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Abstract

We introduce a new joint model of expected return and volatility forecasting, namely
the two-component Beta---QVAR-M-lev (quasi-vector autoregression in-mean with
leverage). The maximum likelihood estimator for the two-component Beta---QVAR-
M-lev is an extension of theoretical results of the one-component Beta---QVAR-M.
We compare the volatility forecasting performance of the two-component Beta-z-
QVAR-M-lev and two-component GARCH-M (generalized autoregressive condi-
tional heteroscedasticity), also considering their one-component frameworks. The
results for G20 stock market indices indicate that the forecasting performance of the
two-component Beta---QVAR-M-lev is superior compared with the two-component
GARCH-M and their one-component versions.
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1 Introduction

The ability of choosing a model that effectively forecasts the conditional variance
of financial time series constitutes a challenging problem. Many studies reinforce
the stylised fact that the conditional volatility of stock market returns are time vary-
ing (e.g. Bekaert and Harvey 1997; Pagan and Schwert 1990; Andersen et al. 2001;
Bollerslev and Zhou 2002; Engle 2002; Brownlees and Engle 2012). The conse-
quences of such a temporal volatility directly impact financial analyses and invest-
ment decisions, such as asset pricing, risk management, asset allocation and port-
folio optimisation (e.g. Hodrick 1981; Bollerslev et al. 1988; De Santis and Gerard
1997; Bali and Engle 2010; Creal et al. 2011). Therefore, it is highly desirable to
find a modelling framework with the capability to properly capture the volatility
clustering phenomenon.

While modelling non-linear and asymmetric dependent time series, the aptitude
of models capable of apprehending volatility clustering effects is notably dependent
upon its structure versatility. Motivated by difficulties of widely adopted generalized
autoregressive conditional heteroscedasticity (GARCH)-type models (Engle 1982;
Bollerslev 1986)—which cannot properly capture conditional distribution properties
as well as lack robustness, a class of score-driven volatility models was introduced
in Harvey and Chakravarty (2008) and Creal et al. (2008), namely dynamic condi-
tional score (DCS)—also known as generalized autoregressive score (GAS).

A particular attraction of score-driven models relies on the fact that they produce
locally and asymptotically optimal filters in relation to the Kullback—Leibler diver-
gence (Blasques et al. 2015). Moreover, this model class is also capable of identify-
ing distribution skewness with the presence of outliers and, due to its conditional
score dynamics, the maximum likelihood (ML) may be straightforwardly estimated.
Due to its peculiar characteristics—more specifically by scaling the score func-
tion in an appropriate manner, score-driven models are able to capture properties
of established observation-driven models, such as the GARCH model (Engle 1982;
Bollerslev 1986), dynamic conditional correlation (DCC) model of Engle (2002),
autoregressive conditional multinomial (ACM) model of Russell and Engle (2005)
and dynamic copula models of Patton (2006), among others (e.g. Creal et al. 2013;
Blasques et al. 2014).

Another advantage of the score-driven framework is that many of such models
are generalizations of classical observation-driven models (Creal et al. 2013; Har-
vey 2013). However, some of the classical dynamic volatility models are not spe-
cial cases of corresponding score-driven models. For example, the -~-GARCH model
(Bollerslev 1987), which we explore in the empirical application of the present
paper, is not a score-driven model. An additional advantage of score-driven com-
pared with classical time series models such as autoregressive moving average
(ARMA), GARCH and vector ARMA (VARMA) models is that score-driven mod-
els are robust to outliers and missing data (Harvey 2013).

The practical usefulness of score-driven models has been demonstrated through
works on different topics and purposes. Empirical problems for which the score-
driven model framework has been applied include systemic risk forecasting (Oh and
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Patton 2013; Eckernkemper 2018; Bernardi and Catania 2019), credit risk analy-
sis (Creal et al. 2014), dependence modelling (Harvey and Thiele 2016; Janus et al.
2014), spatial econometrics (Blasques et al. 2014; Catania and Billé 2017), credit
default swap spread (Lange et al. 2017; Oh and Patton 2018) and high-frequency
data (Opschoor et al. 2018; Gorgi et al. 2019), among others (Ardia et al. 2019; Pat-
ton et al. 2019; Lazar and Xue 2020).

Particularly relevant to the present paper is the work of Harvey and Lange (2018),
in which the one- and two-component Beta--EGARCH-M (i.e. Beta-t-exponential
GARCH-in-mean) models are introduced. Those models adopt the ideas of the two-
component GARCH model (Engle and Lee 1999) and GARCH-M model (Engle
et al. 1987) into score-driven volatility models. Two-component volatility models
(e.g. Engle and Lee 1999; Alizadeh et al. 2002) consider that volatility is driven by
a long- and a short-run component, where the latter captures temporary variation in
volatility and includes leverage effects (Black 1976). As presented in Alizadeh et al.
(2002), two-component volatility models are capable of capturing long memory
behaviour. In GARCH-M models (e.g. Engle et al. 1987) an equity risk premium is
included in the expected return, which is driven by conditional volatility. There is a
large body of literature on GARCH-M models (e.g. Adrian and Rosenberg 2008),
where statistical and volatility forecasting performances of such models are studied.

The work of Harvey and Lange (2018) shows that the one- and two-component
Beta--EGARCH-M models improve the volatility forecasting performance of the
corresponding Beta---EGARCH models. Another recent work which is also relevant
to the present paper is Blazsek et al. (2022), in which the one-component Beta-
t-QVAR-M model is introduced, extending the one-component Beta---EGARCH-
M model of Harvey and Lange (2018). Volatility in the Beta-z-QVAR-M is driven
by a bivariate score-driven filter, which is updated by score functions with respect
to location (i.e. expected return) and log-scale (i.e. non-linear transformation of
volatility). Leverage effects are included to the score-driven volatility filter (i.e.
Beta---QVAR-M-lev) in the most general specification of the one-component Beta-
t-QVAR-M (Blazsek et al. 2022), measuring asymmetric effects of unexpected
returns on volatility.

The present work contains two contributions to the literature. Firstly, we intro-
duce the two-component Beta---QVAR-M-lev model, showing that the asymptotic
properties of this model are directly obtained from the theoretical results of Blazsek
et al. (2022). This is performed by assuming covariance stationarity for both volatil-
ity components. The one-component Beta--QVAR-M and the one- and two-com-
ponent Beta---EGARCH-M models are special cases of the two-component Beta-
t-QVAR-M model. Secondly, we extend the stock market data explored in Blazsek
et al. (2022) to a larger sample of G20 stock indices. This indicates that the volatil-
ity forecasting superiority of the one-component Beta---QVAR-M-lev continues to
hold over a range of stock market indices in addition to the USA one. Moreover, the
two-component Beta---QVAR-M-lev improves the forecasting performance of one-
component Beta---QVAR-M-lev for all indices included in the sample.

The full dataset includes 20 stock indices of the G20 counties, covering the
period from January 2000 to April 2022. For the volatility forecasting analysis, we
explore 5-min realized volatility data as a benchmark of true volatility (Liu et al.
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2015). For the comparison of volatility forecasting accuracy, we adopt the Giaco-
mini—White test of forecasting accuracy (Giacomini and White 2006) for 2500 roll-
ing windows. The realized volatility data are available for 13 stock market indices.
Hence, we focus on volatility forecasting for the following countries: Brazil, Can-
ada, China, France, Germany, India, Italy, Japan, Mexico, South Korea, Spain, the
UK and the USA.

It is worth noting that the full sample includes high-volatility periods such as
the Dot-com bubble of 2002, the Global Financial Crisis of 2007-08, the Covid-19
pandemic and the beginning of the Russian invasion of Ukraine. Thus, our 22 years
sample span includes several low- and high-volatility periods. For all countries, we
study volatility forecasting accuracy for the last 2500 trading days of the full sample,
from 2012 to 2022.

Motivated by the work in Blazsek et al. (2022), in the present paper we focus
on the M-lev-type volatility models. In particular, we use one- and two-component
Gaussian-GARCH-M-lev, -GARCH-M-lev and Beta---QVAR-M-lev models for
all stock indices. The volatility forecasting results for the one-component models
expand and confirm the findings in Blazsek et al. (2022) for a larger sample of G20
stock market indices. This indicates that the forecasting performance of the one-
component Beta-r-QVAR-M-lev is superior to the forecasting performances of the
one-component Gaussian-GARCH-M-lev and -~-GARCH-M-lev models.

In addition, the Giacomini—White test results indicate that the volatility forecast-
ing performance of the two-component Beta-r-QVAR-M-lev model is superior com-
pared with alternative volatility models considered in the present paper. Therefore,
the volatility forecasting performance of the one-component Beta-r-QVAR-M-lev
model (Blazsek et al. 2022) is improved. Moreover, we find that the two- instead
of the one-component improves volatility forecasting for the Beta---QVAR-M-lev.
One-component models have shown superior forecasting performances for Gauss-
ian-GARCH-M-lev and #-GARCH-M-lev. This particular finding suggests that
score-driven models may provide superior empirical performances compared with
classical GARCH-type volatility models.

The remainder of this paper is organized as follows. Section 2 contains a review
of the literature. Section 3 details the proposed model. Section 4 describes the data
and empirical results. Section 5 concludes.

2 Literature review

In the existing literature, time series models based on parameters that dynamically
vary through time are traditionally grouped into two model categories, consisting of
the observation-driven and parameter-driven models (Box and Cox 1982; Creal et al.
2013). Observation-driven models have been developed to exploit large changes—
also known as shifts or jumps, and distributional asymmetries that are frequently
present in financial time series. Such a category of models includes the ARCH
model, originally introduced in Engle (1982), and its subsequent relevant exten-
sion, the generalized ARCH (i.e. GARCH) model proposed in Bollerslev (1986).
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Both models have been widely applied to empirical studies (e.g. Engle and Sheppard
2001; Bauwens et al. 2006).

Score-driven are observation-driven models (Creal et al. 2008, 2013), consisting
of a modification of the GARCH model, proposed to capture large changes through
time, while mitigating negative impacts of outliers. As in the score-driven frame-
work, it is frequently assumed that the innovations follow a non-normal distribution,
and its second central moment is modelled through a GARCH-type equation based
on the conditional score of the distribution regarding the variance.

The first score-driven model introduced in Harvey and Chakravarty (2008)
and Creal et al. (2008) is the Beta---EGARCH model, which is a member of the
EGARCH family, originally proposed in Nelson (1991). A positive outcome of
the adoption of the new model is that the deleterious effect of potential outliers on
the time-varying volatility equation is relatively smaller. Harvey (2013) notes that
GARCH models may overreact to extreme observations, while the score-driven
Beta--EGARCH may underreact to them, inspiring the proposition of two-compo-
nent score-driven volatility models.

Through score-driven models it is possible to derive volatility forecasting expres-
sions, all supposing that their respective conditional variances are properly calcu-
lated, simulating straightforwardly the conditional distribution. Moreover, general
analytic expressions of the serial correlation function of squared observations may
also be appropriately calculated (Harvey 2013; Sucarrat 2013). Due to its attrac-
tive properties, score-driven models have been further developed into many model
extensions. Such models include the dynamic models for location, volatility and
multivariate dependence for fat-tailed densities introduced in Creal et al. (2011), the
asymmetric exponential score-driven model introduced in Creal et al. (2013) and the
observation-driven mixed measurement dynamic factor models proposed in Creal
et al. (2014), among other extensions (e.g. Harvey and Luati 2014; Babatunde et al.
2019).

Caivano and Harvey (2014) propose another extension of the EGARCH model
class, which uses the exponential generalized beta distribution of the second kind
(i.e. EGB2). Such a model is complementary to the model under the Student’s ¢-dis-
tribution explored in Creal et al. (2013) and Harvey (2013). The proposed frame-
work is then modelled to macroeconomic data, which empirical results indicate that
the exponential generalized beta distribution of the second kind may provide a supe-
rior fit when applied to certain macroeconomic time series (e.g. exchange rate).

More recently, further score-driven EGARCH models using the generalized Stu-
dent’s r-distribution and two-component EGARCH models for the z-distribution
were introduced in Harvey and Lange (2017, 2018). These models are capable of
encompassing asymmetry and skewness, and expressions regarding the respec-
tive information matrix are derived by the authors. The model is empirically tested
through analyses exploring stock market and commodity return series, whose results
potentially provide a flexible and robust volatility modelling framework. Regarding
the use of alternative probability distributions for score-driven EGARCH models,
we refer to the works in Blazsek et al. (2018), Blazsek and Licht (2022) and Blazsek
and Haddad (2022).
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3 Model

In this section, we present a general score-driven modelling framework and the pro-
posed two-component score-driven model for expected return and volatility, namely
the two-component Beta---QVAR-M-lev. Subsequently, we present technical details
about the updating terms (i.e. score functions), and the statistical inference of the Beta-
-QVAR-M-lev. Lastly, we present a classical alternative, the two-component GARCH-
M-lev model.

3.1 General framework

The score-driven framework consists of observation-driven models (Cox 1981) that are
updated by the partial derivatives of the log conditional density of the dependent vari-
ables with respect to dynamic parameters. To illustrate the formulation of score-driven
models, we present a score-driven model with a univariate score-driven filter (Creal
et al. 2008). We assume that the random dependent variable y, is generated according
to the following density function:

Yo ~ fQulfs Fi1,©) )]

where f, is the score-driven filter, F,_, is a o-algebra representing the information set
of period ¢, and @ is a vector of time-invariant parameters. The filter f; is formulated
as follows:

p q
fi=o+ Z a;s,_; + Z bjst_j 2)

i=1 =1
where w, a; fori=1,...,p, and bj for j=1,...,q, are time-invariant scalar param-

eters. Moreover, s, is the scaled score function, defined as follows:

_ olnf(y,lf, Fi_y1,0)
> Vr = 4
of;

where V, is the conditional score with respect to f;, and S, is the scaling parameter
of score. For the scaling parameter of score S,, a popular choice is the conditional
inverse information matrix, i.e. S, = Il_l(}"t_l) where Z,(F, ;) = E(V,V/|F,_))
(Creal et al. 2008).

Regarding volatility modelling, the following Beta---GARCH(1,1) model is pre-
sented as an example:

5, =S,V S, =St.fu Fiin®  (3)

vo=v,=f"€, € ~i(v)iid Q)

fi=o+as,_;+bf_, ©)

In this formulation we assume that the expected return is zero, i.e. observed y, and
unexpected return v, are identical. In the Beta-+~-GARCH, it is assumed that the inde-
pendent and identically distributed (i.i.d.) standardized error term ¢, follows the
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Student’s ¢-distribution. It may be shown that the Beta--GARCH becomes a Gauss-
ian-GARCH model (Bollerslev 1986) if the degrees of freedom parameter goes to
infinity, i.e. the Student’s #-distributed error term becomes the standard normal dis-
tribution, and the scaled score function becomes a quadratic transformation of unex-

pected return, i.e. s, Lt g(vtz) ifv - co.
3.2 Two-cwomponent Beta-t-QVAR-M-lev

The log-return y, = In(p,/p,_,) model, where pre-sample data define initial price p,,,
is calculated as follows:

Ve = M, +v, = u, +exp(4,)e, 6)

fort =1,...,T, where y, is the expected return, v, is the unexpected return, and
exp(4,) = exp(w + /lf) is a score-driven scale parameter with time-invariant param-
eter w and filter }J, for which E(4,) = w. The error term €, ~ t(v), with degrees of
freedom 2 < v < o0, is i.i.d. with respect to the Student’s ¢-distribution. The v > 2
ensures that the conditional volatility of y, exists.

For the specification of expected return p,, we extend the expected return
specification in Harvey and Lange (2018) — i.e. y, = ¢ + f, exp(4,), for the Beta-
t+-EGARCH-M model, and we use the following expected return specification for the
two-component Beta-r-QVAR-M-lev:

He=c+ Pl + Prexp(A,) = c+ Byl + P exp(w+ A)) )

In addition, for the specification of ;4: and /1; we extend the one-component Beta-
t-QVAR-M-lev model in Blazsek et al. (2022) into the following two-component

score-driven filter:
M'I‘ llT MT
t — 1, 2.t
=TT (®)
[Al ] j'l,z /12,t

with a short- and a long-run component, respectively. For those com-
ponents of the bivariate score-driven filter, we have the following:
E(/t1 )= E(u2 )= E(/l1 )= E(/l2 ) = 0. Hence, E(u)) = E(A]) =

The short-run component is expressed as follows:

i i
Hyy =[¢1,11 ¢1,12] My
/1;, b1 P12 /1;’,_1
+ [ll/1,11 W1,12] [su,t—l] +ll/*[ 0
Viot Wiz || Sae- sgn(—¢,_ (s, + 1)
where the updating terms s, , and s, , are defined in the following section, y* € R
measures leverage effects, and sgn(-) is the signum function. It is worth noting that

sgn(x) = —1 for x < 0; sgn(x) = 0 for x = 0; sgn(x) = 1 for x > 0, and the leverage
effects formulation follows Harvey (2013). The use of leverage effects in volatility

©)
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equations is motivated by several works. As an example, we refer to Hansen and
Lunde (2005), in which it is shown that among 330 GARCH-type models the most
accurate volatility models include leverage effects.

We include a leverage effects term in the less persistent filter, following Engle
and Lee (1999) as well as Harvey and Lange (2018). In matrix form, Eq. (9)
is formulated as follows: 0,, = ®,0,, | +g(s,_;) where 0, = (yL, AL)’, and
g(s,) = gl(s, s 1)1 represents the second and third terms on the right side of Eq.
(9). Moreover, we use 8, = E(6,) = 0,,, for initialization, assuming that the maxi-
mum modulus of the eigenvalues of @ is less than one.

The long-run component is expressed as follows:

i +
Hy | _ | P21t o | | Mo Vo1 Yo || Sui-

l ’1; ] [¢2,21 ¢2,22] l i;t_l ] * [Wz,zl Il/2,22] [s/l,z—l ] (10)

In matrix form, Eq. (10) may be written as follows: 8, , = ®,0,, | +¥,s, |, where

6,, = (,u;,t, /I;t)’, and s, = (s,,,5,,). It is also assumed that the maximum modulus

of the eigenvalues of @, is less than one. The filter §, is initialized by its determin-

istic unconditional mean 8, = E(6,) = 0,,;. We assume Beta---QVAR(1) specifica-

tions for both the short- and long-run components, which could be extended to the
Beta---QVARMA(p,q). ‘

We define the information set for period ¢ as follows: F;_; = (4], A}, y1,....y,_y).
The conditional volatility for period ¢ is finite, being formulated as follows:
SD,(,|F,_)) = o, = exp(4,)[v/(v — 2)]'/2. Furthermore, the log conditional density
of y,|F,_, for the Student’s ¢-distribution is formulated as follows:

Inf(y,|F;_1,0)

Y
=lnF<v+l>—lnF(X>—lln(ﬂv)—/1l—V+lln 4 Qi)
2 2) 73 2 Vexp(2A,)

1D
where O is a vector of time-invariant parameters.

For the Beta---QVAR(1)-M-lev model, the most recent information on return
influences the expected return in two manners. Firstly, through ;4; , which is updated
by a linear transformation of s,. Secondly, through exp(w + /1:), which is updated
through a non-linear transformation of s,. The functional forms of those updates
are different. In practice f,, which multiplies u: in the expected return, may or may
not be significantly different from zero. If it is significant, then additional dynam-
ics would be captured for the expected return by /4,‘ If it is not significant, then the
expected return formulation in Harvey and Lange (2018) would be obtained.

By adopting 6,, =0, we get the one-component Beta---QVAR-M-lev in
Blazsek et al. (2022). If we also restrict B = 3 =1 =wi 1 = Vi
=11 = Pan1 = Wa 1 = Wap =0, then we would get the two-component Beta-
t+-EGARCH-M-lev proposed in Harvey and Lange (2018). The further restrictions
0,, =P, =0and 0,, = f, = w* =0 provide the one-component Beta---EGARCH-
lev and Beta---EGARCH, respectively (Harvey and Chakravarty 2008; Harvey 2013).
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3.3 Score functions of the two-component Beta-t-QVAR-M-lev

The scaled score function s, , is the scaled conditional score of the log-likelihood
(LL) with respect to y,, as follows:

ISOIFL O val
oy, vexp(24,) ot

(12)
where the scaling parameter of score S, is defined by the inverse information matrix,

and

- vexp(2A)(y, — u)  vexp(4)e,
B vexp(24,) + (v, — p,)? v+ e

13)

The score function s,, is the conditional score of the LL with respect to 4,, as
follows:

_OMfOIFO) Dol GADe
At 04, vexp(24,) + (v, — u,)? vte

where the scaling parameter of score S, equals one (Harvey 2013). Both s, , and s, ,
are martingale difference sequences, asymptotically at the true values of parame-
ters ©, with zero mean and finite variance. Moreover, s, = (s1,,5,,)" = (5,,,,5,,)
is white noise, asymptotically at ®,. These results extend the theoretical results into
the one-component Beta-r-QVAR-M-lev model in Blazsek et al. (2022).

3.4 Statistical inference of the two-component Beta-t-QVAR-M-lev

The parameters of Beta-+-QVAR are estimated by using the ML method, as follows:
T

© = argmax LL(y,, ..., y7|®) = argmax Y Inf(y,|%,_,,0) (15)
o) 0co ~

where © is the vector of time-invariant parameters, O is the parameter space, the o
-algebra is F,_; = (y;f, /11(, ¥1»---»¥,—1), and the log conditional density is defined in
Eq. (11).

We refer to the ML theory for the one-component Beta---QVAR-M-lev model
(Blazsek et al. 2022). The results of that theory hold for the two-component Beta-z-
QVAR-M-lev model, under the assumption of covariance stationarity of both short-
and long-run components of the score-driven filter — i.e. the maximum moduli of the
eigenvalues of @, and @, are less than 1.

Under such an assumption, the covariance stationarity in Blazsek et al. (2022,
proposition 1b) may be straightforwardly extended to the short- and long-run filters
of two-component Beta---QVAR-M-lev. Therefore, asymptotically at the true values
of parameters ®,, both score-driven filters are covariant stationary. Moreover, the
exponentially almost sure (e.a.s.) convergence of the score-driven filter to a unique
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stationary and ergodic solution in Blazsek et al. (2022, proposition 2b) may also be
extended to the short- and long-run filters of the two-component Beta-+-QVAR-M-lev.

Thus, the short- and long-run components of the score-driven filter converge e.a.s. to
unique strictly stationary and ergodic vector sequences for all ® € ©. Lastly, under the
same assumption on @, and @, in Blazsek et al. (2022, propositions 3-7), the consist-
ency and asymptotic normality of the ML estimates of ® hold for the two-component
Beta---QVAR-M-lev model.

3.5 The classical alternative: two-component GARCH-M-lev models

It is shown in Blazsek et al. (2022) that the forecasting performance of the one-com-
ponent Beta---QVAR-M-lev model is superior to that of the one-component Beta-z-
EGARCH-M-lev, Beta-~EGARCH-M, Beta---EGARCH-lev, and Beta---EGARCH
models. Drawing on these results, in the present work special cases of the Beta-t-
QVAR-M-lev are then not considered. Instead, the volatility forecasting performances
of the one- and two-component Beta--QVAR-M-lev model as well as the one- and
two-component GARCH-M-lev models are compared.
The two-component GARCH-M-lev model is specified as follows:

Vi= M+ vV, =, + 23/26, (16)
where yu, and v, are the expected and unexpected returns, respectively, 4, is a fil-
ter which influences volatility, and for the standardized error term we consider two
alternatives: €, ~ N(0,1) i.i.d. and €, ~ #(v) with degrees of freedom 2 < v < oo.
These alternatives define the two-component Gaussian-GARCH-M-lev and two-
component -GARCH-M-lev models, respectively, for which the conditional volatili-
ties are given by 6, = 4! " and 6, = [A,v/(v — 2)]!/2, respectively.

The expected return is specified according to the GARCH-M model, as follows:

//lt = c+ﬂ2ﬂ'z (17)
The volatility filter is the sum of a short- and long-run component, as detailed below:
A=At Ay, (13)

respectively, where the short-run component with leverage effects is expressed as
follows:

Ay=w+dA, +yve  +y™ 1, <0) (19)

in which 1(-) is the indicator function, and the long-run component consists of the
following:

Ay = oo,y + 11/2",2_1 (20)

The A,, =0 restriction provides the one-component GARCH-M-lev model. All
GARCH-M-lev model specifications are estimated through the ML method.
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4 Data and results

In this section, we detail the stock market return data, report descriptive statistics
and present out-of-sample volatility forecasting results for the G20 indices.

4.1 Data

We explore daily stock market returns of G20 countries for the period from 2000
to 2022, collected from Bloomberg. The stock index data p, are transformed
into daily log-returns y,, which are computed by using the opening and closing
prices of each trading day. We use the same sample period for all countries. The
dataset includes 20 stock indices, as follows: MERVAL Index (Argentina), S&P/
ASX 300 (Australia), Ibovespa (Brazil), S&P/TSX Composite Index (Canada),
Shanghai Stock Exchange Composite Index (China), CAC 40 (France), DAX
(Germany), S&P BSE SENSEX Index (India), Jakarta Stock Exchange Compos-
ite Index (Indonesia), FTSE MIB Index (Italy), Nikkei 225 (Japan), S&P/BMV
IPC (Mexico), MOEX Russia Index (Russia), Tadawul All Share Index (Saudi
Arabia), FTSE/JSE Africa All Share Index (South Africa), Korea Stock Exchange
KOSPI Index (South Korea), IBEX 35 Index (Spain), Borsa Istanbul 100 Index
(Turkey), FTSE 100 Index (UK) and S&P 500 Index (USA).

In addition, motivated by the work in Liu et al. (2015), we explore the 5-min
realized volatility as a proxy of true volatility. This dataset was collected from the
Oxford-Man Institute of Quantitative Finance (OMI). We present the data availa-
bility of stock index and realized volatility in Table 1 (Appendix A), which shows
that realized volatility is not available for seven countries. Therefore, we per-
form volatility forecasting analysis considering the following 13 countries: Bra-
zil, Canada, China, France, Germany, India, Italy, Japan, Mexico, South Korea,
Spain, the UK and the USA.

The descriptive statistics of y, regarding these 13 countries are reported in Table 2
(Appendix A). Most of the variables have their mean around zero, negative skew-
ness and excess kurtosis. The skewness and excess kurtosis indicate that none of the
series should follow a Gaussian distribution. The results of the correlation between
the absolute returns in time ¢ and its respective previous return in time ¢ — 1 indicate
that they are negatively correlated.

4.2 Volatility forecasting results

One-step-ahead volatility forecasts o, are computed for the forecasting window,
which includes the last 2500 trading days of the full sample period. The start and
end dates of the forecasting window are reported in Table 1. As a proxy of true
volatility o7, the square root of the 5-min realized variance is adopted. Forecasts
are compared through the Giacomini—White test, considering the following loss
functions:
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MSE, ;, = (7 - 0,,)? MSE, ;, = [(¢})* - o}, ]* X
QLIKE,, = {“’G—j ~1In [("Z’z] - 1} R’LOG;, = {m [(‘;—)2] } @1
MAE,, = lo" — ;] MAE,,, = |(c*)? — ;,-Z,J

for model i and for each period of the forecasting window t =1, ..., Tf (Hansen

and Lunde 2005; Patton 2011). The null hypothesis of the Giacomini—White test is
equal to the out-of-sample forecasting accuracy of two models, where parameters
are estimated using a rolling-window estimation and forecasting approach. For each
rolling window, we check the conditions of consistency and asymptotic normality
of the ML estimator. Due to the large number of rolling windows and stock indi-
ces included in our sample, we do not report results on those empirical estimates,
although they are available upon request to the authors.

In Table 3 (Appendix A), we present the mean loss functions for the forecast-
ing window for each stock market index, considering the one- and two-compo-
nent Beta---QVAR-M-lev models, one- and two-component Gaussian-GARCH-
M-lev, and ~-GARCH-M-lev models. We also report the statistical significance
of the Giacomini—White test statistic, for which the benchmark model is the two-
component Beta--QVAR-M-lev model — highlighted in bold in Table 3.

For all countries, we obtain the following three results. Firstly, the forecast-
ing results of the one-component models confirm the findings of Blazsek et al.
(2022) for all stock market indices. The loss function estimates indicate that the
forecasting performance of the one-component Beta--QVAR-M-lev is superior to
the forecasting performances of the one-component Gaussian-GARCH-M-lev and
t-GARCH-M-lev models. We do not report the corresponding Giacomini—White
test results in Table 3, although they are available upon request to the authors.

Secondly, the Giacomini—White test results of Table 3 show that the volatil-
ity forecasting performance of the two-component Beta-+-QVAR-M-lev model is
superior compared with all alternative volatility models considered in the present
work. This suggests that, for all stock indices the volatility forecasting perfor-
mance of the one-component Beta---QVAR-M-lev model is improved. Thirdly,
it is shown in Table 3 that the adoption of two volatility components instead of
one improves volatility forecasting of the Beta---QVAR-M-lev model for all stock
market indices, although the opposite is true regarding the Gaussian-GARCH-M-
lev and ~-GARCH-M-lev models.

For the GARCH-M-lev models, we find that the one-component models have
superior forecasting performance. This finding is specific to the G20 stock market
indices data explored in the present work. This indicates that the two-component
score-driven volatility models may provide superior performance in comparison
with the two-component GARCH-type volatility models — possibly due to the
relatively easier handling of parameter constraints of the two-component Beta-
t-QVAR-M-lev compared with the two-component GARCH model with non-
negativity constraints. For further details, we refer to Engle and Lee (1999) and
Harvey (2013).
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5 Conclusion

In the present paper, we propose the new two-component Beta-r-QVAR-M-lev
model. The one-component Beta---QVAR-M, and the one- and two-component
Beta--EGARCH-M models are special cases of the two-component Beta---QVAR-
M-lev model. We extend the US stock market dataset of Blazsek et al. (2022) to
13 stock indices of the G20 countries. This shows that the volatility forecasting
superiority of the one-component Beta-+-QVAR-M still holds for other stock mar-
ket indices. The results also indicate that the two-component Beta--QVAR-M-lev
improves the forecasting performance of one-component Beta--QVAR-M for all
stock indices.

The full dataset includes 20 stock market indices of G20 counties, from January
2000 to April 2022. Regarding the volatility forecasting accuracy, we use the 5-min
realized volatility as a benchmark of true volatility. For the comparison of volatility
forecasting accuracy, we adopt the Giacomini—White test of forecasting accuracy for
2500 rolling windows. The realized volatility data are available for 13 stock market
indices of the G20. Our full sample period includes several low- and high-volatility
regimes. For all countries, we study volatility forecasting accuracy for the last 2500
trading days of the full sample, from 2012 to 2022.

In terms of classical models of conditional volatility, we consider the one- and
two-component Gaussian-GARCH-M-lev and +-GARCH-M-lev models. We com-
pare the forecasting performances of those models with the one- and two component
Beta-r-QVAR-M-lev models for all stock market indices. The out-of-sample volatil-
ity forecasts suggest that the forecasting results for the one-component models con-
firm the findings in Blazsek et al. (2022) for all 13 stock market indices explored in
this paper. The forecasting performance of the one-component Beta--QVAR-M-lev
is superior to that of the one-component Gaussian-GARCH-M-lev and r~-GARCH-
M-lev models for all countries.

In addition, the Giacomini—White test results reveal that the volatility forecasting
performance of the two-component Beta---QVAR-M-lev model is superior to that of
all competing alternatives. Therefore, the volatility forecasting performance of the
one-component Beta---QVAR-M-lev model from the existing literature is improved.
Moreover, we find that considering two components instead of one improves vola-
tility forecasting for the Beta---QVAR-M-lev model, while the opposite holds for
Gaussian-GARCH-M-lev and --GARCH-M-lev models. This particular finding indi-
cates that volatility forecasting performance of two-component score-driven vola-
tility models may be superior compared with volatility forecasting performance of
two-component GARCH models.

Appendix A: Input data details, descriptive statistics and volatility
forecasting results

See Tables 1, 2 and 3
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