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1. Introduction

Pricing options and the estimation of real
volatility of the underlying asset have an inti-
mate relationship. A number of approaches
based on the geometric Brownian motion, e.g.
the BLACK and SCHOLES (B&S) model,
yield explicit analytical formulas of the option
price which depends on the parameters char-
acterising the option and the volatility pa-
rameter of the underlying price process. In the
particular B&S case, the volatility parameter
σ  is a constant across all maturities τ  and
strike prices K. However, when using quoted
option prices to estimate the volatility pa-
rameter from the B&S option pricing formula,

one observes a time-varying, pronounced term
structure of so called implied volatilities.
Monitoring the dynamics of this volatility term
structure is an important element of analysis
and prediction for many financial applications
such as trading, hedging and risk management,
see TALEB (1997).
The objective of our paper is to identify com-
mon factors of implied volatility movements of
“at the money” options on the German stock
index DAX from 18/03/96 to 19/12/97. Iden-
tifying common factors is important from the
perspective of risk management, vega-hedging
and volatility trading. A natural technique to
identify the number of stochastic shocks that
move the implied volatility surface is principal
components analysis (PCA), SKIADOPOU-
LOS, HODGES and CLEWLOW (1999), AL-
EXANDER (2001), FENGLER, HÄRDLE and
VILLA (2001). With respect to risk man-
agement, PCA has the advantage that the com-
plete term structure can be represented by a
small number of variables, i.e. the dimension of
the risk factor space can be drastically re-
duced.
Our analysis indicates that two risk factors ex-
plain a large proportion of total variation in
the term structure of “at the money” DAX op-
tions. Building on this result, we present a risk
management tool based on the maximum loss
(ML) methodology. We also provide an intui-
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tive meaning of the identified factors and con-
sider their stability over time.
The paper is organised as follows: In the next
section we present the data and necessary
cleaning and correction algorithms. In section
3 we perform the PCA procedure and identify
the dominant risk factors. Section 4 discusses
the stability of our analysis over time. In sec-
tion 5 the ideas are applied to ML methodol-
ogy, while section 6 provides an intuitive ex-
ample. Section 7 concludes.

2. Data Description zhngn

The subject of investigation here is implied
volatility as measured by the German VDAX
subindices available from Deutsche Börse AG.
These indices, representing different option
maturities from one to 24 months, measure
volatility implied in European-style calls and
puts with strikes equal to the current DAX
level, i.e. the options are “at the money”
(ATM). The index calculations are based on
the assumption that the Black & Scholes
(B&S) option pricing formula is a suitable
model for the valuation of option prices. The
B&S formula for a European call at time t, Ct ,
is
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where Φ(x) denotes the cumulative distribution
function of a standard normal random variable
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Here r denotes the risk-free interest rate, S t the
price of the underlying asset, τ  = T – t time to
maturity and K the strike price. For ATM op-
tions the strike is K = S t.

The only parameter in the B&S formula that
cannot be observed directly is the actual vola-
tility σ of the underlying price process. One
may substitute for σ an estimate based on prior
observed returns of the underlying asset. An
alternative approach uses implied volatilities.
The implied volatility is defined as the pa-
rameter σ̂  that yields the actually observed
market price of a particular option when sub-
stituted into the B&S formula. Quoting option
prices in terms of implied volatilities does not
necessarily mean that market participants as-
sume that the B&S formula is a valid model for
the market. Instead they use this formula as a
convenient way of describing and quoting op-
tion prices via implied volatilities.
Implied volatilities can be calculated by itera-
tive numerical techniques and may be used to
monitor the market’s opinion about the vola-
tility of a particular price process. The implied
B&S volatility is not equal to the actual vola-
tility σ  but may reflect in some way the ex-
pectations of market participants with respect
to the future volatility of the underlying price
process. Nevertheless, the links between actual
and implied volatilities depend on the theoreti-
cal assumptions of the particular model as-
sumed and can be of complex nature. For theo-
retical approaches of that kind we refer e.g. to
SCHÖNBUCHER (1999).
The options on the DAX are the most actively
traded contracts at the German-Swiss deriva-
tives exchange EUREX. Implied volatility es-
timates for ATM DAX options may be ob-
tained from Deutsche Börse AG, which has
been delivering daily closing prices of VDAX
subindices for maturities of 1, 2, 3, 6, 9, 12, 18
and 24 month since 18/03/96. On this day
trading in long term options started at
EUREX.
VDAX subindices for our analysis were re-
ceived from Deutsche Börse AG for the data
period covered. Interest rate data, i.e. the 3
and 6 month FIBOR, and the DAX closing
notation are provided by Thompson Financial
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Figure 1: Term Structure of ATM DAX Implied Volatilities: 31/10/97 (Solid), vuogvlzhu
03/11/97 (Dotted), 17/11/97 (Dashed) and 20/11/97 (Dotted and Dashed) bnjöbnjök

Datastream. The term structure for ATM DAX
options can be derived from VDAX subindices
for any given trading day. Typical shapes are
plotted in Figure 1.
If we compare the volatility structure of
31/10/97 (solid line) with that of 03/11/97
(dotted line), we observe an downward shift in
the levels of implied volatilities. Moreover,
both plots display an inversion as short term
volatilities are higher than long term ones.
Only a couple of weeks later, on 17/11/97
(dashed line) and 20/11/97 (dotted and dashed
line), the term structure had returned to lower
levels. Evidently, during the market tumble in
fall of 1997, the ATM term structure shifted
and changed its shape considerably over
time.

VDAX calculations are based on the inversion
of the B&S formula. For a given subindex, im-
plied volatility is estimated from a subset of
liquid “near the money” options. The contribu-
tion of each implied volatility estimate is not
subject to an explicit weighting scheme. In-
stead, weights are determined implicitly by an
ordinary least squares regression yielding an
estimate of ATM implied volatility. For de-
tailed information on the VDAX calculation
method see REDELBERGER (1994).
We do not exclusively confine our analysis to
the highly liquid short term option contracts
which are represented by the subindices 1 to 4.
This is done for two reasons: First, limited
trading occurs on certain days in longer term
contracts, thus there might be information in

Matthias Fengler, Wolfgang Härdle and Peter Schmidt: Common Factors Governing VDAX Movements and the Maximum Loss

18                                                        FINANCIAL MARKETS AND PORTFOLIO MANAGEMENT / Volume 16, 2002 / Number 1



these data entries on those days. Ignoring them
completely bears the risk of losing information.
Second, we need a constant option maturity
instead of floating targets based on EUREX
expiration dates. This is vital because changes
in volatility arising from changing option matu-
rities (due to the passage of time) will affect
the statistical analysis. Thus we need longer
term contracts to calculate volatility indices
with constant maturities, which is most impor-
tant for short-dated options. To accomplish
constant time to maturity we linearly interpo-
late between neighbouring VDAX subindices.
With ( )−τσ tˆ  and ( )+τσ tˆ , the respective nearby

and second nearby implied volatility subindi-
ces, we calculate indices ( )*

jtˆ τσ  with fixed

maturities of  τ j
* = 30, 60, 90, 180, 270, 360,

540, 720 calendar days by

Proceeding this way, we obtain j = 8 time se-
ries of fixed maturity. Each time series is a
weighted average of two neighbouring maturi-
ties and contains n = 441 data points of im-
plied volatilities. From now on we will refer
to fixed maturity when dealing with VDAX in-
dices.

3. Principal Components Analysis bnbjh
of Implied Volatility Dynamics   jhi

In this section we outline a procedure to ex-
tract common factors from historical term
structure movements that govern the actual
dynamics of implied volatilities. The basic data
set for our analysis is a collection of term
structures like in Figure 1. In order to identify
common factors we use principal components
analysis (PCA). Changes in the term structure
can be decomposed by PCA into a set of fac-
tors constituting an orthogonal base.
We compute augmented DICKEY-FULLER
(ADF) tests on daily implied volatility indices

( )*
jtˆ τσ . The ADF tests show that the null

hypothesis of instationarity cannot be rejected
for any VDAX-subindex even at the 10%
level. level. Our results suggest to perform
principal  components  analysis  on  the  returns
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ˆ
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−

  of  implied  volatility  indices.

These returns seem to be stationary as an ad-
ditional ADF analysis indicates.
Sample means of the returns jtx  are very close

to zero and hence of negligible size. Table 1
shows the sample correlation matrix of jtx .

Note that sample correlations are considerably

Table I: Sample Correlations of Implied Volatility Returns  bhibnöjkln

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8

1.00 0.73 0.70 0.72 0.61 0.44 0.34 0.27
1.00 0.89 0.75 0.70 0.47 0.28 0.29

1.00 0.81 0.72 0.50 0.32 0.24
1.00 0.82 0.54 0.49 0.30

1.00 0.55 0.46 0.31
1.00 0.38 0.24

1.00 0.28
1.00
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smaller for longer option maturities than for
the shorter ones. This may be due to market
segmentation: Short term contracts are most
heavily traded by professional traders whereas
longer maturities are rather illiquid and may be
used by long term hedgers and investors in the
first place, see TALEB (1997).
PCA is performed by decomposing the empiri-
cal covariance matrix Ω into the Jordan Ca-
nonical Form ΛΓΓ=Ω Tr , where Λ  is an 8 x 8
diagonal matrix of eigenvalues λk, k = 1,2,...,8
and Γ = (γ1, γ2, ... ,γ8) an 8 x 8 matrix of
eigenvectors γk. Time series of principal com-
ponents are obtained by Γ= XY . X denotes

the 441 x 8 matrix of implied volatility returns
and Y is the 441 x 8 matrix of principal com-
ponents.
A measure of how well the first p principal
components explain variation in the underlying

data is given by the relative proportion of
eigenvalues:
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Figure 2 shows the proportion of variance
(dashed line) and the cumulative proportion of
variance ζ p explained by the respective number
of principal components (solid line).
As is evident from Figure 2, the first PC cap-
tures 73.5% of the total data variability. The
second PC captures an additional 9.9% of total
variance. The other PCs explain a considerably
smaller amount of variation in implied volatil-
ity returns. Thus the two dominant PCs cumu-
latively explain around 83.4% of total variance
in ATM volatilities for DAX options.

Figure 2: Variance Explained by k  = 1,2,…,8 Principal Components Components
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As is also clear from Figure 2, the “variance
explained” plot exhibits an “elbow-like” shape
at the second PC. The so called “elbow crite-
rion” suggests to retain the first two com-
ponents here. The remaining residual informa-
tion may be interpreted as random noise.
Hence, keeping two factors, we may use the
following representation for implied volatility
returns:

jt

2

1k
ktjkjt yx ε+∑ γ=

=
,

where jtε  is an i.i.d. nuisance term.

Figure 3 presents the factor loadings for the
first two PCs. Obviously, a shock on the first
factor tends to affect all maturities in a similar
manner, causing a non-parallel shift. A shock
in the second factor has a strong positive im-
pact on the front maturity but a negative im-

pact on the longer ones, thus causing a change
of the slope in the term structure of implied
volatilities. Similar results have been obtained
by SKIADOPOULOS, HODGES and CLEW-
LOW (1999) for options on the S&P 500,
SYLLA and VILLA (2000) on the CAC 40,
and ALEXANDER (2001) on the FTSE 100.
FENGLER, HÄRDLE and VILLA (2001) and
CONT and FONSECA (2002) take a more
comprehensive view on the whole implied
volatility surface, but still, results follow the
patterns discussed above.

4. Stability Analysis nojö

In this section, we investigate the stability of
our principal components analysis. If PCs are
not stable over time due to changing volatil-
ity regimes, adaptive methods may further en-

Figure 3: Factor Loadings for the First and the Second Principal Component Figul Component
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hance the accuracy of our procedures with re-
spect to risk management applications.
Our stability analysis extends in two directions:
First, daily data may be noisy because traders
often consider different sections of the DAX
ATM options implied volatility vector as dis-
tinct from each other, sometimes updating op-
tion quotes in the more liquid shorter maturi-
ties while ignoring the longer ones. Sections of
the DAX options market with little or no order
flow during the day thus may include stale data
during and possibly at the end of the trading
day. We estimate principal components using
weekly data rather than daily. If PCs are sta-
ble, one would not expect to find substantially
different results with daily versus weekly data.
Second, we divide our data set into l = 1, 2
non-overlapping periods of equal length. Each
period contains m = 220 daily observations of
first differences of implied VDAX subindices.
As a common method (HÄRDLE and SIMAR,
2002), we conduct pairwise tests of l,kλ  to see
if the eigenvalues change significantly over
time.
As is clear from Table 2, the in-sample pro-
portion of variance explained by the first two
PCs is slightly higher in weekly data compared
to daily returns. This is not surprising since
one would expect fewer unsystematic volatility
movements in (higher quality) weekly data. In
fact, weekly results are qualitatively very
similar to daily ones, so we do not discuss
them further here.
As can be seen from Table 2, the proportion of
daily data variability explained by the first two

PCs diminishes over the second subperiod. In
order to test for the stability of the principal
components over time we compute eigenvalues
for both subperiods. A two-sided confidence
interval for some pair of eigenvalues is given
by

1m

1
q2lnln

1m

1
q2ln 1,k2,k1,k −

+λ≤λ≤
−

−λ αα ,

where αq  denotes the α -quantile of a standard

normal distribution. We immediately have

1m

1
q2lnln 2,k1,k −

≥λ−λ α

as a two-sided test for 2,k1,k0 :H λ=λ , i.e.

equality of eigenvalues in both subperiods. The
null hypothesis would be rejected if the above
expression holds for the significance level
chosen.
Critical values for the null hypothesis are 0.222
(10%), 0.265 (5%) and 0.348 (1%). The esti-
mated absolute log-differences for the pair of
eigenvalues λ1,1, λ1,2 and λ2,1, λ2,2 are 0.667
and 1.183 respectively, and hence are both sig-
nificant different from zero at the 1% level.
This indicates that the common factors gov-
erning implied volatility movements measured
by the German VDAX may vary over time.
With respect to this finding, adaptive estima-
tion techniques such as proposed by HÄRDLE,
SPOKOINY and TEYSSIERE (2000) may ef-
fectively be employed in an analysis of similar

Table 2: Principal Components Analysis: Cumulative Percentages of Variance Explained bjbnöojn

PC No. 1 2 3 4 5 6 7 8

Weekly: 18/03/96–19/12/97 71.10% 86.35% 92.00% 95.09% 96.74% 98.09% 99.15% 100%
Daily:    18/03/96–19/12/97 73.50% 83.40% 89.10% 92.50% 95.20% 97.40% 99.00% 100%
Sub 1:   18/03/96–05/02/97 83.64% 92.87% 95.12% 96.82% 97.92% 98.82% 99.58% 100%
Sub 2:   05/02/97–19/12/97 68.26% 79.05% 86.27% 90.67% 94.34% 96.81% 98.79% 100%
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kind. We further discuss the stability of our
analysis in section 6.

5. Measuring ATM Implied Volatility Risk
by Maximum Loss

One key issue in portfolio management is the
measurement of a portfolio’s inherent market
risk. Monte-Carlo simulation techniques may
be used to assess the risks of highly non-linear
portfolios such as option portfolios. Unfortu-
nately these techniques are computationally
expensive and time consuming. In this section
we introduce an approach to approximate the
maximum loss of delta-gamma hedged option
portfolios analytically.
The market value P of a portfolio consisting of
w single options on the same asset is suscepti-
ble to changes in interest rates, to the price of
the underlying asset, to the passage of time
and to the different implied volatilities con-
tained in the portfolio. The Taylor series ex-
pansion of the change in portfolio value from
time t  – 1 to time t is

where Out denotes the option price with the
option specific maturity τu at time t. Interest
rates r may well be assumed to be constant
over short investment periods, i.e. we can ig-
nore the interest rate sensitivity of the portfo-
lio in our analysis.
As a common practice traders directly trade
the so called vega of their portfolios, which is
the portfolio sensitivity to implied volatility.
For European-style options on an underlying
asset vega can be derived by differentiating the
B&S formula with respect to σ. In order to

establish vega trades, market professionals use
delta-gamma neutral hedging strategies which
are insensitive to changes in the underlying as-
set and to time decay, see TALEB (1997).
A popular strategy to exploit relative term
structure movements is buying and selling
straddles of different option maturities at the
same time. A straddle consists of the same
number of ATM calls and puts. For instance,
when a trader expects the short term implied
volatilities to fall relative to the long term
ones, he will sell straddles in short term con-
tracts and simultaneously buy straddles in
longer maturities. The resulting portfolio will
be delta-gamma neutral and nearly theta-
neutral over short periods of time (i.e. nearly
insensitive to time decay on a day-by-day ba-
sis). In this case, the Taylor expansion simpli-
fies to

( ) ( )∑ 







τσ∆
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ut
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P .               (2)

Thus the dominant determinants of changes in
portfolio value are implied volatilities. Princi-
pal components analysis allows us to write the
returns of the implied volatilities ( )utˆ τσ  as a

linear combination of PCs. Thus, taking the re-
spective nearby fixed maturity subindex ( )*

jtˆ τσ

as a proxy for ( )utˆ τσ , we get
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Starting from equation 3 we now present a
concept for risk management using the concept
of maximum loss (ML) based on principal
components.
ML analysis is based on the probability distri-
bution of a change in the value of a portfolio
attributable to a change in fundamentals over a
short period of time. Since implied volatilities
fundamentally determine the prices of delta-
gamma hedged derivatives portfolios, we re-
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quire an accurate characterisation of the future
probability distribution of volatilities of vari-
ous-maturity options portfolios.
Maximum loss is defined as the maximum pos-
sible loss
•  over a given risk factor space Aτ , where Aτ

will be assumed a closed set with confi-
dence level ( ) α=∈ τAyyPr

•  for some holding period τ .

In order to maintain delta-gamma neutrality,
dynamic hedgers usually revise their deri-
vatives portfolios after short periods of time.
τ  = t – (t – 1) may be a realistic assumption
from a practitioner’s point of view, which im-
plies a portfolio revision on every single trad-
ing day.
At first glance, the ML-definition has the same
appearance as the well known value at risk
(VaR) definition. There is an important differ-
ence, however: Whereas VaR calculation re-
quires the profit and loss distribution to be
known, ML is defined in the risk factor space,
see STUDER (1995).
In our analysis we decomposed the term
structure of implied volatilities into a set of
two principal components that explains an es-
sential part of term structure variation. Hence,
we use only the first two PCs as risk factors in
our empirical analysis in section 6. In order to
construct the profit and loss surface on Aτ  , the
whole option portfolio has to be priced for
each point in the factor space. This is ap-
proximated by marking the portfolio to the
market at discrete points yi∈  Aτ. The particular
scenario in Aτ   where the maximum loss would
occur is called the ML scenario.
Assuming multinormally distributed PCs, trust
regions can be constructed using the joint den-
sity function

( )
( )






 Λ−

Λπ
=ϕ −

τ yy
2

1
exp

det2

1
y 1

2
Tr

2
2

1
,

where the matrix 2Λ  is a 2 x 2 diagonal matrix

of eigenvalues kλ , k = 1,2 and ( )
21 y,y=y .

yy 1
2

Tr −Λ  results in a random variable which is
chi-square distributed with 2 degrees of free-
dom. Hence, a valid trust region for our port-
folio is obtained by the equation for a centered
ellipse ( )α

−
τ ≤Λ= cyyyA 1

2
Tr , where cα denotes

the α -quantile of a chi-squared distribution
with 2 degrees of freedom.

6. An Empirical Example: Assessing Term
Structure Portfolio Risk

For illustration, we consider a strategy which
aims at exploiting relative changes in the term
structure of implied volatilities, i.e. at de-
creasing short term and rising long term vola-
tility. Belonging to the class of strategies
where the vega exposure of the portfolio con-
tributes overwhelmingly to its overall risk
structure, it is sufficiently complex for mean-
ingful computations of ML, yet at the same
time simple enough to yield easily interpretable
results. In a first step, we give a static analysis
of the ML of the portfolio for a number of
trading days, and then a summarizing report on
the entire sample period.
Consider the following portfolio whose one-
day ML will be of interest: Sell an ATM call
and an ATM put with 3 months maturity and
buy an ATM call and an ATM put with
6 months maturity, i.e. sell a 3-months straddle
and buy the 6-months one (actually, in our
computations we use 100 options each).
Clearly, this strategy can be considered delta-
gamma-neutral. Moreover, as theta and rho
risks of these two straddles are of opposite
sign, they partially counterbalance each other.
Therefore, the remaining risks are small
enough to be negligible over the daily time ho-
rizon under consideration, and the first order
Taylor expansion, Equation (1), can be re-
duced  to  the  terms  incorporating  vega  risks
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Figure 4: Critical Volatility Scenarios on 29/03/96 (Ellipse), Current Volatility Level (Circle) and ML
Scenario (Filled Circle); Compare with Figure 5 and Table 3  noöjnäk

only, Equation (2). We further simplify the
setting by assuming that for each t and any
value St of the DAX index ATM options of 3
and 6 months maturity to be available, i.e.
K = St. This portfolio is created in time t,
priced under the assumptions of the B&S
model with no dividends at the actual realiza-
tions of St, rt and the volatility vector σt, and
held until t + 1, where t = 1, ... T – 1 = 440.
Note that our analysis is focussed on ML only,
i.e. we do not consider the risks and rewards
of this position from a trader’s point of view.

The assessment of the one-day ML follows the
lines laid out above and was implemented in
XploRe, see HÄRDLE, KLINKE, MÜLLER
(2000): We model two risk factors which con-
tribute for approximately 83% of overall vari-
ance to implied volatility returns and choose an
α = 99% confidence level for the trust region
A1. Hence the critical range of risk factors can
be found along the perimeter of the corre-
sponding ellipse Α1 = (y| yTrΛy = cα) , where cα

denotes the α -quantile of the chi-squared dis-
tribution with 2 degrees of freedom. Contrary
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Figure 5: Critical Volatility Scenarios (Gray Ellipse), Portfolio Changes (Black Ellipse, Gains Solid
Line, Losses Dashed) and the ML (Black Ball) on 29/03/96; Compare with Figure 4 and Table 3
bbnoäjnäjl

to more complex portfolios and scenarios,
where the ML may well lie within the trust re-
gion Ατ, in our case critical scenarios can only
occur along its perimeter due to the
monotonicity of the portfolio’s risk structure
in the two factors. It is hence only there where
we need to price the portfolio. The ellipse is
discretised on a dense grid y = (y1,y2) of
100.000 points in order to receive a suffi-
ciently precise estimate of potential scenarios
and transformed into the space of volatility
returns by x = y (γ1,γ2)Tr, where (γ1,γ2) is the
8x2 matrix of the two eigenvectors corre-
sponding to the first two biggest eigenvalues.
The volatility returns corresponding to the 3
and 6 month implied volatilities are multiplied
to the current volatility scenario and displayed
to illustrate the situation of 29/03/96 in
Figure 4.

The extremely narrow shape of the ellipse in
Figure 4 reflects the results which we have al-
ready commented above: Shifts of the same
sign both in short and long term volatilities ac-
count for 73.5% of the shocks (the first fac-
tor), whereas slope shocks of different signs
contribute only 9.9% to volatility movements
(second factor). The maximum loss (filled cir-
cle) is found in the lower left quadrant to the
current volatility levels (circle), i.e. when the
long term volatility moves exactly against our
bet. Figure 5 additionally displays the portfolio
changes associated with the ellipse of critical
volatility scenarios: Portfolio changes form an
ellipse as well, and ML is marked by the black
ball.
Table 3 gives an overview of scenarios which
occurred during the sample period. Generally
we  observe  that  negative  volatility  returns  in
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Table 3: ML Scenarios for a Selection of Trading Days in 1996/97  böbn

Date Initial Scenario ML Scenario

 Sub 3 Sub 4 Sub 3 Sub 4 Delta Sub 3 Delta Sub 4 ML relative ML

29/03/96 13.88% 14.27% 13.30% 13.62% –0.0058 –0.0065   –316.73 –5.02%
31/10/97 37.52% 34.67% 37.98% 34.48%   0.0046 –0.0019 –1076.90 –6.39%
03/11/97 33.85% 32.44% 33.56% 31.75% –0.0029 –0.0069 –1029.50 –5.69%
17/11/97 31.60% 31.15% 30.85% 30.14% –0.0075 –0.0101 –1002.60 –5.38%
20/11/97 29.66% 29.72% 28.72% 28.58% –0.0094 –0.0114 –1007.00 –5.27%

the long term contract produce such a strong
impact that gains in the short volatility position
are compensated: On 29/03/96 (see Figures 4
and 5), at a drop of 0.65 percentage points of
the 6-months implied volatility in conjunction
with a 0.58 percentage points decrease in the
3-months contract the ML scenario occurs,
which comes close to a level shift in implied
volatilities (perfect level shifts occur at the
vertices of the ellipse). Relative ML, defined as
the ML divided by the initial portfolio value, is
around 5.0%. We report relative ML, since the
value of our position is homogenous of degree
one in the level of the underlying asset, and the
high ML in the second half of the sample pe-
riod can largely be attributed to higher DAX
levels. As can be seen, the general pattern dis-
cussed for 29/03/96 does not change: The high
vega sensitivity of the 6-months contract is
sufficiently large to dominate the ML scenar-
ios. This pattern changes only marginally with
higher volatility levels. On 31/10/97, however,
during the crash period in the Asian crisis,
when the term structure inverted significantly,
the ML scenario corresponds to an even
stronger inversion of the term structure. This
is due to the decreasing relative vega sensitiv-
ity between short and long term options at high
volatility levels.
Figure 6 shows a time series plot of the one-
day relative ML, assuming that a new straddle
portfolio is created in each t and held until
t + 1. Additionally, the time series of the two

implied volatility subindices and the underlying
index (relative ML and DAX have been
rescaled) are displayed in this figure. Relative
ML is 4.9% at the minimum and 6.4% at the
maximum, but as can be seen from Figure 6, it
is not easy to separate the impact of volatility
level changes on the one hand and the relative
term structure movements on the other hand. It
appears, however, that relative ML is increas-
ing with higher volatility levels, which can be
seen best during the fourth quarter 1996 when
the market regime switches – in DERMAN’s
(1999) terminology –  from a range-bounded
to a stable trending market. Volatility term
structure effects are visible during the crash
period in the fourth quarter 1997, when strong
term structure inversions occur (the thin black
line, i.e. 3-months subindex is above the
6-months subindex, the thin gray line). Pre-
cisely this susceptibility to changes in the mar-
ket environment make ML a suitable risk man-
agement tool for the given context.
One remark with respect to the actual confi-
dence level seems to be necessary: Although
we used a 99% quantile to compute the risk
factors it should be kept in mind that this is not
the true confidence level of the ML, as by the
risk factors only 83.4% of the in-sample vari-
ance of implied volatility returns is explained.
The true level of confidence can be found by
Monte Carlo simulation techniques, which
is beyond the scope of this paper. Given
that Monte Carlo simulations are usually not
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Figure 6: Implied 3 and 6 Months Implied Volatility (Thin Black and Gray Lines) and Relative ML*10
(Thick Black Line), and DAX *10–4 (Dashed). njnä

quickly available for market participants either,
our ML approach may serve as a good guide-
line for their daily operations. Still, in order to
gauge the empirical performance of the proce-
dure we compute actual exceedances of the
ML throughout the sample period, i.e. we
compare the actual losses in t + 1 of our port-
folio and the ML estimated in t. They amount
to 12.0%  (53 in absolute number), which is
less than expected by our modelling approach.
We take this as support for the usefulness of
ML computations in the sample period under
consideration.

7. Concluding Remarks

In this paper we outline a procedure for using
principal components analysis to determine the
maximum loss of option portfolios bearing
vega exposure. The term structure of implied
volatilities “at the money” is decomposed into
two factors that are used to determine the
price sensitivity of ATM DAX options. In the
last sections of our paper we propose a parsi-
monious way of determining the maximum loss
of a derivatives portfolio whose primary
source of risk is associated with the term
structure of implied volatilities. Financial in-
stitutions may find our maximum loss approach
useful for monitoring the vega exposure of
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their positions and for setting margin require-
ments for clients who trade with them.
A stability analysis indicates that the common
factors governing implied volatility movements
of DAX options may vary over time. It could
therefore be interesting to use adaptive ap-
proaches to our modelling approach. We leave
the topic of adaptive PCA in implied volatility
risk management for further research.
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