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Abstract Regulators of some of the major markets have adopted value at risk (VaR)
as the risk measure for structured products. Under the mean-VaR framework, this
paper discusses the impact of the underlying’s distribution on structured products. We
expand the expected return and the VaR of a structured product with its underlying’s
moments (mean, variance, skewness, and kurtosis), so that the impact of the moments
can be investigated simultaneously. Results are tested by Monte Carlo and historical
simulations. Thefindings show that for themajority of structured products, underlyings
with large positive skewness are preferred. The preferences for the variance and the
kurtosis of the underlying are both ambiguous.
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1 Introduction

Structured products, defined as new investment strategies based on derivatives, have
been popular in recent decades among both retail and institutional investors. Their
flexible design and the use of derivatives allow them to meet specific investment needs
not addressed by traditional financial instruments available in the markets. Typically,
the payoff of structured products is dependent on one or more classic assets, for
example, stocks or stock indices. For example, one very popular structured product is
the discount certificate. Discount certificates offer shares of an underlying at a price
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below its current market price. The buyer, in return, must be prepared to accept a fixed
maximum return (the cap). If at maturity, the underlying price is lower than the cap,
buyers receive one share of the underlying per discount certificate. If the underlying
price at maturity is higher than or equal to the cap, buyers receive a cash settlement
amount equivalent to the cap. A discount certificate is usually constructed from the
underlying and short calls. For an overview of structured products, see Blümke (2009).

According toCélérier andVallée (2013), assets undermanagement (AUM) for retail
structured products alone were about 700 billion EUR in Europe in 2011, about 3%
of all European financial savings or 12% of mutual funds’ AUM. Due to structured
products’ relatively complicated structures and the occasional lack of transparency
in regard to their internal mechanisms, understanding their risk has always been an
important task for all investors, but especially for retail investors. One example is the
case of the Hong Kong-listed company Citic Pacific and its 2 billion USD losses from
the accumulator. The accumulator is a structured product that requires an investor to
buy a specified amount of a security or currency at a fixed price, settled periodically,
subject to certain conditions, as discussed in a report by Santini (2008) from The Wall
Street Journal.

In the European Union, a series of directives, regulations, and guidelines (often
referred to as “UCITS IV”) have been introduced since 2010 to provide investors
with a standardized and trustworthy risk measure for their investment decisions (see
EuropeanCommission 2010a, b; CESR2010). Structured products (“structured funds”
in the aforementioned documents) are also covered in these regulations. Their method
for accessing the risk of structured products is to use Value at Risk (VaR) as the
risk measure. The procedure is as follows. First, the past 5-year performances of the
underlying are plugged into the payoff function of the structured product to simulate its
payoff. The VaR value is the 1% quantile of the structured product’s returns simulated
in this way. From this VaR value, a corresponding volatility is calculated, with the
assumption of normal distributions. According to this volatility, the structured product
is classified into different risk classes, for example, a volatility below 0.5% is risk class
1, a volatility between 0.5 and 2% is risk class 2, and so forth. A similar approach based
on VaR has been adopted in Switzerland (see Swiss Structured Products Association
2013).

Some implications of using VaR as the risk measure for structured products are
discussed in Cao and Rieger (2013). The authors show that, by specifying an appro-
priate payoff function, it is possible to design structured products that can theoretically
provide arbitrarily large returns while having very low VaRs. Wallmeier (2011) con-
ducts a survey for various risk and return measures of structured products. The author
points out the need for improvements over VaR and discusses how the risk and return
of structured products should be presented to the investor.

The present paper aims to look at the issue from another perspective. We are not
interested in finding the appropriate risk measure for structured products. Instead,
seeing that regulators of the major markets have adopted VaR as the risk measure,
we will take it as given. We want to discover the implications of this regulation on
the underlying selection of structured products. Would, and if so, to what extent does,
underlying selection play a role in the “risk” of a structured product? Could some
underlyings make “better” products than other? This is relevant to product design
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from the issuers’ side and to portfolio planning from the investors’ side, as well as to
risk classification from the regulators’ side. To the best of our knowledge, this paper
is the first one to investigate this question.

To investigate the questionmore comprehensively,we also need a returnmeasure for
structured products. In practice, structured products, like most of the other financial
products, are usually marketed with their risk classes together with their (average)
past returns. Therefore, mean/expected return is a natural choice of return measure
for our discussion. There might be some concerns with this mean-VaR framework;
for example, it is not consistent with utility maximization nor is it viable for a general
equilibrium model.1 Moreover, it could be argued that mean-VaR may not be an
appropriate risk-return measure for structured products. However, in this paper, we
look at the issue from a practitioner’s perspective. We do not attempt to judge whether
VaR (mean-VaR) is good or inappropriate. Neither do we propose a more appropriate
risk-return measure for structured products. Given the VaR regulation discussed above
and the practical convention of marketing financial products, mean-VaR is a natural
consideration for the return and the risk when an investor buys a structured product, as
well as when an issuer designs a structured product.2 Unsophisticated investors may
not be able to employ more advanced risk and return measures and issuers may not
havemuchmotivation to provide risk-return values of a product beyond themean-VaR.

Theoretically, underlyingsmainly differ fromeachother in their return distributions.
The distribution of a random variable is usually characterized by its moments-mean,
variance, skewness, kurtosis, and the like. Therefore, to study the impact of different
underlyings on structured products, we need to look at the moments of their return
distributions. These moments are the focus of our discussion. In the next sections, we
discuss how the underlying’s return distribution, especially its first four moments, can
affect the mean-VaR profile of a structured product.

Studies on the preference for skewness and higher moments of the return distri-
bution started with Kraus and Litzenberger (1976), who state that positive skewness
is preferred by investors. Their analysis is based on expanding the expected utility
with Taylor series to the cubic term. Scott and Horvath (1980) show that the prefer-
ence direction for positive odd central moments is positive and that for even central
moments, it is negative. They expand the expected utility to higher order terms. Now, it
is common for this sort ofwork to employ the expected utility framework. For example,
Mitton and Vorkink (2007) explain underdiversification with a mean-variance-skew
model. Chang et al. (2013) derive skewness from option prices and investigate the
impact of the implied skewness on underyling returns with Capital Asset Pricing
Model (CAPM)-like models.

Portfolio choice under VaR or other downside risk measures is another strand of the
literature. Basak and Shapiro (2001) discuss the optimal portfolio policy of a utility
maximizing investor with the VaR constraint. Alexander and Baptista (2002) compare
a mean-VaR model to the mean-variance analysis. Benati (2003) solves the portfolio

1 It can easily be verified that two structured products with the same VaR do not necessarily have the same
expected return.
2 In the literature, mean-VaR is one of themost discussed risk-returnmeasures (e.g., Alexander andBaptista
2002; Consigli 2002; Tsao 2010).
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choice problem with a coherent risk measure constraint by linear programming. The
majority of the literature to date focuses on non-derivative financial assets. A portfo-
lio with derivatives has a nonlinear payoff and thus may have different implications
for the underlying preference than does a non-derivative asset. El-Jahel et al. (1999)
discuss the technical aspects of using VaR as the risk measure for portfolios involving
derivatives. Cui et al. (2013) compare different approximation methods of VaR esti-
mation for portfolios with derivatives, where the analysis is mainly based on normal
distributed risk factors.

There is not much literature on the implication of VaR or other risk measures for
structured products, aside from the aforementioned Cao and Rieger (2013). Although
onewould intuitively conjecture that the skewness of the underlyingmight be preferred
under the mean-VaR framework, the case is in fact not as straightforward as it appears
at first glance. The return distribution of the underlying is distorted now (via the payoff
function of the structured product), and it becomes intuitively unclear how this affects
the return distribution of the product, based on which the mean return and the VaR is
calculated. Therefore, rigorous and analytical discussion is necessary.

This paper makes the following contributions to the literature: (1) we add dis-
cussions on the implications of VaR as a risk measure for retail financial products,
especially on structured products—which type of underlying is preferred given the risk
measure? (2) We add discussions on the risk and the asset allocation of derivatives
portfolios—how does the choice of the underlying affect the profile of a structured
product?

We expand both the expected return and the VaR of a structured product with its
underlying’s first fourmoments. This allows us to simultaneously discuss the impact of
each moment on both the expected return and the VaR. The theoretical results are then
tested byMonte Carlo simulation, wherewe consider a t distribution as the distribution
of the underlying’s return. Structured products considered in the simulations are tracker
certificates, discount certificates, and capped outperformance certificates. Simulations
with real-world data are also carriedout on these three structuredproducts.Underlyings
are seven major European stock market indices. The results show that under the mean-
VaR framework, underlyings with large mean (return) and large positive skewness
will be preferred, while the preferences for an underlying’s volatility and kurtosis are
ambiguous.

The rest of this paper is organized as follows: Sect. 2 presents the theoretical frame-
work of the analysis and discusses in a theoretical way the impacts of the underlying
moments on the expected return and the VaR of a structured product. The theoreti-
cal findings are then tested by Monte Carlo simulations and historical simulations in
Sect. 3. Section 4 concludes.

2 The theoretical framework and the impacts of the underlying’s
moments

Let X be the price of the underlying of a structured product, which is a random variable
with the probability density function f (x) and the cumulative distribution function
F(x). We normalize X0, the price of the underlying at time 0, to be 1 and assume
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that X is non-negative. The payoff (the value) of the structured product is a function
y : R+ → R+ of X . We assume that y(·) is nondecreasing (see Rieger 2011). The
value of the structured product at time 0, y0 = y(X0), is also normalized to 1.

The (1 − α)-VaR of the structured product is given by

VaRα = − inf{m|P(ln(y(X)) ≤ m) > α}. (1)

Among the different ways of defining VaR, we follow the one adopted by the
EU regulation (CESR 2010), where VaR is calculated with log-return of the structured
product andwith the sign changed. Tomake the following discussionsmore consistent,
we transform the payoff function y(x) to be based on the log-return of X , namely,
g(ln(x)) = y(x). Then, g(·) = y(e(·)). In the rest of the paper, we call g(·) the payoff
algorithm of the structured product.

Consider a fixed payoff function of the structured product, the issuer (a bank or
another financial institution) of the product wants to discover an underlying, based on
which the product delivers a return as high as possible, subject to a given VaR level.
Mathematically, this means, given a payoff function y(x) of the structured product,
the issuer faces the problem of maximizing its expected return while meeting the VaR
constraint at the same time, that is, searching for the mean-VaR frontier, by choosing
an appropriate underlying X :

max
X

μy = max
X

E[y(X)] = max
X

∫

R+

y(x)dP, (2)

subject to the VaR constraint

− inf{m|P(ln(y(X)) ≤ m) > α} ≤ VaRα. (3)

Let L = ln(X) and E[L] = μ. First, we expand the VaR of the product with its
underlying’s moments.

The (1 − α)-VaR of y(x) is given by

VaRα = − inf{m|P(ln(y(X)) ≤ m) > α}. (4)

Assume y is strictly increasing in the neighborhood of qX,α , the α-quantile of X ,
then Eq. (4) is equivalent to

VaRα = − inf{m|P(X ≤ y−1(em) > α}
= − inf{m|P(ln(X) ≤ ln(y−1(em)) > α}, (5)

because ln(x) is strictly increasing.
Let the α-quantile of L be qα (i.e., P (L ≤ qα) = P (ln(X) ≤ qα) = α), then

VaRα = − ln(y(exp(qα))) = − ln(g(qα)), (6)

VaRα is apparently decreasing in qα .
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Based on the Cornish–Fisher expansion (Cornish and Fisher 1937; Fisher and Cor-
nish 1960; Hill and Davis 1968), the α-quantile of a non-normal random variable can
be approximated with its first four moments and the standard normal quantile:

qα = μ + σ

(
pα + p2α − 1

6
γ1 + p3α − 3pα

24
γ2 − 2p3α − 5pα

36
γ 2
1

)
, (7)

where μ, σ , γ1, γ2, and qα are expectation, standard deviation, skewness, excess
kurtosis, and α-quantile of ln(X), respectively. pα is α-quantile of a standard normal
distribution. Then, the (1 − α)-VaR of the structured product y(X) is given by

VaRα = − ln(g(qα))

= − ln

(
g

(
μ + σ

(
pα + p2α − 1

6
γ1 + p3α − 3pα

24
γ2 − 2p3α − 5pα

36
γ 2
1

)))
.

(8)
There has been some concern as to the validity and the accuracy of the Cornish–

Fisher expansion and there are other quantile approximation methods (see Wallace
1958).We had two reasons for choosing the Cornish–Fisher expansion to approximate
the quantile of the underlying’s log-return. First, because it is one of the earliest
methods for quantile approximation, it is also one of the most well-known methods
(e.g., Gabrielsen et al. 2012 employ theCornish–Fisher expansion to forecast VaRwith
time-varying moments). Second, this paper aims to study the direction of the impacts
of underlying moments on the risk-return profile of structured products. Our primary
concern is the sign before each moment in Eq. (8). The accuracy of the approximation
is thus relatively secondary.

Next, we expand the expected return of the product. Let us further assume that the
payoff function of the structured product is a piecewise linear function with the form:

y(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1X + b1, if X ∈ A1,

a2X + b2, if X ∈ A2,

· · ·
an X + bn, if X ∈ An,

(9)

where ai ≥ 0, bi ∈ R, for i = 1, 2, . . . ,m.
⋃n

i=1 Ai = R+ and at least for one j ,
a j > 0.

The vast majority of structured products will have payoff functions of this form.
In fact, almost all the official categories of structured products currently listed by the
European Structured Investment Products Association (2012) have payoff functions
in form of Eq. (9). One exception is twin-win certificates, which have a decreasing
payoff part, that is, ai < 0 for some i , and this part is defined only on a finite interval
of X .
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Rewrite Eq. (9) with the payoff algorithm g and ln(X):

y(X) = g(ln(X)) = g(L) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1eln(X) + b1, if X ∈ A1,

a2eln(X) + b2, if X ∈ A2,

· · ·
aneln(X) + bn, if X ∈ An,

(10)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1eL + b1, if L ∈ B1,

a2eL + b2, if L ∈ B2,

· · ·
aneL + bn, if L ∈ Bn .

(11)

The expected return of y(X) is then given by

μy =
∫

R

g(L)dP =
∫

B1

(a1e
L + b1)dP +

∫

B2

(a2e
L + b2)dP + · · · +

∫

Bn

(ane
L + bn)dP

= a1

∫

B1

eLdP + a2

∫

B2

eLdP + · · · + an

∫

Bn

eLdP

+ b1P(B1) + b2P(B2) + · · · + bnP(Bn).

(12)
Because ai , bi , P(Bi ), and

∫
Bi
eLdP are all non-negative, there exist ā ∈ [min(ai ),

max(ai )] and b̄ ∈ [min(bi ),max(bi )], such that

a1

∫

B1

eLdP + a2

∫

B2

eLdP + · · · + an

∫

Bn

eLdP = ā
∑
i

∫

Bi

eLdP (13)

and

b1P(B1) + b2P(B2) + · · · + bnP(Bn) = b̄
∑
i

P(Bi ). (14)

Thus, Eq. (12) can be written as

μy = ā
∑
i

∫

Bi

eLdP + b̄
∑
i

P(Bi ) = ā
∫

R

eLdP + b̄, (15)

namely,
μy = āE[eL ] + b̄. (16)
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Let us expand eL at μ (the expectation of L) with a Taylor series:

eL = eμ +eμ(L−μ)+ eμ

2! (L−μ)2+ eμ

3! (L−μ)3+ eμ

4! (L−μ)4+
∞∑
i=5

eμ

i ! (L−μ)i .

(17)
Take the expectation of both sides of Eq. (17):

E[eL ] = eμ + eμ

2! σ 2 + eμ

3! μ3 + eμ

4! μ4 + O(μ5), (18)

where σ 2 is the variance and μi is the i th central moment of L , respectively.
Namely

E[eL ] = eμ + eμ

2! σ 2 + eμ

3! σ 3γ1 + eμ

4! σ 4(γ2 + 3) + O(μ5), (19)

where γ1 and γ2 are the skewness and the excess kurtosis of L , respectively. Let
γ1 ≥ − 3

σ
, then, c.p., E[eL ] is increasing in μ in Eq. (19). For example, if σ = 0.3,

γ1 ≥ − 3
σ
means that the skewness of L is no smaller than −10.

Equation (16) becomes then

μy = āeμ + āeμ

2! σ 2 + āeμ

3! σ 3γ1 + āeμ

4! σ 4(γ2 + 3) + āO(μ5) + b̄, (20)

with positive ā and b̄.
Via Eq. (20), we can expand the expected return of a structured product with its

underlying’s moments.
By considering Eqs. (20) and (8) together, we can discover the impacts of each

moment of the underlying on the expected return and the VaR of a structured product
simultaneously. Before we proceed, let us summarize the important assumptions we
have made

(A1) the payoff function y(·) follows the form of Eq. (9);
(A2) the payoff function y(·) is strictly increasing in the neighborhood of qX,α ,
the α-quantile of X ;
(A3) the skewness γ1 of the underlying log-return ln(X) is no smaller than − 3

σ
,

where σ is the underlying volatility.

Proposition 2.1 If the underlying’s log-return ln(X) follows a normal distribution
(i.e., X is log-normal distributed), and the payoff function y(X) of the structured
product satisfies (A1) and (A2), then under the mean-VaR framework, underlyings with
large expected log-return are preferred; the preference for its variance is ambiguous.

For underlyings with zero skewness, we have the following proposition.

Proposition 2.2 If the underlying’s log-return ln(X) is distributed with zero skewness
(e.g., symmetrically distributed), and the payoff function y(X)of the structured product
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satisfies (A1) and (A2), then under the mean-VaR framework, underlyings with large
expected log-return will be preferred; the preferences for the variance and the kurtosis
are both ambiguous.

Finally, let us discuss the general case of the underlying distribution.

Proposition 2.3 If the payoff function y(X) of the structured product satisfies (A1)
and (A2) and the underlying satisfies (A3), then under the mean-VaR framework,
underlyings with large expected log-return will be preferred. Large positive skewness
is also preferred. Preference for the underlying variance is ambiguous; preference for
the underlying kurtosis is conflicting.

Proofs for propositions 2.1–2.3 can be found in the Appendix. Let us summarize
the above propositions. If the payoff function y(X) of the structured product satisfies
Eq. (9), then, other moments being fixed, its expected return is increasing in the
expectation, in the variance, in the skewness, and in the kurtosis of the underlying’s
log-return. Its VaR is increasing in the kurtosis and decreasing in the expectation of the
underlying’s log-return. The impacts of the variance and the skewness are in general
ambiguous. In other words, under the mean-VaR framework:

1. Expectation μ

Other moments being fixed, large expected log-return of the underlying is always
preferred.

2. Variance σ 2

Preferences for the variance of the underlying’s log-return is ambiguous.
3. Skewness γ1

Large positive skewness is preferred.
4. Kurtosis γ2

Preference for the kurtosis of the underlying’s log-return is always ambiguous.
Large kurtosis increases both the expected return and the VaR of the product.

The results of this section confirm the importance of the underlying’s volatility
risk and kurtosis risk. For the underlying’s mean and skewness, it is straightforward:
one just chooses the underlying with high expected return and with high probability
of above-expected return, thus optimizing both the expected return and the VaR of
the structured product. However, underlyings with large volatility/large kurtosis will,
on the one hand, increase the expected return of the structured product, but, on the
other hand, they will also increase the VaR (the risk) of this product. Ignoring the
kurtosis of the underlying whose log-return is leptokurticly distributed will lead to
underestimations for the VaR of the structured product.

Our results also suggest that mean-variance efficient underlyings, which are often
thought to characterize the market portfolio, are not necessarily the optimal underly-
ings for structured products. At a given expected return level of the underlying, small
variance of the underlying will lead to small VaR but also small expected return of the
structured product.3

3 A thorough discussion of the mean-variance efficient underlyings and the mean-VaR efficient structured
products is beyond the scope of this paper.
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3 Simulation

3.1 Monte Carlo simulation

With real-world data, it is not always possible to compare one moment of the underly-
ingwhile controlling for its othermoments.Monte Carlo simulations aremore feasible
for testing the theoretical results in the previous section. To this end, random num-
bers are generated from a given distribution. These random numbers as log-returns
of the underlying are used to calculate the underlying prices at the maturity of the
structured product, and consequently, the payoffs of the structured product can be
simulated. Based on the simulated payoffs, we will have the simulated expected
return (the mean of the simulated return) and the VaR of the product. The dis-
tribution used is a t distribution. The structured products considered are tracker
certificates, discount certificates, and capped outperformance certificates. Tracker cer-
tificates are one of the simplest structured products, discount certificates are one of
the most popular structured products, and capped outperformance certificates are
the most complex of the three products. Detailed introductions to the t distribu-
tion used for the simulation and the three structured products are presented in the
Appendix.

Next, we simulate the underlying performance at the maturity of the structured
product with a t distribution and plug it into the payoff functions of the three struc-
tured products. In each case, the annual risk-free interest rate is assumed to be 0.6%.
The maturity of all products is assumed to be 1 year. The confidence level for the
VaR is set at 99% (α = 0.01), the same as the CESR (2010). Option prices are
obtained from Black–Scholes formula. The underlying price at time 0 is assumed to
be 1000. The cap of the discount certificate is 1500, 1.5 times the initial underlying
price.

Figures 1, 2, and 3 present the simulation results. The upper parts of the figures
plot the mean return and the VaR of the structured products against the mean and the
volatility of the simulated underlying log-return, respectively. The t distribution has
6 degrees of freedom, corresponding to a kurtosis of 3. The parameter μ ranges from
−0.2 to 0.2; σ is from 0.05 to 0.35. The simulation is run 100,000 times. All three
products reveal similar shapes. Product returns are increasing inμ and in σ . Products’
VaRs are decreasing in μ and increasing in σ .

The lower parts of Figs. 1, 2, and 3 plot the mean return and the VaR of the
structured products against the excess kurtosis γ2 of the simulated underlying log-
return, respectively. We consider different underlying volatilities (30, 32.5, 35, and
37.5%). μ is 0.1; η ranges from 5 to 8. For all products, both the return and the
VaR reveal slightly upward trends with an increasing kurtosis. In addition, at a fixed
kurtosis, larger volatility increases both the product return and VaR.

The results also confirm Proposition 2.2 that for an underlying, whose log-return
is distributed with zero skewness, a large μ is always preferred and the impacts of
volatility and kurtosis are each conflicting: they both increase the product return and
the VaR at the same time.
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Fig. 1 Top Simulated mean return (left) and VaR (right) of tracker certificates with t-distributed (6 degrees
of freedom) underlying log-return. The x-axis is themean of the simulated underlying log-return. The y-axis
is the volatility of the simulated underlying log-return. Simulation run 100,000 times. Bottom Simulated
mean return (left) and VaR (right) of tracker certificates with t-distributed underlying log-return. The x-axis
is the excess kurtosis of the simulated underlying log-return. The solid line, the dashed line, the dotted line,
and the “-.” line stand for a volatility of 30, 32.5, 35, and 37.5%, respectively. Simulation run 1,000,000 times

3.2 Historical simulation

We also checked our theoretical findings with real-world data. We consider seven
major stock market indices in the eurozone and simulate the performances of the
three above-mentioned structured products with weekly historical stock indices from
2008 to 2014, see Table 1 for the descriptive statistics of the stock market indices we
used. The maturities of the products are again assumed to be 1 year. Option prices are
obtained with the Black–Scholes formula. For the risk-free interest rate, we take the
average 12 month Euribor of the same year as the construction date. For the volatility,
we calculate the realized volatility of each index over the next 52 weeks after the
construction date. The VaR level is again 99%. The cap of the discount certificate is
1.5 times the index levels on the construction date.

We construct the three structured products for 1 day in every week from 3 March
2008 to 25 February 2013. Then, we plug the index levels 52 weeks later from this
day into the payoff function of the products to obtain the products’ returns. Based
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Fig. 2 TopSimulatedmean return (left) andVaR (right) of discount certificateswith t-distributed (6 degrees
of freedom) underlying log-return. The x-axis is themean of the simulated underlying log-return. The y-axis
is the volatility of the simulated underlying log-return. Simulation run 100,000 times. Bottom Simulated
mean return (left) and VaR (right) of discount certificates with t-distributed underlying log-return. The
x-axis is the excess kurtosis of the simulated underlying log-return. The solid line, the dashed line, the
dotted line, and the “-.” line stand for a volatility of 30, 32.5, 35, and 37.5%, respectively. Simulation run
1,000,000 times

on these historically simulated returns, we calculate the VaR of the products. The
average return and the VaR of each of the three products for the seven European stock
indices are presented in Table 2. Products written on different underlyings exhibit
different risk-return profiles, as measured by average return and VaR. In this case, it is
impossible to perfectly compare the results between different underlyings, because we
cannot compare one moment while controlling for the other three moments. However,
we can still make the following observations.

First, Germany’s DAX appears to be the best performing underlying for all three
structured products. Products written on DAX always have the highest average return
and the lowest VaR. In contrast, Italy’s FTSEMIB delivers much worse results. For all
the three products, FTSE MIB always has lower average returns but higher VaRs than
products written onDAX. This can be explained by the fact that DAX in this period has
substantially the highest mean of the log-return among the seven underlyings, while
FTSE MIB has the lowest mean.

123



How does the underlying affect the risk-return profiles. . . 39

−0.4
−0.2

0
0.2

0.4

0
0.1

0.2
0.3

0.4
0.5

1

1.5

μ

Capped Outperf. Cert.

σ

P
ro

du
ct

 re
tu

rn

−0.4
−0.2

0
0.2

0.4

0
0.1

0.2
0.3

0.4
−1

−0.5

0

0.5

1

1.5

μ

Capped Outperf. Cert.

σ

V
aR

α

0 1.21.5 2 3 6

1.13

1.14

1.15

1.16

1.17

1.18

1.19

γ2

P
ro

du
ct

 re
tu

rn

Capped Outperf. Cert.

0 1.21.5 2 3 6
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

γ2

V
aR

α
Capped Outperf. Cert.
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Second, let us look at Austria (ATX) and Finland (OMXHelsinki 25). The mean of
their log-returns differ substantially. However, the differences between their volatil-
ities and between their skewness are small. The difference between their kurtosis is
relatively small, too, compared to that between their means. Finland’s stock index,
which has a higher mean than Austria’s, delivers better risk-return profiles for struc-
tured products thanAustria’s stock index does. This again confirms the positive impact
from the mean of the underlying log-return.

Third, for Austria (ATX) and France (CAC 40), the mean of their indices is very
close to each other and the skewness of CAC 40 is higher than that of ATX. According
to our theoretical results, products based on CAC 40 should have (slightly) better risk-
return profiles than products based on ATX. This can be confirmed by the historically
simulated results in Table 2, where products written on CAC 40 have similar or a
little higher average returns, but lower VaRs than products written on ATX. Although
differences between their volatilities and between their kurtosis are not small, these two
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moments’ impacts on the risk-return profiles of structured products are ambiguous,
thus in accord with our theoretical findings.

4 Conclusion

In this paper, we investigate the impacts of underlyings on the expected return and
the VaR of structured products-in other words, the preferences for the underlying’s
moments under the mean-VaR framework. Although one would intuitively expect that
the skewness might be preferred under the mean-VaR framework, the case is in fact
not as straightforward as it appears at first glance. We are now dealing with a distorted
return distribution (via the payoff function) and a rigorous and analytical investigation
is necessary.We expand the expected return of a structured product with a Taylor series
and expand theVaR of the product with the Cornish–Fisher approach. This allows us to
study the impacts of an underlying’s first four moments on the expected return and the
VaR of a product simultaneously. Theoretical results are derived for cases, where the
underlying’s log-return follows a normal distribution, a zero-skewness distribution,
and a general distribution with nonzero skewness and nonzero excess kurtosis.

Under the mean-VaR framework, the findings show that for the majority of struc-
tured products, other moments being fixed, underlyings with large expected log-return
are always preferred. Preference for the volatility of the underlying is ambiguous.Large
positive skewness is also preferred. The impacts of its kurtosis on the expected return
and the VaR of the product are conflicting-large kurtosis increases both the expected
return and the VaR (risk) at the same time.

The results confirm the importance of an underlying’s volatility risk and kurtosis
risk. For underlyings’ mean and skewness, it is straightforward: one just picks the
underlying with high expected return and with high probability of above-expected
return, thus optimizing both the expected return and the VaR of the structured product.
However, underlyingswith large volatility/large kurtosiswill, on the one hand, increase
the expected return of the structured product, and, on the other hand, they will also
increase the VaR (the risk) of this product. Ignoring the kurtosis of the underlying,
whose log-return is leptokurticly distributed will lead to underestimations for the VaR
of the structured product.

The results also indicate that mean-variance efficient underlyings, which are often
thought to characterize the market portfolio, are not necessarily the optimal underly-
ings for structured products. At a given expected return level of the underlying, small
variance of the underlying will lead to small VaR but also small expected return of the
structured product. More thorough discussion is needed in this direction and future
research could investigate the relation between themean-variance efficient underlyings
and the mean-VaR efficient structured products.

The theoretical results are tested with Monte Carlo simulations. We consider the
case of a t distribution. Structured products used in the simulation are tracker certifi-
cates, discount certificates, and capped outperformance certificates. Simulation results
are not at odds with the theoretical finding. Simulations with real-world historical data
are also conducted. We consider seven major European stock market indices as the
underlyings. The simulation results can also be explained by our theoretical finding.
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A limitation of the paper is that the discussions are based on one-period models.
Although it is true that buyers of structured products usually implement a buy-and-hold
strategy and there is basically no trading before maturity, this one-period framework
is not capable of considering path-dependent products, for example, products with a
barrier option component. Further study can extend the framework of the paper to a
multi-period one.
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Appendix

Proof of Proposition 2.1 When ln(X) follows a normal distribution, that is, ln(X) ∼
N(μ, σ 2):

qα = μ + σ pα, (21)

where pα denotes the α-quantile of a standard normal distribution. Equation (6)
becomes

VaRα = − ln(g(μ + σ pα)). (22)

Since the level α for VaR is always at the left tail of the distribution (e.g., α is 1%
in the EU regulation CESR 2010), pα in Eq. (22) is negative. VaRα is thus decreasing
in μ and increasing in σ .

Furthermore, Eq. (20) becomes

μy = āeμ + āeμ

2! σ 2 + 3āeμ

4! σ 4 + āO(μ5) + b̄, (23)

because γ1 = 0 and γ2 = 0 for normal distributed ln(X).
Observe Eqs. (22) and (23) together, because we have ā ≥ 0, the first term āeμ,

the second term āeμ

2! σ 2, and the third term 3āeμ

4! σ 4 in Eq. (23) are all increasing in μ.
Larger μ will thus increase μy , the expected return of the product. μy is obviously
increasing in σ 2, too. Larger underlying variance will increase expected return of the
product; it will however, increase the VaR of the product in Eq. (22) at the same time.

Proof of Proposition 2.2 In this case, Eq. (20) becomes

μy = āeμ + āeμ

2! σ 2 + āeμ

4! σ 4(γ2 + 3) + āO(μ5) + b̄. (24)

In addition, Eq. (8) becomes

VaRα = − ln

(
g

(
μ + σ

(
pα + p3α − 3pα

24
γ2

)))
. (25)
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The term pα + p3α−3pα

24 γ2 and the term
p3α−3pα

24 in Eq. (25) are both negative, because
pα is negative and γ2 is non-negative. Consequently, the (1−α)-VaR of the structured
product VaRα will be decreasing in μ, increasing in σ and in γ2.

The expected return μy of the product is obviously increasing in μ. μy will also
be increasing in σ 2 and in γ2, since γ2 ≥ 0. Because VaRα is decreasing in μ and
increasing in σ and in γ2, only large expectation from the underlying’s log-return is
preferred. The preferences for the variance and the kurtosis of the underlying in this
case are both conflicting: larger variance (kurtosis) increases the expected return of
the product, but also increases the VaR at the same time.

Proof of Proposition 2.3 Let us directly look at Eqs. (20) and (8).
VaRα is clearly decreasing in μ. The impact of σ is ambiguous, because the term

pα + p2α − 1

6
γ1 + p3α − 3pα

24
γ2 − 2p3α − 5pα

36
γ 2
1 (26)

can be both positive and negative, depending on the combination of γ1 and γ2.
As for γ1, Eq. (26) is a quadratic function of γ1. The minimum is achieved at

γ1 = 3p2α−3
2p3α−5pα

, which is negative for pα < −1.581 (α < 0.057), a typical level for

VaR. Thus, when γ1 ≤ 3p2α−3
2p3α−5pα

, the VaR is increasing in γ1; when γ1 >
3p2α−3

2p3α−5pα
,

the VaR is decreasing in γ1. When α = 0.01 (CESR 2010), 3p2α−3
2p3α−5pα

= −0.977. If

the skewness is smaller than −0.977, the VaR will be increasing in the skewness; if
the skewness is larger than −0.977, the VaR will be decreasing in the skewness. In
general, it is safe to say that large positive skewness will reduce the VaR.

As for γ2, it is obvious that VaRα is increasing in γ2. Because σ > 0 and the term
p3α−3pα

24 < 0 for α < 0.042 (pα < −1.732), which is typical for VaR.
In Eq. (20), the impact of μ on μy is obviously positive. μy is increasing both in

γ1 and in γ2. Because σ > 0, μy is also increasing in σ .
Putting VaR together: Keeping other moments fixed, underlyings with large

expected log-return will be preferred. Large positive skewness will be preferred, too.
The impact of underlying variance is ambiguous. Increasing the underlying kurtosis
will increase the expected return of the product but, however, increase the VaR of the
structured product, too.

t Distribution If a random variable T follows a t distribution with η degrees of
freedom, then its probability density function is given by

f (t) =
�

(
η+1
2

)
√

ηπ�
( η
2

)
(
1 + t2

2

)− η+1
2

, (27)

where � is the gamma function. When η > 4, the expectation, the variance, the skew-
ness, and the excess kurtosis of T are 0, η

η−2 , 0, and
6

η−4 , respectively. A transformed
version of the t distribution is often used. If L follows a transformed t distribution
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with η degrees of freedom, a location parameter μ, and a scale parameter σ , then

L = μ +
√

η − 2

η
Tσ, (28)

where T has a probability density function of Eq. (27). In comparison to a normal
distribution, L in Eq. (28) will have positive excess kurtosis and can better capture the
“fat tails” of the financial asset’s return.

Tracker certificates Tracker certificates are one of the market participation products
investigated in this paper. They simply track the performance of the underlying assets.
Holding a tracker certificate has basically the same payoff as holding the underlying
itself. We use this product in the simulation as an example of products with very
simple payoff functions. They are usually constructed with zero-strike calls (LEPO).
For more detail on tracker certificates, see Blümke (2009). The payoff function of
a tracker certificate is simply y(X) = X , and thus, its payoff algorithm is g(L) =
g(ln(X)) = eln(X) = eL .

Discount certificates Discount certificates are a yield enhancement product. As
discussed in the beginning of this paper, they offer the buyer, on the one hand, shares
of an underlying at a price lower than its current price. On the other hand, however, the
buyer has to accept a fixed maximum return (the cap). At maturity, if the underlying
price is lower than the cap, the buyer receives one share of the underlying per discount
certificate; otherwise, the buyer receives a cash settlement equivalent to the cap. Dis-
count certificates are usually constructed by holding the underlying and selling call
options with strike being the cap. The payoff function of a discount certificate can be
described by

y(X) = X − (X − K )+ =
{
K , if X > K ,

X, if 0 < X ≤ K ,
(29)

where K is the cap. Its payoff algorithm is thus

g(L) = g(ln(X)) =
{
K , if ln(X) > ln(K ),

eln(X), if ln(X) ≤ ln(K ),
(30)

=
{
K , if L > ln(K ),

eL , if L ≤ ln(K ).
(31)

Capped outperformance certificates Capped outperformance certificates (also
called turbo certificates), another type of participation products, allow for a dispropor-
tionate participation in the gains of the underlying at any level above the strike price.
In return, the buyer’s profit is limited (capped) on the upside. They are usually con-
structed with the underlying, a long at-the-money call and two short out-of-the-money
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calls. Their payoff function can be described by

y(X) = X + (X − K1)
+ − 2(X − K2)

+ =
⎧⎨
⎩
2K2 − K1,

2X − K1,

X,

if X > K2,

if K1 < X ≤ K2,

if 0 < X ≤ K1,

(32)

for K2 > K1, where K1 is the strike of the first long call, which is usually set to be
the spot price of the underlying, K2 is the strike of the two short calls determined by
the premium paid for the first call. The payoff algorithm of a capped outperformance
certificate is thus given by

g(L) = g(ln(X)) =
⎧⎨
⎩
2K2 − 1,
2eln(X) − 1,
eln(X),

if ln(X) > ln(K2),

if ln(1) < ln(X) ≤ ln(K2),

if ln(X) ≤ ln(1),
(33)

=
⎧⎨
⎩
2K2 − 1,
2eL − 1,
eL ,

if L > ln(K2),

if 0 < L ≤ ln(K2),

if L ≤ 0,
(34)

because we have normalized the spot price to be 1, K1 = X0 = 1.
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