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Abstract
Knowledge diffusion is a complex and demanding process that requires coordina-
tion and collaboration between agents with different levels of knowledge, to estab-
lish fruitful learning interactions. In this paper, we develop an agent-based model 
to investigate how different behavioral/sociological rules can alter, strengthen, or 
weaken this process. We observe that, during normal times, different aggregation 
strategies are apparently irrelevant for determining differences in learning opportu-
nities. However, under crisis, there is an observable outperformance of social struc-
tures with established communities, characterized by both strong ties (i.e., intense 
contacts within communities) and weak ties (i.e., knowledge spillover across com-
munities). We further test system resilience, considering interruptions to the knowl-
edge diffusion of expert agents and the random temporary removal of agents (sim-
ulating a viral outbreak). We discuss how these scenarios may explain economic 
phenomena and explore the implications for policies aimed at mitigating knowledge 
and economic inequalities.

1 Introduction

The idea that “fish travel in schools, birds migrate in flocks, and ants build trails” 
(Sumpter 2010) has attracted researchers from different fields, including economists. 
Fish travel in schools and birds migrate in flocks to better protect themselves from 
predators, while ants build trails to track their path to a source of nutrition. And 
humans? As social animals (Aristotle), humans are not so different from other spe-
cies in the ways in which they organize themselves. Such social aggregation is fruit-
ful for the creation and use of ideas, favoring social development (Schuller and The-
isens 2010). Put differently, humans aggregate in order to evolve.
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The discovery that sociological rules may determine economic outcomes has led 
to a general need to rethink macrosystems, considering the coordination and interac-
tion between parts, or human organizational patterns (Dobbin, 2004; Kirman, 2010). 
As a result, attempts have been made to explain economic dynamics based on dif-
ferent rules of agent aggregation, outlining potential paths to economic growth. In 
this work, a crucial role has been attributed to the diffusion of knowledge as a prime 
mover for economic success—or its inverse, economic inequality (Morone and Tay-
lor 2004). From this, a question naturally arises: “Individuals may have knowledge 
that is useful to others, but does this knowledge flow to those who need it?” (Alatas 
et al. 2016).

In 2004, Cowan and Jonard claimed: “The details of who is connected to whom 
will clearly affect what type of information is passed, how much, and how effi-
ciently.” From this assumption, they asked, “if the network structure is exogenous, 
how do the structural properties of the network affect aggregate outcomes?” (Cowan 
and Jonard 2004, p. 1558). In the present research, we aimed at extending the lit-
erature, focusing on social network structure and its implications for efficiency (i.e., 
high average knowledge), equity (i.e., low knowledge heterogeneity), and sustain-
ability (i.e., high resilience to shock), with respect to knowledge diffusion. We kept 
economic features as simple as possible, considering that agents do not always fol-
low rational and complicated optimization rules in their daily interactions, but sim-
ply acquire knowledge from their daily contacts, in accordance with different behav-
ioral rules (as in Block et al. 2020). This style of knowledge acquisition may result 
in a wide range of economic outputs, under different conditions. This underscores 
the relevance of using agent models to study the coordination of collective phenom-
ena and assessing sociological aspects (e.g., the characteristics of structural social 
capital) to understand and predict the dynamics of economic phenomena.

The remainder of the paper is organized as follows: Sect. 2 reviews the existing 
literature, Sect. 3 introduces the methodology and main working hypotheses, Sect. 4 
reports the results, and Sect. 5 provides concluding remarks.

2  Literature review

In this section, we move from an exposition of the main results of prior analyses 
of knowledge networks to a discussion of behavioral rules for interaction that may 
shed light on the nature and dynamics of society (i.e., the ways in which interaction 
norms may explain the dynamics and resilience of social systems, with a specific 
emphasis on the human tendency to aggregate in communities). The final section 
of the review focuses on targeted attacks and random failures in social networks, 
describing realistic examples based on very recent episodes (e.g., the COVID-19 
pandemic).

Similar to viral spread, knowledge diffusion occurs among interacting (i.e., com-
municating) subjects, and different network topologies determine different proper-
ties of knowledge invasion, spread, and persistence (Cowan and Jonard 2004; May 
and Lloyd 2001). However, differently from a viral diffusion scenario, in which even 
a single interaction can be sufficient for infection, the knowledge diffusion process 
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requires repeat interactions for learning to occur (Morone and Taylor 2004). There-
fore, links are crucial for facilitating dissemination, and the intensity of connections 
might contribute to defining particular knowledge diffusion patterns.

Considering network theory, several researchers have investigated the structure 
and the dynamics (Liu and Zhang 2014; Greenan 2015; Snijders 2001; Snijders et al. 
2010; Steglich et al. 2010) of knowledge networks, studying the spatial and temporal 
features of diffusion (Strang and Tuma 1993). Considering the spatial dimensions, 
existing studies include small-world (Cowan and Jonard 2003, 2004), scale-free 
(Lin and Li 2010; Tang and Mu, 2010), and local-word non-uniform hypernetworks 
(Yang and Hu, 2015), as well as regular networks (Zeng et al., 2019). In the pre-
sent research, we aimed primarily at characterizing exogenous network formations, 
considering realistic social interactions. That is, we accounted for the formation of 
networks in which agents, following different rules of behavior, select daily contacts 
via intuition (as proposed in Block et al. 2020), forming dynamic networks with dif-
ferent properties. The idea of an exogenous network assumes that interactions are 
not learning-driven, but exogenous to the potential learning capabilities of specific 
agents (as in Cowan and Jonard 2004).

From a sociological perspective, the spread of knowledge is related to the co-
existence of strong and weak ties within a social network. Strong ties refer to intense 
connections among two nodes, while weak ties define bridges across distant sub-
groups formed by stronger ties. Weak ties are particularly effective for spreading 
knowledge across groups, thereby reducing fragmentation within the larger net-
work and improving diffusion (Granovetter 1973). However, strong ties more read-
ily stimulate innovation and knowledge exchange (Nelson 1989). Previous research 
has studied knowledge diffusion dynamics, considering different types of intra-
clique, inter-clique, and extra-clique connections (Bala and Goyal 2001; Midgley 
et al. 1992; Ally and Zhang 2018). When both strong and weak ties exist, a network 
can be characterized as complex (Kim and Park 2009). This suggests that access 
to diversified ties is important for improving productivity and innovation, through 
knowledge diffusion (Todo et al. 2016).

Strong ties can be represented by clusters and communities (i.e., subgroups of 
actors with close and frequent interaction). Examples of these clusters include firms 
involved in R&D (Rappa and Debackere, 1992), scientific communities (Lambiotte 
and Panzarasa 2009), and, more generally, communities of individuals who regu-
larly exchange ideas. Such clusters may benefit knowledge diffusion and creation 
(Rappa and Debackere, 1992; Storck and Hill 2009). In particular, Malmberg and 
Power (2005) showed that clusters have been rapidly growing in both academic and 
policymaking circles, promoting knowledge exchange and acquisition through col-
laborative interaction. In this way, clusters can represent melting pots for innovation 
(Günther and Meissner 2017).

A proper balance of strong ties (i.e., knowledge diffusion within communities) 
and weak ties (i.e., spillover between communities and/or other network nodes) can 
guarantee access to knowledge, thereby favoring development and reducing ine-
qualities. This is supported by social capital theories (Putnam 2001) and the notion 
of structural social capital (Nahapiet et al., 1998), which describes the benefits an 
individual accrues through learning from their network. Following this literature, 
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bonding and bridging capital (i.e., intense local interactions within a given com-
munity and cross-community interaction, respectively) might be complementary for 
fostering economic growth, since “the relations within and between social groups 
at different levels of society shape the prospects for sustainable, equitable growth” 
(Woolcock, 1998).

Against this background, recent events (e.g., COVID-19) have highlighted the 
importance of social network structure for determining collective phenomena and 
the relevance of social interaction to productivity (Breetze and Wild, 2022; Jialu 
et al. 2021). Thus, it is useful to revisit and analyze the evolution of social networks 
and the sociological aspects that define interaction rules. By identifying the chang-
ing network configurations of individual contact (selected via choice) and organiza-
tional routines, with regard to different types of agents (e.g., individuals, firms), we 
can observe how knowledge spreads under both normal conditions and conditions of 
stress.

Another important network feature is change in the intensity of relationships. 
Social ties may be strengthened, weakened, or broken due to internal and/or external 
circumstances. Furthermore, the network literature has underlined the importance 
of investigating the sustainability of knowledge networks (Zhao et al. 2020). Impor-
tantly, networks can be subjected to malicious attacks that hinder communication 
(Dong et al. 2013). These attacks can be random or targeted, depending on the ways 
in which they disable certain nodes. It is difficult to identify a network structure 
capable of preventing both random and targeted attacks, since the optimal configura-
tion for defending against targeted attacks can be most vulnerable to random attacks 
(Zhang et al. 2016).

There are several real-life examples of targeted and random attacks. For instance, 
examples of targeted attacks (which affect only a subset of the network, such as 
experts) include high-tech firms colluding to prevent knowledge spread outside their 
cluster, to maintain competitiveness (Bacchiega et al. 2010); financial traders with-
holding privileged knowledge; and experts protecting their experiential knowledge 
in order to preserve a competitive advantage in a difficult job market. An example of 
a random attack generating behavioral change throughout the entire network (con-
sidering both experts and non-experts) is the COVID-19 pandemic. During the viral 
outbreak, different agents were infected and their communication with the rest of 
the network was temporarily interrupted. It is well documented that the interrup-
tion of face-to-face interaction, accompanied by difficulties in preserving effective 
online interaction, led to communication dysfunction between subjects, generating 
inequalities (Haelermans et al. 2022).

The literature on networks shows that learning processes within social networks 
are interrupted or altered by outside forces according to their degree of resilience to 
different attack strategies (Latif et al., 2013). While targeted attacks affect specific 
nodes (i.e., expert agents), interrupting communication and learning, random fail-
ures tend to disable the communication of heterogeneous agents.

Scholars have attempted to identify which network properties favor resilience and 
robustness (De Domenico et al. 2014; Latif et al., 2013; Li et al. 2019). However, pre-
vious analyses of network structure have failed to sufficiently consider the behavioral 
rules underlying sociological drivers of network dynamics. Therefore, in the present 
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research, we considered if—and how—certain behavioral interaction rules might foster 
resilience to both targeted and random attacks, in order to maintain the functioning of 
social networks, even in the context of adversity.

Specifically, the research aimed at contributing to the literature on social aggregation 
and learning patterns, with respect to their impact on growth and inequality. We consid-
ered a simulated framework with different stylized (but realistic) aggregation rules rep-
resenting social interactions. Following Block et al. (2020), we modeled the strengths 
and weaknesses of ties based on random, community, and repetition strategies. As dis-
cussed in the “Methodology” section, in the random case, interactions were sparse and 
the frequency with which the same agents interacted was lower, demonstrating the pre-
dominance of weak ties. In the other cases, there was a greater frequency of strong ties: 
The community strategy was based on the creation of communities among agents with 
the highest number of shared contacts; and the repetition strategy was based on repeat 
interaction with the same partner over time. In the repetition case, there was a high like-
lihood of strong ties being formed but a lower (but non-zero) probability of weak ties 
being formed with nodes outside the community or set of repeat contacts.

The number of contacts was maintained as a constant across all scenarios, while 
the intensity of strong ties ranged from extremely unlikely (in the random case) to 
highly likely (in the repetition case). The community case represented an interme-
diary between the random and repetition cases, with frequent but diffused contact 
among community members. This allowed expert nodes to disseminate knowledge 
at an intermediate frequency (i.e., more frequently than in the random case, but less 
frequently than in the repetition case) to a larger number of agents.

Network structure may be considered structural social capital, defining (follow-
ing Nahapiet and Ghosal, 1998) the network of interpersonal relationships shared by 
everyone. In our model (and beyond), knowledge was spread through social interac-
tion between agents; accordingly, the network of interpersonal relationships (and the 
structural social capital within a society) defined the manner in which knowledge 
was spread. From this perspective, we tested the effects of an open but disorgan-
ized network (random case), an open but organized network (community case), and 
a very closed network (repetition case).

Societies are repeatedly affected and attacked by both external and internal condi-
tions. In some cases, members of the society, themselves, may change behavior and 
thus alter the knowledge dissemination process within the network. In other cases, 
exogenous shocks may alter the network’s operations (as during COVID-19). In the 
present research, we attempted to show how the three scenarios (i.e., random, com-
munity, and repetition) lead to the same aggregate level of knowledge and knowl-
edge distribution under conditions of internal change, but a different level of knowl-
edge and knowledge distribution under conditions of shock.

3  Methodology

To better convey the construction of our model, the following sections clarify: (i) the 
ex-ante assignment of knowledge, (ii) the learning process, (iii) the analyzed inter-
action rules, (iv) the resilience tests, and (iv) the main performance indicators.



288 P. Morone et al.

1 3

3.1  Knowledge distribution

It is widely known that ex-ante inequality in the endowment of knowledge contrib-
utes to determining economic performance (Morone and Taylor 2004). Consider-
ing that the distribution of knowledge can be a proxy for the distribution of wealth, 
we applied Pareto’s law of income distribution (as observed in several countries) to 
determine the knowledge distribution to agents (i.e., allocating 20% of the nodes 
80% of the wealth). Although the empirical evidence of this income structure is 
mixed (Clementi and Gallegati 2005), we applied it because it considers a starting 
condition with both relatively high inequality and relatively high learning oppor-
tunities. Following this, we populated the network with 1,000 agents (as in Block 
et al. 2020), disseminating 50,000 tokens of knowledge across the nodes. Therefore, 
vertexes were subdivided into two groups: 200 expert agents (i.e., 20% of the total 
nodes), receiving 40,000 knowledge tokens (i.e., 80% of the total tokens) in a ran-
dom distribution; and 800 non-expert agents (i.e., the other nodes), receiving 10,000 
knowledge tokens in a random distribution. Figure 1 reports the initial distribution 
of knowledge tokens. The x-axis indicates the 1000 agents sorted in descending 
order, from higher to lower level of knowledge (reported on the y-axis). The vertical 
line divides the experts (i.e., the first 200 agents) from the non-expert agents (on the 
right side).

3.2  Learning process

In line with previous research (Morone and Taylor 2004), we introduced the con-
cept of learning gains from interactions, while simplifying the process to better evi-
dence and isolate the effect of the different interaction rules, in accordance with our 
primary research aim. Cowan and Jonard (2004) developed a model capturing the 

Fig. 1  Initial distribution of Knowledge
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effects of incremental innovation and the diffusion of these effects throughout a net-
work of heterogeneous agents. Even in their model, agents were endowed with dif-
ferent levels of initial knowledge: A small number of agents were assigned “expert” 
roles and attributed a higher level of knowledge. Knowledge was assumed to be 
exchanged through interaction between an expert (or individual with a higher level 
of knowledge) and an agent with less knowledge.

The main idea behind learning gains is that knowledge transfer is not obtained in 
a single interaction, but requires repeated contact, depending on the capacity of the 
receiving node. In the real world, this is evidenced by the years of study required 
for students to earn a degree, years of R&D required to determine innovations, and 
years of research required for academics to make an original contribution to the 
literature.

In our model, learning gains were assumed to be constant, with each vertex 
acquiring one token of knowledge from a more expert node, as follows: kit is the 
level of knowledge of agent i at time t and defined as the number of tokens i owns; 
it changes according to the following rule, after i interacts with agent j at time t + 1:

3.3  Interaction strategies

The spread of ideas (similar to the spread of viruses) is crucially affected by aspects 
of network structure, such as path length (i.e., network distance, or the number of 
network steps needed to connect two nodes) and level of clusterization. Different 
hypotheses have been proposed to describe the spread mechanisms that affect the 
diffusion of a new behavior throughout a network. One view is based on the strength 
of weak ties hypotheses; this perspective considers the spread of behavior as sim-
ple as that of a virus, requiring only a single interaction with an infected (or newly 
behaving) person (Granovetter 1973; Watts, 1999). In this case, the ideal structure 
to optimize rapid diffusion throughout the network is a random network with many 
long ties, a very short average path length, and low clusterization. This ensures that 
each agent is capable of reaching many others in different neighborhoods, thereby 
reducing redundancy at the same time.

In contrast, the complex contagion hypothesis (Centola and Macy, 2007) sees 
the diffusion of new behavior as more complex than the spread of a disease. In this 
hypothesis, numerous exposures to the carrier of the novelty are required for an 
agent to decide to adopt the new behavior. In this case, the ideal structure for dif-
fusion is that of a highly clustered network with sufficient social reinforcement to 
encourage adoption.

Block et al. (2020) proposed a set of interaction strategies to represent different 
network conditions (according to average path length and network clusterization), 
with the aim of identifying the most efficient strategy to prevent viral spread.

kit+1 =

{
kit + 1 and kjt+1 = kjt if ki < kj

kit and kjt+1 = kjt + 1 if ki > kj or ki = kj
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Applying this analysis to behavioral diffusion, in the present research, we aimed 
at assessing the impact of different social interaction strategies on spread throughout 
a network.

Specifically, we analyzed three strategies: random, repetition, and community. 
The random strategy involved a network with weak ties, a very short average path 
length, and a low clusterization level, representing the least organized network struc-
ture. In this condition, agents randomly selected alters with which to interact (with-
out following any organizational rule), within their own neighborhood. On the other 
end of the continuum, the repetition strategy involved a network structure based on 
repeated contact, where the number of partners (rather than the number of interac-
tions) was reduced, creating so-called social bubbles. Within this network, knowl-
edge was quickly disseminated between partners via the high frequency of interac-
tion, but rarely shared outside social bubbles.

The final strategy built on the strength of communities. In this model, individuals 
mostly interacted with those with whom their neighbors also commonly interacted, 
reflecting the idea that agents tend to aggregate with those who share similar inter-
ests or occupy similar “melting pots,” creating overlapping networks of neighbors. 
We considered the community strategy an intermediate social aggregation pattern 
located between the other two extremes, which considered prevalently weak (in the 
random case) and strong (in the repetition case) ties. However, we did not include 
the homophilistic case (analyzed in Block et al. 2020), which could be considered a 
further intermediary between the random and community scenarios.

As in Block et al. (2020), we started with a network of 1,000 agents, defining a 
static neighborhood for each vertex. In this work, we only emphasize aspects that 
are novel to Block et al. (2020) and refer the reader to the original study for further 
details on the analysis and nomenclature employed.

The web of interaction opportunities among agents was determined by four sub-
processes: (i) geographical proximity, (ii) group membership, (iii) homophily, and 
(iv) daily random meets. Considering geographical proximity, actors were randomly 
scattered across a 2D space, and a random number of ties (ranging from 4–12) were 
formed based on the Euclidean distance between points (assuming an agent den-
sity of  dgeo = 0.3). On average, groups had eight members, and each actor formed 
ties with other members at random (assuming an agent density of  ggroups = 0.6). The 
homophilistic proximity between subjects ranged from 0–100. Considering the simi-
larity formula (i.e., closest to Euclidean distance), a random number of ties with the 
closest alters (ranging from 4–12) were formed. The fourth subprocess represented 
random z meetings/links (500 in the entire network).

The dynamic was provided by a multinomial choice model in which each agent 
i, picked at random in each simulation step, selected j from its neighborhood. The 
weighted probability of selecting j differed across each strategy. In the random sce-
nario, each agent j had an equal probability of being selected. In the repetition case, 
j was weighted in accordance with the number of times that i met j in the three 
prior interactions. In the community case, the probability of selecting j was deter-
mined by a statistic indicating the number of alters shared between i and j. The 
higher the number of shared alters, the higher the probability that a cluster would be 
formed with those contacts. As in Block et al. (2020), the statistics were weighted 
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considering the same parameters  (scommunity: α = 0.75;  srepetition: α = 2.5). The final 
weighted probability was an exponentiated linear function of the resulting statistics 
for each case (see Appendix A for the computational details).

Figure 2 reports the difference in aggregation between the community and repeti-
tion cases, with the community case showing clusters with more members. As the 
network was large, we opted for a Fruchterman–Reingold display, with nodes visu-
ally arranged based on their network distance. This resulted in linked nodes being 
displayed close together.

In a similar vein, Fig.  3 illustrates the intensity of weak and strong ties across 
agents, considering the frequency of contact.

The random scenario resulted in the highest intensity of sparse contacts, with 
low-frequency contact between each pair of vertices. In contrast, the community 
case displayed a high level of contact with an intermediate intensity (in blue), while 
the repetition strategy reflected dense, high-frequency pairwise contacts, with dyads 
disconnected from the rest of the network.

3.4  Resilience tests

Figure 4 illustrates workflows for the different scenarios analyzed. As a reference 
point, we considered simple interaction among agents exchanging knowledge, with-
out setting any kind of restriction. In this case, the simulation consisted of 500 peri-
ods, each with 1,000 micro-steps (resulting in a total of 500,000 micro-steps), with 
an agent I randomly selected for interaction in each step. We observed that 500 peri-
ods were sufficient to achieve a steady state. (The same ratio was applied to select 
the periods in the other cases.) The other two cases represented a targeted attack and 
random failure, respectively.

Fig. 2  Network formation along three periods (i.e., 3,000 interaction steps). Weak ties (i.e., ties repre-
senting a single interaction between agents) were removed to favor the graphical representation
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In a targeted attack, experts no longer disseminate knowledge, thereby drasti-
cally reducing learning opportunities. This is an extremely realistic scenario, as 
discussed in the “Introduction.” To this end, we considered cases in which experts 
interrupted the dissemination of their superior knowledge after 10 and 50 peri-
ods, respectively, within simulations of 100 and 300 periods. After these turning 
points (i.e., 10 periods, 50 periods), dissemination was possible only among non-
experts, as reported in the workflow.

In a random failure, interruption to knowledge dissemination affects both 
experts and non-experts (therefore, it is defined as random). As a case study, we 
considered a viral outbreak that temporarily deactivated certain nodes, due to 
infection. Even in this case, the interruption of interaction might affect knowledge 
diffusion, thereby increasing the level of inequality (Haelermans et  al. 2022). 
The dynamics of this interruption may follow Block et al.’s (2020) S-I-R model, 
whereby q initial nodes are infected and then disactivated in the learning pro-
cess. Considering the dynamics of contagion, we defined our model so that each 
subject had a probability of meeting other agents of πcontact = 0.50 and a prob-
ability of infecting those agents (if the subject was positive) of πinfection = 0.80. If 
infected, subjects could become infected after one period (i.e., 1,000 steps) and 
recover after four periods (i.e., 4,000 steps). When infected, the subject (node) 
would be disactivated and could no longer transmit knowledge. In this case, 50 
periods were sufficient to track the virus spread.

3.5  Performance indicators

As in Morone and Taylor (2004), we considered proxies of knowledge and variance. 
Specifically, we analyzed:

• Knowledge diffusion, referring to the evolution of the aggregate number of 
knowledge tokens over time;

• The Gini index, referring to the overall inequality of knowledge in the system; 
and

Fig. 3  Network evolution along five periods (i.e., 5,000 steps). Different colors represent different inter-
action frequencies: 1 (gray), 2 (blue), and 3 or more (red)
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• The average knowledge gap, as a robustness check of the Gini index, proxying 
the distance between the average knowledge of experts and the last 200 agents, in 
terms of the number of knowledge tokens held.

In line with the main research aim, the benchmark case was characterized by a 
suppression of inequality, indicated by a Gini index and knowledge gap close to 0. 

Fig. 4  Workflows for each scenario
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However, as is observable in the results, this was difficult to achieve when the sys-
tem was agitated.

4  Results

The following sections report the results, referring to the average of 30 simulations 
for each scenario.

4.1  Baseline scenario

Figure 5 presents the results for the baseline scenario. Interestingly, only few differ-
ences emerged among indicators, suggesting that the outcome was independent of 
the aggregation rule. This result was expected, since the scenario employed a static 
network (i.e., with the same potential interactions among subjects) and the different 
dynamics only reflected different (non-0) probabilities to select a given i–j link. To 

Fig. 5  Baseline results
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clarify: in the random scenario, each link (within the local neighborhood defined in 
the static network at initialization) could be employed with equal probability, while 
in the repetition case, a subset of links (characterizing repeat interaction among the 
same dyads) had a higher probability and others had a lower probability of being 
employed. Consequently, in the random and community strategies, there was a 
higher probability that any potential link would be used; however, in the repetition 
case, many links had a low probability of being used, thereby greatly reducing the 
speed of dissemination and extending the time required to reach a steady state.

Considering the connected static network (with an average diameter of 3 and a 
mean degree of approximately 70), the differences between strategies were not 
defined by the long-run steady state achieved, but the time needed to reach knowl-
edge saturation. In this respect, the community and the random strategies outper-
formed the repetition rule, requiring approximately 50 fewer periods to reach the 
steady state.

Considering the final configuration of knowledge diffusion, the irrelevance of 
social structure might suggest that social aspects are not relevant for policymaking, 
since agents will achieve the same results, independently of their manner of inter-
action. That is, the creation of scientific communities, industrial districts, or, more 
generally, organizational clusters seem irrelevant to the dissemination of knowledge. 
Additionally, a repetition structure, in which only a few contacts are informed by the 
same expert agent, also seems irrelevant. However, as the following results show, 
these considerations are myopic and do not consider the changing external circum-
stances that characterize the socioeconomic fabric.

4.2  Targeted attacks

This section reports the results of the models in which expert agents interrupted 
the communication process after 10 (Fig. 6) or 50 (Fig. 7) periods, as a robustness 
check. In this framework, the number of interactions was maintained as a constant. 
Thus, partner selection involved a trade-off between increasing the knowledge of 
one agent and reducing the learning opportunities of other nodes (i.e., a trade-off 
between the accumulation of knowledge (and human capital) by specific nodes at a 
lower level of diffusion and the distribution of knowledge to a larger slice of popula-
tion at a higher level of diffusion but lower concentration).

Knowledge is crucial to preserve and maintain at a sophisticated level; however, 
this can lead to an unfavorable economic outcome characterized by a high concen-
tration of knowledge and higher inequality, underlying the importance of knowledge 
diffusion. This trade-off is most evident under conditions of targeted attack, in which 
experts interrupt the diffusion of their knowledge. In these situations, further learn-
ing depends on: (i) the knowledge acquired by agents who were previously in con-
tact with experts (i.e., before the attack) and (ii) the interaction between these agents 
and the remaining vertices. The first point requires intense and repeat interaction 
with experts, while the second requires diffused interaction.

The results show that the community strategy outperformed the other two 
strategies, in terms of both the aggregate level of knowledge diffusion and the 
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reduction of inequality. After 10 (50) periods, in the community strategy, experts 
diffused sufficient knowledge and continued to propagate, establishing more 
learning opportunities after excluding the most contacted nodes. In the repetition 
strategy, the diffusion rate was lower and the concentration of knowledge higher, 
but the exclusion of experts did not allow nodes that had acquired a high level 
of knowledge to continue in the diffusion process. Therefore, there were fewer 
learning opportunities. In the random scenario, the network was open and knowl-
edge was diffuse, but also dispersed. To wit, after the removal of experts, the 
level of knowledge among non-experts was low, resulting in no further learning 
opportunities.

Thus, the community strategy reflected a compromise between concentrat-
ing knowledge in a few agents and diffusing knowledge throughout the network. 
Bonding capital (i.e., strong ties, or intense interactions within communities) 
allowed for the “creation” of experts with higher knowledge, while bridging 
capital (i.e., weak ties, or interactions with the rest of the neighborhood) cre-
ated knowledge spillover, thereby successfully increasing learning opportunities. 
Interestingly, when there was no organization in the diffusion of knowledge (i.e., 

Fig. 6  Network under targeted attack after 10 periods
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in the random strategy), knowledge was diffused but dispersed, and the emerging 
network was not resilient to external structural change. Thus, clusters, scientific 
communities, and, more generally, melting pots, may support both the preser-
vation of knowledge and knowledge dissemination, even in the context of dras-
tic change in the socioeconomic environment. Figure 8 summarizes this aspect, 
comparing the knowledge distribution across the three strategies at the end of 
the resilience test (TA50 is taken as example), also including the starting point, 
that is the initial distribution of knowledge (Fig. 1). Similarly to the first figure 
showed, on the x-axis, the agents are sorted in descending order according to 
their knowledge level. It is evident that the community strategy exhibits a high 
level of knowledge and low level of inequalities between experts and non-experts.

4.3  Random failure

Even the results under conditions of random failure confirmed the superior per-
formance of the community strategy. Differently from the previous scenario of 
a targeted attack, in this case, we did not expect long-run differences, given the 

Fig. 7  Network under targeted attack after 50 periods
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short-term nature of the shock (i.e., agents were only randomly and temporarily dis-
abled, and interactions were fully restored after a small number of periods). Indeed, 
we did not observe long-run changes in inequality measures. Figure 9 reports the 
growth in knowledge diffusion given the short-term deactivation of nodes but no 

Fig. 8  Heatmap reporting the final distribution of knowledge across strategies (for TA-50, the most rep-
resentative case with higher differences). On the x-axis agents are sorted in descending order according 
to their level of knowledge (filled red area)

Fig. 9  Network under conditions of random failure



299

1 3

Knowledge diffusion in social networks under targeted attack…

long-term change in the aggregate. Although the number of temporarily inactive 
nodes (e.g., COVID-infected cases) was slightly higher in the community case than 
the repetition case, the organizational structure experienced a faster recovery, show-
ing greater growth rates after the initial decline. However, no significant differences 
were observed in the change in inequality. (Therefore, these results are omitted.)

The random scenario outlined the sharpest decline in growth, due to the high 
number of inactive nodes. However, the community scenario preserved networks of 
contact that could mitigate the excessive spread of the virus (given the high number 
of intra-group contacts), while at the same time preserving the interactive learning 
process.

5  Discussion

In the face of numerous global challenges to humanity, the concept of resilience is 
gaining momentum. Different from individualistic perspectives, resilience may be 
understood as a social process linked to the social context, characterized by human 
interaction in varying environments (Revilla et al. 2018).

The structural components of social networks may contribute significantly to 
defining their economic output and maintaining the dissemination of behavioral and 
informational knowledge, even during conditions of shock. In particular, organized 
networks seem to function better than networks that rely on random social interac-
tions. Furthermore, societies that foster both network openness and stable micro-
organizations tend to enjoy better knowledge dissemination, even during negative 
shocks.

The present analysis showed that structured networks that balance inter-group 
strong ties (favoring the creation of communities) and weak ties (favoring knowl-
edge spillover across communities) perform the best in situations of adversity. Put 
differently, this organizational scheme seems to guarantee the highest aggregate 
level of knowledge and lowest level of inequality, and thereby the greatest resilience.

The analysis modeled two types of negative shocks that might alter and under-
mine communication: a targeted attack, interrupting the knowledge dissemination 
of experts, and a random failure, interrupting the communication of both experts 
and non-experts. The first case could emerge from the desire of a specific group to 
maintain a high level of social inequality. As reported in the “Introduction,” high-
tech firms can collude to prevent knowledge diffusion outside their cluster, in order 
to maintain a competitive advantage (Bacchiega et al. 2010); experts might also be 
interested in preserving their economic advantage in different contexts, keeping (at 
least) constant the gap between the rich and the poor. Random failures, in which the 
randomness refers to the types of nodes that are no longer able to process or dis-
seminate knowledge, are also evident in the real world, with the recent COVID-19 
pandemic representing but one example (Haelermans et al. 2022).

Inequalities of knowledge reflect inequalities of opportunity, and subsequently 
economic inequalities. As largely agreed, the perpetuation of inequalities is dan-
gerous for the stability of any socioeconomic system (Stiglitz 2016). The pre-
sent analysis attempted to solve the efficiency versus equity trade-off (Cowan 
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and Jonard 2004) faced by policymakers in the area of regional technology and 
knowledge. The findings revealed a network structure resulting in a high average 
level of knowledge (i.e., high efficiency) and low heterogeneity (i.e., high equity) 
among agents.

These results underline the importance of examining social aggregation rules in 
the context of communication, and the importance of preserving communities (e.g., 
scientific communities, consortia, general melting pots) and organizational clusters 
to ensure the inheritance, preservation, and transmission of knowledge. The study 
contributes a social perspective to the literature that might guide individuals, firms, 
and social agents, more generally, to define social trajectories that not only preserve 
efficiency and equity, but also build resilience.

From a policy perspective, the creation of communities and melting pots may 
mitigate the impact of adverse phenomena, promoting higher stability and resilience 
within the wider social network. Therefore, we can conclude that the co-existence 
of both weak and strong ties is necessary in any social organization to ensure the 
successful acquisition and exchange of knowledge through collaborative interaction.

Appendix A

The following reports the computational steps applied for the definition of social 
interactions.

Step 1: Agent distribution and attributes. N agents allocated in a 2D space. 
Each agent i has different attributes:

• geographical collocation: x–y coordinates;
• group ID: a random ID number assigning agent i to a group, whereby two agents 

i and j sharing the same group ID are members of the same group; and
• homophily attribute: a random scalar  ai ranging from 0–100, with the closest 

value represented by the value between the vertexes i and j and the higher value 
representing their homophily.

Step 2: Definition of the static network. For each agent i, a potential list of con-
tacts is generated, considering:

• geographical proximity: contacts sorted by Euclidean distance and randomly 
generated in sets ranging from 4–12 (assuming a probability of  dgeo = 0.3);

• group contacts: groups composed of an average of eight members, with each 
actor forming ties at random with other members (assuming an agent density of 
 ggroups = 0.6);

• homophilistic proximity: the normalized absolute distance considering the sca-
lar  ai and a random number of ties with the closest alters (ranging from 4–12); 
and

• random contacts: each actor having a random partner in their neighborhood 
with a probability of z = 0.5.
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Step 3: Definition of the dynamic network statistics. Considering  Ni as the neigh-
borhood of agent i, within each step, a randomly selected agent chooses a partner 
according to a probability model p. Each agent j in the neighborhood of i has a prob-
ability of being selected that depends on the behavioral strategy adopted:

– random strategy: each contact j has the same probability of being selected;
– community strategy: each contact j has a higher probability of being selected, 

depending on the following statistic s(i, j):

where h is a third alter different from i and j, and xi,hxj,h is equal to 1 whenever alter 
h is in the contact list of both i and j, and otherwise is equal to 1; and repetition 
strategy: the probability of selecting a partner is driven by the following statistic 
s(i,j):

where t is the time step of the simulation and Li(j, t) is the number of times i met j 
previously, considering a time window of � = 3 (i.e., the previous three interactions 
for each agent).

Step 4. Definition of the dynamic network probability model. Given these fea-
tures and following a multinomial choice model, each statistic is weighted by a param-
eter � and calibrated to make the models comparable (see Block et al. 2020). Therefore, 
the probability of selecting a contact j is given by:

Such that, given two potential partners of i, j1 and j2, when the statistic increases by 
1 unit ( s

(
i, j2

)
= s

(
i, j1

)
+ 1 , the marginal increase in the probability of selecting j2 is:
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