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Abstract Since the subprime crisis, portfolios based on risk diversification are of
great interest to both academic researchers and market practitioners. They have also
been employed by several asset management firms and their performance appears
promising. Since they do not rely on estimates of expected returns, they are assumed
to be robust. The same argument holds for minimum variance and equally weighted
portfolios. In this paper, we consider a Monte Carlo simulation, as well as an empirical
global portfolio dataset, to study the effect of estimation errors on the outcomes of
two recently proposed asset allocations, the equally weighted risk contribution (ERC)
and the principal component analysis (PCA) portfolio. The ERC portfolio is more
robust to changes in the input parameters and has a smaller estimation error than the
Markowitz approaches, whereas the PCA portfolio is even more unstable than the
classical approaches. In the worst-case scenario, neither approach delivers what it
promises. However, in every case the resulting return–risk relationship is dominated
by the Markowitz approaches.
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1 Introduction

Ever since the recent financial crisis, there has been a great deal written, by both
academic researchers and market practitioners, on the necessity of building portfolios
that are more diversified. Most of this literature is based on risk management rather
than estimating returns (Lee 2011). Another new approach to portfolio optimization
aimed at achieving true diversification based on “uncorrelated bets” is proposed by
Meucci (2009). Critics argue that the classical mean variance framework proposed by
Markowitz (1952) results in the underdiversified portfolios that failed in the financial
crisis (Allen 2010). Numerous studies are cited in support of these approaches based
on their apparent outperformance versus passive market-capitalization weighting or
static, fixed-weight portfolios (Lee 2011).

In this paper, we concentrate on the so-called equally weighted risk contribution
(ERC) and principal component analysis (PCA) portfolios. The concept of the ERC
portfolio is rooted in risk budgeting. It is “a process of measuring and decomposing
risk, using the measures in asset-allocation decisions, assigning portfolio managers risk
budgets and using these risk budgets in monitoring the asset allocations and portfolio
managers,” according to Pearson (2002, p. 7). However, the optimization procedure
of the equal risk contribution portfolios is not only about risk monitoring, but also
involves allocating the capital among the assets according to equal risk contributions
in the portfolio. So the concept of ERC portfolios goes one step further and defines
the asset allocation procedure based on the risk decompositions. The ERC portfolios
allocate the market risk equally across asset classes, including stocks, bonds, and
commodities (Qian 2005).

We also investigate the so-called PCA portfolio approach suggested by Meucci
(2009). In his methodology, the variance–covariance matrix is decomposed in uncor-
related principal portfolios (as shown in Partovi and Caputo 2004). Based on these
principal portfolios, a diversification measure is built (Meucci 2009, p. 10). For the
optimal portfolio, the entropy based on the contributions to uncorrelated bets in the
portfolio is maximized.

It is a known fact that the classical Markowitz portfolios tend to concentrate on a
small subset of the available securities, which does not appear to be consistent with the
idea of risk diversification. Moreover, the asset weights are very sensitive to changes
in the input parameters, such that a small variation of the input parameters results in
very different portfolios. The input parameters, i.e., expected returns and correlations,
are typically estimated from historical data and are often imprecise (Michaud 1989,
1998; Scherer 2004; Broadie 1993; Chopra and Ziemba 1993; Herold and Maurer
2004; Tütüncü and Koenig 2004; Fabozzi 2007). This leads to a large estimation error
with respect to the estimated ex ante portfolio performance, as developed by Broadie
(1993).

In light of the problems of the classical Markowitz approach described above,
we explore the robustness of these new risk-based asset allocation techniques. To
compare the results, we also study the following portfolio constructions: efficient
Markowitz portfolio, minimum variance, and equally weighted. Thus we combine two
current streams of the literature and examine the sensitivity of the equally weighted
contribution and maximum entropy portfolios through a simulation and an empirical
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study. This issue is highly relevant in practice as no one can perfectly forecast the
future and thus there are always estimation errors. The question is how the estimation
errors influence the resulting portfolio structure and portfolio performance.

The ERC approach is the topic of several recent articles (Qian 2005, 2009, 2010;
Neukirch 2008; Maillard et al. 2010; Allen 2010; Foresti and Rush 2010; Little 2010;
Lee 2011). However, none of this work studies the influence of estimation errors on
portfolio performance. To the best of our knowledge, no evaluation of the performance
of the PCA approach has yet been undertaken. These gaps in the research pose a real
obstacle to the practical use of portfolio optimization.

We show that by investigating the effect of the true resulting outcomes, the per-
formance of the approaches is different from their performance based on estimated
parameters. The results show that the ERC portfolio is far less sensitive to estimation
errors than the Markowitz approaches, whereas the PCA approach has the worst per-
formance in all cases. However, all in all, neither approach provides real diversification
when it is most needed, namely, in times of crisis.

2 Literature review

2.1 Mean-variance optimization and weaknesses

Markowitz (1959) mean-variance optimization is the classical technique for allocating
capital among a set of assets (Michaud 1998, p. 1). Since the return is measured by
the expected value of the random portfolio return, while the risk is quantified by the
variance of the portfolio return, it is called a mean-variance framework (Recchia 2010,
p. 14). Given the returns, variances, and correlations of the assets, the mean-variance
approach allows determination of efficient portfolios. A portfolio is called efficient if
there is no other portfolio that has a higher expected return for the same level of risk
or, alternatively, the portfolio demonstrates lower risk for the same level of expected
return. The efficient frontier represents all efficient portfolios.

2.1.1 Weaknesses

The mean-variance optimizer treats the inputs as “true parameters” and does not adjust
for uncertainty within the estimated parameters (Michaud 2009, p. 18; Drobetz 2001,
p. 59). In reality, however, the inputs are not known in advance, but can only be
forecasted or estimated, usually with large errors. These estimation errors are known
to result in not well-diversified “optimal” portfolios, which tend to concentrate on a
small subset of the available securities and are also often very sensitive to changes in
input parameters (Tütüncü and Koenig 2004, p. 2).

As demonstrated by Black and Litterman (1992), a small change in the expected
asset returns can result in large changes in the optimal portfolio allocation. The asset
weights are extremely sensitive to variations in expected returns so that adding a few
observations to the estimation sample may change the asset allocation completely
(Jorion 1985, p. 261).
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Since the true “future” returns, variances, and covariances are unknown in advance,
they are usually estimated from historical data. As shown in Merton (1980) and Jorion
(1985), the sample mean is far from being a precise estimate of the expected return.
Simultaneously, returns have the largest effect on the optimizer, which results in port-
folio structures that are far from being the true optimal allocation (Jobson and Korkie
1980; Michaud 1989; Chopra and Ziemba 1993; Broadie 1993; Jagganathan and Ma
2003). Michaud (1989) focuses on the limitations of the Markowitz approach and calls
the MV optimizer an “estimation-error maximizer” due to its tendency to maximize
the effects of errors in the input assumptions (Michaud 1989, p. 33).

Broadie (1993) analyzes the effect of estimation error by distinguishing between
the true efficient frontier, the estimated frontier, and the actual frontier. Using the true
(but unknown) parameters, the “true” efficient frontier is computed. Next, using the
estimated input parameters, a similar frontier, the “estimated” frontier, is determined.
Finally, by using the portfolio weights derived from the estimated parameters, and then
applying the true parameters, the “actual” frontier is obtained. In short, the estimated
frontier is what appears to be the case based on the data and the estimated parameters,
but the actual frontier is what really occurs based on the true parameters (Broadie
1993, p. 24). In a simulation study he concludes that the errors of the estimated returns
using historical data are so large that these parameter estimates should always be used
with caution.

In this paper, we follow Broadie’s method to investigate the real outcome of the
portfolios.

2.2 Robustness

The problems of the Markowitz approach described above have given rise to a large and
growing body of literature that deals with estimation errors in order to create “robust
portfolios”. The literature contains two standard methods for dealing with estimation
errors: the robust estimation method, which incorporates uncertainty sets directly in
the optimization process, and the Bayesian method, which incorporates uncertainty to
generate robust inputs (for an overview, see Fabozzi 2007, 2010; Scutellà and Recchia
2010).

However, the term “robustness” is not well defined in the literature (Jen 2001 for
at least 17 different definitions of robustness in different contexts and Brinkmann
2007, p. 18). As stated by Tütüncü and Koenig (2004): “Generally speaking, robust
optimization refers to finding solutions to given optimization problems with uncertain
input parameters that will achieve good objective values for all, or most, realizations
of the uncertain input parameters.” This concept is called “solution robustness” as the
value of the objective function remains stable.

Mostly, robustness is associated with such stable solutions in the case of varying
input parameters, as most techniques provided in the literature try to reduce the sensi-
tivity of the outcome of the Markowitz-optimal portfolios to input uncertainty or the
impact of estimation errors (Goldfarb and Iyengar 2003, p. 2; Fabozzi 2007, p. 10).
However, robustness of the solution (mean and variance of the portfolio returns) does
not imply structural robustness, i.e., the stability of the asset weights.

123



On the robustness of risk-based asset allocations 373

Tütüncü and Koenig (2004) suggest an alternative definition of robustness, suggest-
ing that a solution is robust when it “has the best performance under its worst case”.
The worst case is defined as a situation where the input parameters are poor, i.e., low
returns and high standard deviations of the assets. The question, then, is, given the
same worst-case scenario, will some portfolio constructions have a better performance
than other portfolio optimization techniques?

Here, we follow Brinkmann (2007) and define and study robust portfolios with
respect to two characteristics:

• Solution robust: these are portfolios whose return and variance remain stable with
respect to uncertain varying input parameters;

– worst-case robust: these are portfolios that provide good outcomes even in
bad circumstances (low returns and high standard deviations of the assets;
obviously, this is simply a special case of solution robustness);

• Structure robust: these are portfolios whose structures are insensitive to changing
input parameters (or, more precisely, portfolios that do not have extreme alloca-
tions and sensitive weights).

In Brinkmann (2007), the two characteristics are incompatible and “robustness” is
dependent on the position of the portfolio on the efficient frontier. Portfolios that are
near the minimum-variance portfolio are more structure robust, whereas portfolios that
lie “near the investor-optimal mean-variance portfolio” are more worst-case robust.
However, the results vary with the underlying data set and none of the approaches
investigated show a good worst-case performance (Brinkmann 2007, p. 281). In this
paper, we explore whether this is also the case for the ERC and the PCA portfolio.

2.3 ERC portfolios

Recent years have witnessed a growing interest in portfolio construction approaches
focused on risk and diversification, called equal risk contribution portfolios or, more
simply, risk parity. The first term is used more often by academics, whereas the second
term is popular among practitioners. While the traditional “efficient frontier” portfolio
construction involves allocating capital, thus resulting in individual asset risk contri-
butions, the equal risk contributions approach turns that concept on its head, with risk
allocation now determining the capital allocation (Morris and Haeusler 2010). With
equal contributions to risk, risk diversification within the portfolio is achieved and no
asset class dominates the total portfolio risk. For example, whereas an allocation of
50/50 in terms of weights between stocks and bonds is assumed to be diversified, it is
known that the volatility for equities is considerably larger than that for bonds (e.g.,
for the Swiss market, the stock volatility was about four times higher than that of the
bonds; Young and Johnson 2004). Many asset management firms claim the benefits
of the ERC portfolio, but academics tend to be skeptical of these claims since it is a
new approach to asset allocation and not all consequences are well known yet.

Although this investment idea dates back to the 1990s, it has only been the focus of
a lot of attention in the last 6 years (Schwartz 2011). This seems related to the global
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financial crisis in 2008, which caused investors to question what had gone wrong with
many portfolios that were believed to be diversified (Lee 2011).

The ERC portfolio is a tradeoff between the naive and the MV strategy. The naive
strategy splits the capital equally, the MV strategy splits the capital with respect to
equal marginal risk contributions, and the ERC strategy splits the risk equally across the
assets (equally absolute risk contributions). However, in a portfolio with many assets
and quite similar variances and covariances, there is no significant difference between
the ERC and the naive approach. On the other hand, when the risks of the assets are
very different, the MV and the ERC approach strongly dominate the naive approach.
However, whereas the ERC portfolio is always diversified in terms of weights and
risk contributions, the MV approach is much more concentrated (Maillard et al. 2010,
p. 11).

As the ERC portfolio technique is a heuristic approach, it does not lie on the ex
ante estimated efficient frontier. Thus, there are other mean-variance portfolios with
the same risk but a higher return or with the same return but a lower risk. Because of
this, in practice, the ERC technique is mostly used with leverage.

2.4 Portfolio construction via principal component analysis

Another new idea based on risk diversification is from Meucci (2009), who states that
whereas ”the qualitative definition of diversification is that the portfolio is not heavily
exposed to individual shocks, there exists no broadly accepted, unique, satisfactory
methodology to precisely quantify and manage diversification” (Meucci 2009, p. 2)
(for an overview of different approaches to the measurement of diversification, see
Frahm and Wiechers 2011). Meucci’s idea is based on the concept of principal com-
ponents introduced by Partovi and Caputo (2004). The return data of the n assets is
transformed into a set of i linear combinations of these assets, called principal com-
ponents or principal portfolios. The attractive feature of principal portfolios is that
they are uncorrelated with each other. The i principal portfolios can be interpreted as
factors, which explain “most” of the variance in the data (Frahm and Wiechers 2011,
p. 15). The principal portfolios are the risk drivers of the portfolio, which, by definition,
are uncorrelated. As outlined by Frahm and Wiechers (2011), “Meuccis’s definition
of a well-diversified portfolio can be stated as a portfolio, the risk drivers of which are
invested into equally. Put another way, the portfolio would be not well diversified if
not all risk drivers are invested into equally.”

The PCA approach appears to be an interesting approach to risk diversification
but, to the best of our knowledge, the performance of this approach has not yet been
studied. It is discussed by Frahm and Wiechers (2011) and by Stefanovits (2010), but
is only used to measure the diversification of a portfolio. Stefanovits (2010) concludes
that “it would be interesting to compare the allocation and the performance of the two
principles (ERC and PCA) in some examples.”

As the ERC and PCA portfolio allocations claim to provide real risk diversifica-
tion, they should also be robust. Because of the same underlying idea of these recent
portfolio construction techniques, in this paper we compare the performance as well
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as the robustness with respect to the two characteristics of ERC and PCA portfolios
discussed above.

The code for calculation of the PCA (maximum entropy) portfolio in MATLAB is
taken from Meucci (see: http://www.symmys.com/node/199).

3 Description of the asset-allocation models considered

In this section, we briefly describe the portfolios that are investigated with respect
to their robustness. To obtain a fair comparison of the robustness of the different
approaches, the following constraints are applied for every optimization technique:

n∑

i=1

wi = 1,

wi ≥ 0, i = 1, . . . , n.

3.1 Classical Markowitz’ mean-variance optimization

The mean-variance framework of Markowitz (1952) is the major model used today in
asset allocation and active portfolio management (Fabozzi et al. 2010). Mean-variance
optimal portfolios deliver the highest expected return given the levels of risk, where
risk is typically measured by the standard deviation or volatility of returns. If the
input parameters, such as forecasts of returns, risks, and risk aversion, are defined, the
mean-variance portfolios deliver the optimal allocation of wealth (Lee 2011).

The classical Markowitz mean-variance optimization model can be formulated as
follows:

Minimize the variance subject to a lower limit on the expected return:

min wTV w

s.t. μTw ≥ r∗ (1)

where μ and V denote the estimated expected return vector and the covariance matrix
of the given assets, respectively and r∗ indicates a specified target return.

3.2 Equally weighted portfolio (1/n)

The equally weighted portfolio assigns to each asset the same weight. With respect
to the asset weights, this strategy is well diversified. However, this may not be the
case due to covariation between different asset returns (Lindberg 2009). There is no
objective function associated with the EW portfolio; the strategy involves holding a
portfolio weight w = 1/n in each of the n risky assets (DeMiguel et al. 2007, p. 1922).
Obviously, this approach ignores both the return and risk prospects of the investments
(Lee 2011).
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3.3 Minimum-variance portfolio (MV)

Due to the fact that the estimation error in the sample mean is much larger than in
the sample covariance matrix, the minimum-variance portfolio has garnered a great
deal of interest, since it relies solely on estimates of the covariance matrix (DeMiguel
and Nogales 2009). It is also the only portfolio that is on the efficient frontier without
expected returns as inputs (Lee 2011). The optimization is similiar to the efficient
portfolio, but without considering the expected returns of the assets:

min wTV w, (2)

where V denotes the covariance matrix of the assets.

3.4 Equal risk contribution portfolio

There are various approaches to equal risk contribution portfolios, but we focus on the
one proposed by Maillard et al. (2010). The ERC portfolio is obtained by equalizing
risk contributions from the assets of the portfolio. The risk contribution of one asset is
the share of total portfolio risk attributable to that asset. It is computed as the product
of the asset weight with its marginal risk contribution, the latter being given by the
change in the total risk of the portfolio induced by an increase in holdings of the asset.
The principle can be applied to different risk measures, but we follow the approach of
Maillard et al. (2010) and restrict ourselves to the volatility of the portfolio as a risk
measure. The marginal risk contributions are defined as follows:

MRC = ∂σ(w)

∂wi
= V × w

σ(w)
,

where σ(w) = √
(wTVw) is the portfolio standard deviation, V the variance–

covariance matrix and w the vector of the portfolio weights. The portfolio risk can be
viewed as the sum of the absolute risk contributions:

σ(w) =
n∑

i=1

ARCi ,

with ARCi = wi × MRCi as the absolute risk contribution of asset i .
Starting from the definition of the risk contribution, the equally risk contribution

strategy finds a risk-balanced portfolio such that the risk contribution is the same for
all assets of the portfolio. Thus the following optimization problem is considered:

min f (w)

where f (w) =
n∑

i=1

n∑

j=1

(ARCi − ARC j )
2. (3)
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3.5 Principal-portfolio (PCA)

Partovi and Caputo (2004) propose a new methodology for building the efficient fron-
tier: the original set of assets is decomposed in uncorrelated portfolios, the so-called
principal portfolios. Meucci (2009) proposes a diversification number based on the
principal portfolios, namely, the entropy: the effective number of uncorrelated bets
in a portfolio. To optimize diversification, the entropy is maximized under a set of
investment constraints (Meucci 2009, p. 11): PCA makes use of the spectral decom-
position theorem from linear algebra, which ensures that the covariance matrix �

can be written as the product: ET�E ≡ �. In this expression, the diagonal matrix
� ≡ diag(λ1, . . . , λi ), i = 1, . . . , n contains the eigenvalues of �, sorted in decreas-
ing order, and the columns of the matrix E ≡ (e1, . . . , ei ), i = 1, . . . , n are the
respective eigenvectors. The eigenvectors define a set of the n principal portfolios,
whose returns R̃ ≡ E−1R are decreasingly responsible for the randomness in the
portfolio. The eigenvalues � are the variances of the principal portfolios (Meucci
2009, p. 3). The original portfolio w is now reconstructed as a linear combination of
the principal portfolios via w̃ ≡ E−1w. Finally, Meucci introduces the diversification
distribution:

pi ≡ w̃2
i λi

σ 2
w

, i = 1, . . . , n

with w̃2
i λi as the variance due to the i th principal portfolio and σ 2

w as the variance
of the portfolio w. The pi ’s add up to one and measure the risk that arises from
the i th weighted principal portfolio. The portfolio is well diversified when its total
variance is not concentrated in a few pi ’s, but instead the pi ’s are approximately
equal. The diversification of a portfolio can then be measured by the entropy based on
the diversification distribution:

NEnt ≡ exp

(
−

n∑

i=1

pi lnpi

)
.

This entropy measures the number of truly independent sources of risk that are apparent
in the portfolio. A higher value of NEnt means a more diversified portfolio, whereas a
lower value indicates concentration in only a few independent sources of risk (Frahm
and Wiechers 2011, p. 19).

In the style of (Bera and Park 2008), Meucci proposes a new heuristic for asset
selection based on maximizing the entropy (Meucci 2009, p. 11):

wϕ ≡ max
w∈C

NEnt(w), (4)

where C is a set of investment constraints (e.g. short-sell and budget constraint).
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4 The effect of estimation errors on the portfolio composition

Now we study the effect of estimation errors on the portfolio allocations by comparing
the performance measures to be introduced in Sect. 4.1. We first conduct a simulation
study based on unrealistic simple true parameters of the assets so as to examine the pure
effect of the estimation errors on the portfolio allocations when all assets have constant
true returns as well as constant true correlations. Next, we examine the portfolio
performances in an empirical dataset to observe the real outcome.

4.1 Performance measures

Comparison of robustness is based on the following different performance measures.
To compare the sensitivity of the asset weights to changes in input parameters and

the extreme allocations, the minimum, the maximum, and the standard deviation of
each portfolio asset weight is computed across the simulation runs.

To measure the distance of the estimated portfolio asset weights to the true portfolio
asset weights, we compute the (unnormalized) Euclidean distance of the resulting
weight vectors for each simulation run. To quantify the robustness of the portfolio
weights, we also compute the standard deviation of the particular distances. As the
performance measures are computed for the simulation as well as for the empirical
study, the running index k is taken either for the simulation run or the month of the
optimization.

These measures are given by

Mean distance (MDw)

= 1

NumSim

√
(westimated(k) − wtrue)T(westimated(k) − wtrue) (5)

Standarddeviaton (SDw) =
√√√√ 1

NumSim

NumSim∑

k=1

(dk − md)2, (6)

where dk is the distance for the optimization in k and md is the mean distance.
To quantify the difference between the estimated portfolio and the actual portfolio,

the average difference of the μ- and σ -values is computed. This shows the “large degree
to which estimated frontiers are optimistically biased predictors of actual portfolio
performance” (Broadie 1993, p. 45). The average differences are given by

AVμ = 1

NumSim

NumSim∑

k=1

(μestimated(k) − μactual(k)) (7)

AVσ = 1

NumSim

NumSim∑

k=1

(σestimated(k) − σactual(k)). (8)

Generally the AVμ is positive whereas the AVσ is negative as the mean is overes-
timated and the risk underestimated.
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We now examine different appraisal factors applied to the portfolios: the Sharpe
ratio, the turnover, the Herfindahl index for the weights and the risk contributions, and
the entropy, as well as the value at risk (VaR) and the maximum drawdown (MDD).

The Sharpe ratio and the Herfindahl indices are given by

Sharpe ratio = 1

NumSim

NumSim∑

k=1

μactual(k)

σactual(k)
(9)

hk =
NumSim∑

k=1

w2
estimated,k or hk =

NumSim∑

k=1

C R2
actual,k, (10)

where w are the estimated weights and CR are the actual percental risk contributions:
C Ri = ARCi

σactual
and

∑n
i=1 C R = 1.

This index takes the value 1 for a perfectly concentrated portfolio and 1/n for a
portfolio with uniform weights. To scale the statistics onto [0, 1], we consider the
modified Herfindahl index (Maillard et al. 2010, p. 22):

Herfindahlw or rc = 1

NumSim

hk − 1/n

1 − 1/n
. (11)

We also calculate the entropy (see Sect. 3.5) for the actual parameters in order to
compare the PCA approach to the other techniques. The 0.95 VaR and the maximum
drawdown (defined as the cumulated largest drop from a peak to a trough) for the
actual portfolio return are also computed to compare the risk of the different portfolio
approaches.

4.2 Simulation study

4.2.1 Structure robustness

To study and compare the effect of the estimation errors on the different portfolio
approaches, we perform a simulation study similar to Michaud (1998) and Broadie
(1993). It is comprised of predetermination of the true mean returns and true variance–
covariance matrix, generation of a sequence of returns in every simulation run that
are statistically equivalent to the true returns, subsequent determination of portfolio
weights for every simulation run, and, finally, evaluation of robustness.

The specific steps of the simulation study are as follows.

1. Predetermine
• n the number of securities,
• μ the vector of true means, i.e., μ = (μ1, . . . , μn),
• σ the vector of true standard deviations of returns, i.e., σ = (σ1, . . . , σn),
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• ρ the matrix of true correlations of returns of the securities, i.e., ρi j is the true
correlation of returns of securities j and i , for j, i = 1, . . . , n.

2. Identify the true portfolio composition w = (w1, . . . , wn) from the inputs of (1).
The true variance–covariance matrix � = σTρσ is computed.

3. Resample from the inputs of (1) by taking 60 draws from a multivariate normal
distribution 	(μ,�) and estimate new input parameters μ̂ and �̂.

4. Repeat step (3) NumSim times and save the estimated parameters.
5. Identify the portfolio composition ŵ = ((ŵ1), . . . , (ŵn)) with the estimators μ̂

and �̂ from step (4). This results in NumSim different portfolio optimizations.
The target return of the efficient portfolio equals the resulting true ERC portfolio
return.

6. Compare the robustness of the approaches.

To ensure that every portfolio optimization technique has the same data sample as
inputs, we draw the samples and save the estimated parameters. After this, the portfolio
optimization for different approaches is performed.

To investigate robustness, at first a simple framework is used, featuring

• 10 assets with
• multivariate normal distributed returns,
• each asset with a return of 1 % and a standard deviation of 8 %,
• a correlation of 0.5 among all assets, and
• NumSim = 10,000.

As the naive portfolio is the true asset allocation according to the predetermined
dataset, its results are not really comparable. The target return of the efficient portfolio
is here 1 %. If it is not possible to attain the efficient portfolio (the target return is too
restrictive), the draw is dropped from the analysis. We first focus our analyses on the
generated weights of the different portfolio optimization techniques.

For each optimization technique, the average asset weights do not much differ not
widely from those of the equally weighted portfolio, in which each asset has a weight
of 10 %. This is not surprising due to the assumptions made and therefore is not shown
here. However, the spread between the minimum and the maximum asset weights is
not the same.

Table 1 shows the minimum and the maximum of the weights across the 10,000
runs for each asset of the portfolio.

As is obvious from Table 1, each approach except the naive and the ERC portfolio
provides a minimum asset weight of 0 %. As the naive asset weights do not vary by
construction, they can be ignored. The ERC portfolio shows a minimum asset weight
of 6 %.

Analysis of the maximum portfolio weights provides evidence that the PCA and
the Markowitz efficient portfolio take the largest possible position in each asset. The
ERC portfolio shows a maximum weight across all assets of only about 17 %, whereas
the MV approach takes a position of about 60 %.

To assess the stability of the asset weights across the 10,000 portfolio formations,
we look at the standard deviation of the asset weights. This value is indicative of
the redeployment of the portfolio. The higher the variation of the asset weights, the
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Table 1 Minimum and maximum portfolio weights for the different portfolios (%)

Asset Weights (%) Markowitz ERC PCA MV 1/n

Asset 1 Max 100 16 100 59 10

Min 0 7 0 0 10

Asset 2 Max 100 16 100 61 10

Min 0 6 0 0 10

Asset 3 Max 100 16 100 56 10

Min 0 6 0 0 10

Asset 4 Max 100 16 100 56 10

Min 0 7 0 0 10

Asset 5 Max 100 17 100 59 10

Min 0 7 0 0 10

Asset 6 Max 97 16 100 53 10

Min 0 7 0 0 10

Asset 7 Max 100 17 100 61 10

Min 0 6 0 0 10

Asset 8 Max 99 19 100 61 10

Min 0 7 0 0 10

Asset 9 Max 100 16 100 59 10

Min 0 7 0 0 10

Asset 10 Max 100 16 100 56 10

Min 0 7 0 0 10

Average Max 100 17 100 63 10

Min 0 7 0 0 10

Average minimum and maximum estimated portfolio weights across 10,000 simulation runs per asset. The
inputs for the portfolio optimizations in each simulation run are the same and the assets have the same
“true” return and volatility. The target return for the efficient portfolio equals the true ERC portfolio return,
which is 1 % in this setting

Table 2 Standard deviations of
the portfolio weights

Average standard deviations of
the estimated weights across
10,000 simulation runs and
assets

σweights (%)

Markowitz 13.1

ERC 1.1

PCA 29.1

MV 10.1

1/n 0

higher the investor’s transaction costs. Thus, this is an important indicator of structure
robustness.

Table 2 shows the average standard deviations of the weights across 10,000 simu-
lation runs and assets. The average standard deviations across the simulation runs per
asset are given the Appendix. As expected from the spread of the portfolio weights,
the same is the case in terms of the standard deviation of the portfolio weights.
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Table 3 Performance statistics of the different portfolios for the simulation study

Markowitz ERC PCA MV 1/n

μestimated (%) 1.000 1.003 0.992 1.000 1.003

μactual (%) 1.000 1.000 1.000 1.000 1.000

σestimated (%) 5.890 5.834 7.213 5.519 5.908

σactual (%) 6.370 5.936 7.890 6.200 5.933

MDw (%) 39.043 3.429 91.778 31.277 0.000

SDw (%) 13.854 0.933 6.797 6.104 0.000

AV μ (%) 0.000 0.003 −0.008 0.000 0.003

AV σ (%) −0.395 −0.102 −0.677 −0.681 −0.025

Sharpe ratio (%) 15.736 16.845 12.687 16.134 16.855

Herfindahlw (%) 19.069 0.140 94.105 11.283 0.000

Herfindahlrc (%) 21.564 0.168 95.553 12.769 0.000

Turnover (%) 64.018 6.274 89.893 55.151 0.000

VaR (%) −11.48 −10.76 −13.98 −11.20 −10.76

MDD (%) 0.000 0.000 0.000 0.000 0.000

Entropy 1.644 1.011 3.641 1.522 1.000

The statistics are all given as means across 10,000 portfolio optimizations and are based on actual parameters.
For better comparison they are all shown in percentage, except the entropy. The target return for the
Markowitz portfolio is 1 %

Surprisingly, we observe the highest standard deviation, of about 29 %, for every
asset in PCA portfolios. The Markowitz approaches deliver a standard deviation of
about 13 and 10 %. Despite the 1/n portfolio, which by construction delivers a standard
deviation of 0 %, the ERC portfolio has the smallest standard deviation of approxi-
mately 1 %.

Table 3 displays the performance measures for comparison of portfolio robustness
as well as performance statistics.

The estimation error (AV μ) of the returns is near 0 % for all approaches, which
is not surprising in this special setting. The difference is more obvious between the
estimated and the actual risk (AVσ ). The MV and the PCA approach underestimate
the risk by about 0.7 % and the Markowitz approach does the same by about 0.4.
Additionally, the PCA approach has a much higher volatility.

The distance measures (MDw and SDw) show evidence that the PCA portfolio
has the highest deviation from the true portfolio weights, followed by the efficient
and the MV portfolio. The ERC portfolio shows the smallest distance on average
and the smallest standard deviation of the distance (except for the naive portfolio, by
construction).

The mean Sharpe ratio (based on actual parameters) is the highest for the naive
approach, closely followed by the ERC approach. The PCA approach exhibits a poor
Sharpe ratio and alarmingly poor weight and risk diversification, as well as a huge
turnover. The ERC portfolio is highly diversified in terms of weights, as well as in
terms of risk contributions (which is related in this dataset). Notice that although the
MV approach is designed to minimize portfolio risk, it is more concentrated in terms
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of risk contributions compared to the ERC approach. As to the VaR, the PCA has the
highest value, followed by the Markowitz approaches.

4.2.2 Worst-case performance

To compare the performance of the different approaches in a worst-case scenario,
we modify the simulation described above so that only undesirable input values are
obtained:

1. Same as in Sect. 4.2.1.
2. Resample from the inputs of (1) by taking 60 draws from a multivariate normal

distribution 	(μ,�).
3. Generate a bootstrap sample by taking 1,000 data samples (each data sample has

60 returns for each asset) from the data in step (2) and define the array μ =
mean (Bootstrap sample returns) (dimension: 1,000xn matrix) and the array of
covariance matrices � = cov (Bootstrap sample returns) (dimension: nxnx1,000
matrix).

4. Estimate the best mean = max(μ) and the worst mean = min(μ) from the mean’s
in step (3).

5. Estimate the best variance–covariance matrix through taking the lowest entry for
each position in the matrix from all available matrices from step (3) and the worst
variance–covariance matrix through taking the highest entry.

6. Repeat steps (2), (3), (4) and (5) NumSim times and save the input parameters.
7. Perform the portfolio optimizations with the input parameters from step (6) by

taking the worst means and the worst variance–covariances as the true and the best
means and the best variance–covariances as the estimated input parameters.

8. Compare the performance (worst-case robustness) of the approaches as described
above.

This setting is constructed to examine a worst case in which the market is in a bull
phase and the portfolio is estimated with the best parameters and then the situation
changes to a bear market and the true parameters are the worst.

Table 4 summarizes the results for the worst-case simulation.
The actual mean portfolio returns in the worst case are negative and much lower

than the estimated portfolio returns (by construction) for all the approaches and there
is no real difference between the actual returns. However, the actual return of the ERC
portfolio is the lowest after the naive approach. The volatility is overestimated by the
PCA and slightly by the efficient portfolio, whereas it is underestimated by the other
approaches. The estimation error of the portfolio risk is the largest for the PCA and
the MV portfolios.

The mean, as well as the standard deviation, of the distance again demonstrate that
the ERC portfolio displays the best stability in terms of weights and is thus structure
robust.

The Sharpe ratio is negative and thus not informative (in this case, a large negative
portfolio return with a large portfolio standard deviation results in a better Sharpe ratio
than only a slightly negative portfolio return with a small portfolio standard deviation
(see, e.g., Brinkmann 2007, p. 185). The Herfindahl index shows that the ERC portfolio
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Table 4 Performance statistics for the worst case simulation

Efficient ERC PCA MV Naive

μestimated (%) 4.279 4.279 4.221 4.221 4.308

μactual (%) −2.215 −2.263 −2.198 −2.205 −2.291

σestimated (%) 8.431 6.850 10.562 6.617 7.046

σactual (%) 8.262 8.075 8.581 7.985 8.176

MDw (%) 44.507 6.657 96.453 34.281 0.000

SDw (%) 17.068 3.337 30.788 10.075 0.000

AV μ (%) 5.574 6.542 6.419 6.425 6.599

AV σ (%) 0.145 −1.225 1.981 −1.368 −1.131

Sharpe ratio (%) −26.685 −28.051 −25.711 −27.647 −28.047

Herfindahlw (%) 15.813 0.815 37.543 8.414 0.000

Herfindahlrc (%) 17.014 0.703 41.007 8.561 0.134

Turnover (%) 59.524 14.237 78.280 48.181 0.000

VaR (%) −11.374 −11.020 −11.916 −10.929 −11.158

MDD (%) −19,009.030 −22,625.549 −21,982.066 −22,045.837 −22,906.933

Entropy 1.409 1.055 2.102 1.295 1.009

The statistics are given as means across 10,000 portfolio optimizations and are based on actual parameters.
The worst case is seen here as a situation, in which the portfolio is estimated with the “best” parameters,
but the “worst” parameters are the “true” parameters. The target return for the Markowitz portfolio is equal
to the estimated ERC portfolio return

is again diversified in terms of weights (except the naive portfolio) as well as in terms
of risk contributions. However, the naive portfolio has the lowest Herfindahl index
based on the actual parameters. The PCA portfolio delivers the worst diversification,
the highest turnover, and the highest VaR. However, concerning the drawdowns, the
naive portfolio displays the largest drop, followed by the ERC, the MV, and the PCA
approaches.

4.2.3 Results of the simulation study

The results show that the PCA portfolio delivers the worst results when it comes to
robustness. It displays large changes in asset weights, extreme positions, and large
estimation errors of portfolio returns and risks in both cases. We suspect that this is
attributable to the statistical concept of the PCA itself, as the principal components
have to be estimated before portfolio optimization, which results in an additional
estimation error. As the PCA portfolio is based on all principal components, but the
components are decreasingly responsible for the randomness in the market, change in
the input parameters induces a drastic change in the last factor and thus in the asset
weights. Based on these assumptions, it would be useful to examine the robustness
of a portfolio where the allocation is based on the PCA, but the weight allocation is
proportional to the explanation of the factors. This would perhaps reduce the large
redeployment of the weights.
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The ERC portfolio displays stability in regard to the standard deviation as well as
diversification in terms of weights and low estimation errors in the simulation study.
However, in the worst case, it provides worse outcomes than the Markowitz approaches
and is thus not worst-case robust. We examine in the next section how the portfolios
perform under real circumstances by means of a simulation based on empirical, not
artificial, data.

4.3 Empirical study

We now examine the robustness of the approaches in an empirical dataset so as to give
some practical application to our results.

We perform a historical simulation based on a global diversified portfolio of major
asset classes in the period from 31.01.1995–30.07.2010 by using daily returns and
rebalancing the portfolio monthly. The first estimated parameters are the mean and the
covariance matrix, based on the first 12-month daily returns (31.01.1995–31.01.1996).
We construct the true portfolio parameters by using the return vector and the true
covariance matrix from the following month. By rolling the dataset 1 month further,
we compare the robustness of the approaches across 174 months. We take a global
dataset from (Maillard et al. 2010), which provides variation in the asset volatilities and
correlations, to examine differences between the portfolio techniques. As described
above, in a portfolio with quite similar risks, there is no significant difference between
the ERC and the naive approach, but if the risks differ, the differences are obvious.
Therefore, we examine the portfolio optimizations in a dataset with diverse asset risks.

As a robustness check, we also examine the case when the market is assumed
to be in an equilibrium and the true returns as well as the true covariance matrices
are estimated by applying the capital asset pricing model (CAPM) from Sharpe and
the Black Litterman implied returns. To estimate the CAPM, the World-Datastream
Market Index is taken as the “Market Index” because the portfolio consists of different
major indices, and the 3-month T-Bill rate is taken as the risk-free rate. The results are
quite similiar and can be found in the Appendix.

4.3.1 Structure robustness

The correlation matrix across the whole sample of 174 months is set out in Table 5.
The individual risks, as well as the correlations of the asset classes, are very different.

The average maximum and minimum estimated asset weights across the 174 opti-
mizations across all assets are summarized in Table 6. (The results for every asset in
detail are given in the Appendix.) We observe substantial diversity across the different
portfolio approaches. For example, the PCA portfolio takes large extreme positions
in almost every asset, whereas the ERC portfolio is much more diversified. The ERC
portfolio exhibits the highest weights in bonds due to lower volatilities and correla-
tions. The MV approach also focuses on bonds, but to a much greater degree than the
ERC approach. The efficient portfolio takes middle-high positions in every asset by
showing the highest weights also in the two US bonds and the emerging market bond.
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Table 6 Minimum and maximum portfolio weights for the different portfolios in the global dataset

Asset Weights (%) Markowitz ERC PCA MV 1/n

Average Max 35 15 66 21 8

Min 0 3 0 0 8

Table 7 Average standard
deviations of the portfolio
weights across 174 months and
assets

The standard deviations per
asset are given in the Appendix

Average σw (%)

Markowitz 7.31

ERC 2.85

PCA 12.31

MV 5.46

1/n 0

Table 7 displays the average standard deviations of the asset weights across all
months and assets (see Table 13 in the Appendix for standard deviations of every
asset). The deviations show a large variability of the PCA portfolio in almost every
asset. The ERC portfolio exhibits in the USD-BND the sole high standard deviation
of 12 %, whereas the MV approach displays approximately 20 and 27 % in the US
bonds. The box plot graphs in Figs. 1 and 2 (in the Appendix) show the distribution
of the estimated weights and risk contributions. The highest variability is observable
for bonds.

Results of the solution robustness as well as of the historical performance are
summarized in Table 8.

The estimation error in the mean across the whole sample period (AVμ) is the
largest for the Markowitz and the MV approaches, at 0.011 and 0.009 %, respectively.
The ERC portfolio has a lower estimation error of 0.007 % and the naive and the PCA
approaches have the smallest estimation error of the returns at 0.004 %. The estimated
volatility is lower than the actual volatility for the PCA and the MV approaches. The
ERC and the MV approaches estimate the actual portfolio risk the best; however, the
ERC slightly overestimates and the MV slightly underestimates the risk. The PCA
approach underestimates the actual portfolio risk the most (by 0.013 %) and the naive
approach highly overestimates the actual risk (by 0.030 %).

The distances between the true and the estimated weights, as well as the variation
of them, are the largest for the PCA portfolio. The ERC portfolio exhibits the lowest
distance statistics of all the approaches (except the naive approach by construction).
According to the Herfindahl indices, the ERC and the naive approach are both diver-
sified in terms of risk, whereas the naive approach is the most diversified in terms of
weights. Note that we computed the Herfindahl indices on the actual parameters and
therefore the ERC portfolio does not have a value of 0 %. Based on the estimated
parameters, the ERC portfolio has a Herfindah lrc of 0 %, whereas the naive approach
displays 4.49 %. Surprisingly, the MV is most concentrated in terms of weights as
well as in terms of individual risks. The turnover is the highest for the PCA approach,
followed by the efficient portfolio. The drawdowns show the worst performance for
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Table 8 Performance statistics of the global portfolio

Markowitz ERC PCA MV 1/n

μestimated (%) 0.023 0.023 0.025 0.024 0.020

μactual (%) 0.011 0.016 0.021 0.015 0.017

σestimated (%) 0.191 0.275 0.468 0.168 0.649

σactual (%) 0.188 0.273 0.481 0.169 0.618

MDw (%) 45.851 17.505 69.891 34.675 0.000

SDw (%) 23.827 7.899 28.510 23.273 0.000

AV μ (%) 0.011 0.007 0.004 0.009 0.004

AV σ (%) 0.003 0.002 −0.013 −0.002 0.030

Sharpe ratio (%) 12.706 11.070 6.888 20.459 9.539

Herfindahlw (%) 40.091 10.314 37.628 53.518 0.000

Herfindahlrc (%) 44.559 5.860 45.714 55.839 5.870

Turnover (%) 13.706 2.448 41.792 4.671 0.000

VaR (%) −9.025 −11.145 −12.974 −11.515 −21.478

MDD (%) −19.406 −22.295 −27.261 −18.954 −58.571

Entropy 1.000 4.027 4.902 6.718 1.759

μannual (%) 2.745 3.932 5.357 3.763 4.143

μcumulative (%) 38.173 58.617 83.680 56.598 60.378

σannual (%) 2.965 4.317 7.605 2.674 9.775

Sharperatioannual (%) 92.592 91.060 70.441 140.703 42.388

The statistics are given as means across 174 months of portfolio optimizations, which were rebalanced
monthly. For better comparison they are all shown in percentage, except the entropy. The annual (and
cumulative) return, standard deviation and Sharpe ratio are based on the actual parameters and are calculated
as follows: μannual = μactual ×250, σannual = σactual ×

√
250, Sharperatioannual = μannual

σannual
, as we assume

250 trading days in a year

the naive approach, followed by the PCA and the ERC approaches. The mean entropy
has the highest value, 7, for the MV and not for the PCA approach (again due to
actual parameters!), whereas the PCA and the ERC approaches display an entropy
of approximately 5 and 4, respectively. With respect to the entropy, the Markowitz
approach has the lowest diversification of uncorrelated risks in the portfolio, followed
by the naive approach.

According to the performance statistics, the ERC and the Markowitz approaches
have a similiar average Sharpe ratio; however, the Markowitz approach has a higher
Sharpe ratio due to lower actual return as well as a lower actual risk (the relation of
the annual Sharpe ratio is different, as it is calculated simply through the annualized
values and not as the average of all months as is the mean Sharpe ratio). The PCA
portfolio demonstrates the highest cumulative return and the MV the highest Sharpe
ratio. The naive approach has the rhighest annualized volatility, which results in a low
Sharpe Ratio. The PCA displays the highest annualized return of the approaches, but
also a high annualized volatility. The ERC and the MV approaches have comparable
cumulative returns; however, the ERC approach has a higher annualized return, and
the MV approach the lowest annual standard deviation, which results in a high annual
Sharpe ratio.
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4.3.2 Worst-case performance

The worst-case scenario for the empirical study is performed on the basis of the recent
financial crisis. We choose the dataset from 30.05.2008–30.04.2009, which results in
12 months of data. The crisis period is variously defined in the literature, but the peak
of the crisis is definitely included in our time frame (see e.g. Chong 2011, Campello
et al. 2010). The estimated and the true parameters are obtained as above.

The annualized returns are all negative and the volatilities, as well as the correla-
tions, are all higher than in the whole data sample (see Table 9). This is typical for a
crisis period.

According to the estimated weights, all portfolios are concentrated on the bond side
and hold the highest positions in the USD-BND and the USD-HY. The target return
for the efficient portfolio equals −0.015 %, which is attained by the MV portfolio.

All approaches overestimate the return and underestimate the risk. The PCA
approach has the largest estimation errors in the portfolio outcomes. The ERC portfo-
lio has a lower estimation error than the MV portfolio in the mean, as well as a slightly
lower estimation error in the portfolio risk. The naive approach is the most diversified
in terms of risk contributions in the crisis, but as one can see from the annual volatility
and the cumulative return, this is not useful for the performance, as the cumulative
return and the volatility are the poorest. Moreover, this approach exhibits a huge draw-
down compared to all the others. Moreover, the distances show the worst result for the
PCA portfolio. We do not display the extreme positions and the standard deviations
for the worst case explicitly, but the PCA approach also displays the largest variability.
According to the cumulative return and the drawdown, the ERC approach is worse
than the MV approach. The entropy of the MV approach based on actual parameters
is again higher than that of the PCA approach (Table 10).

As no one would hold a portfolio if the ex ante estimated return is expected to be
negative, we also constructed a “hypothetical” worst case to examine the estimation
error when the estimated parameters are positive, but the true parameters are negative
and the market “crashes” (sudden, unexpected decline of the prices). For this, we chose
the highest estimated returns across all estimated parameters and the lowest true returns
across all true parameters and assume that the worst true parameters follow the best
estimated parameters. Thus, we shifted the historical time periods and the simulation
is based on 17 months.

Table 11 shows the result for the hypothetical, but possible, market crash:
The actual portfolio return of the risk-based asset allocations is lower than the actual

returns of the Markowitz approaches and the actual risk of the ERC and PCA portfolio
is also higher than that of the efficient and the MV approaches. The estimation errors
of the return and the risk are also higher than for the mean-variance approaches (except
the estimation error of the ERC portfolio for the actual portfolio risk). Concerning the
cumulative return and the drawdowns, the ERC and the PCA display the lowest return
and the highest drawdowns after the naive approach.

So when the market crashes, the ERC and the PCA approaches display worse
performance statistics and a higher loss than do the mean-variance approaches.
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On the robustness of risk-based asset allocations 391

Table 10 Performance statistics of the global portfolio in the “worst case”

Markowitz ERC PCA MV 1/n

μestimated (%) −0.012 −0.029 −0.013 −0.012 −0.111

μactual (%) −0.049 −0.054 −0.073 −0.049 −0.136

σestimated (%) 0.261 0.397 0.512 0.261 1.221

σactual (%) 0.371 0.502 0.757 0.371 1.466

MDw (%) 42.283 18.877 62.352 42.283 0.000

SDw (%) 19.700 9.977 44.214 19.700 0.000

AV μ (%) 0.037 0.025 0.060 0.037 0.025

AV σ (%) −0.109 −0.106 −0.245 −0.109 −0.246

Sharpe ratio (%) −4.677 −10.199 −6.113 −4.677 −9.035

Herfindahlw (%) 38.902 21.176 48.851 38.902 0.000

Herfindahlrc (%) 49.245 5.732 60.553 49.245 4.669

Turnover (%) 10.135 3.498 49.489 10.135 0.000

VaR (%) −11.515 −11.145 −12.974 −11.515 −21.478

MDD (%) −17.602 −20.370 −21.505 −17.602 −53.031

Entropy 6.615 3.620 5.272 6.615 1.338

μannual (%) −12.208 −13.523 −18.369 −12.208 −33.885

μcumulative (%) −13.070 −14.072 −18.532 −13.070 −34.611

σannual (%) 5.860 7.945 11.964 5.860 23.187

Sharperatioannual (%) −208.334 −170.204 −153.540 −208.334 −146.138

The statistics are given as means across 12 months of portfolio optimizations (30.05.2008–30.04.2009),
which were rebalanced monthly. For better comparison, they are all shown in percentage, except the entropy

4.3.3 Results of the empirical study

In the empirical case, also, the PCA portfolio shows the worst results for structure
and the solution robustness. The effects of the estimation errors have an even larger
influence on the portfolio allocation and performance than in the case of the Markowitz
portfolios, which are known to be unstable. The PCA portfolio also has a poor outcome
in regard to worst-case robustness, and thus is not worst-case robust.

The ERC portfolio is much more structure and solution robust than the efficient
and the MV portfolios due to the lower turnover and estimation errors and it is also
much more diversified both in terms of weights and in terms of risk contributions.
Surprisingly, this does not help in terms of portfolio performance as it cannot outper-
form the Markowitz approaches when it comes to cumulative return, the Sharpe ratio,
or the drawdown. In the crisis period it displays a better performance than the naive
portfolio, but the MV portfolio dominates it regarding the resulting return, risk, and
drawdown.

Concerning the hypothetical worst case, i.e., the market crashes, the risk-based
asset allocations are even worse than those of the Markowitz and the MV approaches
and cannot prevent loss, thus failing to perform as designed. In this case, they both
display higher estimation errors and drawdowns and lower cumulative returns.
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Table 11 Performance statistics of the global portfolio in the “hypothetical worst case”

Markowitz ERC PCA MV 1/n

μestimated (%) 0.059 0.059 0.063 0.052 0.106

μactual (%) −0.056 −0.104 −0.096 −0.043 −0.234

σestimated (%) 0.206 0.284 0.481 0.172 0.665

σactual (%) 0.256 0.324 0.538 0.223 0.682

MDw (%) 61.887 19.361 72.209 42.975 0.000

SDw (%) 22.778 8.493 23.569 18.741 0.000

AV μ (%) 0.115 0.163 0.159 0.095 0.339

AV σ (%) −0.050 −0.040 −0.057 −0.051 −0.017

Sharpe ratio (%) −21.166 −29.622 −15.028 −16.362 −33.476

Herfindahlw (%) 40.365 10.783 40.902 52.455 0.000

Herfindahlrc (%) 42.099 6.314 49.450 59.420 6.774

Turnover (%) 18.594 4.986 43.682 11.621 0.000

VaR (%) −3.238 −9.659 −8.670 −3.851 −16.622

MDD (%) −19.741 −35.232 −31.670 −13.941 −76.749

Entropy 5.911 3.990 5.057 6.761 1.743

μannual (%) −14.062 −25.938 −24.051 −10.661 −58.461

μcumulative (%) −20.596 −36.209 −33.336 −12.444 −80.250

σannual (%) 4.047 5.128 8.513 3.519 10.786

Sharperatioannual (%) −347.467 −505.833 −282.522 −302.955 −542.014

The statistics are given as means across the portfolio optimizations, which were rebalanced monthly. For
better comparison, they are all shown in percentage, except the entropy. The hypothetical worst case is seen
here as a situation, where the market is in a bull period and high positive returns are expected, but then the
market turns suddenly in a bear period with high negative returns

4.3.4 Robustness check

We estimated the “true” returns in the empirical study through the sample mean and the
covariance matrix in the month following portfolio optimization. There are, of course,
many different ways of estimating “true” returns. To verify our results, the true returns
were estimated by using the CAPM market returns and the Black Litterman implied
returns.

The CAPM returns were estimated as follows:

ri = αi + r f + βi (rM − r f ) + εi ,

where ri is the return of the asset i, r f the risk free rate and εi the residual. The true
covariance was calculated as the covariance of the residuals. The World-Datastream
Market Index is taken as the market return and the 3-month T-Bill rate is taken as the
risk-free rate.

The Black Litterman implied returns were estimated as follows:

 = λ�wmarket,

where  is the vector of the is the implied returns, λ is the risk aversion parameter, �

the covariance matrix and wmarket the market weights.
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As the portfolio consists of global diversified indices and the market capitalizations
are not available for every index, the market weights are taken as the naive weights.

Results show that the relations and the main findings remain the same, no matter
what model is used for estimating the returns. Detailed results can be found in the
Appendix.

5 Conclusion

In this paper we study the robustness of two recently proposed approaches to risk-
based portfolio optimizations: equal-risk contribution and PCA portfolios. Both focus
on the diversification of risk. The ERC portfolio concentrates on the individual risk
contributions of the assets; the PCA portfolio determines uncorrelated sources of risk
through a PCA.

Through a simulation and an empirical study we show that the outcomes of the
ERC portfolio are far less influenced by the estimation errors than are the efficient
Markowitz and the MV portfolios when it comes to structure and solution robustness.
Regarding worst-case performance, the two Markowitz portfolios perform better with
respect to the estimation error and the maximum drawdown. However, the perfor-
mance of the portfolio in terms of actual return and actual risk remain worse than the
Markowitz approaches.

The PCA portfolio delivers the worst results in all cases through dramatically chang-
ing parameters and thus is far from being robust. Moreover, the poor performance of
the PCA portfolio shows that it is not useful for maximizing entropy based on uncor-
related risk sources so as to improve risk diversification.

Although the objective of the ERC and PCA portfolios is to improve upon the poor
diversification of the Markowitz portfolios, both fail to lower loss, especially dur-
ing periods of crisis (worst case). Surprisingly, the PCA approach delivers the worst
performance in all circumstances despite its intuitive attractiveness. We assume that
this is due to the estimation of the principal components so that the PCA approach
suffers from a double estimation error problem by relying on all principal compo-
nents. ERC portfolios might be an alternative to MV portfolios; but they are by no
means a universal remedy to the estimation error problem in portfolio optimization.
It would be interesting to extended this study by including more sophisticated estima-
tion techniques for the covariance (e.g. robust estimation or GARCH models, see e.g.
Jochum 1998; Pojarlev and Polasek 2003). It appears that a better solution to portfolio
optimization still awaits discovery.

Acknowledgments The authors thank Markus Schmid (the editor) and an anonymous referee for helpful
comments and suggestions.

6 Appendix

6.1 Detailed table (Tables 12, 13, 14) and figures (Figs. 1, 2) for the global
portfolio dataset
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Table 12 Standard deviations of the portfolio weights in % per asset

σweights A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10

Markowitz 12.9 13 13.5 13 12.9 12.9 13.6 13 13.1 13.2

ERC 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

PCA 29.2 28.9 29.6 29.2 29 28.5 29.3 28.7 28.9 29.7

MV 10.1 10 10.1 10 10.2 10.1 10.1 9.9 10 10.3

1/n 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Average standard deviations of the estimated weights across 10,000 simulation runs per asset (see Sect.
4.2.1)

Table 13 Minimum and maximum estimated weights across the 174 empirical portfolio optimizations in
% per asset

Asset Weights (%) Markowitz ERC PCA MV 1/n

SPX Max 9 7 81 6 8
Min 0 2 0 0 8

RTY Max 5 6 100 3 8

Min 0 2 0 0 8

EUR Max 6 6 79 3 8

Min 0 2 0 0 8

GBP Max 10 7 47 5 8

Min 0 2 0 0 8

JPY Max 8 8 88 4 8

Min 0 2 0 0 8

MSCI-LA Max 2 4 27 1 8

Min 0 1 0 0 8

MSCI-EME Max 5 9 55 5 8

Min 0 1 0 0 8

ASIA Max 9 8 59 2 8

Min 0 2 0 0 8

USD-BND Max 90 57 81 72 8

Min 0 11 0 0 8

EUR-BND Max 39 21 90 15 8

Min 0 5 0 0 8

USD-HY Max 94 38 38 98 8

Min 0 9 0 11 8

EMBI Max 83 21 51 59 8

Min 0 2 0 0 8

GSCI Max 26 9 62 4 8

Min 0 2 0 0 8

Average Max 30 15 66 21 8

Min 0 3 0 0 8
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396 T. Poddig, A. Unger

Fig. 1 Boxplot of the estimated weights for the empirical study (174 portfolio optimizations)

6.2 Results for the CAPM estimation of the “true” returns (Tables 15, 16)

The true returns are estimated by using the following formula:

ri = αi + r f + βi (rM − r f ) + εi ,

where ri is the return of the asset i, r f the risk free rate and εi the residual. The true
covariance was calculated as the covariance of the residuals. The World-Datastream
Market Index is taken as the market return and the 3-month T-Bill rate is taken as the
risk free rate.

6.3 Results for the Black Litterman estimation of the “true” returns (Tables 17, 18)

The true returns are estimated by using the following formula:

 = λ�wmarket,
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On the robustness of risk-based asset allocations 397

Fig. 2 Boxplot of the actual risk contributions for the empirical study (174 portfolio optimizations)

where  is the vector of the is the implied returns, λ is the risk aversion parameter,
� the covariance matrix and wmarket the market weights. As the portfolio consists of
global diversified indices and the market capitalizations are not available for every
Index, the market weights are taken as the naive weights.
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Table 15 Performance statistics of the global portfolio, when the “true” returns are estimated by using the
CAPM

Markowitz ERC PCA MV 1/n

μestimated (%) 0.023 0.023 0.025 0.024 0.020

μactual (%) 0.012 0.015 0.012 0.020 0.016

σestimated (%) 0.191 0.275 0.467 0.168 0.649

σactual (%) 0.706 0.591 0.720 0.725 0.336

MDw (%) 83.963 41.883 68.463 85.308 0.000

SDw (%) 18.745 9.580 14.270 13.344 0.000

AV μ (%) 0.010 0.007 0.013 0.005 0.005

AV σ (%) −0.486 −0.316 −0.252 −0.558 0.312

Sharpe ratio (%) 7.243 9.596 6.358 7.824 14.740

Herfindahlw (%) 40.091 10.318 37.634 53.518 0.000

Herfindahlrc (%) 45.981 25.203 58.840 56.657 13.492

Turnover (%) 13.706 2.455 41.479 4.671 0.000

VaR (%) −9.025 −11.145 −12.974 −11.515 −21.478

MDD (%) −19.406 −22.295 −27.261 −18.954 −58.571

Entropy 1.000 3.140 3.213 3.671 3.442

μannual (%) 3.062 3.793 3.088 4.857 3.953

μcumulative (%) 38.173 58.617 83.680 56.598 60.378

σannual (%) 11.160 9.342 11.384 11.468 5.318

Sharperatioannual (%) 27.438 40.602 27.129 42.352 74.336

The statistics are given as means across 174 months of portfolio optimizations, which were rebalanced
monthly. For better comparison, they are all shown in percentage, except the entropy

Table 16 Performance statistics of the global portfolio in the empirical “worst case”, when the “true”
returns are estimated by using the CAPM

Markowitz ERC PCA MV 1/n

μestimated (%) −0.012 −0.029 −0.013 −0.012 −0.111

μactual (%) −0.139 −0.147 −0.155 −0.139 −0.161

σestimated (%) 0.261 0.397 0.512 0.261 1.221

σactual (%) 1.346 1.140 1.267 1.346 0.456

MDw (%) 74.760 53.287 78.196 74.760 0.000

SDw (%) 9.343 8.011 10.968 9.343 0.000

AV μ (%) 0.127 0.117 0.142 0.127 0.050

AV σ (%) −1.085 −0.743 −0.755 −1.085 −0.765

Sharpe ratio (%) −10.128 −11.720 −10.268 −10.128 −20.684

Herfindahlw (%) 38.902 21.196 48.850 38.902 0.000

Herfindahlrc (%) 49.244 47.575 73.015 49.244 23.505

Turnover (%) 10.135 3.516 49.490 10.135 0.000

VaR (%) −11.515 −11.145 −12.974 −11.515 −21.478

MDD (%) −17.602 −20.370 −21.505 −17.602 −53.031

Entropy 3.697 3.612 3.850 3.697 4.400
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Table 16 continued

Markowitz ERC PCA MV 1/n

μannual (%) −34.804 −36.659 −38.808 −34.804 −40.307

μcumulative (%) −13.070 −14.072 −18.532 −13.070 −34.611

σannual (%) 21.283 18.018 20.028 21.283 7.202

Sharperatioannual (%) −163.526 −203.459 −193.771 −163.526 −559.659

The statistics are given as means across 12 months of portfolio optimizations (30.05.2008–30.04.2009),
which were rebalanced monthly. For better comparison, they are all shown in percentage, except the entropy

Table 17 Performance statistics of the global portfolio, when the “true” returns are estimated by using the
Black Litterman implied returns

Markowitz ERC PCA MV 1/n

μestimated (%) 0.023 0.023 0.025 0.024 0.020

μactual (%) 0.001 0.005 0.006 0.002 0.015

σestimated (%) 0.191 0.275 0.468 0.168 0.649

σactual (%) 0.188 0.274 0.481 0.169 0.618

MDw (%) 71.798 17.467 69.703 34.675 0.000

SDw (%) 20.979 7.918 28.708 23.273 0.000

AV μ (%) 0.020 0.018 0.020 0.022 0.006

AV σ (%) 0.003 0.002 −0.013 −0.002 0.030

Sharpe ratio (%) 0.584 1.452 0.863 0.585 1.700

Herfindahlw (%) 40.091 10.316 37.654 53.518 0.000

Herfindahlrc (%) 44.559 5.860 45.530 55.839 5.870

Turnover (%) 13.706 2.454 41.930 4.671 0.000

VaR (%) −9.025 −11.145 −12.974 −11.515 −21.478

MDD (%) −19.406 −22.295 −27.261 −18.954 −58.571

Entropy 1.000 4.026 4.913 6.718 1.759

μannual (%) 0.347 1.288 1.365 0.415 3.677

μcumulative (%) 38.173 58.617 83.680 56.598 60.378

σannual (%) 2.965 4.318 7.605 2.674 9.775

Sharperatioannual (%) 11.717 29.836 17.950 15.511 37.612

The statistics are given as means across 174 months of portfolio optimizations, which were rebalanced
monthly. For better comparison, they are all shown in percentage, except the entropy

Table 18 Performance statistics of the global portfolio in the empirical “worst case”, when the “true”
returns are estimated by using the Black Litterman implied returns

Markowitz ERC PCA MV 1/n

μestimated (%) −0.012 −0.029 −0.013 −0.012 −0.111

μactual (%) 0.014 0.027 0.03 0.014 0.085

σestimated (%) 0.261 0.397 0.512 0.261 1.221

σactual (%) 0.371 0.503 0.757 0.371 1.467

MDw (%) 42.283 18.825 62.355 42.283 0.000
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Table 18 continued

Markowitz ERC PCA MV 1/n

SDw (%) 19.700 10.024 44.212 19.700 0.000

AV μ (%) −0.026 −0.057 −0.043 −0.026 −0.196

AV σ (%) −0.109 −0.106 −0.245 −0.109 −0.246

Sharpe ratio (%) 2.028 3.860 2.441 2.028 4.400

Herfindahlw (%) 38.902 21.196 48.850 38.902 0.000

Herfindahlrc (%) 49.245 5.738 60.549 49.245 4.669

Turnover (%) 10.135 3.516 49.491 10.135 0.000

VaR (%) −11.515 −11.145 −12.974 −11.515 −21.478

MDD (%) −17.602 −20.370 −21.505 −17.602 −53.031

Entropy 6.615 3.619 5.272 6.615 1.338

μannual (%) 3.376 6.808 7.489 3.376 21.268

μcumulative (%) −13.070 −14.072 −18.532 −13.070 −34.611

σannual (%) 5.860 7.947 11.964 5.860 23.187

Sharperatioannual (%) 57.616 85.671 62.600 57.616 91.723

The statistics are given as means across 12 months of portfolio optimizations (30.05.2008–30.04.2009),
which were rebalanced monthly. For better comparison, they are all shown in percentage, except the entropy
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