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Abstract
Daily leveraged exchange traded funds amplify gains and losses of their underlying 
benchmark indexes on a daily basis. The result of going long in a daily leveraged 
ETF for more than one day is less clear. Here, bounds are given for the log-returns 
of a daily leveraged ETF when going long for more than just one day. The bounds 
are quadratic in the daily log-returns of the underlying benchmark index, and they 
are used to find sufficient conditions for outperformance and underperformance of a 
daily leveraged ETF in relation to its underlying benchmark index. Of note, results 
show promise for a 2x daily leveraged S&P 500 ETF. If the average annual log-
return of the S&P 500 index continues to be at least .0658, as it has been in the past, 
and the standard deviation of daily S&P 500 log-returns is under .0125, then a 2x 
daily leveraged S&P 500 ETF will perform at least as well as the S&P 500 index in 
the long-run.

Keywords Leveraged ETFs · Leveraged exchange traded funds · Inverse leveraged 
ETFs · Returns estimation

JEL Classification C13 · G11 · G17

1 Introduction

A daily leveraged exchange traded fund amplifies the daily return of its underlying 
benchmark index between adjusted closing prices (adjusted closing prices account 
for stock splits and dividends). For example, consider an underlying benchmark 
index returning 1% between two consecutive adjusted closing prices. Then a daily 
leveraged ETF with leverage multiple 2x or −3x would return roughly 2% or −3%, 
respectively, depending on the expense ratio, fund management and whether it is 
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trading at a premium or discount on the close. The results presented here aim at 
adressing the viability of going long in a daily leveraged ETF for more than one day. 
Their advantage over existing results in the literature is that they bound the long-
term log-return of a daily leveraged ETF, and they depend only on the daily lever-
aged ETF’s expense ratio and leverage multiple, together with the bounds, mean and 
standard deviation of the underlying benchmark index’s daily log-returns.

Existing empirical research covering the long-term performance of daily lever-
aged ETFs focuses on analyzing historical data or describing the long-term return 
for particular underlying benchmark index processes. Ultimately, the driving force 
behind these analyses is the distribution of the underlying benchmark index’s daily 
returns over the time span in question. In other words, structural and mechanical 
issues aside, the performance of a daily leveraged ETF over a given time span is 
completely determined by the distribution of the underlying benchmark index’s 
daily returns over that time span. Existing empirical research has only scratched the 
surface of this relationship between long-term performance of a daily leveraged ETF 
and the distribution of its underlying benchmark index’s daily returns. Many distri-
butions have been studied, but there are an infinite number of plausible distributions 
describing the underlying benchmark index’s daily returns. Here, very general suf-
ficient conditions are given on said distribution for a daily leveraged ETF to outper-
form or underperform its underlying benchmark index. In particular, the conditions 
only use the mean, standard deviation and an upper or lower bound of the under-
lying benchmark index’s daily log-returns. These conditions cover a large class of 
plausible distributions describing the underlying benchmark index’s daily returns. 
Furthermore, the problem of predicting the long-term performance of a daily lever-
aged ETF is reduced to a problem of predicting the mean, standard deviation and 
bounds of the underlying Benchmark index’s daily log-returns. Predicting the mean, 
standard deviation and bounds is far more reasonable than predicting the entire 
shape of the distribution. Another advantage of this reduction is that it does not rely 
on higher moments like skewness and kurtosis, which are more abstract and would 
add difficulty when making predictions. The mean, standard deviation and bounds 
of the underlying benchmark index’s daily log-returns are more comprehensible and 
intuitive, making them easier to predict.

It is now commonplace for investors to buy-and-hold an ETF tracking a large 
market index like the S&P 500. Over a long period of time, like 40 years, investors 
are confident that such an ETF will provide a positive log-return that is favorable 
over most other available ETFs. But can the same be said about a daily leveraged 
S&P 500 ETF? One of the main goals here is to determine when a daily leveraged 
ETF will outperform its underlying benchmark index in the long-run.

When a stock or ETF looks overvalued, investors may take on a short position, 
hoping the price will drop in the near future. Alternatively, investors can buy-and-
hold an inverse daily leveraged ETF during that period. Here, conditions are given 
indicating when the latter option offers a superior return.

There are toy examples where a portfolio that invests L% in a particular stock or 
ETF and (1 − L)% in cash outperforms a portfolio that goes all in the stock or ETF. 
In general, this outperformance occurs when volatility is high enough. The results 
presented here show when this outperformance is impossible, with the goal being 
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to validate the long-term portfolio that invests 100% in the S&P 500 over a portfolio 
that reduces exposure to the S&P 500. As an added bonus, a slight modification of 
the results allows outperformance to be ruled out for portfolios having the (1 − L)% 
in a savings account instead of cash.

1.1  Literature review

Several empirical studies have measured the returns of daily leveraged ETFs over 
longer time spans than just one day. The general consensus is that leveraged ETFs 
track the leveraged multiple of their benchmark indexes’ returns well in the short 
term but deviate in the long term. Since the deviations can be markedly negative, 
there is considerable risk associated with a long position in a leveraged ETF.

Over time spans of 1, 3, 5 and 10 years, a 2x daily leveraged S&P 500 ETF 
offers a moderate increase to expected return at the cost of a significant increase 
in standard deviation (Trainor  Jr and Baryla  Jr 2008). Over time spans no longer 
than one month, 2x and −2x daily leveraged ETFs generally provide 2x and −2x, 
respectively, the return of the underlying benchmark index (Lu et al. 2009). For time 
spans longer than one month, serious deviations start to happen. Those deviations 
are attributed, in part, to the quadratic variation of the underlying benchmark index. 
On the other hand, Bansal and Marshall (2015) show that, for investment horizons 
of 1 calendar year from 1964 to 2013, the average difference between a leveraged 
S&P 500 ETF’s return and the underlying benchmark index’s return multiplied by 
the leverage amount is greater than 0. So there is clearly potential for a daily lever-
aged S&P 500 ETF to provide significant amplification of return over a calendar 
year. The results presented here complement these empirical findings by estimating 
returns of a daily leveraged ETF for investment horizons having any number of days.

Most theoretical results address a long-term position in a continuously lever-
aged ETF. Note that continuous leverage refers to the continuous re-leveraging that 
occurs in the stochastic differential equation framework, which is used by the fol-
lowing. Provided the underlying benchmark index follows a geometric Brownian 
motion, leveraged ETFs appear to cause value destruction in the long-run (Cheng 
and Madhavan 2009). At a minimum, leveraged ETFs do not achieve their leverage 
multiple in the long-run (Jarrow 2010). The risk of a leveraged ETF is measured in 
Leung and Santoli (2012), and admissible leverage multiples are given accordingly. 
Using continuous leverage, Giese (2010) shows that dynamic adjustment of the lev-
erage multiple based on market conditions leads to outperformance of the underly-
ing benchmark index in the long-run. In reality, daily leveraged ETFs do not imple-
ment continuous leverage, so the forementioned results cannot be applied without 
assuming some, possibly significant, level of error. Furthermore, the forementioned 
results mainly rely on the constrictive assumption that the underlying benchmark 
index follows a geometric Brownian motion. The results presented here do not use 
continuous leverage to avoid said error and support more general processes describ-
ing the underlying benchmark index.

Other theoretical results address a long-term position in an ETF that is leveraged 
discretely in time. An approximation to the long-term return of a daily leveraged 
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ETF is given by Avellaneda and Zhang (2010) for investment horizons of less than 
one year. It is based on the leverage multiple and the mean and variance of the 
underlying index’s daily returns. Empirically, this approximation has been shown to 
be very accurate for quarterly horizons. However, it is not an upper or lower bound. 
The approximations presented here are advantageous because they are upper and 
lower bounds, which facilitates the provision of sufficient conditions for outper-
formance and underperformance of a daily leveraged ETF relative to its underlying 
benchmark index.

During the financial crisis from 2008 to 2009, daily leveraged ETFs did not gen-
erally meet their target multiple of daily returns, even on a daily basis (Shum and 
Kang 2013). Similar finding are in Tang and Xu (2013). These errors can be attrib-
uted to management and trading premiums/discounts, and the effect is a reduction 
in the magnification of daily returns. For example, 2x and −2x daily leveraged S&P 
500 ETFs were more like 1.9x and −1.9x daily leveraged ETFs during the financial 
crisis. These errors are not considered here because their randomness is difficult to 
incorporate into theoretical results. However, the results can account for such errors, 
to some extent, with an increased expense ratio.

Based on simulation of 3x and −3x daily leveraged S&P 500 ETFs, it appears 
that a combination of volatility and market condition (sideways, upward-trending or 
downward-trending) of the S&P 500 index determines long-term performance of the 
leveraged ETF (Charupat et al. 2022). The results presented here provide a theoreti-
cal foundation for these simulation-based findings.

Daily leveraged ETFs are certainly popular, but it appears that their present use 
by institutions is leading to poor performance relative to portfolios that avoid daily 
leveraged ETFs (DeVault et al. 2021). In other words, recent attempts by institutions 
to time the market with their leveraged ETF holdings are backfiring. The results pre-
sented here are aimed at providing further guidance on when a leveraged ETF is 
worth having in a portfolio.

1.2  Main results

Lower and upper bounds are given for the log-return of a daily leveraged index over 
n consecutive trading days. The bounds are expressed quadratically in terms of the 
daily log-returns of the underlying benchmark index. In particular, the bounds are of 
the form n(am2 + bm1 + c) , where m2 is the average squared daily log-return of the 
benchmark index, m1 is the average daily log-return of the benchmark index, and a, 
b and c are constants. The results cover a range of leverage multiples, including the 
popular −3x, −2x, 2x and 3x.

1.3  Applications

Sufficient conditions are given for the log-return of a daily leveraged index or ETF 
to be some multiple, L0 , of the log-return of its underlying benchmark index, over 
n consecutive trading days. Here, ETFs are distinguished from indexes because 
they have expense ratios. To simplify notation, let RL

n,r
 denote the log-return of 
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a daily leveraged ETF after n consecutive trading days, with leverage multiple 
L and expense ratio r. Now the goal of applications can be expressed more con-
cisely: to provide sufficient conditions for RL

n,r
 to be at least or at most L0R1

n,0
.

First, thresholds are given for m1∕m2 , indicating when RL
n,0

 is at least or at most 
L0R

1
n,0

 . Here, m1 and m2 are as in Sect. 1.2. Special attention is given to the thresh-
olds for 1 < L because 2x and 3x leverage multiples are so popular.

Let s denote the standard deviation of the underlying benchmark index’s daily 
log-returns. For L > 1 and L0 < L , an upper bound is given on s, indicating when 
RL
n,r

≥ L0R
1
n,0

 . Taking L = 2, 3 and L0 = 0, 1 is especially important for practical 
reasons, because the upper bound on s indicates when a 2x or 3x daily leveraged 
ETF will have a non-negative log-return or perform at least as well as its under-
lying benchmark index. If the average annual log-return of the S&P 500 index 
continues to be at least .0658, as it has been in the past, daily percentage changes 
between adjusted closing prices are at least −20%, and s ≤ .0125 , then a 2x daily 
leveraged ETF will perform at least as well as the S&P 500 index in the long-run.

For L < L0 < 0 , an upper bound is given on s, indicating when RL
n,r

≥ L0R
1
n,0

 . 
The focus here is on L0 = −1 because then the latter inequality indicates when 
a daily inverse leveraged ETF performs at least as well as a short position in its 
underlying benchmark index. For example, results show that if the benchmark 
index drops 10+% over the course of 63 consecutive trading days, daily percent-
age changes between adjusted closing prices are at most 15%, and s ≤ .015 , then 
going long in a −3x daily leveraged ETF during that period gives a log-return of 
at least 1.5 times the log-return of a short position in the benchmark index. Fur-
thermore, if the 10+% drop happens faster, then the 1.5 multiple of log-returns 
can be achieved with even larger s.

For 0 < L < 1 , an upper bound is given on s, indicating when RL
n,0

≤ R1
n,0

 . Note 
that a log-return of RL

n,0
 can be achieved via daily rebalancing with L% in the 

benchmark index and (1 − L)% in cash. Interestingly, this theory easily extends 
from daily leverage to longer periods like weekly leverage, where rebalancing 
occurs weekly, and quarterly leverage, where rebalancing occurs quarterly. If the 
S&P 500 continues to have an average annual log-return of at least .0658, then the 
standard deviation of its daily, weekly, monthly, quarterly, semi-annual or annual 
log-returns would have to exceed .02, .04, .08, .15, .2 or .3, respectively, for a 
portfolio rebalancing daily, weekly, monthly, quarterly, semi-annually or annu-
ally, respectively, with .65 ≤ L < 1 , to outperform the benchmark L = 1 in the 
long-run. It seems unlikely for this level of volatility to persist in the long-run, 
so maintaining a L ∶ (1 − L) portfolio in the S&P 500 and cash with .65 ≤ L < 1 
is not advised for long periods of time under any standard rebalancing schedule. 
A slight modification of the forementioned theory covers portfolios having the 
(1 − L)% in a savings account instead of cash. The results show that for nomi-
nal annual interest rates as high as 4%, the standard deviation of the S&P 500’s 
annual log-returns would have to exceed .2 for .7 ≤ L < 1 to outperform L = 1 . 
This level of volatily seems unlikely to persist in the long-run, so maintaining an 
annually rebalanced L ∶ (1 − L) portfolio in the S&P 500 and a savings account, 
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with .7 ≤ L < 1 , is not advised for long periods of time, unless, perhaps, if the 
savings account has an annual rate exceeding 4%.

1.4  Organization

Section  2 lays out the notation and framework for the returns of daily leveraged 
indexes and ETFs. Section 3 provides main results, and Sect. 4 applies those results. 
Data used in applications is described in Sect.  4.1. Section  5 provides closing 
remarks, including a discussion of related future research ideas. Last, Appendix A 
provides proofs of the theorems stated in Sect. 3.

2  Preliminaries

Let Ci denote the adjusted closing price of trading day i for a particular stock mar-
ket index I. Then {Ci}

n
i=0

 is a sequence of adjusted closing prices for n + 1 consecu-
tive trading days. Note that adjusted closing prices account for dividends and stock 
splits, but not inflation. For example, suppose a stock has a closing price of $100 on 
day 1, a closing price of $98 on day 2, and a dividend distribution of $1 on day 2. 
Then the adjusted closing prices will be $100 on day 1 and $99 on day 2. Suppose 
there is a 2-for-1 stock split on day 3 and the closing price on day 3 is $49. Then the 
adjusted closing price of day 3 will be $99 = 2 ⋅ $49 + $1.

Let Xi = Ci∕Ci−1 − 1 for i = 1, ..., n . Then {100 ⋅ Xi}
n
i=1

 is the sequence of n per-
centage changes between adjusted closing prices. Observe that

Denote the daily leveraged version of I as LxI, where L indicates the amount of 
leverage. For example, 3xI indicates the index tracking I with 3x daily leverage. The 
closing prices of LxI are given by

So the log-returns realized by going long in LxI from the close of trading day 0 to 
the close of trading day n are given by

Note that here, log refers to the natural logarithm. Let Yi = log(1 + Xi) for i = 1, ..., n . 
Then Yi is the log-return for day i, and

n∏

i=1

(1 + Xi) =
Cn

C0

.

CL
i
∶= C0 ⋅

i∏

k=1

(1 + LXk), i = 0, ..., n.

log
CL
n

C0

=

n∑

i=1

log(1 + LXi).
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To shorten notation, let

Denote the ETF version of LxI as LxIr , where r is the annual expense ratio, com-
pounded on a daily basis. Assuming 252 trading days in a year, the log-return of 
LxIr after n days is given by

3  Main results

Theorems 1, 2, 3 and 4 provide lower and upper bounds for the log-return of LxI. 
The bounds are expressed quadratically in terms of the Yi . Theorem 1 covers L > 1 , 
Theorems 2 and 3 cover 0 < L < 1 , and Theorem 4 covers L < 0.

Theorem  1 Fix L > 1 and log(1 − L−1) < y0 < y1 . Then, provided y0 ≤ Yi ≤ y1 for 
i = 1, ..., n , log-returns of LxI from the close of trading day 0 to the close of trading 
day n are bounded as follows:

where

Remark 1 In Theorem  1, the requirements log(1 − L−1) < y0 and Yi ≥ y0 for 
i = 1, ..., n guarantee that Xi > L−1 for each i. This, in turn, makes each daily lever-
aged return 1 + LXi well-defined (i.e. non-negative).

Remark 2 In Theorem 1, having y = 0 and y0 < 0 < y1 simplifies the expressions for 
ak, bk, and ck considerably. In particular,

log
Cn

C0

=

n∑

i=1

Yi, log
CL
n

C0

=

n∑

i=1

log(1 + L(expYi − 1)).

m1 =
1

n

n�

i=1

Yi, m2 =
1

n

n�

i=1

Y2
i
, s =

�∑n

i=1
(Yi − m1)

2

n
.

RL
n,r

∶= log
CL
n

C0

+ n log
(
1 −

r

252

)
.

sup
y0<y

n(a0m2 + b0m1 + c0) ≤ log
CL
n

C0

≤ inf
log(1−L−1)<y<y1

n(a1m2 + b1m1 + c1),

ak =
1

y − yk

( log
1+L(exp yk−1)

1+L(exp y−1)

y − yk
+

L exp y

1 + L(exp y − 1)

)
,

bk =
L exp y

1 + L(exp y − 1)
− 2aky, ck = log(1 + L(exp yk − 1)) − aky

2
k
− bkyk.
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Theorem 2 Fix 0 < L < 1 and y0 < y1 < log(L−1 − 1) . Then, provided y0 ≤ Yi ≤ y1 
for i = 1, ..., n , log-returns of LxI from the close of trading day 0 to the close of trad-
ing day n are bounded as follows:

where ak, bk and ck are as in Theorem 1.

Theorem 3 Fix 0 < L < 1 and log(L−1 − 1) < y0 < y1 . Then, provided y0 ≤ Yi ≤ y1 
for i = 1, ..., n , log-returns of LxI from the close of trading day 0 to the close of trad-
ing day n are bounded as follows:

where ak, bk and ck are as in Theorem 1.

Theorem 4 Fix L < 0 and y0 < y1 < log(1 − L−1) . Then, provided y0 ≤ Yi ≤ y1 for 
i = 1, ..., n , log-returns of LxI from the close of trading day 0 to the close of trading 
day n are bounded as follows:

where ak, bk and ck are as in Theorem 1.

Remark 3 In Theorem  4, the requirements y1 < log(1 − L−1) and Yi ≤ y1 for 
i = 1, ..., n guarantee that Xi < −L−1 for each i. This, in turn, makes each daily lever-
aged return 1 + LXi well-defined (i.e. non-negative).

Remark 4 For any L ∈ ℝ ⧵ [0, 1] , there is also the linear upper bound

which holds provided each Yi satisfies

Thus, the log-return of LxI can never exceed L times the log-return of I. Note that 
this upper bound follows the fact that log(1 + Lx) ≤ L log(1 + x) where the loga-
rithms are well-defined.

ak =
1

yk

(
log(1 + L(exp yk − 1))

yk
− L

)
, bk = L, ck = 0.

sup
y0<y<log(L

−1−1)

n(a0m2 + b0m1 + c0) ≤ log
CL
n

C0

≤ inf
y<y1

n(a1m2 + b1m1 + c1),

sup
log(L−1−1)<y<y1

n(a1m2 + b1m1 + c1) ≤ log
CL
n

C0

≤ inf
y0<y

n(a0m2 + b0m1 + c0),

sup
y<y1

n(a1m2 + b1m1 + c1) ≤ log
CL
n

C0

≤ inf
y0<y<log(1−L

−1)
n(a0m2 + b0m1 + c0),

log
CL
n

C0

≤ Lnm1 = L log
Cn

C0

,

L

|L|
Yi >

L

|L|
log(1 − L−1).
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For L ∈ [0, 1] , the upper bound just described is a lower bound, i.e.

4  Applications

Applications first use Theorem  1 and Remark  2 to provide thresholds for m1∕m2 
indicating when LxI has a log-return that is at least or at most L0 times the log-return 
of I. The focus is on 1 < L and L0 < L , but similar thresholds exist for arbitrary L 
and L0 based on Theorems 2, 3 and 4. Note that m1∕m2 is akin to a Sharpe ratio, 
since m1 and m2 denote means of the Yi and Y2

i
 , respectively.

Next, main results are used to provide sufficient conditions for the log-return of 
LxIr to be at least L0 times the log-return of I. For practical reasons, the focus is on 
two cases: ( 1 < L , L0 < L ) and ( L < L0 < 0 ). The former case is aimed at indicating 
when a leveraged ETF like 2xIr or 3xIr outperforms I. The latter case is aimed at 
indicating when an inverse leveraged ETF like -2xIr or −3xIr outperforms a short 
position in I.

Last, Theorems 2 and 3 are used to provide sufficient conditions for the log-return 
of LxI to be at most the log-return of I. Here, the focus is on 0 < L < 1 because 
then the log-return of LxI can be achieved by maintaining a portfolio with L% in I 
and (1 − L)% in cash. Interestingly, this theory easily extends from daily leverage to 
longer periods like weekly leverage, where rebalancing occurs weekly, and quarterly 
leverage, where rebalancing occurs quarterly. With some slight modifications, the 
theory also extends to portfolios having the (1 − L)% in a savings account instead of 
cash.

4.1  Data

Applications use the average annual real log-return of the S&P Composite Index 
from 1871 to 2020, which is .0658. Here, S&P Composite Index refers to three 
indexes: Cowles and Associates from 1871 to 1926, Standard & Poor 90 from 1926 
to 1957 and Standard & Poor 500 from 1957 to 2020. The Cowles and Associates 
and S&P 90 indexes are backward extensions of the S&P 500 index used to extrapo-
late a longer term average annual real log-return of the S&P 500 index. The data was 
taken from http:// www. econ. yale. edu/ ~shill er/ data. html and is collected for easy 

L log
Cn

C0

= Lnm1 ≤ log
CL
n

C0

.

Table 1  Data variable 
descriptions

Notation Description

P Average monthly close of the S&P composite index
D Dividend per share of the S&P composite index
J January consumer price index

http://www.econ.yale.edu/%7eshiller/data.html
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access at https:// github. com/ Hayde nBrown/ Inves ting. For an overview of the S&P 
500, see https:// www. spglo bal. com/ spdji/ en/ indic es/ equity/ sp- 500/. Relevant vari-
ables from the data are described in Table 1.

Inflation and dividend adjusted (i.e. real) annual returns are computed using 
the consumer price index, the S&P Composite Index price and the S&P Com-
posite Index dividend. Use the subscript k to denote the kth year of J, P and D. 
Then the real return for year k is given by ((Pk+1 + Dk)∕Pk) ⋅ (Jk∕Jk+1) . Note that 
the average annual total log-return (adjustment for dividends but not inflation) of 
the S&P Composite Index from 1871 to 1926 is greater than .0658, since inflation 
has been far more common than deflation in the past.

Inflation and dividend adjusted (i.e. real) annual returns are computed using 
the consumer price index, the S&P Composite Index price and the S&P Com-
posite Index dividend. Use the subscript k to denote the kth year of J, P and D. 
Then the real return for year k is given by ((Pk+1 + Dk)∕Pk) ⋅ (Jk∕Jk+1) . Note that 
the average annual total log-return (adjustment for dividends but not inflation) of 
the S&P Composite Index from 1871 to 2020 is greater than .0658, since infla-
tion has been more prevalent than deflation in the past (especially so in recent 
history).

Applications also reference the long-term standard deviation and mean of 
S&P 500 daily log-returns. Daily log-returns of the S&P 500 Index are taken 
from https:// finan ce. yahoo. com, spanning December 29, 1927 to September 29, 
2023. Figures  1 and 2 illustrate how the standard deviation and mean of daily 
log-returns have behaved over 30 year periods. A standard deviation of less than 
.0125 appears to be normal for 30 year periods starting after 1932. A mean of at 
least .0658 appears to be normal for 30 year periods starting after 1966. Figure 3 
shows m1∕m2 over the 30 year periods.

Fig. 1  Illustrates the rolling standard deviation (s with n = 30 ⋅ 252 ) of S&P 500 daily log-returns over 
30 year periods. The dashed line indicates a standard deviation of .0125

https://github.com/HaydenBrown/Investing
https://www.spglobal.com/spdji/en/indices/equity/sp-500/
https://finance.yahoo.com
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4.2  Thresholds for m1

m2

Let 1 < L , L0 < L and log(1 − L−1) < y0 < y1 . Observe that L0 log(Cn∕C0) = L0nm1 . 
It follows from Theorem 1 and Remark 2 that L0 log(Cn∕C0) ≤ log(CL

n
∕C0) , pro-

vided L0m1 ≤ a0m2 + Lm1 and y0 ≤ Yi ≤ y1 for i = 1, ..., n . If at least one Yi is non-
zero, then m2 is positive and

(1)L0m1 ≤ a0m2 + Lm1 ⟺
−a0

L − L0
≤

m1

m2

.

Fig. 2  Illustrates the rolling annualized mean ( 252m1 with n = 30 ⋅ 252 ) of S&P 500 daily log-returns 
over 30 year periods. The dashed line indicates an annualized mean of .0658

Fig. 3  Illustrates the rolling m1∕m2 ( n = 30 ⋅ 252 ) of S&P 500 daily log-returns over 30 year periods
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Of special interest are the cases L0 = 0 and L0 = 1 . When L0 = 0 , satisfaction of (1) 
indicates LxI has a non-negative log-return. When L0 = 1 , satisfaction of (1) indi-
cates LxI  has a log-return that is at least the log-return of I. Moreover, it is not 
hard to see that when L0 = 1 , satisfaction of (1) indicates the log-return of LxIr is 
at least the log-return of 1xIr . Figure 4 illustrates the threshold −a0(L − L0)

−1 for 
various y0, L and L0 . The horizontal axis is in terms of 100(exp(y0) − 1) for the sake 
of interpretation. Observe that Yi ≥ y0 if and only if 100Xi ≥ 100(exp(y0) − 1) . So if 
Yi ≥ y0 for i = 1, ..., n , then 100(exp(y0) − 1) indicates the lower bound on the daily 
percentage changes between adjusted closing prices. Comparing Fig. 4 with Fig. 3, 
it looks like the 2x leveraged S&P 500 Index will continue to perform as well as the 
S&P 500 Index over 30 year periods, provided m1∕m2 remains above 1.5, as it has in 
the past.

Using similar logic, L0 log(Cn∕C0) ≥ log(CL
n
∕C0) , provided y0 ≤ Yi ≤ y1 for 

i = 1, ..., n and

Using Theorems 2, 3 and 4, similar thresholds for m1∕m2 can be made for arbitrary 
L and L0 , indicating when L0 log(Cn∕C0) is at least or at most log(CL

n
∕C0).

4.3  Outperformance of daily leveraged indexes and ETFs

In general, Theorems 1, 2, 3 and 4 can be used to provide sufficient conditions for 
the log-return of LxIr to be at least or at most some multiple, denoted L0 , of the log-
returns of I, i.e.

−a1
L − L0

≥
m1

m2

.

Fig. 4  Illustrates −a0
L−L0

 for various y0, L and L0 . The dashed line represents L = 2 , and the solid line repre-
sents L = 3



177

1 3

Long-term returns estimation of leveraged indexes and ETFs  

Rather than detail said sufficient conditions for the many cases that arise when con-
sidering general L and L0 , it is more worthwhile to focus on a few cases of practical 
interest.

The goal here is to provide sufficient conditions for the log-return of LxIr to be at 
least L0 times the log-return of I, i.e.

Furthermore, only two cases of L and L0 are considered for practical interest: 

 (i) 1 < L and L0 < L,
 (ii) L < L0 < 0.

4.3.1  Case (i)

Fix log(1 − L−1) < y0 < y1 , and suppose y0 ≤ Yi ≤ y1 for i = 1, ..., n . Recall that 
L0 log(Cn∕C0) = L0nm1 . By Theorem 1, (2) follows, provided

Some algebra (and the fact that a0 < 0 ) reveals that (3) is equivalent to

Recall that s denotes the standard deviation of the Yi.
For various average annual log-return of I (i.e. 252m1 ), Figs. 5 and 6 show the 

standard deviation, s, of daily log-returns that satisfies

If the standard deviation of daily log-returns is less than or equal to what is shown 
in Figs. 5 and 6, then (3) is satisfied, which, in turn, implies (2). Observe how the 
impact of the expense ratio on (4) is exaggerated as L0 increases. Note that Figs. 5 
and 6 approximate the supremum over y > y0 with a fine mesh. Interestingly, the y 
that produces the approximate supremum is close to 0 in each case. Recall that the 
lower bound of Theorem 1 is constructed to be especially close to the actual lever-
aged log-return when the Yi are close to y. Having y ≈ 0 makes the lower bound 
especially accurate when the Yi are close to 0. If a quadratic lower bound is selected 
from Theorem 1, but the y is selected based on intuition rather than taking the supre-
mum, then it makes sense to choose y ≈ 0 , because daily log-returns should have a 
mean close to 0 in the long-run.

L0 log(Cn∕C0) ≤ RL
n,r

or L0 log(Cn∕C0) ≥ RL
n,r
.

(2)L0 log(Cn∕C0) ≤ RL
n,r
.

(3)L0m1 ≤ sup
y0<y

a0m2 + b0m1 + c0 + log
(
1 −

r

252

)
.

s ≤ sup
y0<y

√

−m2
1
+

L0 − b0

a0
⋅ m1 −

c0 + log(1 − r∕252)

a0
.

(4)s = sup
y0<y

√

−m2
1
+

L0 − b0

a0
⋅ m1 −

c0 + log(1 − r∕252)

a0
.
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Figure 7 shows that, for y0 = log(1 − .2) , L0 ≥ 1.6 and r = .0095 , L = 3 has a 
larger upper bound for s. If one is trying to achieve at least 1.6 times the log-
return of I with a leveraged ETF, it appears that 3xIr  can do so while allowing a 
higher standard deviation of the daily log-returns of I, when compared to 2xIr  . 
Note, the word “appears" is used because the main results only provide suffi-
cient conditions for outperformance. For L0 < 1.6 , the situation can be reversed, 
depending on the value of 252m1 . For example, if one is trying to achieve 1.4 
times the log-return of I, and 252m1 > .04 , then it appears that 2xIr  can do so 
while allowing a higher standard deviation of the daily log-returns of I. Further-
more, if one is trying to achieve at least the log-return of I, then it appears that 
2xIr  is far more forgiving than 3xIr  , in terms of the allowed standard deviation of 
the daily log-returns of I.

Based on Sect.  4.1, the average annual real log-return of the S&P Compos-
ite Index from 1871 to 2020 is .0658 (recall that real log-return indicates adjust-
ment for dividends and inflation). Assuming this trend continues, inflation occurs 
in the long-run, daily percentage changes between adjusted closing prices are at 
least −20%, and the standard deviation of daily log-returns is under .0125, Fig. 5 

Fig. 5  Illustrates (4) for various y0, L, L0 and r. The dashed line represents y0 = log(1 − .2)   (minimum 
daily percentage change is −20%), and the solid line represents y0 = log(1 − .1)  (minimum daily per-
centage change is −10%). Black indicates r = 0 and red indicates r = .0095 (expense ratio is .95%)
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indicates that a 2x daily leveraged S&P 500 ETF with a .95% expense ratio will 
perform at least as good as the benchmark S&P 500 index in the long-run. More-
over, the situation only improves when there is persistent inflation, in which case 
the upper bound on the standard deviation of daily log-returns increases. On the 
other hand, if one takes the position that the benchmark S&P 500 index is unbeat-
able in the long-run, then it is necessary for the standard deviation of daily log-
returns to be at least .0125, provided an average annual real log-return of 0.0658, 
persistent inflation, and daily percentage changes between adjusted closing prices 
of at least −20%. This means that if the benchmark S&P 500 index is unbeatable 
in the long-run, average annual log-returns continue to be at least 0.0658, and 
daily percentage changes between adjusted closing prices are not too extreme, 
then daily log-returns must be quite volatile.

4.3.2  Case (ii)

Fix y0 < y1 < log(1 − L−1) , and suppose y0 ≤ Yi ≤ y1 for i = 1, ..., n . Recall that 
L0 log(Cn∕C0) = L0nm1 . By Theorem 4, (2) follows, provided

Fig. 6  Illustrates (4) for various y0, L, L0 and r. The dashed line represents y0 = log(1 − .2) (minimum 
daily percentage change is −20%), and the solid line represents y0 = log(1 − .1) (minimum daily percent-
age change is −10%). Black indicates r = 0 and red indicates r = .0095 (expense ratio is .95%) (color 
figure online)
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Some algebra (and the fact that a1 < 0 ) reveals that (5) is equivalent to

For various average annual log-returns of I (i.e. 252m1 ), Fig. 8 shows the standard 
deviation, s, of daily log-returns that satisfies

If the standard deviation of daily log-returns is less than or equal to what is shown in 
Fig. 8, then (5) is satisfied, which, in turn, implies (2). Unlike case (i), Fig. 8 shows 
that (6) is approximately the same for a variety of L0 and L. If one is confident of a 
downturn and daily log-returns of I are not too volatile, then −2xIr and −3xIr are 
both good options for magnifying returns. Looking at Fig. 9, it appears that −3xIr 
is superior (in terms of allowable standard deviation of the Yi ) when looking to 

(5)L0m1 ≤ sup
y<y1

a1m2 + b1m1 + c1 + log
(
1 −

r

252

)
.

s ≤ sup
y<y1

√

−m2
1
+

L0 − b1

a1
⋅ m1 −

c1 + log(1 − r∕252)

a1
.

(6)s = sup
y<y1

√

−m2
1
+

L0 − b1

a1
⋅ m1 −

c1 + log(1 − r∕252)

a1
.

Fig. 7  Illustrates (4) for y0 = log(1 − .2) , L = 2, 3 , L0 = 1, 1.1, ..., 1.9, 2 and r = .0095 . The top curve is 
for L0 = 1 , the curve below that is for L0 = 1.1,… ,  and the bottom curve is for L0 = 2 (there are 11 
curves total, some colored green and black, some just black). Green indicates L = 2 produced the larger 
value for (4) than L = 3 , and that value is plotted in green. Black indicates L = 3 produced the larger 
value for (4) than L = 2 , and that value is plotted in black (color figure online)
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magnify log-returns of I by L0 ≤ −1.3 . For L0 > −1.3 , it appears that −2xIr is supe-
rior in the same sense, provided 252m1 is sufficiently negative.

4.4  Underperformance of leveraged indexes

The goal here is to provide sufficient conditions for the log-return of LxI to be at 
most the log-return of I, i.e.

(7)log(Cn∕C0) ≥ log(CL
n
∕C0).

Fig. 8  Illustrates (6) for various y1, L, L0 and r. The dashed line represents y1 = log(1 + .15) (maximum 
daily percentage change is 15%), and the solid line represents y1 = log(1 + .1) (maximum daily percent-
age change is 10%). Black indicates r = 0 and red indicates r = .0095 (expense ratio is .95%) (color fig-
ure online)



182 H. Brown 

1 3

For practical interest, only 0 < L < 1 are considered. Note that leveraged ETFs are 
not considered here because the return of LxI can be achieved with ease by a pri-
vate investor via rebalancing. Of course, there are fees and taxes associated with the 
rebalancing that lead to decreased returns. Thus, if (7) holds, then the investor’s log-
return will be less than or equal to the log-return of I.

First generalize the framework outlined in Sect.  2. Instead of {Ci}
n
i=0

 being a 
sequence of adjusted closing prices for n + 1 consecutive trading days, take it to be a 
subsequence coming from {Ci}Ni=0 (n ≤ N) , a sequence of adjusted closing prices for 
N + 1 consecutive trading days.

Next, require rebalancing at the close of each day associated with Ci such that 
(1 − L)% is in cash and L% is in I. The resulting log-return between trading days associ-
ated with Ci−1 and Ci is then

So this schedule of rebalancing achieves the same leveraged returns used in the main 
results, and Theorems 2 and 3 can be applied.

log[(1 − L) + L(Ci∕Ci−1)] = log[(1 − L) + L(Xi + 1)] = log(1 + LXi) = Yi.

Fig. 9  Illustrates (6) for y0 = log(1 + .15) , L = −2,−3 , L0 = −1,−1.1, ...,−1.5 and r = .0095 . The top 
curve is for L0 = −1 , the curve below that is for L0 = −1.1,… , and the bottom curve is for L0 = −1.5 
(there are 6 curves total, some colored green and black, some just black). Green indicates L = −2 pro-
duced the larger value for (6) than L = −3 , and that value is plotted in green. Black indicates L = −3 
produced the larger value for (6) than L = −2 , and that value is plotted in black (color figure online)
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4.4.1  Application of Theorem 2

Fix y0 < y1 < log(L−1 − 1) , and suppose y0 ≤ Yi ≤ y1 for i = 1, ..., n . Recall that 
log(Cn∕C0) = nm1 . By Theorem 2, (7) follows, provided

Some algebra (and the fact that a1 > 0 ) reveals that (8) is equivalent to

(8)inf
y<y1

a1m2 + b1m1 + c1 ≤ m1.

Fig. 10  Illustrates (9). Horizontal axes measure the average annual log-return of I. The coefficient on m1 
indicates the number of times rebalancing occurs each year. In particular, 252m1 is for daily rebalanc-
ing, 52m1 is for weekly rebalancing, 12m1 is for monthly rebalancing, 4m1 is for quarterly rebalancing, 
2m1 is for semi-annual rebalancing, and m1 is for annual rebalancing. y1 is adjusted for each rebalancing 
schedule. y0 can be chosen arbitrarily, as long as y0 < y1 . In each plot, the green curve indicates the L sat-
isfying y1 = log(L−1 − 1) , rounded down to the nearest hundredth. The red curve is there to show which 
direction (9) goes in relation to the green curve as L is decreased. Note that smaller values for L, like .01, 
produce a (9) that is significantly higher than the green curve, so much so that it would not show up on 
the given plots (color figure online)
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For various rebalancing schedules and average annual log-returns of I, Fig. 10 shows 
the standard deviation, s, of daily log-returns that satisfies

If the standard deviation of I’s log-returns between rebalancing days is less than or 
equal to what is shown in Fig. 10, then (8) is satisfied, which, in turn, implies (7).

4.4.2  Application of Theorem 3

Fix log(L−1 − 1) < y0 < y1 , and suppose y0 ≤ Yi ≤ y1 for i = 1, ..., n . Recall that 
log(Cn∕C0) = nm1 . By Theorem 3, (7) follows, provided

Some algebra (and the fact that a0 > 0 ) reveals that (10) is equivalent to

For various rebalancing schedules and average annual log-returns of I, Fig. 11 shows 
the standard deviation, s, of daily log-returns that satisfies

If the standard deviation of I’s log-returns between rebalancing days is less than or 
equal to what is shown in Fig. 11, then (10) is satisfied, which, in turn, implies (7).

4.4.3  Summary application of Theorems 2 and 3

Fix y0 < y1 and suppose y0 ≤ Yi ≤ y1 for i = 1, ..., n . Figure  12 provides upper 
bounds on s that imply (7) for a range of L. Let

where S = {.01, .02, ..., .99} . If L ∈ S1 and s is less than or equal to the its value on 
the red curve, then (7) holds. If L ∈ S2 and s is less than or equal to the its value on 
the green curve, then (7) holds. Figure  12 indicates that (7) holds even when the 
daily, weekly, monthly, quarterly, semi-annual or annual log-returns of I are quite 
volatile. Unfortunately, Theorems 2 and 3 do not cover all L between 0 and 1. No 

s ≤ inf
y<y1

√

−m2
1
+

1 − b1

a1
⋅ m1 −

c1

a1
.

(9)s = inf
y<y1

√

−m2
1
+

1 − b1

a1
⋅ m1 −

c1

a1
.

(10)inf
y0<y

a0m2 + b0m1 + c0 ≤ m1.

(11)s ≤ inf
y0<y

√

−m2
1
+

1 − b0

a0
⋅ m1 −

c0

a0
.

(12)s = inf
y0<y

√

−m2
1
+

1 − b0

a0
⋅ m1 −

c0

a0
.

S1 = {L ∈ S ∶ y1 < log(L−1 − 1)}, S2 = {L ∈ S ∶ log(L−1 − 1) < y0},
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upper bound on s is given for L ∈ [(1 + exp y1)
−1, (1 + exp y0)

−1] . However, as 
shown in Fig. 12, S1 and S2 contain most of the L in S. S1 contains L less than.5, and 
S2 contains L greater than.5, with both missing some L close to.5.

For practical purposes, an investor is likely choosing between going all in on I 
or maintaining a portfolio of L% in I and (1 − L)% in cash, with L close to 1 (i.e. 
L ∈ S2 ). The goal here would be to dial down exposure to I, and slightly increase 
return as a result. However, Fig. 12 shows that there would need to be substantial 
volatility in the log-returns of I for this slight increase in return to be possible. For 
example, take I to be the S&P 500. If the S&P 500 continues to have an average 

Fig. 11  Illustrates (12). Horizontal axes measure the average annual log-return of I. The coefficient on 
m1 indicates the number of times rebalancing occurs each year. In particular, 252m1 is for daily rebalanc-
ing, 52m1 is for weekly rebalancing, 12m1 is for monthly rebalancing, 4m1 is for quarterly rebalancing, 
2m1 is for semi-annual rebalancing, and m1 is for annual rebalancing. y0 is adjusted for each rebalancing 
schedule. y1 can be chosen arbitrarily, as long as y0 < y1 . In each plot, the green curve indicates the L 
satisfying log(L−1 − 1) = y0 , rounded up to the nearest hundredth. The red curve is there to show which 
direction (12) goes in relation to the green curve as L is increased (color figure online)
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annual log-return of at least .0658, then the standard deviation of its daily, weekly, 
monthly, quarterly, semi-annual or annual log-returns would have to exceed .02, .04, 
.08, .15, .2 or .3, respectively, for a portfolio that dials down exposure in the S&P 
500 to be viable. It seems unlikely for this level of volatility to persist in the long-
run, so maintaining a L ∶ (1 − L) portfolio in the S&P 500 and cash over a long 
period of time, with L ∈ S2 , is not advised.

Notice that this particular setup also works if the Ci are inflation-adjusted and the 
cash asset is replaced with an inflation-protected bond. If the S&P 500 continues to 
have an average annual inflation-adjusted log-return of around .0658, there would 
need to be a seemingly unreasonable level of volatility (based on historical experi-
ence) for a portfolio that dials down exposure in the S&P 500 to be superior in the 
long-run.

Fig. 12  The red curve shows the minimum of (9) over L ∈ S1 , and the green curve shows the minimum 
of (12) over L ∈ S2 . Horizontal axes measure average the annual log-return of I. The coefficient on m1 
indicates the number of times rebalancing occurs each year. In particular, 252m1 is for daily rebalancing, 
52m1 is for weekly rebalancing, 12m1 is for monthly rebalancing, 4m1 is for quarterly rebalancing, 2m1 is 
for semi-annual rebalancing, and m1 is for annual rebalancing. y0 and y1 are adjusted for each rebalancing 
schedule (color figure online)
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4.4.4  Putting the (1 − L)% in a savings account instead of cash

Suppose a savings account offers a nominal annual interest rate of rs% , com-
pounded continuously. Require rebalancing at the close of each day associated 
with Ci such that (1 − L)% is in the savings account and L% is in I. The resulting 
log-return between trading days associated with Ci−1 and Ci is then

where � = L + (1 − L) exp(rs∕100) . For this subsection only, redefine ak, bk and ck 
such that

For convenience, take log(CL
n
∕C0) to denote the log-return of such a rebalancing 

schedule between the trading days associated with C0 and Cn , i.e.

Then Theorems  2 and  3 hold, provided each instance of log(L−1 − 1) is replaced 
with log(�L−1 − 1) . This can be verified by following the same logic used to prove 
the original theorems and making a slight modification to account for the constant �.

log[(1 − L) exp(rs∕100) + L(Ci∕Ci−1)] = log[� + L(expYi − 1)],

ak =
1

y − yk

( log
�+L(exp yk−1)

�+L(exp y−1)

y − yk
+

L exp y

� + L(exp y − 1)

)
,

bk =
L exp y

� + L(exp y − 1)
− 2aky, ck = log(� + L(exp yk − 1)) − aky

2
k
− bkyk.

n∑

i=0

log[� + L(expYi − 1)].

Fig. 13  Illustrates the minimum of (12) over L ∈ {.7, .71, ..., .99} , as modified in Sect. 4.4.4. Rebalancing 
occurs annually, and the horizontal axis measures the average annual log-return of I. y1 can be chosen 
arbitrarily, as long as y0 < y1 . The curves (from top to bottom) are for nominal annual rates of 0%, 1%, 
2%, 3%, 4% and 5%. Note that L ≥ .7 implies log(𝛿L−1 − 1) < y0 , so the modified Theorem 3 described 
in Sect. 4.4.4 can be applied
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Accordingly, fix log(𝛿L−1 − 1) < y0 < y1 , and suppose y0 ≤ Yi ≤ y1 for i = 1, ..., n . 
By the modified Theorem 3, (7) follows, provided (10) holds. Like before, (10) is 
equivalent to (11). For annual rebalancing and various average annual log-returns of 
I, Fig. 13 shows the standard deviation, s, of annual log-returns that satisfies (12). If 
the standard deviation of I’s annual log-returns is less than or equal to what is shown 
in Fig. 13, then (10) is satisfied, which, in turn, implies (7).

Like before, assume the S&P 500 continues to have an average annual log-return 
of at least .0658. Figure 11 shows that for nominal annual interest rates as high as 4%, 
the standard deviation of the S&P 500’s annual log-returns would have to exceed.2 for 
.7 ≤ L < 1 to outperform L = 1 . This level of volatily seems unlikely to persist in the 
long-run, so maintaining an annually rebalanced L ∶ (1 − L) portfolio in the S&P 500 
and a savings account, with .7 ≤ L < 1 , is not advised for long periods of time, unless, 
perhaps, if the savings account has a higher rate. But even for annual rates exceeding 
4%, the standard deviation of annual S&P 500 log-returns must be quite high for a port-
folio that dials down exposure to the S&P 500 by putting (1 − L)% in a savings account 
to be viable in the long-run.

5  Conclusions and further research

The quadratic bounds considered here are useful because they provide simple thresh-
olds indicating when a leveraged index or ETF will underperform or outperform its 
underlying benchmark index. Using similar methods, cubic (or even quartic) bounds 
can be constructed. A cubic bound would be tighter than a quadratic bound because of 
the additional degree of freedom. However, a cubic bound uses the average Y3

i
 , which 

could be difficult to interpret.
The methods used here cover most leverage multiples of practical interest. However, 

no quadratic bounds are given for L ∈ [(1 + exp y1)
−1, (1 + exp y0)

−1] , where y0 and 
y1 are the lower and upper bounds on the Yi . Issues arise because now the derivative 
of log(1 + L(exp x − 1)) has a change in concavity between y0 and y1 . This change in 
concavity makes it so the methods used to prove Theorems 1, 2, 3 and 4 cannot be 
directly applied to L ∈ [(1 + exp y1)

−1, (1 + exp y0)
−1] . Perhaps some modification of 

the methods used here can be used to deal with L ∈ [(1 + exp y1)
−1, (1 + exp y0)

−1].

Appendix A

Proof of Theorem 1

First the lower bound is shown to hold. Define p, f ∶ [y0,∞) → ℝ such that 
p(x) = a0x

2 + b0x + c0 and f (x) = log(1 + L(exp x − 1)) . Let y > y0 . The values 
for a0, b0 and c0 given in the statement of the theorem are found by solving the 
system f (y0) = p(y0) , f (y) = p(y) and df

dx
(y) =

dp

dx
(y) . From here, the goal is to show 

p(x) ≤ f (x) for all x ∈ [y0,∞) . Then the result will follow because
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By Rolle’s Theorem, there is a x∗ ∈ (y0, y) such that df

dx
(x∗) −

dp

dx
(x∗) = 0 . Next 

observe that

It follows that d

dx
[f (x) − p(x)] is strictly convex, since L > 1 and 

x ≥ y0 > log(1 − L−1) . By strict convexity, the only zeros of d

dx
[f (x) − p(x)] are x∗ 

and y. Moreover, x∗ is a local max, and y a local min, of f − p . Combining this with 
the fact that y0 and y are zeros of f − p reveals that f − p ≥ 0.

For the upper bound, redefine p, f ∶ (log(1 − L−1), y1] → ℝ such that 
p(x) = a1x

2 + b1x + c1 and f (x) = log(1 + L(exp x − 1)) . Let y ∈ (log(1 − L−1), y1) . 
The values for a1, b1 and c1 given in the statement of the theorem are found by solv-
ing the system f (y1) = p(y1) , f (y) = p(y) and df

dx
(y) =

dp

dx
(y) . From here, the goal is to 

show p(x) ≥ f (x) for all x ∈ (log(1 − L−1), y1] . The rest of the proof follows similar 
logic as was used to verify the lower bound.

  ◻

Proof of Theorems 2 and 3

The proof is very similar to that of Theorem 1. Just observe that now the function 
f (x) = log(1 + L(exp x − 1)) is well-defined on ℝ , and it has df

dx
 strictly convex on 

(−∞, log(L−1 − 1)) and strictly concave on (log(L−1 − 1),∞).
  ◻

Proof of Theorem 4

The proof is very similar to that of Theorem 1. Just observe that now the function 
f (x) = log(1 + L(exp x − 1)) is well-defined on (−∞, log(1 − L−1)) , and it has df

dx
 

strictly concave.
  ◻
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n(am2 + bm1 + c) =

n∑

i=1

p(Yi), log
CL
n

C0

=

n∑

i=1

f (Yi).

d3

dx3
[f (x) − p(x)] =

(1 − L)L(1 − L(exp x + 1)) exp x

(1 + L(exp x − 1))3
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