers have indicated that such data mining and presentation of concomitant findings in
an instructor accessible manner may serve to support teachers in better orchestrating successful
student collaboration (Soller et al. 2005). In doing so, it is important to acknowledge that given
classroom dynamics, it often becomes important for teachers to utilize a plethora of grouping
strategies (Jermann et al. 2002) and that technology supporting these groupings should afford
teachers’ significant discretion and flexibility in how such technology is utilized (Dimitriadis
2012). Therefore, in order to support teachers while allowing flexibility, tools to support
teachers’ orchestration of programming collaboration should perhaps initially focus on provid-
ing data mined metrics in real time that determine whether learning has occurred, particularly as
evident through transfer, and that measure student participation (Dillenbourg et al. 2009).
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Novice programming environments

As an effort to make programming more accessible and to increase participation in CS, several
alternative programming environments have been developed. These environments, rooted in
constructionism, forgo the text-based syntax of traditional programming languages in favor of
visual and media rich interfaces. Environments such as NetLogo (Wilensky 1999), Scratch
(Resnick et al. 2009), and Alice (Kelleher and Pausch 2007) have successfully supported
programming novices’ learning and engagement. Building on research into these environ-
ments, we developed IPRO, a mobile, visual, and social programming environment for novice
programmers (as young as seventh grade) to use on iOS devices such as iPads or iPhones
(Berland et al. 2011).2

Specifically, the IPRO environment was developed with a focus on collaboration, tinkering,
ease of creating simple working programs, and mobility, as evidenced through participation
and direct embodiment (Berland et al. 2011). For ease of use, the IPRO environment relies on
students’ drag and drop programming to control virtual soccer playing robots (for solo or team
play). The visual drag and drop programming block structure of IPRO enables novice
programmers to complete programming tasks of greater complexity than might be otherwise
feasible. This structure eliminates the possibility of syntax errors.

Perhaps most substantively, IPRO’s design is heavily informed by constructionism (e.g.,
Papert and Harel 1991) and embodied cognition (e.g., Abrahamson 2009). With regards to its
constructionist underpinnings, IPRO is designed to build upon students’ inclination to explore
programming concepts in order to create artifacts (here, virtual soccer playing robots) that are
shared with one another in a public space, which results in greater engagement and concomitant
learning (Papert 1980). The mobile aspect of the IPRO environment is, in part, a divergence
from the Bdriver/navigator^ model of CS pairing, whereby one student enters commands and
the other oversees the work (Van Toll et al. 2007). Rather, it is intended that each student having
her own device should bolster active participation and reduce many of the problems frequently
occurring with collaboration, such as Bsucker^ or Bfree-rider^ effects. Together the structure of
IPRO and the logging of each state of students’ programs as they are being edited supports real
time analyses of students’ programming and programming trajectories more than currently
achieved elsewhere (Berland et al. 2013a). Further discussion of the affordances and design
considerations of IPRO are provided elsewhere (e.g., Berland et al. 2011).

AMOEBA

The AMOEBA tool provides real time analyses of students’ programming behaviors within
the IPRO visual programming environment in order to support teachers in orchestrating
classroom collaboration. It uses the IPRO data logged in real time on a network server to
give teachers information about students’ programming progression (uniqueness and profi-
ciency) to inform the creation of effective programming pairs.

In order to meaningfully frame understandings of AMOEBA and IPRO, but not exceed the
scope of this paper, it is important to note the key motivations and theoretical basis of this and
much other collaborative work. As with much other pair programming research (e.g., Katira
et al. 2004), work with AMOEBA and IPRO builds substantively on constructivist notions of

2 IPRO is available free of charge on the iTunes store.
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learning (Fosnot 2005). Namely, IPRO and the AMOEBA tool are informed by understand-
ings that learners construct knowledge and skills through piece-wise building on previous
learning and experiences. Moreover, as neither Piaget nor Vygotsky considered these processes
purely cognitive or purely social (Tudge 1992), nor do the authors of this paper. Similar to
other collaboration researchers, the authors of this paper build on notions that students may
learn more in conjunction with others (Dillenbourg et al. 1995; Katira et al. 2004; Soller et al.
2005). Additionally, these constructivist understandings are further informed by research
indicating the learning affordances of collaborative work that allows for physicality, such as
gestures in supporting learning (Singer et al. 2008) and related research highlighting the
affordances of Bembodied cognition^ in facilitating learning within novice programming
environments (Petrick et al. 2011). However, moving beyond such understandings, the work
with AMOEBA and IPRO builds upon more specific understandings of constructionism
emphasizing the importance of shared artifacts (e.g., programs) in a public space, such as a
robot soccer tournament (Berland et al. 2011).

AMOEBA’s unique affordances in supporting collaboration

AMOEBA’s novelty arises extensively from its ability to provide real time analyses of
students’ programming behaviors in order to support successful collaborations. Real time
analyses are only as beneficial as the measures they present and to the extent that the measures
are presented meaningfully. These relate substantively to how (and why) AMOEBA is used in
supporting teachers’ orchestration of classroom collaboration. AMOEBA is unique in
supporting collaboration by providing real time metrics to be acted upon as the teacher sees
fit to orchestrate classroom-programming collaboration. In this study, we focus on the impact
of utilizing a unique measure that roughly equates to a ‘operationalized ZPD for novice
programmers’ to orchestrate collaboration.

Though researchers have indicated the benefits of utilizing real time analyses to support
learner collaboration (Dillenbourg et al. 2009), there are few tools which do so (cf. Bachour
et al. 2008). Moreover, no tools were identified that provide such real time collaboration
orchestration support in novice CS classrooms. Although tools were identified that facilitated
collaboration in novice CS classes (Flieger and Palmer 2010), allowed analysis of learners’
behavior in open programming environments (Blikstein 2011), and allowed for analyzing
asynchronous collaboration among more advanced programmers and programming students
(e.g., Anaya and Boticario 2009), no such tools were identified for novice visual programming
environments. Making these analyses in real time is critical in a novice-programming envi-
ronment as dysfunctional collaborations may impact students’ impressions of programming.
The first impressions engendered in such environments are significant as it is within such
environments that many students may decide if they can or should (continue to) study
computer science (Margolis and Fisher 2003a).

Operationalizing CS-ZPD in AMOEBA

AMOEBA utilizes a Bsurprising similarity^ metric to identify uniqueness in students’ pro-
grams. This is based on Dunning’s (1993) metrics of surprise and coincidence, which are
measures of inverse-log-likelihood. This is similar to tf-idf (Salton 1989), which is the product
of similar elements multiplied by the inverse frequency of that element within the corpus as a
whole. We describe more technical details in the Measures section below.
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This metric is used in real-time evaluations of students’ programs, which, consequently,
provides actual rather than predictive estimates of students’ current programming status. As
such, the measure provides an indicator of similar or unique approaches to programming
within the environment. On the basis of these measures, AMOEBA provides the initial
recommendation for student pairings. This highlights that students are within one another’s
ZPD, though it does not indicate the ‘higher’ or ‘lower’ of the two. As students work on their
programs, AMOEBA updates its pairing recommendations in real time; teachers have the
option to maintain pairings that are functioning successfully or repair students based on
AMOEBA’s updated pairings. Currently, AMOEBA does not evaluate skills transfer or
participation in real-time. The study was primarily concerned with the feasibility and impact
of utilizing real-time CS-ZPD scores.

Research questions

Consequently, our research sought to answer the following questions:

1. How does the utilization of real-time CS-ZPD scores as the basis for student pairing in a
novice CS class impact students’ programming performance (e.g., program rarity, quality,
depth, and specificity)?

2. How do such effects (if any) relate to level of CS-ZPD similarity?
3. How does our work meet the design principles identified above?

Methods

Overview

In this study, we collected data from students, across three sites and eight classes, with little or
no programming experience. Students were placed in pairs on the basis of predictive CS-ZPD
as indicated by AMOEBA. During the course of single programming sessions, most com-
monly approximately 45 min in length, students were asked to collaborate based on the
predictive CS-ZPD score. As programming data was generated and analyzed, some students
were re-paired with others with a greater shared CS-ZPD score. Students’ program data were
analyzed to explore how pairing with AMOEBA impacted: the complexity of students’ code;
program novelty; and program quality.

Participants

The only explicit limitation to participant selection was the requirement that students
be in the seventh grade or higher as a pilot study indicated that younger students
struggle disproportionately with the IPRO interface. Sites were selected opportunisti-
cally through researchers’ direct or indirect relationships with the coordinating
teachers and administrators. Then, participants were selected on an opportunistic basis
from volunteers across the multiple sites; three willing technology teachers were found
who agreed to participate in the study. Their students who agreed to participate were
allowed to do so.
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For this study, junior high and high school students (n=95) engaged in IPRO programming
activities. In the course of which, 70 of these students were recorded working in pairs as
facilitated by the AMOEBA interface. Students from eight different classes across the three
different sites participated: one class as part of an extra-curricular lunch time activity for 7th
and 8th grade students at a private school for gifted children in Wisconsin (n=14 total), six
classes as an assignment alternative for 7th and 8th grade students in a middle school
technology applications class in central Texas (n=60 total), and as part of a voluntary
enrichment activity in one first semester computer science class at a central Texas high school
with students in the 10th grade or higher (n=21 total).

The student population of the private school for gifted students in Wisconsin is more
ethnically diverse than the majority of surrounding public schools. At the central Texas middle
school, student demographic populations are labeled as approximately 13.1 % African-
American, 2.9 % Asian, 32.1 % Hispanic, and 51.4 % white, with approximately 26.2 %%
of the school receiving free or reduced lunch. At the central Texas middle school, ‘tech apps’ is
a mandatory course for all students; consequently, participant demographics can be reasonably
expected to reflect this ratio. The central Texas high school with participants enrolled in the
Advanced Placement computer science course, AP CS1, has a greater than 70 % Hispanic
student population, approximately 20 % white student population, approximately 6 % African-
American student population, and approximately 1 % Asian student population, whereby more
than 60 % of students receive free or reduced lunch. However, only an estimated third of CS
students were Hispanic with instead a preponderance of white males.

Setting

At the Wisconsin site, volunteer 7th and 8th grade technology students joined in the activity
during their lunch time (many while eating lunch) situated in a semi-circle in the front half of a
technology application classroom with the IPRO tarp (a real world representation of the IPRO
game space) to the side. At the central Texas middle school, 7th and 8th grade volunteers
gathered in a circle in one half of their technology application classroom around the IPRO tarp
during class time (six classes participated) while other students, separated by rows of com-
puters, engaged in classwork. At the central Texas high school, all students in the AP CS1 class
participated and moved about in a more ‘typical’ classroom with desks that were pushed back
to allow greater movement with the IPRO tarp in the center.

In all of the settings, students used iOS devices to workwith the IPRO visual, ‘drag and drop’,
programming environment. At the Wisconsin site, students used their own devices as well as
iPods provided by the researchers. At the central Texas sites, students either used iOS devices
provided by researchers, provided by the school, or their own devices. At the central Texas high
school, all students in the CS class volunteered to participate. At the central Texas middle school,
problems with Internet connectivity limited the number of students who could meaningfully
participate; only ten students (at best) could connect to the internet during each class in addition
to those students with iOS capable phones. Any participant with their own iOS phone (and
parental assent) was allowed to participate; others were selected on a first come basis.

Data collection

Data was collected at all three sites by the same author and supported at theWisconsin site by a
graduate student. Various metrics were used for evaluation (see below). Researchers examined
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program rarity, quality, depth, and specificity [described below]. Two sources of data
were utilized in this study: programming data and pairing data. The programming data
consisted of automatically logged program edits within the IPRO environment – in
IPRO every program edit is automatically saved to the IPRO server. The pairing data
was provided and tracked by AMOEBA, which provides a graphical representation of
students’ program similarity based on real time analyses of IPRO data and allows the
facilitator to ‘tap’ (or click) to record student pairings. Additionally, a backup paper
log was kept of pairings to insure accuracy.

Materials

Within the IPRO programming environment, students use visual programming blocks to
construct programs (see Figs. 1 and 2). These blocks consist of logical elements such as
‘AND’ and ‘OR’ statements, that are combined with actions elements (e.g., go forward-left) to
make programs. For example, a student might write simple programs such as: BIF ball is
forward-left, THEN go forward-left, ELSE turn left^ and increasingly complex programs
such as BIF ball AND goal are forward-left, THEN go forward-left, ELSE IF ball is
forward-left AND goal is not forward-left, THEN go backwards, ELSE IF…^ and so
forth. Further discussion of the affordances and specifics of IPRO are available
elsewhere (Berland et al. 2010). IPRO automatically logs every program edit each student
makes to the IPRO server.

The AMOEBA tool utilizes real time analyses of students’ programming in order to inform
teachers pairing decisions. AMOEBA provides a graphical representation of students’ program
similarity based on real time analyses of IPRO data (Fig. 3). To do this, AMOEBA utilizes
algorithms to identify novel code sequences particular to students’ programming understand-
ings. Once identified, these elements of students’ code were utilized to provide a predictive
CS-ZPD metric by which to pair students. The graphical representation draws a line
connecting students within each other’s CS-ZPD, indicating a possible pairing. If the teacher
pairs the students, he or she taps or clicks on the two students in the graphical representation to
record the pairing.

Fig. 1 A student programs IPRO
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Procedures

The same procedures were used with all three groups of students including three different
activity phases. The first activity involved a teacher-led introduction into the IPRO program-
ming environment in order to acquaint students with the IPRO environment and the intended
goals of the exercise (i.e., program robots to score goals and collaborate with partners to do this
better). The second activity provided students a short time to program by themselves and gain
greater familiarity with the IPRO programming environment. This also provided the data
necessary to make initial predictive CS-ZPD analyses to be used to pair students. The third
activity began after the teacher made the initial pairings and continued until the end of class.
When the teacher made a pairing, he instructed the students that their programs were similar
and asked them to work together. The students then moved so that they were sitting near each
other. They continued to work on their individual programs, but they were asked to help each
other with the problems they were facing. The students showed their partners their programs
and asked for help improving them. During this phase, the instructor used the AMOEBA tool
to monitor and pair students. The instructor monitored AMOEBA for increased shared novelty
indicated by red (minimal meaningful connection), yellow, or green (highest level of shared
novelty) lines.

During this time, the facilitator paired and reassigned pairs in response to students’ current
shared novelty; green lines were given preference over yellow and yellow over red. Students
were assigned new pairs as connection strength between partners faded or stronger connections
with others became apparent. For example, a student previously paired opportunistically
would be reassigned to a student with whom she shared a ‘red’ connection and then
reassigned to a ‘green’ connection if one appeared. Similarly, students that may have
initially been paired on a ‘yellow’ connection might be re-paired with ‘red’ connec-
tions upon the disappearance of their connection. For those students who were re-
paired on the basis of a higher color status, their pair status remained ‘paired’.
Students who had been paired and were no longer with partners, had pair statuses
of ‘between pairing’ or ‘after pairing’ depending on whether they were later assigned
another partner. The instructor was mindful that rapid repairing might have a negative
impact on student learning; thus, the instructor looked for especially strong similarity
metrics before re-pairing a student.

Fig. 2 A student watches her
IPRO program run
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Measures

We used the SPSS advanced statistics software package with a repeated measures design to
look at the effect of pair status [pre-paired, paired, post-paired] on four outcome variables
[rarity, depth, quality, and specificity] (described below) by student (n=95) across 3 sites. We
are using the same depth, rarity, and quality metrics described in detail by Berland, Martin
et al. (2013), but we will describe them in this work in a more abbreviated way.

Rarity is the mean Bunlikeliness^, on a scale of 0 to 1, of a given program’s sub-trees of its
parse-tree compared against all other code ever written in a single class. In English, the rarity
of Ba hyacinth substantiates programmatically^ would be near 1 because the sentence and all
of its individual nouns and verbs are rare, while the rarity of BI ate food^ would be near 0, as
all verbs and nouns are common. The most common programs in a class score 0. Programs that
share no sub-trees with any other programs written in that class score a rarity of 1.

Program quality The first measure of quality is a measure unique to the IPRO environment.
Namely, students’ robots are run in simulated environments to determine the quality of their
robots in scoring goals (goals for) and in preventing goals by opposing robots (goals against).

Fig. 3 The AMOEBA interface
shows students as ‘nodes’ and
similarities as the ‘edges’ between
them
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An average number of goals for and goals against over 250 simulated games of 200 turns each
in order to provide a rough estimate of program quality (see Berland et al. 2013a). It is robust,
but the quality of programs written by novices in less than 90 min tends to skew negative,
because, although it is easy to write a functioning program in such a short time, it is difficult,
by design, to write an ideal IPRO program.

Depth, as used to discuss IPRO and other programs, is the number of levels of parse-tree
(as per Purtilo and Callahan 1989) that the compiler is required to traverse (see Fig. 4). All
IPRO programs converge to a single parse-tree, whereby the ‘levels’ (or ‘height’) arise from
the use of varying ‘IF’ branches. Each defined condition (e.g., if some condition, then do some
action) adds an additional layer. Consequently, complex logic that accounts for more condi-
tions and possibilities will generate a deeper parse-tree. As a result, simple programs have
shorter parse trees, and more complex programs have greater depth. Though complexity may
not necessarily indicate competence, writing a program in IPRO that generates a deep parse-
tree (greater than, say, 5) is a difficult task, and is extremely unlikely to be achieved through
chance or randomness, as the parse-tree will prune redundancies.

Specificity is a simple tally of a program’s length. Whereby the depthmetric counts levels of
branching conditions (IF statements), the specificity metric simply denotes programmatic
descriptiveness. Each detail added to an IPRO program, regardless of type (IF statements as
well as ‘AND’ and ‘OR’ logical descriptors), creates an added nest of specificity. A plain text
example might be: BIf the ball is to the right, then turn right,^ which would have the lowest
possible specificity score of 1. By contrast, Bif the ball is to the right AND the opponent is to
the left, then turn right^ would have a specificity score of 2 owing to the addition of an extra
descriptor. For pragmatic reasons, only those programs with specificity >1 were evaluated. The
rationale being that it was considered important to compare the progress of those students
actually doing things and to not potentially skew the data with empty clicks generated by
students experiencing Internet connectivity or other issues. A specificity score greater than 1 is
the first length of a program that could meaningfully indicate anything. Specifically, length
refers to numbers of parentheses in the log data for each program edit - one set of parentheses
or fewer is merely a click on a screen without attempting to program anything.

Similarity AMOEBA creates a link (a visible line) between students based on the similarity
of their code, and, in particular, all the sub-trees of the parse tree of their code. That is, each
student’s code is parsed out into a tree, and then all sub-trees of that parse tree are enumerated.
The similarity metric is the maximally surprising sub-tree match between two students. Two
students whose code has no isomorphic sub-trees (i.e., no sub-trees with the same semantics)
have a similarity of zero, and this would be represented in the AMOEBA interface by a red
line. Two students who share a whole program that no other student has ever written would
have a similarity of one, which result in a green line connecting the two students. The

1

2

OR

TRUE AND

FALSETRUE

Fig. 4 A logical parse-tree with a
depth of 3
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similaritymetric itself is based on surprise (Dunning 1993). Dunning (2008) describes the core
elements of surprise:

The method at the heart of [surprise] is to use a score to analyze counts of events,
particularly counts of when events occur together. The counts that you usually have in
these situations are the number of times two events have occurred together, the number
of times that they have occurred with or without each other and the number of times
anything has occurred. Informally, it can be thought of as the unlikeliness that two
similar pieces of code happened by coincidence.

The log-likelihood ratio (or LLR) can be implemented in only 2 lines of code, provided in
Dunning (2008).

Results

In Table 1 (below), we compared the depth, rarity, quality, and specificity of students’
programs based on whether the program was created while the student was working without
a partner (unpaired), currently working with a partner (paired), or had previously worked with
a partner but were currently working alone (after pairing). The changes in all four metrics over
time are each individually significantly different by pairing condition, when controlling for co-
variance within group and individual (as per Fig. 5). That said, the effect of pair status on each
individual measure was small, as one can see in Table 1. Table 2 shows aggregate statistics for
all measures, for reference.

As shown in Figs. 5 and 6 and Table 1, rarity, quality, depth, and specificity increase when
students are paired or after pairing. Rarity increases as students are paired and continues to
increase after students are no longer paired. Quality increases after students have been paired,
and depth and specificity increase when students are paired and maintain a similar level after
pairing.

The site effect was quite strong, but recent work in analytics comparing different contexts
(e.g., Pardos et al. 2013; Sao Pedro et al. 2013) suggests that time series data can be very
sensitive to context. Still, when we account for the covariance within site and student, we see
increases in all three metrics.

As previously mentioned, there were significant differences across sites with the most
positive gains noted once students had been paired. Additionally, amongst paired students,
there were significant effects regardless of whether the AMOEBA connection strength be-
tween the two students was red, yellow, or green. Differences regarding quality were similar to
data gathered in our initial AMOEBA exploration (Berland et al. 2013b); namely, quality (i.e.,

Table 1 Repeated measures fixed effects by site and pair status [unpaired, paired, after pairing]

Rarity Quality Depth Specificity

n F p n F p n F p n F p

site 95 6.04 0.00 95 1.58 0.15 95 11.49 0.00 95 10.27 0.00

pair status 95 3.32 0.04 95 2.44 0.09 95 13.16 0.00 95 9.54 0.00
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‘goals for’ less ‘goals against’) seemed to decline by quality of pairing metric - as programs
become deeper and more interconnected both goals scored by the bot and goals scored against
the bot grow quite substantively, often resulting in a lower goals for ratio than with less
complex programs. Here, the quality differences were significant, but not in a visible pattern.

Discussion

While other CS-ZPD metrics may be better than our Bsurprising similarity^ in helping students
learn, this study serves as a strong proof-of-concept that pairing students based on CS-ZPD can
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Fig. 5 Rarity, quality, depth, and specificity across all students (n=95), grouped by pair status

Table 2 Aggregate statistics for each measure across all students (n=95)

Rarity Quality Depth Specificity

Mean sd Mean sd Mean sd Mean sd

29.59 11.62 15.25 7.23 36.63 16.34 16.34 15.10

440 M. Berland, et al.



be helpful. Indeed, we designed this project, in part, to test the hypothesis that giving a teacher
or facilitator real-time support about novice students learning to program could help students
work together towards more complex work. Across eight separate classes in a variety of
settings, our hypothesis seems to be supported by our data. Furthermore, it appears that the
design principles that we identified in the literature were helpful in meeting our goals.

Evaluating C3P 1: Iteratively integrate feedback from working CS classrooms

Anecdotally, teachers enjoyed working with the tool, and that is borne out by two minor
features of the data: they continued using the tool throughout the class and the students
improved throughout. As per our C3P 1, it successfully enabled teaching to do real-time
collaborative matching, as they needed: it was designed for them. The specificity of the design
challenge will, we hope, make the design more generally useful (as per Barab and Squire
2004). That the design was successful for the context is particularly well supported by a minor
feature of the data: they are sporadic. Although the sporadic nature of the data might be
considered a weakness in a traditional lab- or user-study, it serves as evidence of quite the
opposite here: the tool was a resource – not a driver – of the classroom. This is important,
because teachers are more likely to consult valuable resources than replace all class practice
with new tools (Mishra and Koehler 2006). In addition, an unobtrusive resource can provide
the teacher with a Bcognitive handle^ – that is, even the best teachers can sometimes neglect or
forget to pair students, and this can serve as a reminder. As per our result above, teachers in this
study paired their students far more on average than a typical CS class, most of which involve
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Fig. 6 Graphs of aggregated statistics for each measure over time (loess smoothed)
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no pairing (as per Carbone and Kaasbøll 1998). Perhaps most beneficial, students were paired
spontaneously on the basis of their approximated CS-ZPD and then demonstrated the im-
provement suggested by such an approach geared towards leveraging ZPD. Though only a
quick approximation, this operationalized CS-ZPD assessment and the surrounding design
process highlight possibilities for working with real classroom constraints and oppor-
tunities and the real time data available in such environments. That said, we did not
exploit all possible avenues for or information in the data we were collecting, because
it was made clear through pilot work that teachers favored more targeted and more
specific implications from the data analysis. It makes sense: busy experts given a useful
tool will enable more immediately productivity than something that requires either training or a
shift in strategy.

Evaluating C3P 2: Optimize for student and teacher co-construction of mutually
useful artifacts

Students, after having been paired on the recommendations provided by AMOEBA, evidenced
more proficient program development – creating more, better programs – than they otherwise
might have done. This is not a strongly predictive, prescriptive, or a causal result; this is a
relatively small, real-word, design-based research study, and the population is not broadly
representative. That said, the results suggest that students’ programming improved as they
worked together and after they worked together; this suggests that C3P 2 worked in
practice for our population. They kept playing, they kept creating, and the classes
worked as teams voluntarily throughout. As teachers were more able to coordinate
collaboration and see students successfully collaborate with new partners, teacher
reported that they could see their role in the construction of the artifact – they felt
Buseful^ to the classroom.

Evaluating C3P 3: Maximize meaningful student-student interaction
around data-rich artifacts

To design for meaningful collaboration, we limited the space of possible programs. In the
practice of programming in general, there is no implication that any two people (even those
working on the same type of project) will have much to code in common. In this
study, we reinforced the utility of collaboration by having students work on a variety
of different possibilities (goalie, striker, etc.) in the same space with the same code
primitives using the same interface. In this way, it became possible to evaluate
similarity of code much more easily – the Bdata-rich^ nature of the artifacts enabled
us to create collaboration analytics. We could not test an alternative scenario, obvi-
ously, because as the projects and environments become variables, many other vari-
ables became simultaneously unfixed and confounded. That said, students worked together
consistently, and they worked together far more than they do on average in introductory CS
classes. However, this is confounded by the use of the IPRO learning environment, which has
previously been shown to increase overall student-student collaboration (Berland et al. 2013a;
Martin et al. 2013). In those studies, students tend to interact around the Bmutually
visible^ aspects of the artifacts; that is, students collaboratively make sense of visible
program elements – they share code, they describe code primitives to each other, and
they act out programs.
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Evaluating C3P 4: Use analytics to leverage students’ different skills
and proficiencies

Core to the design of AMOEBAwas the idea that students will find their skill levels, but in the
pilot, it was very difficult for the teacher to determine that skill level. By adding a rough
Bevaluative^ element to AMOEBA through our analytics – the Bapproximate quality^ metric
shown on screen – the teacher could purposefully match students with other students in
different skills and skill levels. In the future, similar projects seeking to provide real time
valuations of program quality (or complexity, thoroughness, etc.) may also supplement their
real-time analytics with Bhand-coded^ high quality identifiers (e.g., code snippets to match
against current student code).

Understanding live collaboration in CS classrooms

Many existing models of computer science education treat code sharing as cheating - it is
usually assumed to be detrimental (cf. Katira et al. 2004). Our data suggest the opposite effect:
when students shared code, their own individual code got better after that sharing (again as per
Fig. 5 and Table 1). To tar CS education with the proposition that all sharing is cheating would
obscure much of the excellent work in which secondary school CS and engineering teachers in
the US are engaging their students. Further, that means ignoring substantive investigations into
pair programming and other collaborative programming practices (e.g., Braught et al. 2008;
Guzdial et al. 1997; Repenning et al. 2011; Teague and Roe 2009).

Most (though not all) existing models of assessment in K-12 computer science education
rely on relatively few intermediate products evaluated by a facilitator (e.g., Carter 2014). In our
assessment, we taught students with a messy creative, open-ended task, and enabled the
teacher to assess progress as it happened in class in a repeatable, measurable way. Very few
(if any) existing real-world K12 CS classrooms use live dashboards of student progress on
code, and we provide one provably workable model. We could find no evidence of any similar,
extant, deployable software in our literature review. While not all CS educators will have
access to a tool such as AMOEBA, they may still alter their assessment strategies to monitor
student work more closely at it is in progress.

The unique CS-ZPD that we sought to evaluate showed some promise. Though the
‘quality’ metric, as we defined it, did not show a significant positive trend for all of the
students, this is perhaps more indicative of a limitation of time constraints and the cost of
experimentation to students (Berland, Martin et al. 2013). The other metrics of depth and
specificity showed positive differences across the strength of pairing conditions (i.e., typically
green>yellow>red). This trend was clearest and most visibly significant for specificity in all
cases. Similarly, a trend of greater depth was evident across pairing conditions, whereby green
showed greater depth than yellow and yellow greater than red. Though the difference between
yellow and red was not statistically significant given the alpha we selected, the difference may
still be potentially informative for researchers (Gigerenzer 2004). In other words, AMOEBA’s
similarity metric shows potential for identifying students within each other’s CS-ZPD.
These trends highlight the potential of this approach for pairing students. In the
future, it may prove worthwhile to explore the impact of such pairing strategies over
longer time and gather more data in order to better support more nuanced examinations of
the impacts of such strategies, including the after pairing effects in relation to the operational-
ized CS-ZPD presented here.
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Implications for future work

That students made progress after being paired and subsequently unpaired suggests that there
is some preparation for future learning (‘PFL’, in the sense of Schwartz and Martin 2004) in
the act of working on code with peers. That our findings appear robust across multiple similar
contexts may be our most provocative finding. It suggests that students are learning something
relatively intangible as they write code with friends – something that becomes clearer when
they start working alone again (cf. Katira et al. 2004). This corresponds to other understand-
ings of the significance of uninterrupted time for learning to program code and complete other
similarly complex tasks (Gillie and Broadbent 1989; Perlow 1999; Speier et al. 2003). While
researchers (e.g., Speier et al. 2003) indicate that uninterrupted time is important for cogni-
tively demanding work (such as working out complex code), others (e.g., Katira et al. 2004)
show that people learn more complex content together. That our data show this clearly – if
weakly – in only very short sessions lending strength to models of CS classrooms such as
those of Guzdial and Forte (Guzdial and Forte 2005). It is the consistency of our work with
both prior empirical and theoretical work that suggests that this is meaningful progress.

Practically, the relationship of our design principles to our user study findings may have
important implications for educators and researchers alike. This work suggests new avenues
for designing how teachers assess CS students’ collaborative work. Rather than weighing
heavily on final products, teachers could assess student work at multiple time points within
work on a project, potentially adjusting partners based on the state of the programs. Giving
students time to work together, even if they finish their projects individually, appears to have a
valuable impact on learning.
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