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Abstract
Networkmethods can extract the structure of financial correlationmatrices, andmarket
geometry reconstructs the correlation relationship by constructing a vector set in the
Euclidean space. This study uses a geometric perspective to analyse financial networks
and examine the relationship between correlation structures and geometric conditions.
Based on the concept of Euclidean space, we can naturally define geometric concepts
such as stock vector and inner product between stocks. The analysis reveals that the
structure of the financial correlation network is significantly affected by geometric
conditions. We use stock market data to construct networks with different structures,
such as a network with a hub node. We find that some stocks with small vector norms
have an important effect on changes in network structure. In addition, we define a
dimension to describe the correlation information included in the subspace of the
market space and find that the dynamics of the dimension are related to the market
state. This paper establishes away to study network structure throughmarket geometry,
thereby providing a new method of correlation analysis.

Keywords Correlation matrix · Complex network · Stock norm · Financial crisis

1 Introduction

To study large-dimensional correlation matrices, how to extract the hidden structure
of the matrix is an important issue. Random matrix theory (RMT) and complex net-
work theory provide some effective methods (Laloux et al. 1999; Plerou et al. 1999;
Mantegna 1999; Tumminello et al. 2005; Yang and Yang 2008; Tse et al. 2010). RMT-
based analysis reveals that the financial correlation matrix includes patterns different
from theoretical predictions (Laloux et al. 1999; Plerou et al. 1999). Theoretical and
empirical analysis supports the widespread use of RMT in financial data analysis, such
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as constructing portfolios (Plerou et al. 2002; Joël et al. 2017). Furthermore, empir-
ical analysis has shown that the dynamics of the correlation matrix are helpful for
understanding the overall pattern of the market, such as market status (Thomas et al.
2009; Ahmet et al. 2013; Junior and Franca 2012; Zheng et al. 2012). In particular,
analyzing the relationship between the dynamics of correlation structure and crises,
such as constructing indicators of the financial crisis based on correlations (Ahmet
et al. 2013; Junior and Franca 2012; Zheng et al. 2012), is an important issue.

In addition to directly studying the spectrum or properties of the correlation matrix,
an important method used in recent years is converting the correlation matrix into a
network and examining its structure (Mantegna 1999; Tumminello et al. 2005; Yang
and Yang 2008; Tse et al. 2010). Consistent with the concepts used in previous stud-
ies, a network of this type is called a correlation-based network (Tumminello et al.
2007). A correlation network can be constructed in various ways, including through
several common methods. One of them is to construct a financial correlation-based
network using a minimum spanning tree algorithm (MST) (Mantegna 1999). MST
has no closed loop and can be used to extract the hierarchical structure in the market
(Mantegna 1999). In general, researchers have proposed a method for constructing a
planarmaximally filtered graph (PMFG) that includes some small subgraph structures,
such as 3- and 4-cliques (Tumminello et al. 2005). In particular, research suggests that
PMFGs in the market may include some communities, a type of structure that has
been extensively studied in complex network research (Fortunato 2010; Malliaros and
Vazirgiannis 2013).

Existing studies have deeply analysed various structures of MST and PMFG, such
as the degree distribution (Antonios andArgyrakis 2007;Wiliński et al. 2013; Nie et al.
2016) and the community structure (Zhao et al. 2016; Vodenska et al. 2016). Various
markets have been extensively studied by converting the time series into financial
networks. For example, industry indices (Giuseppe et al. 2013), international indices
(Kumar and Deo 2012), exchange rates (Matesanz and Ortega 2014), etc., have been
systematically analysed. By examining the structure extracted by the network, we can
analyse the correlation matrix in depth, which enables us to discuss the topics of risk
management and investment portfolios. For example, Pozzi et al. (2013) analysed the
risk and investment performance of core and peripheral nodes in the correlation net-
work and found that portfolios based on peripheral nodes performed better. Empirical
analysis has also revealed that network topology can be used to predict the returns of
asset portfolios (Eng-Uthaiwat 2018). Peralta and Zareei (2016) constructed an anal-
ysis framework combining the Markowitz theory with a network representation and
found that the network structure helps enhance the performance of asset portfolios.
Sandhu et al. (2016) introduced the curvature of the network and used it to analyse sys-
temic risks.Moreover, empirical analysis has shown that a financial crisis significantly
affects the fractal structure of the correlation network (Nie and Song 2019).

In addition to methods based on graph theory, the threshold method can be used to
convert the correlation matrix into a network (Yang and Yang 2008; Tse et al. 2010).
Researchers have combined PMFG and threshold methods to construct networks and
study changes in the correlation structure of financial markets (Nie and Song 2018).
The current study mainly examines the structure of MST and PMFG from a geometric
perspective.
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In the study of financial MST, the correlation coefficient can be converted into the
distance between two time series (Mantegna 1999),which allows the correlationmatrix
to be analysed from a geometric perspective (Mendes et al. 2003; Araújo and Louçã
2007; Araújo et al. 2013; Araújo and Spelta 2014; Eleutério et al. 2014; Echaust and
Just 2013). By defining the distance in the stock set, it can be embedded in a Euclidean
space, where each stock corresponds to a Euclidean vector (Mendes et al. 2003). It
should be noted that the dimension of these vectors is not the length of the return
series, which is usually of a lower dimension.

Mendes et al. (2003) used the stochastic geometry technique to embed N stocks
in an N − 1-dimensional Euclidean space. Furthermore, some studies have extended
the application of this method. Based on the data of the constituent stocks of the
S&P500 index, Araújo and Louçã investigated changes in the market space and intro-
duced an index to analyse nine financial crises (Araújo and Louçã 2007). Araújo et al.
(2013) applied multivariate kurtosis to characterize the distortion of market geome-
try and found that it can be used to portray the emergence of crises. In addition, the
researchers analysed the international interbank market and found that the data can
be represented well in the low-dimensional space (Araújo and Spelta 2014). From an
application perspective, market geometry can be used for portfolio analysis (Eleutério
et al. 2014). In addition to the aforementioned technique, some researchers use mul-
tidimensional scaling (MDS) analysis to examine market geometry (Echaust and Just
2013). MDS is a commonly used technique for analyzing financial data, which can
be implemented through different definitions of similarity or distance (Groenen and
Franses 2000; Machado et al. 2011; Yin and Shang 2014; Esmalifalak et al. 2015;
Fernández-Avilés et al. 2020). In this study, we apply the MDS technique to con-
struct the market geometry, in which the stock set with the distance is displayed in a
Euclidean space.

In summary, the correlation coefficient matrix can be filtered into a network or
directly embedded in a Euclidean space. However, to the best of our knowledge, no
research has focused on the possible relationship between the two approaches. This
study focuses on combining the twomethods to analyse the structures in the correlation
matrix. To characterize the network structures, we use the influence-strength (IS)
and Rényi index to identify the influence of the nodes and the macrostructure of the
network, respectively (Jung et al. 2006; Eliazar 2011). The IS extracts the neighbouring
information of a node to portray its influence on other nodes; this approach has been
widely used in financial network analysis (Jung et al. 2006; Gała̧zka 2011; Wang and
Xie 2015; Wang et al. 2018; Zhu et al. 2016; Nie 2020). The Rényi index, also known
as the normalized Rényi entropy, was originally used to examine the heterogeneity
of the distribution (Eliazar 2011). The Rényi index of the network is defined in the
degree distribution and has been used to study correlation-based networks (Nie et al.
2016; Nie and Song 2019).

In addition tomicroscopic (IS) andmacroscopic structural indicators (Rényi index),
we use an algorithm to detect an important mesoscale structure (community) of the
network. Many researchers have proposed community detection algorithms based on
differentmethods (Fortunato 2010;Malliaros andVazirgiannis 2013). Here, we choose
a classic community detection algorithm proposed by Newman, which is calculated
by optimizing the modularity (Newman 2004). Modularity is an indicator used to
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characterize the saliency of a community structure, and a value greater than 0.3 means
that the structure is significant (Clauset et al. 2004).

The rest of this paper is organized as follows.Wefirst review theMDSalgorithmand
the indicators used to examine the correlation network. Second, we define some basic
concepts ofmarket geometry based onEuclidean space. Third, we analyse the relation-
ship between the geometric concept and the network structure. Fourth, we construct
networks with different geometric conditions and analyse the differences in topolog-
ical structures. In addition, we examine the relationship between norms and market
factor. Finally, we analyse the dynamics of the market subspace and dimensions.

2 Data andmethod

2.1 Data

For the empirical analysis, we selected the constituents of the indices in the US and
UK markets, from which the daily closing price series for each selected stock was
extracted. Some stocks were removed due tomissing data in the considered period. For
the S&P500 index, we selected price data for 448 stocks from 3/1/2007 to 31/12/2010
(Table 6). To show the network clearly, we selected the constituent stocks of the
S&P100 index (Table 7), which are also included in the S&P500 index, for analysis.

To investigate the long-term dynamics of the correlation matrix, we selected 78
stocks from the S&P500 index from 2/1/1985 to 31/12/2012 (Table 8). Moreover, we
selected the daily closing price series of the 80 constituent stocks of the FTSE 100
Index, each of which ranges from 3/1/2005 to 29/12/2017 (Table 9).

All data sets analysed in this study are extracted from Yahoo! Finance (https://
finance.yahoo.com/). The constituent stocks included in each dataset are listed in the
“Appendix”. In addition, we use software Pajek to visualize the correlation-based
networks of this paper (http://mrvar.fdv.uni-lj.si/pajek/).

2.2 Reconstructing themarket in a Euclidean space

We use the MDS algorithm to reconstruct the market in a Euclidean space (Borg and
Groenen 2005). We discuss the geometry of n stocks (S = {i |i = 1, . . . , n}), each of
which corresponds to a price series ({Pi (t)}). The return series {Ri (t)} is generated
by equation Ri (t) = log(Pi (t + 1)) − log(Pi (t)). We then calculate the correlation
coefficient between each pair of stocks (Eq. (1)) as well as the distance (Eq. (2))
(Mantegna 1999). In Eq. (1), the symbol 〈〉 indicates a calculation of the average. The
MDS algorithm uses the distance matrix D = [D(i, j)] of the n stocks (Borg and
Groenen 2005; Echaust and Just 2013).

ρ(i, j) = 〈Ri (t)R j (t)〉 − 〈Ri (t)〉〈R j (t)〉√
〈Ri (t)2 − 〈Ri (t)〉2〉〈R j (t)2 − 〈R j (t)〉2〉

(1)

D(i, j) = √
2(1 − ρ(i, j)) (2)
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Here, we use the following classic algorithm to reconstruct the market (Borg and
Groenen 2005; Echaust and Just 2013).

1. We calculate the matrix J = I − n−1 I1 I
′
1, where I1 is the column vector with

elements equal to 1.
2. Based on J , the matrix B is calculated as shown in Eq. (3). Here, D2 = [D2(i, j)]

is constructed by D, where D2(i, j) = D(i, j)2.
3. We need to calculate the eigenvalue decomposition B = QΛQ′. We calculate

n eigenvalues {λi , i = 1, . . . , n} of B, and each eigenvalue λi corresponds to
an eigenvector vB

i . In addition, we assume that the eigenvalues are sorted in the
descending order of the subscripts, that is, λi > λi+1. Here, the i-th column of the
matrix Q corresponds to the i-th eigenvector vB

i of B, and Λ is a diagonal matrix
(Λ(i, i) = λi ).

4. We extract the top m eigenvalues (λ = {λ1, λ2, . . . , λm}) greater than 0, and
construct matrix Λ+ (Λ+(i, i) ∈ λ). Correspondingly, the first m columns of Q
are recorded as Q+; then, the coordinate matrix is given by X = Q+Λ

1/2
+ , where

Λ
1/2
+ = diag(λ1/21 , . . . , λ

1/2
m ).

B = −1

2
J D2 J

′ (3)

Since the distance between two stocks is equivalent to the Euclidean distance
between the normalized return series, m can be chosen to be n − 1 (Mendes et al.
2003; Araújo and Louçã 2007; Echaust and Just 2013). That is, each stock is assigned
an n − 1 dimensional vector so that the stock set is embedded in the Euclidean space
Rn−1.

2.2.1 An example based on MDS

Here, we use a simple example to show how the MDS algorithm is applied to embed
a stock set into a Euclidean space. We select the daily closing price series of five
companies (APPL, ABT, ACN, AIG, ALL) from 4/1/2010 to 31/12/2010 (252 days).

First, we preprocess all price series into return series and generate a correlation
matrix (Eq. (4)).

D =

⎡
⎢⎢⎢⎢⎣

0 1.0487 1.0687 1.1693 0.9982
1.0487 0 1.0490 1.1503 1.0195
1.0687 1.0490 0 1.1718 0.9812
1.1693 1.1503 1.1718 0 1.0570
0.9982 1.0195 0.9812 1.0570 0

⎤
⎥⎥⎥⎥⎦

(4)

Second, we calculate J (Eq. (5)) and B (Eq. (6)). The five eigenvalues of B are
λ = {0.7381, 0.5725, 0.5509, 0.4429, 0}, and the eigenvectors corresponding to the
four nonzero eigenvalues are as shown in Eq. (7), where each column corresponds to
one eigenvalue.
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J =

⎡
⎢⎢⎢⎢⎣

0.8000 −0.2000 −0.2000 −0.2000 −0.2000
−0.2000 0.8000 −0.2000 −0.2000 −0.2000
−0.2000 −0.2000 0.8000 −0.2000 −0.2000
−0.2000 −0.2000 −0.2000 0.8000 −0.2000
−0.2000 −0.2000 −0.2000 −0.2000 0.8000

⎤
⎥⎥⎥⎥⎦

(5)

B =

⎡
⎢⎢⎢⎢⎣

0.4602 −0.0939 −0.1136 −0.1658 −0.0869
−0.0939 0.4517 −0.0970 −0.1481 −0.1127
−0.1136 −0.0970 0.4548 −0.1715 −0.0728
−0.1658 −0.1481 −0.1715 0.5753 −0.0899
−0.0869 −0.1127 −0.0728 −0.0899 0.3623

⎤
⎥⎥⎥⎥⎦

(6)

Q =

⎡
⎢⎢⎢⎢⎣

0.3044 −0.6781 0.4192 0.2680 0.4472
0.2384 −0.1343 −0.8512 −0.0255 0.4472
0.3193 0.7141 0.2002 0.3847 0.4472

−0.8652 −0.0116 −0.0122 0.2262 0.4472
0.0031 0.1099 0.2440 −0.8534 0.4472

⎤
⎥⎥⎥⎥⎦

(7)

Finally, we calculate X = Q+Λ
1/2
+ (m = 5 − 1 = 4), and each row in Eq. (8)

corresponds to a vector of length 4, which is the vector in the Euclidean space R4. For
example, APPL corresponds to vector (0.2615,−0.5131, 0.3112, 0.1783).

X =

⎡
⎢⎢⎢⎢⎣

0.2615 −0.5131 0.3112 0.1783
0.2048 −0.1016 −0.6318 −0.0169
0.2743 0.5403 0.1486 0.2560

−0.7433 −0.0088 −0.0091 0.1505
0.0027 0.0832 0.1811 −0.5679

⎤
⎥⎥⎥⎥⎦

(8)

2.3 The geometry of the stock space

Based on the MDS algorithm, the stock set is embedded in a high-dimensional
Euclidean space. Each stock i corresponds to a vector vi = (vi (1), . . . , vi (n − 1)) in
the Euclidean space Rn−1. This approach allows us to apply geometric concepts to
analyse the structures in the correlation matrix (Halmos 1974).

First, the concepts in the Euclidean space can be naturally defined in the market
geometry. Since each stock corresponds to a vector in the Euclidean space, we can
naturally define the inner product between any two stock vectors as

(vi , v j ) =
∑
l

vi (l)v j (l). (9)

We define the norm of the vector vi as the stock norm of i (Eq. (10)).

Ni = norm(vi ) = √
(vi , vi ) (10)
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We define θ(i, j) as the angle between stocks i and j , which can be expressed as
Eq. (11).

cos θ(i, j) = (vi , v j )

Ni N j
(11)

The distance between two stocks can be expressed by

DMDS(i, j) = norm(vi − v j ). (12)

In Eq. (2), D(i, j) is essentially the Euclidean distance between the normalized
return series. For example, if we assume that both time series are of length K , then
the distance of Eq. (2) is equivalent to the Euclidean distance between the two K -
dimensional vectors (Mantegna and Stanley 1999). Here, the distance between the
reconstructed vectors shown in Eq. (12) is equal to D(i, j) of Eq. (2). However, vi and
v j in Eq. (12) are vectors in the Euclidean space Rn−1, not K -dimensional vectors.
Since the calculated values of Eqs. (2) and (12) are identical, we will not distinguish
between DMDS(i, j) and D(i, j).

Below,we analyse the relationship between the correlation coefficient and the norm.
First, based on Eq. (2), the correlation coefficient can be expressed as

ρ(i, j) = 1 − D(i, j)2

2
. (13)

Second, from Eqs. (10) and (13), the correlation coefficient can be expressed as

ρ(i, j) = 1 −
(
N 2
i + N 2

j

2
− Ni N j cos θ(i, j)

)
. (14)

We assume that θ(i, j) is close to π/2 and can be expressed as θ(i, j) = π/2 −
θε(i, j). The correlation coefficient can be re-expressed as in Eq. (15). For the term
cos(π

2 − θε(i, j)), we can express it as Taylor expansion, which is Eq. (16). When
θε(i, j) is close to 0, the correlation coefficient can be approximated as ρ(i, j) ≈
1 − N2

i +N2
j

2 + Ni N jθε(i, j).

ρ(i, j) = 1 − N 2
i + N 2

j

2
+ Ni N j

(
cos

(π

2
− θε(i, j)

))
(15)

ρ(i, j) ≈ 1 − N 2
i + N 2

j

2
+ Ni N j

(
θε(i, j) − θε(i, j)3

6

+θε(i, j)5

120
− θε(i, j)7

5040
+ O(θε(i, j)

8)

)
(16)
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2.4 Low-dimensional subspace of the stock space

Previous studies have introduced an indicator to capture the effective dimension of
the market, where the effective dimension is much smaller than n (Araújo and Louçã
2007). Here, we propose a new dimension to characterize the information contained
in the subspace of the financial space.

First, we calculate the Frobenius norm of a matrix H = [H(i, j)], as shown in
Eq. (17) (Leon 2010).

‖ H ‖F=
√∑

i

∑
j

|H(i, j)|2 (17)

Second, by specifying a dimension Dim, we calculate the vector vsubi =
(vi (1), . . . , vi (Dim)) of each stock in the subspace and the distance DDim(i, j) =
norm(vsubi − vsubj ) between the different stocks in the subspace. We then define p′ as
shown in Eq. (18), which depicts the difference between DDim and the original dis-
tance matrix D. That is, a larger p′ means that the difference between the matrix DDim
and D is smaller and that DDim is related to the dimension Dim. Thus, p′ essentially
depicts the level of correlation information contained in a subspace, and a larger p′
value indicates that more correlation information is included in the subspace.

p′ = 1 − ‖ DDim − D ‖F
‖ D ‖F (18)

Further, if we specify a p′ value, we can define a dimension corresponding to p′.
Here, we specify a p and define the p-dimension as

Dimp = min

{
Dim|1 − ‖ DDim − D ‖F

‖ D ‖F ≥ p

}
. (19)

The smaller dimension means that the matrix D can be approximated well using
the distance matrix DDimp . Thus, we can compare the dimensions of different periods
when p is fixed.

2.5 Influence-strength and Rényi index

To simplify the discussion, we use the label of the stock directly as the node label so
that a network can be expressed as W (S, T ), where S = {1, 2, . . . , n} is the stock set,
and T = [T (i, j)] is the adjacency matrix. There are a total of n nodes (stocks), the
degree corresponding to node (stock) i is di = ∑

k T (i, k), and the average degree of
the network is d ′ = 1

n

∑n
i=1 di .

Kim et al. introduced the I S to describe the influence of stock i in a network as in

ISi =
∑
j∈Γi

ρ(i, j), (20)
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where Γi is a set of nodes directly connected to node i (Kim et al. 2002).
The Rényi index is a normalized entropy that can be used to characterize random-

ness, taking values in the interval [0, 1] (Eliazar 2011). TheRényi index can effectively
describe the macroscale structure of financial graphs (Nie et al. 2016; Nie and Song
2019). The form of the index on the network is as shown in Eq. (21), where q is
a parameter. The larger the Rényi index is, the further the network deviates from a
homogeneous network (Nie et al. 2016). For example, the Rényi index value of a
star-like network with one hub node is close to 1. Conversely, if the degree of each
node is equal to a constant, the Rényi index is zero (Nie et al. 2016). Here, we specify
q = 2 for analysis.

R(q) = 1 −
[

n∑
i=1

(
di
d ′

)q

·
(
1

n

)] 1
1−q

, q 	= 1

R(1) = 1 − exp

{
−

n∑
i=1

[
di
d ′ · ln

(
di
d ′

)]
· 1

1 − n

}
, q = 1

(21)

In addition to IS and the Rényi index, we also use the average shortest path length
to describe the network structure globally. For a network, it is the average value of the
off-diagonal elements of the shortest distance matrix (Boccaletti et al. 2006).

2.6 Relationship between the stock norm and the average correlation coefficient

We examine the relationship between the average correlation coefficient (Eq. (22))
and the stock norm. Eq. (23) can be obtained from Eqs. (14) and (22).

ρ̄i =
∑

i 	= j ρ(i, j)

n − 1
(22)

ρ̄i = 1 − N 2
i

2
− 1

n − 1

∑
j 	=i

N 2
j

2
+ 1

n − 1

∑
j 	=i

Ni N j cos θ(i, j) (23)

Equation (23) shows that ρ̄i can be expressed as a quadratic function of Ni . Next,
we analyse the non-constant items in Eq. (23). A stock set corresponds to a con-

stant
∑

j
N2

j
2 . Since

∑
j 	=i

N2
j
2 ≈ ∑

j
N2

j
2 when n a large positive integer, the term

1
n−1

∑
j 	=i

N2
j
2 can be approximated as a constant. In addition, if most of the angles

({θi j }) are close to π/2, the term 1
n−1

∑
j 	=i Ni N j cos θi j is a small number.

In summary, Eq. (23) shows that the relationship between ρ̄i and Ni is a quadratic
polynomial, where the coefficient of the quadratic term is -0.5 and the coefficient of
the term Ni is a number with a small absolute value. The constant is approximately

equal to
∑

i N
2
i

2(n−1) .

123



420 C.-X. Nie

2.7 Relationship between stock norms and influence-strength

We analyse the relationship between the IS of a correlation-based network and stock
norms. Applying Eqs. (14) and (20), IS can be represented as

ISi =
∑
j∈Γi

(
1 −

(
N 2
i + N 2

j

2
− Ni N j cos θ(i, j)

))
. (24)

Equation (24) can be further expressed as

ISi = Card(Γi ) − Card(Γi )N 2
i

2
−

∑
j∈Γ j

N 2
j

2

+ Ni

∑
j∈Γ j

N j cos θ(i, j),
(25)

where ‘Card(Γi )’ denotes the cardinality of the set Γi . If most of the angles ({θ(i, j)})
are close to π/2, then cos θ(i, j) ≈ 0. Equation (25) means that IS is directly related
to the stock norm, as shown in Eqs. (26). Equation (26) implies that there is a negative
correlation between the stock norm (Ni ) and the IS (ISi ).

ISi ≈ Card(Γi ) − Card(Γi )N 2
i

2
−

∑
j∈Γ j

N 2
j

2
. (26)

2.8 Theˇ value of the stock

For each stock, in addition to calculating network indices, we also calculated an index
based on factor model. Here, since the correlation matrix is constructed directly from
the logarithmic return series, we use the simple average return of the considered stocks
as the market return (RM (t) = 1

n

∑
i Ri (t)). Then, we estimate the β value for each

stock i and compare the norm with the β value (Campbell et al. 1997). In Eq. (27),
RM (t) represents the return corresponding to the market factor, Ri (t) is the return of
stock i , and εi (t) is a random term with a mean of 0 (Campbell et al. 1997).

Ri (t) = αi + βi RM (t) + εi (t) (27)

2.9 Community

We only focus on undirected financial networks without edge weights. In this type of
network, the community structure is a cluster-like structure in which there is a close
relationship between nodes within the same community. However, nodes in different
communities are sparsely linked or not linked. Many algorithms can be used to detect
community structures, including the classical modularity-based algorithm proposed
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Fig. 1 Frequency histogram of the stock norm. Several basic statistics are listed in the figure. The minimum
norm and the maximum norm are 0.4753 and 0.8846, respectively, indicating a large difference between
the norms

by Newman (2004). The modularity is defined as shown in Eq. (28) (Newman 2004;
Fortunato 2010), where C(i, j) takes a value of 1 if i and j belong to the same
community and takes a value of 0 otherwise. The symbol m represents the number
of links in the network. In general, a Q value greater than 0.3 implies that there is a
significant community structure in the network (Clauset et al. 2004).

Q = 1

2m

∑
i j

(
T (i, j) − did j

2m

)
C(i, j) (28)

3 Results

3.1 Empirical results of stock norm and angle

In this section, we embed the constituents of the S&P100 index into R92 (92 =
n − 1 = 93 − 1) and then analyse the geometric properties. Here, we only choose
the data for 2008. Based on the stock vectors, we calculate the stock norm of each
stock and the angle between each pair of stocks. Figures 1 and 2 present the results.
Figure 1 shows that there are significant differences between the norm of some stocks.
Evidently, the distribution is not homogeneous, and most of the stock norms are close
to the average (0.6528), such as 66 stock norm values in the interval [0.5705, 0.7350]
([ave − std, ave + std]).

In addition, the angle between stock vectors is found to be mainly distributed
around π/2. In fact, most of the angles are distributed in the interval [1.4144, 1.7461]
([ave − std, ave + std]).

We provide an example to analyse the effect of the angle on the correlation coeffi-
cient. It is assumed that the angle θ = ave − std = 1.4144, where ave and std are the
values in Fig. 2. Further, it is assumed that Ni = N j = 0.6528, where 0.6528 is the
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Fig. 2 Frequency histogram of the angle between stocks. The Jarque–Bera test reports a p-value less than
2.2e−16, thereby rejecting the null hypothesis of normality

average value in Fig. 1. Thus, θε(i, j) = π/2 − θ = 0.1564 in Eq. (15). The corre-
lation coefficient calculated directly from Eq. (14) is 0.6402. It can be calculated that
θε(i, j)3 = 0.0038, which contributes little to the correlation coefficient value. Based

on Eq. (16), the first-order expansion (ρ(i, j) ≈ 1− N2
i +N2

i
2 +Ni N jθε(i, j)) is a good

approximation. Since Ni = N j = 0.6528, the term Ni N jθε(i, j) = 0.0666. If we do
not consider items that include θε in Eq. (15), then ρ(i, j) ≈ 1 − (N 2

j + N 2
j )/2 =

0.5739. Further, considering the first-order expansion of cos(π
2 −θε(i, j)) in Eq. (15),

ρ(i, j) ≈ 1− (N 2
i + N 2

j )/2+ N 2
i N

2
j θε(i, j) = 0.6405. In summary, we find that the

correlation coefficient value is mainly determined by the norm. In addition, a more
accurate approximation is obtained when considering the first-order expansion of the
angle term. A more accurate estimation of the correlation coefficient needs the term
containing θε to be considered, but the high-order term of θε usually has only a small
contribution.

3.2 Empirical relationship between norms and other indicators

In this section, we discuss the relationship between norms and other indicators, includ-
ing the average correlation coefficient and IS.We use the data used in Fig. 1 to calculate
ρ̄i , and its relationship with Ni is shown in Fig. 3. By fitting the data, the relationship
between the two variables is shown in the figure, which is a quadratic polynomial.
Consistent with the analysis in the previous part of this study, the coefficient of the
quadratic term is -0.5054. The constant term is 0.7812, and the calculation reveals that∑

i N
2
i

2(n−1) = 0.7836, indicating only a slight difference between the two. In addition, the
coefficient of Ni is close to zero (5.533e-07), which is consistent with the previous
analysis (Eq. (23)).

In summary, our analysis reveals that the relationship between the average correla-
tion coefficient and the norm can be expressed as a quadratic function, and the results
based on real data are consistent with Eq. (23).
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Fig. 3 The figure shows the relationship between the norm and the average correlation coefficient (ACC).
The relationship can be well described by a quadratic function

(a) (b)

Fig. 4 The figures show the relationship between the norm and IS, and the smaller norm corresponds to the
larger IS. Subgraphs a (MST) and b (PMFG) show similar patterns in which the smaller norm corresponds
to a larger IS value

Based on the data used in Fig. 1, we calculate the MST and PMFG. Figure 4 shows
the relationship between IS and the norm. We find that the large IS value corresponds
to the small stock norm. Moreover, since the value Card(Γi ) in the relation Eq. (25)
partially contributes to the IS value, we have not found a precise relationship expressed
by the function similar to that in Fig. 3. However, we found a negative correlation
between the norm and IS, as shown in Eq. (26).

3.3 Evolution of stock norms

In this section, we analyse the distribution of the stock norms in different periods.
Here, we select the constituent stocks of the S&P500 index and calculate the stock
norm distributions for 2007, 2008, 2009, and 2010. The stock collection includes 448
stocks, which are embedded in R447 (n−1 = 448−1). To clearly show the distribution
of the stock norm, we use (x, y) = (Ni cos θi , Ni sin θi ) to represent the point of stock
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(a) (b)

(c) (d)

Fig. 5 The distribution of the stock norms corresponding to different years, where the stock corresponds
to a two-dimensional vector. Vectors in high-dimensional space are converted to two-dimensional vectors.
The conversion does not change the stock norm

i in a two-dimensional plane, where θi is a number chosen randomly from the interval
[0, 2π ].

Figure 5 shows the distribution of norms in a two-dimensional space. In the four
subgraphs, the same stock i corresponds to the same θi . Figure 5 shows that the
distribution of the stock norms varies drastically over time. For example, the stock
norms appearmore evenly distributed during 2007 and 2010.During the 2008 financial
crisis, the distribution is more discrete and corresponds to a larger standard deviation.
The basic statistics of the norms are shown in the figure. The minimum average value
of the norms occurs during the financial crisis. In addition, we show the frequency
histogram of the norm for each year in Fig. 6. There are clearly some large norm
values always distributed in the tail. There are also some stocks with small norms. We
discuss the relationship between norms and market factors later.

In addition to the statistic of the norms, the basic statistics of the distribution of the
angles are listed in Table 1, where the average of all years is close to π/2 (1.5708)
and has a negative skewness and a large kurtosis. However, there was a larger standard
deviation in 2008. These calculations show that the angle between the stocks also
changes over time and that most are distributed around π/2.

The previous calculations visually show that the norm distribution changes over
time. In a stock set, stocks with a smaller norm correspond to a larger IS (Fig. 4) and
have a larger ACC value (Fig. 3), suggesting that these may significantly influence
the structure of the network. In the following section, we construct some networks
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(a) (b)

(c) (d)

Fig. 6 The subgraphs show the frequency histograms of stock norms in different years. Each stock set
includes some stocks with large norms

Table 1 The basic statistic of the
angular distribution
corresponding to different years

Year Ave SD Skewness Kurtosis

2007 1.5722 0.1070 −1.3836 9.7308

2008 1.5720 0.1529 −1.0295 6.8990

2009 1.5713 0.1327 −1.1870 6.7220

2010 1.5718 0.1014 −1.1676 7.7274

Ave: Average value
SD: Standard deviation

based on norms and show the important influence of stocks with small norms on the
structure of financial graphs.

3.4 Constructing networks of different structures based on the stock norm

We select the data of the constituent stocks of the S&P500 index from 3/1/2007 to
31/12/2010, which is a total of 1008 trading days. We calculate the stock norm as
shown in Fig. 7. The average of the norms is 0.7446, that is, most of the stocks are
distributed near the hypersphere with a radius of 0.7446.

We construct some networks based on the quantile of the empirical distribution
of the stock norm. Here, we use Qq to represent the q-quantile and select the stock
corresponding to the norm in the interval [Qq , Nmax] to calculate theMST and PMFG.
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Fig. 7 The frequency histogram of the stock norm for 2007/1/3–2010/12/31. There are a few stocks with
small norms, and some stock norms deviate far from the average

Table 2 The Qq values used in the calculations

Q0.40 Q0.45 Q0.50 Q0.55 Q0.60 Q0.75 Q0.80 Q0.85 Q0.90

0.7103 0.7185 0.7320 0.7436 0.7563 0.7972 0.8125 0.8431 0.8660

Here, the maximum norm (Nmax) is 1.1308. Table 2 reports the Qq values used in the
calculations.

Based on the stocks selected by the interval [Qq , Nmax], we add a stock with the
smallest norm (DD,NDD = 0.5545) to show its effect on the network structure. We
choose Q0.75, Q0.80, Q0.85, and Q0.90 for calculation, where the four sets of stocks
include 113, 91, 68, and 46 stocks, respectively. Figures 8 and 9 show the calculated
MSTs and PMFGs, respectively.

Next, based on the stock set used in Figs. 8b and 9b, we add a stock with a small
normwhich is only greater than the norm of DD and then calculate theMST (Fig. 10a)
and PMFG (Fig. 10b). We find that the original network with only a single hub node
was converted to a network with two hub nodes.

We continue to examine the network generated by stocks near the quantile
Q0.50 of the norm distribution. We select the stocks in intervals [Q0.45, Q0.55] and
[Q0.40, Q0.60] and calculate the MSTs and PMFGs, respectively (Fig. 11). The two
stock sets include 44 and 90 stocks, respectively. The results reveal that both MSTs
and PMFGs exhibit a similar topological structure, that is, a chain-like structure.

We found that changing norm-based conditions can result in networks with com-
pletely different structures. For example, Fig. 8b includes a stock with a minimum
norm, while the stock set in Fig. 10a includes those with a minimum and a second
small norm, such that the former includes one hub node and the latter includes two
hub nodes.
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Fig. 8 The four subgraphs show the MSTs for different intervals. a [Q0.75, Nmax], b [Q0.80, Nmax], c
[Q0.85, Nmax], d [Q0.9, Nmax]

Table 3 reports some basic statistics such as the maximum and average. We can
roughly analyse the heterogeneity of different networks from these statistics. The
maximum degree of the network in Fig. 8a is 52, which is much larger than that
in Fig. 11a. However, the difference in the mean value between the two is small,
suggesting that the former has a higher level of heterogeneity. To show the structural
changes in detail, Table 3 also presents the values of the average path length (Lave)
and the Rényi index. Changes in the structure of the network can be quantified by
these two indicators. The network constructed by stocks with norms near the quantile
Q0.5 is found to have a chain-like structure, which is characterized by a significantly
smaller Rényi index than that of a network with hub nodes. For example, the Rényi
index values of the network in Fig. 8 are greater than 0.8, and the values of the four
networks in Fig. 9 are all greater than 0.55. However, the values of the network of
the four networks in Fig. 11 are all less than 0.33. In addition, the Lave values of the
MSTs in Fig. 11 are also found to be larger than the Lave values of the MSTs in Figs. 8
and 10. Similarly, the Lave values for PMFGs in Fig. 11 are all greater than 3.5, but
the Lave values for PMFGs in Figs. 9 and 10 are less than 2.5.
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Fig. 9 The four subgraphs show the PMFGs for different intervals. a [Q0.75, Nmax], b [Q0.80, Nmax], c
[Q0.85, Nmax], d [Q0.9, Nmax]
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Fig. 10 The two subfigures show the financial graph generated by adding two small norm stocks. Both
MST a and PMFG b contain two hub nodes, which correspond to the two small norm stocks
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Fig. 11 The figure shows four financial graphs generated based on intervals [Q0.45, Q0.55] and
[Q0.40, Q0.60], where each graph has a chain-like topological structure

3.5 Analysis of the hub nodes in PMFG

The financial graphs described in the previous section reveal the high impact of stocks
with small norms. Since the community structure can be directly analysed in PMFG,
we examine the relationship between the community structure and the norm in more
detail in this section.

Here, we select the constituents of the S&P100 index and calculated PMFG for
2008. Then, we use a classic community detection algorithm proposed by Newman
(2004). This algorithm is used to divide PMFG into six communities, as shown in
Fig. 12. The calculation results indicate that the module degree is 0.6021, and a value
greater than 0.3means that the community structure is significant (Clauset et al. 2004).
We use the colour of the node to mark the community, and the labels corresponding
to each community are shown in Table 4, in which we also list the number of stocks
(NC ) included in different communities.

In Fig. 12, each node is labelled with a company name and a stock norm. Evidently,
the hub nodes in different communities are found to have smaller norm values. In
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Table 3 Comparison of
structural indicators between
different networks

Network dM dA Lave Rényi index

Figure 8a 52.0000 1.9823 4.1963 0.8555

Figure 8b 52.0000 1.9780 4.0557 0.8791

Figure 8c 47.0000 1.9706 2.7871 0.8880

Figure 8d 36.0000 1.9565 2.4077 0.8715

Figure 9a 86.0000 5.8938 2.4425 0.6524

Figure 9b 78.0000 5.8681 2.1597 0.6528

Figure 9c 65.0000 5.8235 1.9543 0.6291

Figure 9d 45.0000 5.7391 1.8725 0.5536

Figure 10a 30.0000 1.9783 3.6730 0.8219

Figure 10b 72.0000 5.8696 2.1125 0.7297

Figure 11a 7.0000 1.9545 7.4884 0.2878

Figure 11b 7.0000 1.9778 9.0270 0.3282

Figure 11c 14.0000 5.7273 3.6744 0.1306

Figure 11d 16.0000 5.8667 4.7518 0.2154

dM: Maximum degree
dA: Average degree

Table 4 The labels of different
communities and the average
norm and maximum norm of
stocks in the community

LC Colour NC Normave Normmax

1 Green 27 0.625 0.475 (25)

2 Yellow 16 0.664 0.488 (24)

3 Red 13 0.688 0.659(10)

4 White 9 0.650 0.618(8), 0.5820(8)

5 Blue 13 0.651 0.505(22)

6 Pink 15 0.663 0.630(11)

NC : The number of nodes included in the community LC
LC : The community label
Normave: The average norm of the nodes in the community
Normmax: The norm of the node corresponding to the maximum
degree. The number enclosed in parentheses is the corresponding
degree

the fourth and fifth columns of Table 4, we report the average norm values of the
stocks in the community and the norm values corresponding to the hub nodes. For
example, there is only one hub node in community 2, with a norm of 0.488, which
is significantly smaller than those of other nodes in the community. Similarly, there
is only one hub node with a norm of 0.505 in community 5. In addition, there may
be differences between the norms of the hub nodes of different communities. For
example, the norms of several hub nodes in communities 3, 4, and 6 are all greater
than 0.51, but they are still smaller than the Normave values. Our analysis indicates
that the hub nodes in a community also correspond to smaller norms, and that the
values are related to the community.
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Fig. 12 The figure shows a PMFG in which different colours correspond to different communities, and
each stock is labelled with a norm value

In summary, we find that the nodes of the small norm also occupy an important posi-
tion in the community, which indicates that the stocks of small norms have significance
in terms of the macro structure (degree distribution) and meso-structure (community
structure) of the network.

3.6 Relationship between norm andˇ value

In this section, we analyse the relationship between the norms and the β values. We
select the data of the S&P500 index stocks from 3/1/2007 to 31/12/2010 to calculate
the norm and β value. We analyse the difference between the β value and 1, that is,
we calculate β1,i = |βi − 1|. The scatter plot is shown in Fig. 13. The small norm
usually corresponds to a small β1,i value, while the large norm often corresponds
to a larger β1,i value, indicating that the β value of the small norm is closer to 1.
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Fig. 13 Most stocks with small norms have small β1,i -values. Compared with small norms, large stock
norms globally correspond to larger β1,i -values

Fig. 14 The figure shows the sequence of βave-values of two groups of stocks, in which significant differ-
ences can be observed. The series corresponding to small norm stocks is more stable, and most βave values
are close to 0.15

Furthermore, we sort all the stock norms and extract the top 10 small norm stocks
and the top 10 large norm stocks. Thus, for a group of stocks, we extract two groups
of stocks corresponding to the small and large stock norms, respectively. We then
separately calculate the average value (βave) of β1,i values of each group of stocks.
We can calculate the βave value series through the moving window and analyse the
difference between the βave value series. The length of the window is set to 504 trading
days. Figure 14 presents the time series of βave values, and the βave value of stocks
with large stock norms clearly deviate further from 0.

The analysis reveals that the β value corresponding to the small norm is closer to
1, which implies that there is a higher correlation between small norm stocks and the
market factor.
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Fig. 15 The figure shows the relationship between dimensions and p. If p = 0.7, the p-dimension of the
market in 2008 is the minimum

3.7 Relationship between subspace dimensions and financial crisis

For the market space, we apply the p-dimension to analyse the dynamics of the sub-
space. The results reveal that most of the correlation information can be included in
a subspace, and its dimension is much smaller than the number of stocks. Here, we
select the annual data of the constituent stocks of the S&P100 index.

We use the relationship shown in Eq. (18) to analyse the information included in
the subspace. We specify the dimension (Dim) and calculate p′, as shown in Fig. 15,
in which the three lines correspond to 2005, 2008, and 2012, respectively. Based on
Fig. 15, the main results are as follows.

First, a larger p′ (Eq. (18)) means that Dimp contains more correlation information,
resulting in a smaller difference between the matrix DDimp and D. The results indicate
that although the stock set is embedded in a high-dimensional space, a smaller subspace
can include the main correlation structure. Second, we find that there are differences
between the corresponding curves for different years. For example, the corresponding
curve in 2008 is at the top, which shows that when the dimension is small, the p′ value
changes more drastically. That is, when we specify the same dimension to calculate
p, the corresponding matrix DDimp for 2008 includes more correlation information.
For example, according to the definition of Eq. (19), the value of Dimp corresponding
to 2008 is 13 when we specify p = 0.7. Similarly, the values of Dimp corresponding
to 2005 and 2011 are 18 and 16, respectively, which suggests that the subspace of the
smaller dimension in 2008 includes more correlation information.

In summary, we find that the relationship between p′ and dimensions changes over
time, which implies that changes in the correlation structure of the financial market
have led to changes in the subspace. To investigate the relationship between dimensions
and p in detail, we specify p = 0.7 below and calculate the corresponding Dimp

(Eq. (19)). We select the data in the US and UK markets and slide the time window
[t1, t2] to calculate the Dimp values for different time periods. Here, the calculation
time window is 125 days (t2 − t1 + 1 = 125), and the sliding time window is 1 day.
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Fig. 16 The figure shows the dynamics of the subspace in the US market and simultaneously marks the
S&P500 index. Intuitively, when the market is in a crisis period, such as the 1987 crisis and the 2008 crisis,
the Dimp value is smaller

Thus, the dimension series is calculated and can be compared with the market index.
Figures 16 and 17 show the results using US and UK market data, respectively. Here,
Fig. 16 analyses the long-term historical data of 78 stocks. Below, we analyse the
dynamics of the dimensions of the two markets.

First, we compare theDimp series with the S&P500 index. It can be seen that during
the financial crisis, the dimension decreased significantly, that is, the period in which
the index decreased significantly corresponds to a smaller dimension. For example,
the corresponding dimension during the 1987 crash was significantly smaller, and the
calculation indicates that the dimension of the period 22/4/1987–19/10/1987 is 15. In
addition, comparedwith the average (14.6523),Dimp valueswere significantly smaller
during the bubble burst in tech stocks in 2000 and during the subprime mortgage crisis
in 2008.

Second, Fig. 17 also shows empirical results similar to those shown in Fig. 16. In
Fig. 17, we compare the Dimp series to the FTSE 100 index and find that the Dim
value also decreases significantly when the index drops sharply.

Table 5 shows the dimensions and market indices corresponding to some periods
in detail, of which the US market index is the S&P500 index and the U.K. market
index is the FTSE 100 index. Here, each index value corresponds to time t2 of the
period [t1, t2]. Both Black Monday and the 2008 financial crisis are found to have
significantly affected the change in dimensions. In addition, there is a special case in
the U.K. market. The dimension has been significantly reduced since 2015, but the
index rebounded significantly after reaching the localminimumduring this period, and
the FTSE 100 index was 5537 on 11/2/2016. This example demonstrates that during
the financial crisis, Dimp decreased significantly; however, a significant reduction in
Dimp does not necessarily correspond to a financial crisis.
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Fig. 17 The figure shows the dynamics of the subspace in the UK market and simultaneously marks the
FTSE 100 index. Overall, the Dimp value decreases as the market falls sharply

Table 5 The comparison
between dimension and index in
different periods

Market Period Dimp Index

U.S. 1987.4.21–1987.10.16 17 282.7

U.S. 1987.4.22–1987.10.19 15 224.84

U.S. 1987.4.23–1987.10.20 13 236.83

U.S. 1999.9.27–2000.3.24 15 1527.46

U.S. 2000.10.27–2001.4.30 11 1249.46

U.S. 2007.4.12–2007.10.9 14 1565.15

U.S. 2008.4.17–2008.10.14 10 998.01

U.K. 2007.4.12–2007.10.9 15 6615.4

U.K. 2008.4.17–2008.10.14 10 4394.2

U.K. 2016.5.18–2016.11.11 7 6730.4

3.8 Geometric features of themarket as a vector set

In Sect. 3.1, an example shows that the angle between most stock vectors is close to
π/2. In this section, we analyse the market reconstructed in a Euclidean space from
the perspective of the angle between stock vectors. The calculations in the previous
section suggest that the market’s main correlation information can be included in a
low-dimensional subspace, but this space evolves over time. We use the data used in
Figs. 16 and 17 to analyse the evolution of the stock angle over time. To calculate
the level of the set {θ(i, j), j > i} deviation from π/2, we calculate the global
indicator as in Eq. (29), where ‘Card({θ(i, j), j > i})’ means the cardinality of the
set {θ(i, j), j > i}. This indicator characterizes the difference between the angle and
π/2 in the sense of the average value. Overall, the smaller the value, the closer the
stock angle is to π/2. Figure 18 shows that the dangle value is close to π/2 in both
the U.S. and U.K. markets, which indicates that the angle between the vectors in the
market vector set in a Euclidean space is generally close to π/2.
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(a) (b)

Fig. 18 The frequency histograms of dangle. Small average values and maximum values indicate that most
of the angles are close to π/2

dangle = 1

Card({θ(i, j), j > i})
∑
j>i

∣∣∣θ(i, j) − π

2

∣∣∣ (29)

4 Discussion and conclusions

4.1 Discussion

Themethod used herein needs to define ametric, such as the distance based on the Pear-
son correlation coefficient. This condition limits the method to the Euclidean space.
More generally, the geometry of the market defined for other non-metric relationships,
such as Granger causality, needs to be further explored.

Based on the efficient market hypothesis, price movements arise from responses
to information, while factor models show that stock returns can be expressed as a
linear combination of economic factors. In this study, the p-dimension is essentially
an indicator that expresses the size of the subspace needed to characterize specified
correlation information. Thus, we suspect that the change in the dimension of the
subspace is driven by market information.

The analysis reveals that the distribution of stock norms has a significant impact
on the network topology, making it necessary to focus on the effects of norms in
a network-based analysis. In particular, if investment indicators or risk management
indicators are constructed based on the topological structure, it is necessary to carefully
examine the distortion of the indicators caused by some small-norm stocks. In addition,
cluster analysis based on correlation networks also needs to focus on these effects and
enhance the robustness of the method.

4.2 Conclusions

Reconstructing the market in a Euclidean space allows us to study a group of stocks
from a geometric perspective. This approach makes it possible to introduce some
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geometric concepts for analysing correlation structures. The main conclusions of this
study are as follows.

The angle between the vectors corresponding to the stock is close to π/2, forming
a direct relationship between stock norms and the average correlation coefficient.
Furthermore, the norm distribution is found to change over time; for example, the
average norm during the financial crisis is smaller, but the standard deviation of the
norm is greater. In addition, we also find that the stock with a small norm has a
strong influence on the network structure. For example, we constructed networks with
super hub nodes by adding small-norm stocks. In particular, we constructed several
networks with a chain structure using the distribution of stock norms. In addition to
conducting an analysis from the network perspective, we examine the changes in the
correlation information contained in the subspace and find that Dimp changes over
time. During the financial crisis, the values of Dimp are smaller, indicating that the
subspace contains more information.

In summary, we establish the relationship between market geometry and the
correlation-based network. In our study, each node in the network is given some
geometric indicators, such as norm, so that the geometric perspective of the correlation-
based network is established. This detailed study reveals a link between geometric
conditions and the structure of the correlation-based network. The calculations herein
show that the correlation structure can be effectively studied throughmarket geometry.

Appendix

The following tables list the abbreviations of the stocks included in the data sets.

Table 6 List of stock abbreviations (S&P500 index)

ABT BAC KO EFX HPQ LOW NRG REGN TJX

ACE BK CCE EQR HD MTB NUE RF TMK

ACN BCR CTSH ESS HON MAC NVDA RSG TSS

ACT BAX CL EL HRL M ORLY RAI TSCO

ADBE BBT CMCSA EXC HSP MMM OXY RHI RIG

AES BDX CMA EXPD HST MRO OMC ROK FOXA

AET BBBY CSC ESRX HCBK MAR OKE COL TSN

AFL BMS CAG XOM HUM MMC ORCL ROP TYC

AMG BRK.B COP FFIV HBAN MAS OI ROST USB

A BBY CNX FDO ITW MAT PCG RDC UNP

GAS BIIB ED FAST IR MKC PCAR R UNH

APD BLK STZ FDX TEG MCD PLL SWY UPS
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Table 6 continued

ARG HRB GLW FIS INTC MHFI PH CRM MLM

AKAM BA COST FITB IBM MCK PDCO SNDK UTX

AA BXP CCI FE IP MWV PAYX SCG UNM

ALXN BSX CSX FISV IPG MDT BTU SLB URBN

ATI BMY CMI FLIR IFF MRK PNR STX VFC

AGN BRCM CVS FLS INTU MET PBCT SEE VLO

ADS BF-B DHI FLR ISRG MCHP POM SRE VAR

ALL CHRW DHR FMC IVZ MU PEP SHW VTR

ALTR CA DRI FTI IRM MSFT PKI SIAL VRSN

MO CVC DVA F JBL MHK PRGO SPG VZ

AMZN COG DE FOSL JEC TAP PETM SJM VRTX

AEE CAM DNR BEN JNJ MDLZ PFE SNA VNO

AEP CPB XRAY FCX JCI MON PNW SO VMC

AXP COF DVN FTR JOY MNST PXD LUV WMT

AIG CAH DO GME JPM MCO PBI SWN WAG

AMT KMX DTV GCI JNPR MS PCL STJ DIS

ABC CCL DLTR GPS KSU MOS PNC SWK GHC

AMGN CAT D GRMN K MSI RL SPLS WM

APH CBG DOV GD KEY MUR PPG SBUX WAT

APC CELG DOW GE GMCR MYL PPL HOT WLP

ADI CNP DTE GGP KMB NBR PX STT WFC

AON CTL DD GIS KIM NDAQ PCP SRCL WDC

APA CERN DUK GPC KLAC NOV PCLN SYK WY

AIV SCHW DNB GNW KSS NTAP PFG STI WHR

AAPL CHK ETFC GILD KR NFLX PG SYMC WFM

AMAT CVX EMN GS LB NWL PGR SYY WMB

ADM CB ETN GT LLL NFX PLD TROW WEC

AIZ CI EBAY GWW LH HEM PRU TGT WYNN

T XEC ECL HAL LRCX HEE PEG TE XEL

ADSK CINF EIX HOG LM NKE PSA THC XRX

ADP CTAS EW HAR LEG NI PHM TSO XLNX

AN CSCO EA HRS LEN NE PVH TXN XL

AZO C EMC HIG LUK NBL PWR TXT YHOO

AVB CTXS EMR HAS LLY JWN QCOM HSY YUM

AVY CLX ESV HCP LNC NSC DGX TRV ZMH

AVP CME ETR HCN LLTC NTRS RRC TMO ZION

BHI CMS EOG HP LMT NOC RTN TIF –

BLL COH EQT HES L NU RHT TWX –
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Table 7 List of stock abbreviations (S&P100 index)

AAPL BAC COP EMR HD MCD NOV SO VZ

ABT BAX COST EXC HON MDLZ NSC SPG WBA

ACN BIIB CSCO F HPQ MDT ORCL T WFC

AIG BK CVS FCX IBM MET OXY TGT WMT

ALL BMY CVX FDX INTC MMM PEP TWX XOM

AMGN BRK.B DD FOXA JNJ MO PFE TXN –

AMZN C DIS GD JPM MON PG UNH –

APA CAT DOW GE KO MRK QCOM UNP –

APC CL DVN GILD LLY MS RTN UPS –

AXP CMCSA EBAY GS LMT MSFT SBUX USB –

BA COF EMC HAL LOW NKE SLB UTX –

Table 8 The abbreviations of 78 stocks in the S&P500 index

AA AMGN BLL COP EXC IBM MCD PFE VZ

AAPL AON BMY CSX F JNJ MMM RTN WFC

ABT APA C CVX GE JPM MO SLB WHR

ADP APD CAG DD GLW K MRK T WMT

AEP AVY CAT DIS GT KO MSI TAP XOM

AET AXP CI DOW HD KR NUE TE XRX

AIG BA CLX DUK HON LLY OXY TGT –

AMAT BAX CMI ED HPQ LMT PBI UNP –

AMD BF-B CMS EIX HUM LUV PEP UTX –

Table 9 List of stock abbreviations (FTSE 100 Index)

AAL.L BDEV.L CRDA.L HSBA.L LGEN.L PSN.L SBRY.L STAN.L

ABF.L BKG.L CRH.L IAG.L LLOY.L PSON.L SDR.L STJ.L

ADM.L BLND.L DCC.L IHG.L LSE.L RB.L SGE.L SVT.L

AHT.L BLT.L DGE.L IMB.L MKS.L RBS.L SGRO.L TSCO.L

ANTO.L BNZL.L EZJ.L INF.L MRW.L REL.L SHP.L TW.L

AV.L BP.L GFS.L ITRK.L NG.L RIO.L SKY.L ULVR.L

AZN.L BRBY.L GKN.L ITV.L NXT.L RR.L SMDS.L UU.L

BA.L CCL.L GSK.L JMAT.L OML.L RRS.L SMIN.L VOD.L

BARC.L CNA.L HLMA.L KGF.L PPB.L RSA.L SN.L WPP.L

BATS.L CPG.L HMSO.L LAND.L PRU.L RTO.L SSE.L WTB.L
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