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Abstract This paper concerns itself with applications of pair-copulas in finance, and
bridges the gap between theory and application. We provide a broad view of the
problem of modeling multivariate financial log-returns using pair-copulas, gathering
together for this purpose theoretical and computational results from the literature on
canonical vines. From the practitioner’s viewpoint, the paper shows the advantages of
modeling through pair-copulas and makes clear that it is possible to implement this
methodology on a daily basis. All the necessary steps (model selection, estimation,
validation, simulations, and applications) are discussed at a level easily understood
by all data analysts.
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1 Introduction

The Basel II international capital framework has encouraged, at least to some extent,
the development of more sophisticated statistical tools for finance. Underlying each
tool is a probabilistic model assumption. For a long time, finance modeling only
considered the multivariate normal distribution. This situation was partially due to
the fact that most of the important theoretical results in this area were based on the
normality assumption, and also due to the lack of suitable alternative multivariate
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distributions and software limitations. However, a simple exploratory analysis carried
out on any collection of log-returns on indexes, stocks, portfolios, or bonds reveals
significant departures from normality.

Data on log-returns present some well-known stylized facts and are characterized
by two special features: (I) each series typically shows its own degree of asymmetry
and high kurtosis, as well as some specific pattern of temporal dynamics, and (II) the
dependence structure among pairs of variables will vary substantially, ranging from
independence to complex forms of nonlinear dependence. No natural family of multi-
variate distribution (e.g., the elliptical family) includes all these features. This is true
for the case of unconditional modeling, and also applies to the errors distribution of
sophisticated dynamic models.

A solution is the use of copulas, which was introduced by Sklar (1959) and applied
to the field of finance by Embrechts et al. (1999). Other works on the topic include
Kassberger and Kiesel (2006), who offer as an alternative to copulas when mod-
eling dependency structures in hedge funds a multivariate extension of the normal
inverse Gaussian distribution and argue that it captures well the return characteristics
of such funds. Gatzert et al. (2008) employ copulas to assess risk concentration and
joint default probabilities given different compositions of financial groups and exper-
iment with different types of copulas. They find that the joint default probabilities of
the members of a financial group can vary substantially even when financial groups
present similar risk concentration factors.

Using copulas simplifies both model specification and estimation. Initially, mar-
ginal distributions are fitted using the vast range of univariate models available. In a
second step, the dependence between variables is modeled using a copula. However,
this approach has its limitations. Although we are able to find very good (conditional
and unconditional) univariate fits tailored for each margin, when it comes to copula
fitting, there are significant obstacles to solving the required optimization problem
over many dimensions, the so-called “curse of dimensionality” (Scott 1992). Most
of the available software deal with the bivariate case only. Even if we are able to fit
a d-dimensional copula, d > 2, parametric copula families usually restrict all pairs
to having the same type or strength of dependence. For example, in the case of the
t-copula, in addition to the correlation coefficients, a single parameter, the number
of degrees of freedom, is used to compute the coefficient of tail dependence for all
pairs, thus the t-copula fails when modeling (II).

Pair-copulas, being a collection of potentially different bivariate copulas, are flex-
ible and very appealing. The method of construction is hierarchical, where variables
are sequentially incorporated into the conditioning sets as one moves from level 1
(tree 1) to tree d − 1. The composing bivariate copulas may vary freely, from the
parametric family to the parameter values. Therefore, all types and strengths of de-
pendence can be covered. Pair-copulas are easy to estimate and simulate, making
them very appropriate for modeling in finance.

Most of extant work on pair-copulas is theoretical in nature and by no means
conclusive in that regard as of yet. A few papers provide applications in finance, but
most of them simply fit a pair-copula to the data (see, e.g., Min and Czado 2010;
Aas et al. 2007; Berg and Aas 2008; Fischer et al. 2008).

In this paper, we go beyond inference and provide practical applications, such
as the pair-copula construction of efficient frontiers and risk computation. We con-
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sider both conditional and unconditional models for the univariate fits. The condi-
tional models are the well-known combinations of ARFIMA and FIGARCH models
(Sect. 4). As unconditional univariate models, we use the very flexible skew-t family
(Sect. 3). Estimation of the models is based on the maximum likelihood method. Ap-
plications will follow the fits, and are intend to illustrate the utility of the pair-copulas
approach since there are many applications in finance that rely on a good joint fit for
the data. For example, computing risk measure estimates, finding optimal allocations
for portfolios, pricing derivatives, and so on.

The main objective of this paper is to demonstrate to practitioners how pair- copu-
las modeling can be useful in finance. The paper also collects important results on this
topic from the literature, thus the large number of references provided. In summary,
the contributions of this paper are: (1) to show how a good multivariate (conditional
or unconditional) fit for log-return data may be obtained with pair-copulas approach;
(2) to propose the use of the skew-t distribution as the unconditional model for the
margins; (3) to show how pair-copulas may be used on a daily basis in finance, partic-
ularly for constructing efficient frontiers and computing the value-at-risk; and (4) to
show how parametric replications of the data may be obtained and used to assess
variability and construct confidence intervals. In the case of the efficient frontier, pair-
copulas make it possible to check portfolio quality, find out if a portfolio rebalance
is needed, or discover if the inclusion of some other component would significantly
improve the expected return for the same risk level.

The remainder of the paper is organized as follows. In Sect. 2, we briefly review
definitions of copulas and pair-copulas. In Sect. 3, we consider the unconditional
approach for the marginal fits combined with the pair-copulas fit, providing an ap-
plication in Sect. 3.1, where we obtain optimal portfolios and show how to construct
pair-copulas based replications of the efficient frontier. In Sect. 4, we take the condi-
tional approach for the marginal fits; in Sect. 4.1 duplicating the application carried
out in Sect. 3.1 but this time under the conditional approach. Section 5 concludes.

2 Copulas and pair-copulas: a brief review

2.1 Copulas

Consider a stationary d-variate process (X1,t ,X2,t , . . . ,Xd,t )t∈Z , Z a set of indices.
In the case the joint law of (X1,t ,X2,t , . . . ,Xd,t ) is independent of t , the depen-
dence structure of X = (X1,X2, . . . ,Xd) is given by its (constant) copula C. If X is a
continuous random vector with joint cumulative distribution function (c.d.f.) F with
density function f , and marginal c.d.f.s Fi with density functions fi , i = 1,2, . . . , d ,
then there exists a unique copula C pertaining to F , defined on [0,1]d such that

C
(
F1(x1),F2(x2), . . . ,Fd(xd)

) = F(x1, x2, . . . , xd) (1)

holds for any (x1, x2, . . . , xd) ∈ �d (Sklar’s theorem, Sklar 1959). Let Fi(Xi) ≡ Ui ,
i = 1, . . . , d . From the assumptions made, Ui follows an uniform(0,1) distribution.
Therefore a copula is a multivariate distribution with standard uniform margins.
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Multivariate modeling through copulas allows for factoring the joint distribution
into its marginal univariate distributions and a dependence structure, its copula. By
taking partial derivatives of (1) one obtains

f (x1, . . . , xd) = c1···d(F1(x1), . . . ,Fd(xd))

d∏

i=1

fi(xi) (2)

for some d-dimensional copula density c1···d . This decomposition allows estimating
the marginal distributions fi separated from the dependence structure given by the
d-variate copula. In practice, this aspect simplifies both specification of the multi-
variate distribution and its estimation.

The copula C provides all information about the dependence structure of F , in-
dependently of the specification of the marginal distributions. It is invariant under
monotone increasing transformations of X, making copula-based dependence mea-
sures interesting scale-free tools for studying dependence. For example, to measure
monotone dependence (not necessarily linear), one may use Spearman’s rank corre-
lation (r)

r(X1,X2) = 12
∫ 1

0

∫ 1

0
u1u2 dC(u1, u2) − 3. (3)

The rank correlation r is invariant under strictly increasing transformations. It always
exists in the interval [−1,1], does not depend on the marginal distributions; the val-
ues ±1 occur when the variables are functionally dependent, that is, when they are
modeled by one of the Fréchet limit copulas.

Until recently, Pearson’s product moment (linear) correlation ρ was used to mea-
sure the association between financial products. Although ρ is the canonical measure
in the Gaussian world, ρ is not a copula-based dependence measure since it also
depends on the marginal distributions. In addition to the drawback of being able to
measure only linear correlation, ρ has other weaknesses, a number of which are by
now well known (see e.g., Embrechts et al. 1999). Note that

r(X1,X2) = ρ
(
F1(X1),F2(X2)

)
,

so that in the copula environment, the rank and the linear correlations coincide.
Another important copula-based dependence concept is the coefficient of upper

tail dependence, defined as

λU = lim
α→0+ λU(α) = lim

α→0+ Pr
{
X1 > F−1

1 (1 − α)|X2 > F−1
2 (1 − α)

}
,

provided a limit λU ∈ [0,1] exists. If λU ∈ (0,1], then X1 and X2 are said to be
asymptotically dependent in the upper tail. If λU = 0, they are asymptotically inde-
pendent. Similarly, the lower tail dependence coefficient is given by

λL = lim
α→0+ λL(α) = lim

α→0+ Pr
{
X1 < F−1

1 (α)|X2 < F−1
2 (α)

}
,

provided a limit λL ∈ [0,1] exists. The coefficient of tail dependence measures the
amount of dependence in the upper (lower) quadrant tail of a bivariate distribution.
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In finance, it is related to the strength of association during extreme events. The cop-
ula derived from the multivariate normal distribution does not have tail dependence.
Therefore, if the Gaussian copula is assumed for modeling log-returns, for many pairs
of variables the joint risks would be underestimated.

Let C be the copula of (X1,X2). It follows that

λU = lim
u↑1

C(u,u)

1 − u
, where C(u1, u2) = Pr{U1 > u1,U2 > u2} and

λL = lim
u↓0

C(u,u)

u
.

Other concepts of tail dependence do exist, including the concept of multivariate tail
dependence (Joe 1996, IMS volume).

Parametric estimation of copulas is usually accomplished in two steps, as sug-
gested by (2). In the first step, conditional (or unconditional) models are fitted to each
margin, and the standardized innovations distributions Fi , i = 1, . . . , d , (which may
as well be the empirical distribution) are estimated. Through the probability integral
transformation based on the F̂i , the pseudo uniform(0,1) data are obtained and used
in the second step to estimate the best parametric copula family.

Copula parameters are usually estimated by maximum likelihood (Joe 1997),
but can be obtained via robust and minimum distance estimators (Tsukahara 2005;
Mendes et al. 2007), or semi-parametrically (Vandenhende and Lambert 2005).
Goodness of fit may be assessed visually by means of pp-plots or based on some
formal goodness-of-fit (GOF) test, usually based on the minimization of some crite-
rion. GOF tests are proposed in Breymann et al. (2003), Fermanian (2005), Genest
et al. (2006), and in the PIT algorithm (Rosenblatt 1952). The most commonly em-
ployed approach appears to be to transform the data into a set of independent and
standard uniform variables and then calculate some measure of distance, such as the
Anderson–Darling or the Kolmogorov–Smirnov measure, between the transformed
variables and the uniform distribution. For a discussion of goodness-of-fit tests, see
Genest et al. (2007).

2.2 Pair-copulas

The decomposition of a multivariate distribution in a cascade of pair-copulas was
originally proposed by Joe (1996), and later discussed in detail by Bedford and Cooke
(2001, 2002), Kurowicka and Cooke (2006) and Aas et al. (2007).

Consider again the joint distribution F with density f and with strictly continuous
marginal c.d.f.s F1, . . . ,Fd with densities fi . First note that any multivariate density
function may be uniquely decomposed as

f (x1, . . . , xd) = fd(xd) · f (xd−1|xd) · f (xd−2|xd−1, xd) · · ·f (x1|x2, . . . , xd). (4)

The conditional densities in (4) may be written as functions of the corresponding
copula densities. That is, for every j ,

f (x | v1, v2, . . . , vd) = cxvj |v−j

(
F(x | v−j ),F (vj | v−j )

) · f (x | v−j ), (5)
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where v−j denotes the d-dimensional vector v excluding the j th component. Note
that cxvj |v−j

(·, ·) is a bivariate marginal copula density. For example, when d = 3,

f (x1|x2, x3) = c13|2
(
F(x1|x2),F (x3|x2)

) · f (x1|x2)

and

f (x2|x3) = c23
(
F(x2),F (x3)

) · f (x2).

Expressing all conditional densities in (4) by means of (5), we derive a decompo-
sition for f (x1, . . . , xd) that consists of only univariate marginal distributions and bi-
variate copulas. Thus we obtain the pair-copula decomposition for the d-dimensional
copula c1···d , a factorization of a d-dimensional copula based only on bivariate cop-
ulas. This is a very flexible and natural way of constructing a higher dimensional
copula. Note that, given a specific factorization, there are many possible reparame-
terizations.

The conditional c.d.f.s necessary for pair-copulas construction are given (Joe
1996) by

F(x | v) = ∂Cx,vj |v−j
(F (x | v−j ),F (vj | v−j ))

∂F (vj | v−j )
.

For the special case (unconditional) when v is univariate, and x and v are standard
uniform, we have

F(x | v) = ∂Cxv(x, v,�)

∂v

where � is the set of copula parameters.
For large d , the number of possible pair-copula constructions is very large. As

shown in Bedford and Cooke (2001), there are 240 different decompositions when
d = 5. These authors introduce a systematic way to obtain the decompositions, which
involves graphical models that they call regular vines. They also aid in understand-
ing the conditional specifications made for the joint distribution. Special cases are
the hierarchical canonical vines (C-vines) and the D-vines. Each of these graphical
models is a specific way of decomposing the density f (x1, . . . , xd). For example, for
a D-vine, f () is equal to

d∏

k=1

f (xk)

d−1∏

j=1

d−j∏

i=1

ci,i+j |i+1,...,i+j−1
(
F(xi |xi+1, . . . , xi+j−1),

F (xi+j |xi+1, . . . , xi+j−1)
)
.

In a D-vine, there are d − 1 hierarchical trees with increasing conditioning sets, and
there are d(d − 1)/2 bivariate copulas. For a detailed description, see Aas et al.
(2007). Figure 1 shows the D-vine decomposition for d = 6. The D-vine consists
of five nested trees, where tree Tj has 7 − j nodes and 6 − j edges corresponding to
a pair-copula.

It is not essential that all the bivariate copulas involved belong to the same family.
This flexibility is exactly what we are searching for, since our objective is to construct
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Fig. 1 The D-vine graphical
hierarchical representation of a
six-dimensional pair-copula

(or estimate) a multivariate distribution that best represents the data at hand, which
might be comprised of completely different margins (symmetric, asymmetric, with
different dynamic structures, and so on) and, more importantly, could be pairwise
joined by more complex dependence structures possessing linear and/or nonlinear
forms of dependence, including tail dependence, or could be joined independently.

For example, one may combine the following types of (bivariate) copulas:
Gaussian (no tail dependence, elliptical); t-student (equal lower and upper tail de-
pendence, elliptical); Clayton (lower tail dependence, Archimedean); Gumbel (upper
tail dependence, Archimedean); and BB7 (different lower and upper tail dependence,
Archimedean). See Joe (1997) for a copula catalogue.

Simulations from both Canonical and D-vine pair-copulas can be easily imple-
mented and take very little time to run. Maximum likelihood estimators depend on
(i) the choice of factorization and (ii) the choice of pair-copula families. Algorithm
implementation is straightforward. For smaller dimensions, we may compute the log-
likelihood of all possible decompositions. For d >= 5, and for a D-vine, a specific
decomposition may be chosen. One possibility is to look for the pairs of variables
having the stronger tail dependence, and let those determine the decomposition to
estimate. To this end, a t-copula may be fitted to all pairs and pairs would be ranked
according to the smallest number of degrees of freedom.

3 Pair-copulas based unconditional modeling of log-returns

We present applications using a data set based on a global portfolio of an emerging
market investor located in Brazil. We chose this perspective because of the higher
volatility of Latin American stock markets and their greater potential for interdepen-
dence with the major markets. Thus we use six-dimensional contemporaneous daily
log-returns comprised of: (1) a Brazilian composite hedge fund index (the ACI, Ar-
senal Composite Index); (2) a long-term inflation-indexed Brazilian treasury bonds
index (the IMAC index, computed by the Brazilian Association of Financial Institu-
tions, Andima); (3) a Brazilian stock index that includes the 100 largest capitalization
companies (IBRX); (4) an index of large world stocks computed by MSCI (WLDLG);
(5) an index of small capitalization world companies computed by MSCI (WLDSM);
and (6) an index of total returns on US Treasury bonds computed by Lehman Broth-
ers Barra (LBTBOND). All daily log-returns in US dollars are shown in Fig. 2. There
are 1629 six-dimensional observations from January 2, 2002 to October 20, 2008.
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Fig. 2 Time series plot of daily log-returns used: ACI, IMAC, IBRX, WLDLQ, WLDSM, LBTBOND

According to Fig. 2 and Table 1, the hedge fund indexes ACI and IMC have less
volatility compared to the long-run treasury bond index LBTBOND.

In this section, we take the unconditional approach to modeling the margins. The
fits will be based on the flexible skew-t distribution (Hansen 1994), previously used
by Patton (2006), Rockinger and Jondeau (2001), and Fantazzini (2006) in the con-
text of dynamic modeling. This distribution generalizes the widely used normal dis-
tribution and its most common alternative, the t-student distribution, providing great
flexibility since it covers left and right skewness and heavy tails.

The skew-t density has a closed form and implementation of the maximum like-
lihood method is feasible because there are only four parameters to estimate (μ, λ,
ν, σ ). Parameter μ equals the population mean and parameter σ equals the standard
deviation (which exists when ν > 2). When the skewness parameter λ is 0, the sym-
metric case is recovered. The mode of the skew-t distribution is smaller (larger) than
μ in the case of right (left) skewness. Figure 3 shows the skew-t density for ν = 4
and λ = −0.6, 0.0, 0.6.

The zero mean unit variance skew-t c.d.f. (see Fantazzini 2006) is given by

G(y;ν,λ) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − λ)GT

(√
ν

ν−2

( by+a
1−λ

);ν)
, for y < − a

b
,

(1 − λ)/2, for y = − a
b
,

(1 + λ)GT

(√
ν

ν−2

( by+a
1+λ

);ν) − λ, for y > − a
b
,

(6)
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Fig. 3 Skew-t standard densities (μ = 0, σ = 1) with ν = 4, and λ = −0.6, 0.0, 0.6, shown respectively
by: solid, dotted, and dashed lines

where GT (t;ν) represents the c.d.f. of the symmetric t-student with ν degrees of
freedom, and where

c = 	
(

ν+1
2

)

	(ν/2)
√

π(ν − 2)
,

b =
√

1 + 3λ2 − a2,

a = 4λc

(
ν − 2

ν − 1

)
.

The maximum likelihood estimates of the skew-t distributions fitted to each vari-
able are given in Table 1. The table also sets out the classic sample estimates of
location and standard deviation, actually, maximum likelihood estimates under the
univariate normal distribution.

Using the skew-t c.d.f. (6), the six transformed standard uniform series are ob-
tained and used to estimate the pair-copulas. We estimate a D-vine, and to choose
the variables in tree 1, we examined the scatterplots of all pairs and ranked the pairs
according to the smallest number of degrees of freedom associated with a t-copula
fit.

Having decided on the order of variables in tree 1, the D-vine decomposition fol-
lows. To estimate the pair-copulas (5 unconditional and 10 conditional), we consid-
ered as possible candidates four copula families: Normal, t-student, BB7, and the
product copula, which models independence. These four copula families cover all
the desired types of lower and upper tail dependence. Step-by-step instructions on
how to perform the estimation are given in Aas et al. (2007).
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Table 1 Skew-t parameters’ estimates and sample estimates of location and scale

Estimates ACI IMAC IBRX WLDLG WLDSM LBTBOND

Sample mean 0.0645 0.0821 0.0738 −0.0048 0.0088 0.0186

Skew-t μ̂ 0.0655 0.0828 0.0745 −0.0065 0.0143 0.0249

Skew-t λ̂ −0.1522 0.1514 −0.1437 0.0445 0.0269 0.1163

Skew-t ν̂ 3.3170 2.1200 5.3971 2.9782 3.8503 2.9734

Skew-t σ̂ 0.1159 0.2716 1.6920 1.2008 1.1228 1.1373

Sample st. deviation 0.1131 0.1853 1.6930 1.1638 1.1629 1.0891

To find the best copula fit, we compared the penalized log-likelihood (AIC), ex-
amined the pp-plots based on the estimated and the empirical copula, and computed a
GOF test statistic. Any one of the GOF tests mentioned in Sect. 2.1 would be appro-
priate and, indeed, there is no general agreement as to the best GOF test for copulas.
We used the one suggested by Genest and Rémillard (2005) and Genest et al. (2007).
This test is based on the squared distance between the estimated and the empirical
copulas. The limiting distribution of the test statistic depends on the parameter values
and approximate p-values are obtained through bootstrap sampling.

The chosen pair-copula decomposition, along with best copula fits and parame-
ter estimates, is shown in Fig. 4. In the case of the t-copula, the parameters are the
correlation coefficient and the degrees of freedom, (ρ,υ). Even though for some
t-copulas fitted, the number of degrees of freedom is large, we rejected the Gaussian
copula based on the AIC values. The upper and lower tail dependence coefficients
computed for each estimated bivariate copula are also shown in Fig. 4. Joe (1997)
gives the formula for the tail dependence coefficient for several families. In the case
of the t-copula, see Embrechts et al. (2001). We note that such accurate and tailored
estimation of the data dependence structure, particularly its complex pattern of depen-
dence in the tails, would not be possible using a d-dimensional copula. We observe in
tree 1 that the stock indexes of large and small world companies show the strongest
dependence during stressful times.

All copulas in tree 1 have positive upper and lower tail dependence coefficients
and, according to Joe et al. (2010), this means that the D-vine modeling of the log-
returns has multivariate upper and lower tail dependence.

As suggested by a referee, to illustrate the role of the t-copula when produc-
ing joint large values, we also compute the joint quantile exceedance probabili-
ties (Demarta and McNeil 2005) for a selection of the bivariate copulas shown in
Fig. 4. We compute C(u,u), the probability of simultaneous quantile exceedances,
for u = (0.05,0.01,0.005,0.001) using the fitted t-copulas and compare these values
with the values obtained for the Gaussian copula. In Table 2 we report the values of C

assuming C is Gaussian, and report the ratio between these exceedance probabilities
computed under the t and the Gaussian assumptions. As pointed out in Demarta and
McNeil (2005), these ratio values increase as the correlation parameter approaches
−1 or as the number of degrees of freedom decreases.

For the applications that follow, we need to compute the unconditional rank corre-
lation matrix. To obtain the rank correlation coefficients, we use (3) and the estimated
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Fig. 4 D-vine decomposition. Best copula fits along with their parameters’ estimates, which in the case
of the t -copula are (ρ,υ). The third row inside the box-table gives the (λL,λU ) estimates. Notation in
figure: IM: IMAC; AC: ACI; IB: IBRX; LB: LBTBOND; WL: WLDLG; WS: WLDSM

pair-copulas. The fits in tree 1 result in five unconditional rank correlations. From fits
in trees 2 through 5, we obtain conditional rank correlations. These conditional rank
correlations are considered constant, they do not depend on the value of the condi-
tioning variables, as proved in Kurowicka and Cooke (2001) for elliptical copulas and
copulas in general. This leads to another important result in Misiewicz et al. (2001):
for elliptical copulas, conditional linear and conditional rank correlations are equal,
provided the conditional correlations are constant (recall that, by definition, for cop-
ulas, the unconditional linear and rank correlations are equal).

An important issue is the relation between conditional rank correlation and partial
correlations. Partial rank correlations are defined in Yule and Kendall (1965). Their
importance is stressed in Cooke and Bedford (1995), where the authors show that
there is a one-to-one relation between partial correlations on a D-vine and correlation
matrices. Kurowicka and Cooke (2001) show that the D-vine partial correlation ma-
trix obtained from the fits uniquely determines the correlation matrix, and that every
full rank correlation matrix may be decomposed in this way (Bedford and Cooke
2002).
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Table 2 Joint quantile exceedance probabilities for bivariate Gaussian copula and a selection of the t

copulas fitted. For Gaussian copula the probability of joint quantile exceedance is given; for the t copulas
the factors by which the Gaussian probability must be multiplied are given

ρ Copula Fig. 4 Quantile

0.05 0.01 0.005 0.001

0.93 Gaussian – 3.476 × 10−2 0.612 × 10−2 0.291 × 10−2 0.052 × 10−2

0.93 t4 WL&WS 1.065 1.161 1.209 1.332

0.165 Gaussian – 0.467 × 10−2 0.028 × 10−2 0.008 × 10−2 0.001 × 10−2

0.165 t30 IM&AC|IB 1.128 1.447 1.676 2.551

−0.255 Gaussian – 0.624 × 10−2 0.045 × 10−2 0.015 × 10−2 0.001 × 10−2

−0.255 t6 IB&LB|AC 1.508 2.903 4.048 9.398

0.135 Gaussian – 0.421 × 10−2 0.024 × 10−2 0.007 × 10−2 0.000 × 10−2

0.135 t8 AC&WL|LB 1.525 3.123 4.544 12.020

0.00024 Gaussian – 0.250 × 10−2 0.010 × 10−2 0.003 × 10−2 0.000 × 10−2

0.00024 t35 IM&WL|LB,AC,IB 1.167 1.622 1.971 3.456

Table 3 Pair-copulas rank correlations and sample correlations

ACI IMAC IBRX WLDLG WLDSM LBTBOND

ACI 1.000 0.185 0.342 −0.117 −0.088 −0.453

IMAC 0.211 1.000 0.110 0.019 0.020 −0.054

IBRX 0.435 0.112 1.000 0.223 0.240 −0.360

WLDLG −0.093 0.022 0.197 1.000 0.924 0.479

WLDSM −0.080 0.024 0.197 0.938 1.000 0.458

LBTBOND −0.465 −0.069 −0.373 0.571 0.596 1.000

Above the diagonal: pair-copulas rank correlations. Below the diagonal: sample correlations

Kurowicka and Cooke (2001) prove the equality of constant conditional corre-
lations and partial correlations for elliptical and other copulas. They also study the
relation between the conditional correlation and the conditional rank correlation.

All the above-cited results lay the foundation for (7), which links the partial and
the unconditional correlations,

ρ12;3...d = ρ12;4...d − ρ13;4...dρ23;4...d√
(1 − ρ2

13;4...d
)(1 − ρ2

23;4...d
)
, (7)

to inductively compute the unconditional (rank or linear) correlations. The final un-
conditional rank estimates are given in Table 2 above the diagonal.

Finally, to validate the fits, we simulated 2000 observations from the fitted D-vine
using the algorithm given in Aas et al. (2007). We compute the sample rank corre-
lations from the simulated data and compare the obtained values with those given
above the diagonal in Table 2. The sum of the squares of the differences between the
15 rank correlations is 0.0110123, which validates the fit.



Pair-copulas modeling in finance 205

3.1 Application: efficient frontiers

Constructing the efficient frontier (EF) corresponding to optimal portfolios according
to the Markowitz mean variance methodology (MV) only requires point estimates for
the means, variances, and the linear correlation coefficients as inputs in the quadratic
optimization problem. The most frequently used inputs are the classical sample mean
and sample covariance matrix (hereafter referred to as the classical approach). The
classical approach is very suitable if the data are not derived from a multivariate
normal distribution, which, as is well known, is usually not the case for log-returns
data. Outside the Gaussian world, the classical estimates lose efficiency and may
become biased (Hampel et al. 1986), making the results somewhat doubtful.

Moreover, it would be interesting to measure dependence beyond correlations and
capture all the linear and nonlinear associations among the portfolio components, and
then incorporate them in the MV methodology. It would also be desirable to assess
the variability of the efficient frontiers. All this can be accomplished by accurately es-
timating the multivariate distribution implied by the underlying assets, a task fulfilled
in the previous subsection by using pair-copulas.

Scherer and Martin (2005) obtain robust versions of Markowitz mean variance
optimal portfolios using some well-known robust estimates of covariance such as
Rousseeuw’s MCD (see Rousseeuw and Leroy 1987). Other robust alternatives
are proposed, for example, by Mendes and Leal (2005). Ragea (2003) investigates
whether highly volatile markets produce disruptions in the joint move of the risk
factors. However, all the above-cited alternatives differ only with regard to how the
inputs are estimated, particularly the linear correlation coefficient.

In this application, we use the location and standard deviation estimates provided
by the skew-t model and the rank correlations provided by the pair-copula decom-
position. We call these inputs “pair-copula-based estimates.” Figure 5 shows the el-
lipsoids associated with the rank and sample correlations. For this particular data set
there are no striking differences (e.g., a change of sign) between the correlation es-
timates even though, as we shall see, the resulting efficient frontiers will be quite
different.

Using the two sets of inputs estimated across the entire period (approximately
seven years), we run the long-only MV optimization algorithm and construct the
classical and the pair-copula-based efficient frontiers (EF) containing 20 optimal lin-
ear combinations of the six series of log-returns. These are shown on the left-hand
side of Fig. 6. We observe that the classical EF is below and to the right of the pair-
copula-based efficient frontier.

An appealing feature of the pair-copula modeling strategy is that it allows for
simulations of the data-fitted distribution, providing replications of any quantity of
interest. Here, we compute parametric replications of the pair-copula-based efficient
frontier. Let r̂ represent the set of all rank correlations estimates rij , i, j = 1, . . . ,6.
Let θ represent the set of parameters from the pair-copula decomposition, and let
θ̂ represent their estimates. Let δ represent the set of parameters from the skew-t
distribution, δ = (μ,λ, ν, σ ), and let δ̂ represent their estimates. For the generation,
we assume that θ̂ and δ̂ are the true parameter values and implement the following
parametric bootstrap algorithm:



206 B. de Melo Mendes et al.

Fig. 5 Unconditional rank
correlations and sample
correlations

Fig. 6 (Color online) Long-only efficient frontiers. On the left-hand side, classical in black, and
pair-copula-based (skew-t location estimates and pair-copula rank correlations) in blue. On the right-hand
side, replications of the pair-copula-based EF
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For k = 1, . . . ,B , with B large,

1. Using the algorithm given in Aas et al. (2007), simulate 1629 × 6 observations
from the estimated pair-copula assuming θ̂ as the true value.

2. Apply the corresponding inverses of the skew-t c.d.f.s to each margin, assuming
δ̂ as the true value, obtaining a six-dimensional sample X(k), a replication of the
original data.

3. Apply the entire estimation procedure (marginal and pair-copula fits) on X(k),
obtaining a new set of inputs μ̂(k), σ̂ (k), and r̂(k), for construction of the efficient
frontier EF(k) composed of 20 long-only portfolios.

The right-hand side of Fig. 6 shows the original pair-copula-based EF and its para-
metric replications, along with the classical EF. The filled circles correspond to min-
imum risk portfolios. The set of all replications of some specific portfolio (in the
figure, the number 1) may be used to define a (1 − α)% confidence level convex hull
containing statistically equivalent portfolios. It is also possible to draw replications
of the classical EF to verify if the corresponding convex hulls have an intersection.
This would be useful for portfolio rebalancing and testing. Mendes and Leal (2009)
propose a method for replicating the classical EF and use square distances to test
equality of portfolios.

Figure 7 shows the boxplots of the weights from the replications for portfolios
ranked 1 (P.1) and 7 (P.7), and for each variable. As expected, portfolios with less

Fig. 7 Replications of weights for each variable and for portfolios ranked 1 and 7 based on the
pair-copulas model
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risk show less variability in the plane risk × return (Fig. 6), and are more stable in
the d-dimensional space of the weights (Fig. 7). Actually, the stability of weights
of a given rank portfolio, over the convex hull of replications, simply confirms that
in general equivalent portfolios showing different return × risk values have similar
weights composition. Yet, the utility of an EF construction is not the return/risk values
of the portfolio, but their weight compositions.

4 Pair-copula-based conditional modeling of log-returns

Log-returns typically present temporal dependences in the mean and in the volatility.
In this section, we first process the data using an ARFIMA-FIGARCH filter to obtain
the standardized residuals, and then apply all the estimation steps of the previous
section to the filtered data.

Let rt represent the return at day t . The models specification is

rt = μt + σtεt ,

μt = φ0 +
p∑

j=1

φj rt−j +
q∑

i=1

θiμt−i ,

σ 2
t = α0 +

m∑

j=1

αj r
2
t−j +

s∑

i=1

βiσ
2
t−i ,

E[εt ] = 0, var(εt ) = 1.

For each series of log-returns we fit the best ARMA-FIEGARCH model, considering
as conditional distributions either the Normal or the tν , where ν is the number of
degrees of freedom. Table 4 sets forth the estimates.

We compute the standardized residuals from the d univariate fits. The d filtered
series are now free of temporal dependences in the first and second moments. To
these i.i.d. series we apply the unconditional approach of the previous section.

Table 5 sets out the estimates of parameters of the skew-t distribution fitted to the
marginal estimated innovations series. Of course, the μ estimates are close to 0 and
the σ estimates are close to 1. Although the series still exhibits skewness and kurtosis,
they are smaller than those estimated for the raw data.

The D-vine is fitted to the transformed standard uniform data obtained from the
residuals from the skew-t fit. Recall that under the conditional approach, the pair-
copula represents the dependence structure of the d-dimensional errors distribution,
which is free of temporal dependences. The copula families found as best fits are
practically the same as those shown in Fig. 4, the only difference being the condi-
tional copula of IMAC & ACI given IBRX, which is now Gaussian, although all
show smaller tail dependence. The unconditional copulas in tree 1, for example, have
lower and upper tail dependence coefficients equal to (0.104,0.101) for the IBRX
& ACI, (0.149,0.149) for LBTBOND & WLDLG, and (0.505,0.505) for WLDLG
& WLDSM. Likewise, in the unconditional case, the multivariate distribution of the
filtered data has tail dependence.
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Table 5 Skew-t parameters’ estimates and sample estimates of location and scale for the standardized
residuals from the GARCH fits

Estimates ACI IMAC IBRX WLDLG WLDSM LBTBOND

Sample mean −0.0007 0.0731 −0.0017 −0.0066 −0.0100 0.0309

Skew-t μ̂ 0.00003 0.0749 −0.0005 −0.0070 −0.0110 0.0300

Skew-t λ̂ −0.0995 0.0536 −0.1288 0.0442 −0.0033 0.0599

Skew-t ν̂ 6.8976 3.0000 13.2032 6.9746 8.3890 15.4386

Skew-t σ̂ 0.9980 1.1352 0.9961 1.0005 0.9973 1.0029

Sample st. deviation 0.9970 1.4722 0.9970 1.0003 1.0009 1.0029

Table 6 Pair-copulas rank correlations (above the diagonal) and sample correlations (below the diagonal)

ACI IMAC IBRX WLDLG WLDSM LBTBOND

ACI 1.000 0.140 0.244 −0.134 −0.113 −0.434

IMAC 0.134 1.000 0.114 0.009 0.012 −0.062

IBRX 0.291 0.097 1.000 0.242 0.244 −0.337

WLDLG −0.150 0.020 0.227 1.000 0.918 0.428

WLDSM −0.118 0.025 0.239 0.923 1.000 0.411

LBTBOND −0.451 −0.049 −0.364 0.449 0.435 1.000

Next, we compute the rank correlation matrix, which can be found in Table 6. We
observe that, for most pairs, the values of the correlation coefficients (pair-copula-
based) are slightly smaller, demonstrating that the volatility is in many cases respon-
sible for the contagion and that it may (slightly) increase dependence.

4.1 Efficient frontier

We run the long-only MV algorithm and construct the 20 portfolios that comprise the
efficient frontiers. As expected, the position on the risk × return plane of the efficient
frontier associated with the filtered data is quite different from the one based on the
original data. This is mostly due to changes in the means and standard deviation
estimates. However, it would be interesting to examine the portfolio compositions to
assess the effect of volatility on the weights.

Figure 8 shows the weights of the 20 portfolios in the pair-copula-based efficient
frontiers for both the filtered and the original data. Tests using the weights and based
on distances could be applied to test the equality of some compositions.

5 Conclusions

In this paper we explored the potential of pair-copulas modeling using dependent
financial data. A fully flexible multivariate distribution was obtained by combining
univariate fits and D-vines.

Our marginal specifications included the asymmetric and high kurtosis uncondi-
tional skew-t probabilistic models, as well as conditional models, combined with
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Fig. 8 Weights composing the 20 portfolios for the efficient frontiers based on the filtered and original
data

pair-copulas having different upper and lower tail dependence. This results in a pow-
erful model that can accurately estimate any quantity of interest, such as optimal
portfolios and risk measures. An examination of the tail loss distributions shows that
substantial differences result from the flexible pair-copula specification. Moreover,
parametric replications of the fitted multivariate distribution may be used to assess
variability of the estimates.

The pair-copulas field would benefit from research into how to choose among
copula families and decompositions, and from the development of more powerful
goodness-of-fit tests. Also of interest and practical use would be investigation into
the potential of time-varying pair-copulas.
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