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Abstract
The behavioral approach of decision making has emerged as a diversified solution in
the presence of risk and uncertainty. Using the popular cumulative prospect theory
as an objective function for portfolio selection, this study implements the classical
mean–variance model to compare the portfolio performance of high behavioral stocks
with that of stocks with lower behavioral values. Based on a sample of 37 international
stocks over the period fromOctober 1998 toNovember 2017, empirical results fromD-
vine pair copula GARCH-GEV indicate that the portfolio of high behavioral prospect
stocks outperforms the portfolio of stockswith lowbehavioral scores. This findingmay
suggest that portfolios with high behavioral values coincide with rational efficiency
sets.
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1 Introduction

Portfolio selection and management remain crucial problems for investors and con-
tinue to attract the attention of academics and practitioners. Under the assumption that
investors seek maximum profit and minimum risk in their investment decisions, the
mean–variance model has become the conventional solution to these problems. Since
its creation (Markowitz 1952), this framework has been subject to ongoing theoretical
and empirical developments and/or extensions, resulting in alternative optimization
modeling procedures. One such development relates to the use of an appropriate mea-
sure of risk. For example, Low et al. (2016) emphasize the role of asymmetry in risk
measurement, while the finance literature advocates the mean-CVaR models instead
of mean-VaR models given the superiority of the conditional value at risk (CVaR)
over the traditional value at risk (VaR) known as an incoherent risk measure which
does not satisfy the sub-additivity and convexity axioms (see, e.g., Banihashemi and
Navidi 2017).

Another development involves the nature of the optimal solution. Rather than pro-
viding a solution area in the form of an efficient frontier as in the standard mean-risk
models, alternative optimization approaches allow assessing the relative efficiency
of decision-making units. An illustration is the mean–variance model based on data
envelopment analysis (DEA) suggested by Morey and Morey (1999) in which the
portfolio variance and expected return are used, respectively, as input and output to
DEAmodels. Somebehavioralmodels incorporate irrationality in the decision-making
process, cumulative prospect theory (CPT) being one of the most popular objective
functions used for portfolio selection models (Coelho 2014). Considering the ability
of CPT in assessing decision makers’ behavior in the context of risk and uncertainty
(Coelho 2014) and given the investors’ tradition to strive for minimum risk and max-
imum return, one important question arises: How does a portfolio of high behavioral
stocks compare with one comprised of low behavioral ones?

Although the field of finance and particularly portfolio selection offers an ade-
quate framework for application of behavioral theories, most related studies focus on
estimating and comparing the parameters of the value function and probability weight-
ing function with the outcome from laboratory experiments. These include Quiggin
(1982), De Giorgi and Hens (2006), Gurevich et al. (2009), Kliger and Levy (2009),
Bernard and Ghossoub (2010) and Pirvu and Schulze (2012) among others. Only
a few studies consider modeling decision maker preferences by behavioral theories
within the conventional optimization framework for portfolio selection. For instance,
Coelho et al. (2012) make use of a CPT objective function for optimization to analyze
the behavior of farmers in regard to the Common Agricultural Policy in Portugal. In
the field of finance, Coelho (2014) studies the behavior of CPT parameters within a
discrete optimization framework for portfolio selection. Contrary to Coelho (2014),
whose conclusion is not based on real-world data, and following the traditional opti-
mization strategy, the goal of this paper is to assess the performance of behavioral
portfolio selection of international stocks with decision maker preferences defined by
CPT.

We study a sample of 37 international stocks using a two-step procedure. The
first step consists of selecting the top and bottom stock portfolio based on behavioral
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values as described by CPT. In the second step, a performance analysis is carried out to
compare the high and low behavioral portfolios using the copula approach. Modeling
portfolio performance requires the use of an adequate modeling strategy for statistical
dependence (also known as co-movement) between return or loss components of the
portfolio and, in this regard, copula approaches have advantages over correlation-based
strategies.

The increasing integrationof stockmarkets has contributed to the global dependence
of international financial markets as a result of volatility spillovers as well as contagion
effects. Moreover, in the presence of extreme events such as global financial crises
that result in permanent changes in joint dynamics and network relationships (Brun-
nermeier 2009;Moshirian 2011; Florackis et al. 2014; Bekiros et al. 2015), correlation
tools are unlikely to accurately model the statistical dependence between components
of a portfolio. Unlike correlation, a copula is thought to be universally valid due to its
ability to accommodate both elliptical and non-elliptical distributions. Moreover, its
two modeling levels (marginal distributions in the first level and dependence structure
fitted on the marginal distributions in the second level) makes it possible to fit different
marginal distributions depending on the risk factor, therefore allowing a wide range of
dependence structures to be fitted to the data (Dowd 2005). There are two major cop-
ula approaches: the bivariate and the pair copula. The marginal distribution provided
by the bivariate copula is appropriate only when all the pair variables have the same
dependence structure. The pair copula design is thus not restricted and has greater
flexibility in capturing distributional features of different forms, hence outperforming
pair copula alternatives1 (Low et al. 2013; Bekiros et al. 2015). According to Bekiros
et al. (2015), the pair regular vine copulas rely on the dissections and decompositions
of graphical theory to capture different forms of distributions in a more localized and
specialized way. Since the decomposition is not unique, the R-vine offers different
tree structures, including, but not limited to, canonical vines and drawable vines, each
of which provides a specific way of decomposing the density in order to construct
marginal distributions. However, given the multiplicity of possible decompositions
offered by each vine copula, the inference in the C-vine seems to be more driven by
the pairs’ selection than is the case for the D-vine where one can freely select which
pairs to model (Aas et al. 2009). Following recent copula applications in investment
strategies (Humphrey et al. 2015; Rad et al. 2016; Low 2017), this study implements
both multivariate t-Student copula GARCH-GEV and D-vine pair copula GARCH-
GEV models for the portfolio optimization; the choice of the generalized extreme
value (GEV) distribution being motivated by its ability to accurately model tail risk
associated with extreme events.

The rest of the study is organized as follows. Section 2 describes the methodology,
and Sect. 3 discusses the empirical findings. The paper ends with some concluding
remarks.

1 The pair copula models include the canonical vine (C-vine), the drawable vine (D-vine) and the regular
vine (R-vine).
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2 Methodology

As indicated earlier, the empirical strategy starts with computing the behavioral val-
ues of each stock based on CPT, which are further used to construct top CPT and
bottom CPT portfolios. Then, the study proceeds with a comparative analysis of the
performance of these portfolios using themultivariate t-Student copula GARCH-GEV
model.

2.1 Portfolio selection under CPT

Introduced by Tversky and Kahneman (1992), CPT is presented as the generalization
of the expected utility theory (EUT),which is the pioneer decision theory under risk and
uncertainty. Its major attraction lies not only in its exclusive properties to capture loss
aversion, risk seeking, nonlinear preferences, and source dependence, but also in its
consistency with the stochastic dominance axiom, thus allowing prospects with a large
number of outcomes. In its parametric form, CPT preferences are jointly determined
by the value function, V(x), and the probability weighting function, W(p). The value
function captures four risk profiles of investors: (1) risk seeking for gains, (2) risk
aversion for loss, (3) low probability of risk aversion for gains, and (4) high probability
associated with risk seeking for losses. In addition, the value function exhibits the
following properties: reference dependent, diminishing sensitivity, and loss aversion.
Therefore, V(x) is both concave (above the reference point) and convex (below the
reference point) so as to ensure a decreasing impact of changes in gains and losses
as the distance from the reference point increases (diminishing sensitivity). There is a
lack of consensus on the exact reference point, but the current value of the investment
(stock prices in our case) is deemed an acceptable reference (De Palma et al. 2008).
Furthermore, given that losses are considered to loom longer than gains, V(X) is
steeper for losses than for gains. Formally, V(x) is represented by the classical power
function as follows:

V (xi )

{
xα if x ≥ 0

−λ(−x)β if x < 0
(1)

where λ ≥ 1 represents the loss aversion parameter; α, β(0 < α, β ≤ 1) are parame-
ters of risk aversion in gains and risk preference in losses, respectively. The following
estimates have been provided for these parameters: λ � 2.225 and α � β � 0.88
(Tversky and Kahneman 1992). On the other hand, the decision weight takes the
form of a cumulative probability weighted in a nonlinear way. Thus, it incorporates
nonlinear preferences and the four risk profiles outlined above. Similar to V(x), the
diminishing sensitivity property also applies to the weighting function, with a differ-
ent reference. The response to changes in probability decreases as probability deviates
from the frontiers of impossibility and certainty. The decision weighting functions for
gains and losses are both S-shaped with reference to the identity line (45-degree line).
In addition to diminishing sensitivity, the weighting function also captures the attrac-
tiveness property. So, the higher the curve, the greater the attractiveness of the prospect
for the investor.
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The parametric form proposed by Tversky and Kahneman (1992) is the following:

⎧⎪⎨
⎪⎩

W+(p) � pγ

(pγ +(1−p)γ )
1
γ

for gains

W−(p) � pδ

(
pδ+(1−p)δ

) 1
δ

for losses
(2)

where γ and δ are the respective curvature of W+(p) and W−(p) and the point at
which they cross the 45-degree line. Tversky and Kahneman (1992) estimated these
parameters to be γ � 0.61 and δ � 0.69, implying that W−(p) is higher and less
curved.

Finally, the prospect value, CPT, is obtained from combining V(x) and decision
weights π(p) as follows:

CPT(x, p) � π−(p)V
(
x−)

+ π+(p)V
(
x+

)
(3)

where

{
π−(p) � W−

(∑i
−m pi

)
− W−

(∑i−1
−m pi

)
for 1 − m ≤ i ≤ 0

π+(p) � W+
(∑n

i pi
) − W+

(∑n
i+1 pi

)
for 0 ≤ i ≤ n − 1

(4)

This paper uses Tversky and Kahneman’s (1992) estimates to compute the behav-
ioral prospects of investors with regard to the selected stocks. This allows us to
construct extreme behavioral stock portfolios in the sense of CPT, namely a portfolio
of the top CPT prospect stocks and a portfolio of the bottomCPT prospect stocks. This
choice is rational given that, under CPT, only extreme outcomes are overweighed.

The next section describes the approach used to model the dependence structure,
which is one of the milestones of portfolio risk modeling.

2.2 Copula approaches

There are various families of bivariate copula, but the t family has the advantage
of capturing both lower and upper tails, whereas its alternatives focus on either tail.
Because of the importance of the tail dependence property in financial applications,
the n-dimensional t-Student copula is widely used to model financial returns. In a
portfolio of stock returns, if the tail dependence of different pairs of risk factors in
the portfolio is very divergent, as indicated earlier, the marginal distribution provided
by the multivariate t-Student copula is no longer appropriate. Using the pair copula
can mitigate such issues given its aptitude to handle different marginal distributions
within the same setup.

2.2.1 Multivariate t-Student copula

The so-called copula function introduced by Sklar (1959) consists of simulatingmulti-
variate distributions in order to provide an idiosyncratic description of the dependence
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structure between random variables, irrespective of the marginal distribution of the
random variables.

A d-dimensional copula C is a d-dimensional distribution function on [0, 1]d , with
uniformly distributed marginal U (0, 1) on [0, 1]. Sklar’s (1959) theorem states that
every multivariate distribution F with marginals F1, . . . , Fd for some copula C can
be written as:

F(x1, x2, . . . , xd ) � C(F1(x1), F2(x2), . . . , Fd(xd)), (5)

Conversely, any copula C may be used to join any collection of univariate dis-
tributions to create a multivariate distribution. Given a d-dimensional random vector
X � (X1, X2, . . . , Xd ), the copula of their joint distribution functionmay be extracted
from Eq. (5) by evaluating:

C(u1, u2, . . . , ud ) � F
(
F−1
1 (u1), F

−1
2 (u2), . . . , F

−1
d (ud )

)
, (6)

where F−1
i ’s are the quantile functions of the marginal univariate distribution. Given

that marginal distributions of asset returns are not necessarily normally distributed,
one can use Sklar’s (1959) theorem to link these distributions with a copula. Recent
developments generated several types of copulas from two families: elliptical and
archimedean copulas. In our document,wepresent the functional formsof t-(Student’s)
copula (i.e., t copula) that are derived from multivariate elliptical distributions.

A random vector X � (X1, X2, . . . , Xd ) is t distributed with degrees of freedom v,
mean μ, and correlation matrix �, (i.e., X ∼ td(v, μ,Σ)) when its density function
is defined as follows:

f (x) � Γ
(

v+d
2

)
Γ

(
v
2

)√
ρ(πv)d

(
1 +

(x + μ)
′
Σ−1(x − μ)

v

)− v+d
2

(7)

where Γ is the Gamma function defined by Γ (x) � ∞∫
0
t x−1e−tdt . Demarta and

McNeil (2004) highlight the ability of the t copula to capture the dependency of fat
tails and suggest that the elliptical multivariate t distribution X have the following
representation:

X � μ +

√
v

S
Z , (8)

where S ∼ χ2(v) and Z ∼ N (0,Σ) are independent distributions. Next, marginal
distributions are transformed into their inverses, creating a uniform distributionU over
[0,1]. From the maximum likelihood, a multivariate t distribution fit is generated to
obtain a t copula identified with its parameter ρ (correlation matrix) and v (degrees of
freedom).
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The t copula with d-dimensional distribution can be written as:

Ct
v,ρ �

F−1
1 (u1)∫
−∞

F−1
2 (u2)∫
−∞

. . .
F−1
d (ud )
∫

−∞
f (x)dx (9)

with the d-dimensional copula density function defined by:

(10)

Ct
v,ρ(F1(x1) , F2 (x2) , . . . , Fd (xd ))

� Γ
(

v+d
2

)
Γ

(
v
2

) √
ρ

(
Γ

(
v
2

)
Γ

(
v+1
2

)
)d ∏d

k�1

(
1 + Ω ′Σ−1Ω

v

)− v+d
2

∏d
i�1

(
1 +

Ω2
i
2

)− v+1
2

where Ω �
(
F−1
1 (u1), F

−1
2 (u2), . . . , F

−1
d (ud )

)
is the t-Student univariate vector

inverse distribution function.
The empirical analysis is carried out in a stepwise fashion. First, the returns series

obtained from the log-differenced prices are filtered for both autocorrelation and het-
eroscedasticity. Subject to the validity of the arch effect, this step involves fitting a
mean equation (an autoregressive moving average model (ARMA)) and a variance
equation (a generalized autoregressive conditional heteroskedastic model (GARCH))
from which residuals are derived and standardized to make the filtered returns.2 Sec-
ond, the generalized extreme value (GEV) distribution is used to fit the filtered returns
series in order to account for the fat tails due to extreme events as usually evidenced
by financial time series. The use of GEV restricts the analysis to the negative residu-
als (lower tail), hence emphasizing losses rather than gains. This step is crucial as it
provides the shape parameters conditioned upon which the presence of the fat tail in
the empirical distribution is determined. Besides the shape parameters, the Student’s
distribution parameters (rho and the degree of freedom) obtained from the t copula fit
eventually are used to form the multivariate marginal distribution required to simulate
the new data for the portfolio’s selection and risk evaluation.

2.2.2 D-vine copula

Consider a set of variables (X1, . . . , X p) with joint distribution F and density f . By
definition, a bivariate copula is a distribution function C : [0, 1]2 → I R with uniform
marginal. Let F be a bivariate distribution with marginal distributions F1 and F2. The
following theorem gives the existence and unicity conditions forC(Sklar 1959): There
exists two-dimensional copula C(., .) such that

∀(x1, x2) ∈ I R2 : F(x1, x2) � C(F1(x1), F2(x2)) (11)

If F1 and F2 are continuous, then C is unique.
The joint density is then given by

2 The analysis focuses on the negative residuals as investors generally worry more about losses than gains.
This is referred to as the “long position”.
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f (x1, x2) � c12(F1(x1), F2(x2)). f1(x1). f2(x2) (12)

where c12(·, ·) is a bivariate density given by

c12(u1, u2) � ∂2C12(u1, u2)

∂u1∂u2
(13)

Using Eq. (12), we can express the conditional density of x1 given x2 as

f (x2|x1) � c12(F1(x1), F2(x2)). f2(x2) (14)

To start the construction, we use the recursive decomposition of a multivariate
density into products of conditional densities:

f
(
x1, . . . , xp

) �
p∏

i�2

f (xi |x1, . . . , xi−2) · f (x1) (15)

For distinct indices k, l, k1, . . . , kd with k < l and k1 < · · · < kd , we let

ck,l|k1,...,kd :� ck,l|k1,...,kd
(
F

(
xk |xk1 , . . . , xkd

)
, F

(
xl |xk1 , . . . , xkd

))
(16)

Using Eq. (16), we have

f (xi |x1, . . . , xi−1) �
⎡
⎣i−2∏

j�1

c j,i | j+1,...,i−1

⎤
⎦ · c(i−1),i · fi (xi ) (17)

Using Eq. (17) in (1) with j � k, i � k + l, it follows that

f
(
x1, . . . , xp

) �
⎡
⎣ p∏
l�1

p−l∏
k�1

ck,(k+l)|(k+1),...,(k+l−1)

⎤
⎦ ·

[ p∏
s�1

fs(xs)

]
(18)

The decomposition given byEq. (18) is called a pair copula decomposition. Accord-
ing to Bedford and Cooke, this PCC is called a D-vine distribution.

In the present case,d �4, corresponding to the four stock returns under investigation
for each of the two portfolios considered. The simulation of the marginal distribution
involves three sequential steps, T1, T2, and T3, corresponding to the six pair copula
following the graphical decomposition below. T1 allows constructing three marginal
distributions by combining: (i) assets 1 and 2 to obtain 12; (ii) assets 2 and 3 to obtain
23; and (iii) assets 3 and 4 to obtain 34. In the second step (T2), only two pairs can
now be formed from the previous 12, 23, and 34, leading to 13 given 2 (13/2) and
24 given 3 (24/3), which will be combined in the last step (T3) to obtain 14 given 23
(14/23).
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Fig. 1 Four-dimensional D-vine structure. (Source: Brechmann and Schepsmeier 2013)

With the D-vine tree as represented in Fig. 1, the corresponding vine distribution
has the joint density given by

f (x1, . . . , x4) �
[

4∏
s�1

fs(xs)

]
· c12 · c23 · c34 · c13|2 · c24|3 · c14|23 (19)

This construction of multivariate distributions and copulas is very general and
flexible, since any bivariate copula can be used as a building block in the PCC model.
The pair copulas family mostly used in finance are the Gaussian copula, the t copula,
the Clayton copula, and the Gumbel copula. As indicated in Table 3, the building
blocks for the PCC involve different copula families selected using the R package CD
vine. These families comprise the t copula for all the building blocks.

2.3 Portfolio optimization and evaluation

In the portfolio optimization exercise, the main challenge consists of designing a
proper model that empirically best fits the data while remaining feasible and robust
enough to generate simulation-based inference for risk evaluation. In the optimization
algorithm, investors’ preferences are expressed through a quadratic utility function
that needs to be maximized subject to the minimization of a specified risk measure.
This is referred to as the mean–variance model (MVM).

Formally, the basic optimization problem with the variance risk is:
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min
w

1

n

n∑
i�1

(∑m

j�1
w j

(
ri, j − μ j

))2
(20)

Subject to:

m∑
j�1

w jμ j � μp (21)

m∑
j�1

w j � 1 (22)

w j ≥ 0, j � 1, . . . ,m (23)

where μp is the return of the portfolio.
Equations (21–23) represent the target return of the portfolio, the unity constraint

on the sum of the portfolio weights w j , and the semi-definite positivity constraint
on every weight (short sales are not considered). As a symmetric risk measure, the
variance-based optimization algorithm relies on the normality assumption, which is
not, however, suitable for the tail risk characteristics of asset returns.

Alternatively, the optimization problem can be recast into a loss-function-based
minimax algorithm. Equations (21)–(23) are common to all portfolio optimization
problems; however, the minimax risk measure for portfolio optimization in the linear
programming problem is more conservative due to the constraint that the difference
between the maximum loss of portfolio Mp and the forecast target return of the port-
folio be less than or equal to zero (Bekiros et al. 2015). Hence, unlike the variance
risk measure, the minimax optimization problem is modified as follows:

min
Mp,w

Mp (24)

Subject to:

Mp −
m∑
j�1

w j ri j ≤ 0, ∀i ∈ {1, . . . , n} (25)

and the three common constraints indicated above (Eqs. 21–23).
Considering a coherent risk measure such as CVaR, which is more appropriate to

the loss function of the tail distribution, the optimization problem becomes:

min
w,d,υ

1

na

n∑
i�1

di + υ (26)

Subject to:

m∑
j�1

w j ri, j + υ ≥ −di ,∀i ∈ {1, . . . , n} (27)
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di ≥ 0,∀ j ∈ {1, . . . , n} (28)

in addition to the standard constraints (Eqs. 21–23),where μp is the portfolio target
return as explained above, υ is the CVaR at the a-coverage risk, and di accounts for
the deviation values below the CVaR.

Practically, the optimization is implemented using the R package with fPortfolio
developed by Ghalanos and Pfaf (2015). However, the optimal solution obtained from
the multivariate GARCHmodels are based on both linear and nonlinear programming
algorithms embedded in the parma function by Wuertz et al. (2009). The R package
used in the optimization exercise characterizes the portfolio in terms of expected return
and CVaR, which further determine our performance assessment criteria.

3 Data and portfolio selection

The dataset drawn from Bloomberg is comprised of daily returns (100 times the dif-
ference in logarithms of stock prices) of 37 international stocks from October 1998 to
November 2017 selected based on data availability. These stocks are listed in Table 1
along with their CPT prospects, based onwhich the high prospect and the low prospect
stock portfolios are constructed. Table 1 shows that the four top stocks in terms of
behavioral prospect are Dow Jones Shangai, Brazil Bovespa-TOT Return IND, Rus-
sian Micex Index, and Russian RTS Index. The four bottom stocks by CPT behavioral
prospect are Taiwan SEWeighted Taiex, TEL AVIV SE TA-35, FTSE/JSE top 40, and
S&P/ASX 300. Note that these stocks with extreme behavioral values are virtually
from emerging financial markets. Their summary statistics (Table 2) show that all the
selected stocks have skewness very close to the normal value of 0, which tolerates
a symmetric measure of risk. However, the kurtosis values are very high, suggest-
ing that our sample stocks are leptokurtic, which is consistent with rejection of the
null hypothesis of normal distribution, as displayed by the small probability of the
Jarque–Berra test of normality.

In addition, not only does high kurtosis confirm the existence of heavy tails in the
stock distributions, it also implies that large fluctuations are more likely to occur in the
fat tail, therefore confirming our decision to use the generalized extreme distribution.

Interestingly, the irrational behavioral can be derived from the descriptive statis-
tics. Contrary to the conventional wisdom that a high return stock is associated with
high risk, stock D3 has the highest standard deviation while its returns are among the
lowest. Similarly, stock R3 has the highest return, although the associated standard
deviation is far from being the highest. While both D3 and R3 are characterized by a
high prospect score, in general, low behavioral prospect stocks have lower standard
deviations than stocks in the high behavioral prospect portfolio. The historical evo-
lution of returns depicted in Fig. 2 shows that stock returns from the high prospect
portfolio exhibit greater fluctuation than those from the lowprospect portfolio. Could it
be that the portfoliowith high behavioral prospect stocks performs poorly? The answer
is provided by the performance evaluation, which requires modeling the dependence
structure between stocks in a portfolio.
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Table 1 List of stock indices and their behavioral prospects

Ticker Index CPT Ticker Index CPT

A1 AEX ALL SHARE 0.1407 K1 KOREA SE COMPOSITE
(KOSPI)

0.1592

A2 AEX INDEX (AEX) 0.1437 N1 NASDAQ COMPOSITE 0.1818

A3 ATX—AUSTRIAN
TRADED INDEX

0.1662 N2 NIFTY 500 0.2005

B1 BEL 20 0.1344 N3 NIKKEI 225 STOCK
AVERAGE

0.1804

B2 BIST NATIONAL 100 0.2365 O1 OMX STOCKHOLM
(OMXS)

0.1293

B3 BRAZIL BOVESPA—TOT
RETURN IND

0.3492 P1 PORTUGAL PSI-20 0.1436

B4 BUDAPEST (BUX) 0.1809 R1 RUSSELL 2000 0.1305

C1 COLOMBO SE ALL
SHARE

0.2332 R2 RUSSIA RTS INDEX 0.2624

D1 DAX 30 PERFORMANCE 0.1532 R3 RUSSIAN MICEX INDEX 0.3332

D2 DOW JONES COMPOSITE
65 STOCK AVE

0.1422 S1 S&P 500 COMPOSITE 0.1528

D3 DOW JONES SHANGHAI 0.3724 S2 S&P 500 EQUAL
WEIGHTED

0.1507

E1 EURO STOXX 50 0.1488 S3 S&P/ASX 300 0.0869

F1 FRANCE CAC 40 0.1505 S4 S&P/TSX 60 INDEX 0.1393

F2 FTSE 100 0.1345 S5 SAUDI TADAWUL ALL
SHARE (TASI)

0.2149

F3 FTSE MIB INDEX 0.1541 S6 SHANGHAI SE A SHARE 0.1372

F4 FTSE/JSE TOP 40 0.1158 S7 SWISS MARKET (SMI) 0.1506

H1 HANG SENG 0.1826 T1 TAIWAN SE WEIGHED
TAIEX

0.1255

I1 IBEX 35 0.1833 T2 TEL AVIV SE TA-35 0.1193

I2 IDX COMPOSITE 0.1515

Each stock index is associated with a ticker. The CPT values are understood as the behavioral prospect of
the stock computed based on Tversky and Kahneman’s (1992) parameter estimates

4 Portfolio optimization and evaluation

Starting from the dependence structure on which the efficient optimization is built,
Tables 3 and 4 display the association between stocks using Kendal tau.

The t-Student-type family selected for the multivariate copula appears to also be
selected by the pair copula in the D-vine pair construction (see Table 3). This possibly
suggests that the returns of the selected stocks are less likely to fluctuate in normal
market conditions (which does indeed characterize the Frank-type copula) and are
more exposed to tail events. It can thus be inferred that international stocks are more
volatile and riskier in crisis periods when the level of market confidence is low.
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Fig. 2 a Historical returns of top CPT indices. b Historical returns of bottom CPT indices

However, as is common in the empirical literature on pair copulas, the dependence
structure tends to decrease with the number of construction blocks, leading in most
cases to independence between stocks (see Table 4), hence the decision to limit port-
folio size. This highlights the existence of a trade-off in the pair copula approach
between the advantage of accommodating marginal distributions of different forms
and the cost of relying only on the initial pairs’ dependence, as the final pairs are
almost always likely to lead zero dependence, which amounts to independence.

Optimization results are summarized in Table 5. Both behavioral portfolios appear
to be efficient (EP). In terms of expected return, the high behavioral prospect stock
portfolio outperforms the low behavioral prospect stock portfolio with 2.6016 against
2.0178 under multivariate Student’s GARCH-copula. However, the opposite conclu-
sion holds when portfolio performance is measured by CVaR. This contrast might
be driven by the assumption made on the marginal distribution as the multivari-
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Table 3 Dependence structure results from the multivariate t-Student copula-GARCH

Portfolio Multivariate t-Student copula

Dependence Parameters Family type

(Kendal tau) P1 P2 Family name Family
number

Top CPT
portfolio

D3 versus B3 0.1901 0.2857 4.8034 t copula 2

D3 versus R3 0.1873 0.2857 4.8034 t copula 2

D3 versus R2 0.1886 0.2857 4.8034 t copula 2

B3 versus R3 0.1839 0.2857 4.8034 t copula 2

B3 versus R2 0.1856 0.2857 4.8034 t copula 2

R3 versus R2 0.1867 0.2857 4.8034 t copula 2

Bottom CPT
portfolio

T1 versus T2 0.1944 0.2959 5.7076 t copula 2

T1 versus F4 0.1992 0.2959 5.7076 t copula 2

T1 versus S3 0.2093 0.2959 5.7076 t copula 2

T2 versus F4 0.2010 0.2959 5.7076 t copula 2

T2 versus S3 0.1894 0.2959 5.7076 t copula 2

F4 versus S3 0.2019 0.2959 5.7076 t copula 2

ate framework imposes a similar marginal distribution when fitting the dependence
structure.

The pair copula results, on the other hand, are relatively consistent across perfor-
mance metrics. The expected returns are comparable between stock portfolios with
a high behavioral profile, while the CVaR points to the greater expected loss from
the stock portfolio with a low behavioral score. Contrary to the multivariate t-Student
copula, the portfolio of stocks with high CPT values outperforms that with a low CPT
score. Given the superiority of the pair copula over the multivariate alternative, it can
be inferred that a high behavioral profile a la CPT coincides with rational efficiency.
This finding is consistent with Levy and Levy (2004), who concluded that CPT and
MVM efficient sets almost match.

5 Conclusion

In contrast to the standard approach of using the same framework for both portfolio
selection and optimization, this paper combines the behavioral theory of decisionmak-
ing with the classical MVM to analyze a portfolio of 37 international stocks from the
period from October 1998 to November 2017. Specifically, CPT is used to construct
extreme behavioral prospect stock portfolios, namely a portfolio of high prospect
value stocks and a portfolio of stocks with low CPT values. Using copula approaches
to modeling portfolio risk following the mean-CVaR model, we find that a portfolio
of stocks with low behavioral scores outperforms the high CPT stocks portfolio. The
inference is derived from the pair copula framework, whereas the multivariate out-
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Table 4 Dependence structure results from the D-vine pair-copula-GARCH

Portfolio Pair copula (D-vine copula)

Dependence Parameters Family type

(Kendal tau) P1 P2 Family name Family
number

Top CPT
portfolio

T1

D3 versus B3 0.0471 0.07 12.48 t copula 2

B3 versus R3 0.1745 0.28 5.00 t copula 2

R3 versus R2 0.6559 0.85 2.19 t copula 2

T2

D3 versus R3|B3 −0.0236 0.00 – Independence 0

B3 versus R2|R3 0.0107 0.00 – Independence 0

T3

D3 versus R2|R3 B3 0.0105 0.00 – Independence 0

Bottom CPT
portfolio

T1

T1 versus T2 0.1301 0.18 5.76 t copula 2

T2 versus F4 0.2222 0.35 6.15 t copula 2

F4 versus S3 0.2383 0.36 4.37 t copula 2

T2

T1 versus F4|T2 0.0013 0.00 – Independence 0

T2 versus S3|F4 −0.0074 0.00 – Independence 0

T3

T1 versus S3|F4 T2 0.0064 0.00 – Independence 0

Table 5 Behavioral portfolio optimization results

Portfolio Portfolio GARCH t-Student
copula

GARCH D-vine pair
copula

Return CVaR Return CVaR

Top CPT
portfolio

EP 2.6016 0.5238 0.4984 −0.1058

Bottom CPT
portfolio

EP 2.0178 0.6422 0.5036 −0.1071

come appears divergent across performance metrics, possibly due to the assumption
of similar marginal distributions for all pairs of stocks in a portfolio.

This finding is in line with Levy and Levy (2004), who document the similarity
between CPT andMVMefficient sets, but alternative performancemeasures (see, e.g.,
Cherny andMadan 2009;Madan 2009) may shed further light on this topic. Moreover,
different analytical approaches that can accommodate relatively large portfolios sizes

123



Behavioral portfolio selection and optimization… 327

are likely to provide further insight. From a practical point of view, the pair copula
better handles relatively small portfolio sizes due to the trade-off between the number
of pair construction blocks and the high prevalence of zero dependence.

Acknowledgements The authors are grateful to anonymous reviewers for their valuable comments and
suggestions, which led to significant improvement in the presentation and quality of this paper.
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