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Abstract
In this paper, we analyse the effects that the number and outcomes ofR&Dexperiments
have on the strategic equilibria between two firms that can both compete and cooperate
in a context of uncertainty. As is well known, R&D projects are characterised by the
sequentiality of investments and by the outcomes obtained from the success or failure
of their experiments. Furthermore, the positive results and the number of tests carried
out in R&D increase the market value of the innovative product. The Real Option
Approach evaluates the flexibility of R&D investments and the strategic scenarios.
According to Nash equilibria, we show how the market value threshold, for which
the investment policy is optimal, depends on the number of experiments and on the
information revelation.

Keywords Real options · Game theory · Information revelation · R&D investments

JEL Classification G13 · C70 · D80 · O32

1 Introduction

Real Options Theory analyses the financial instruments applied to real assets, while
game theory introduces strategic interactions between firms. R&D investment gener-
ates new opportunities to promote economic development, to change market structure
and to potentially remove rivals from a given field. This particularly applies to some
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high-tech industries, like the pharmaceutical, software and semiconductor industries,
where monitoring the R&D investment, rather than price competition, is prudent.
Unfortunately, a R&D project is not often intended to yield immediate profits and
generally is characterised by high investment uncertainty. These characteristics and
the ability of delayed entry are not all taken into account by traditional net present
value (NPV) and internal rate of return (IRR)methods. In this context, the Real Option
Analysis (ROA) meets the criteria required to support managers decisions.1 In the fol-
lowing literature, various ways of evaluating projects have been extensively studied.
In Shackleton and Wojakowski (2003), Lee (1997), Trigeorgis (1991) and Majd and
Pindyck (1987), it is assumed that the option exercise price and investment cost are
fixed. However, it is important to consider the option exercise as a stochastic vari-
able. The exchange option can be employed to value R&D investments in which both
the gross project value and the investment cost are uncertain. For this purpose, as
described in McDonald and Siegel (1985), a European exchange option is used to
value the assets that distribute dividends. Further, in Carr (1988) and Carr (1995), an
American exchange option through approximating American put is developed and a
model to evaluate European compound exchange options is analysed. Moreover, in
Armada et al. (2007), exchange options are also employed to value R&D investments.
In the above models, assets distribute “dividends” that, in a real options context, are
the opportunity costs if an investment project is postponed (Majd and Pindyck 1987).

R&D investments are characterised by different aspects. First of all, they are
obtained from several irreversible and expensive experiments whose successes
improve the market value of innovative products (see Kellogg and Charnes 2000;
Hauschild and Reimsbach 2015; Myers and Howe 1997; Cassimon et al. 2011 and so
on).

Second, the information revelation gained in research experiments influences the
strategic choices of other rivals. This information revelation can be acquired in a legal
or illegal way, such as through industrial espionage. These phenomena can influence
a firm to delay its R&D investment in order to obtain additional information (see Dias
2004; Lewis et al. 2004; Huchzermeier and Loch 2001 and so on).

Real option game theory is an important tool for solving R&D project evaluations.
Williams (1993) combines the real options theory with the game theory studying a
duopoly market with a continuous-time model under product market competition and
determines the Nash equilibrium in a real options framework. Weeds (2002) considers
an irreversible investment in competing research projects with uncertain returns under
a winner-takes-all patent system, which may shed light on strategic delay in patent
races and explain the role of first movers. Furthermore, Lambrecht (2000) considers
innovation with uncertainty over completion and time delays, which can explain some
phenomena like the faster exit and delayed commercialisation. In addition, Arasteh

1 A critical aspect in the real option pricing approach is given by the impossibility to construct a replicating
portfolio, as the assets are non-tradable. In general, investment problems are much too complex to be
modelled as a standard option; hence, the option model must be tailor-made, with standard assumptions no
longer applicable. Classic ROA is based on the assumption that the project can be replicated by a portfolio
of market-driven instruments that are all exactly equivalent (Brennan and Schwartz 1985; Amram and
Kulatilaka 1999). To solve this shortcoming, one issue can be to link the evaluation of a real project with
quoted assets that have the same level of risk (see Borison 2005; Smith and Nau 1995).
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(2016) shows how investment strategies rely on competitive interactions. Under com-
petition, firms hurry to exercise their options early and this involves an immediate
investment behaviour.

Our paper uses real option game approach in order to study the strategic interaction
between two firms investing in R&D within a competitive and cooperative context,
such as in Trigeorgis (1991), Smit and Trigeorgis (2004), Zandi and Tavana (2010).

Following Kogut (1991), Savva and Sholtes (2005) and Villani (2008), we assume
that when firms sign an alliance, they internalise maximum information revelation
and share the joint payoff according to their success probability. On the other hand,
based on Chang et al. (2016), Smit and Ankum (1993), Kim and Sanders (2002), when
firms move in a non-cooperative context, the Nash equilibria are computed in order to
determine their strategies according to market value.

In the aforementioned literature, the link between the size of the market and the
number of tests carried out by companies is absent.

The novelty of our paper is the analysis of the role that the number of experiments
plays in firms’ strategic behaviour. In particular, the number of experiments carried out
in R&D and their positive results increases the market value of the innovative product.
In addition, we show that firms realise the best investment policies based on critical
investment thresholds obtained by the number of tests and the information revelation
process. We can affirm that the model creates some new insights that shows market
behaviour based on information revelation from experimentations carried out. Our
paper can model scenarios with only one expensive experiment, such as oil drilling
or nuclear test, or with multiple experiments, such as in the pharmaceutical sector or
automotive industry. For instance, the self-driving car requires more tests before it
is launched onto the market and continued successful experiments will increase the
growth market value of this new product. Firms can act singly or in partnership to
advance development, such as Nvidia with Audi, Google with FCA to develop the
Waymo project, and so on.

The paper is organised as follows. Section 2 illustrates the main results to evaluate
simple and compound European exchange options, while Sect. 3 presents the basic
model highlighting the information revelation process, the growth market coefficients
and the strategic payoffs of two players. Section 4 analyses the Nash equilibria in the
case of competition and cooperation behaviour. Section 5 presents some numerical
analysis while Sect. 6 shows a sensitivity study. Finally, Sect. 7 concludes.

2 Exchange optionsmethodology

2.1 Simple European exchange option (SEEO)

The model of McDonald and Siegel (1985) gives the value of a SEEO to exchange
asset D for asset V at time T , where s(V , D, T − t) denotes the value of SEEO at
time t and the payoff at maturity T is s(V , D, 0) = max[0, VT − DT ]. So, assuming
that V and D follow a geometric Brownian motion process given by:
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dV

V
= (μv − δv)dt + σvdZv (1)

dD

D
= (μd − δd)dt + σddZd (2)

cov

(
dV

V
,
dD

D

)
= ρvdσvσd dt (3)

where V and D are the gross project value and the investment cost, respectively, μv

and μd are the expected return equilibrium rates, δv and δd are the “dividend yields” ,
Zv and Zd are the Brownian standard motions and σd are the volatilities of two assets,
ρvd is the correlation between changes in V and D. McDonald and Siegel (1985)
determines the value of a SEEO at time t = 0 as:

s(V , D, T ) = Ve−δvT N (d1(P, T )) − De−δd T N (d2(P, T )) (4)

in which

P = V

D
, σ =

√
σ 2

v − 2ρv,dσvσd + σ 2
d , δ = δv − δd

d1(P, T ) =
log P +

(
σ 2

2 − δ
)
T

σ
√
T

, d2 = d1 − σ
√
T

and N (d) is the cumulative standard normal distribution.

2.2 Compound European exchange option (CEEO)

An option is called compoundwhen the underlying asset is another option. Denoted by
c(s, ϕD, t1) a CEEO whose payoff at maturity t1 is c(s, ϕD, 0) = max[0, s − ϕD].
Following Carr (1988), the value of a CEEO at initial time t = 0 is:

c(s(V , D, T ), ϕD, t1) = Ve−δvT N2

(
d1

(
P

P∗ , t1

)
, d1 (P, T ) ; ρ

)

−De−δd T N2

(
d2

(
P

P∗ , t1

)
, d2 (P, T ) ; ρ

)

−ϕDe−δd t1N

(
d2

(
P

P∗ , t1

))
(5)

where ϕ is the exchange ratio of CEEO, t1 is the expiration date of the CEEO, T is the
deadline of the SEEO with T > t1, τ = T − t1 is the time to maturity of the SEEO,
ρ = √

t1/T ,

d1

(
P

P∗ , t1

)
=

log
( P
P∗

) +
(
−δ + σ 2

2

)
t1

σ
√
t1

, d2

(
P

P∗ , t1

)
= d1

(
P

P∗ , t1

)
− σ

√
t1
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and N2(a, b, ρ) is the standard bivariate normal distribution function evaluated at a and
b with correlation ρ. Moreover, P∗ is the critical price ratio that makes it indifferent
whether the SEEO at time t1 is exercised or not, and solves the following equation:

P∗e−δvτ N (d1(P
∗, τ )) − e−δdτ N (d2(P

∗, τ )) = ϕ

3 Basic model

3.1 Information revelation process

Following Dias and Texeira (2004), Dias (2004) and Villani (2008), we assume that
two firms A and B invest in R&D at time t0 or delay their decision at time t1. Here,
the success probabilities of firms A and B are denoted with q and p, respectively. In
addition, Ψi is the basic research investment realised by firm i =A, B and βi > 0 is
the level of efficiency. The R&D success probabilities of both firms are:2

q = 1 − e−βAΨA

1 + e−βAΨA
; p = 1 − e−βBΨB

1 + e−βBΨB
(6)

We assume that a firm performs n experiments to both confirm the quality of the new
product resulting from the R&D and to increase the quality of its results. Assuming
that the cost of each experiment is ω, we can state that the overall R&D investment is
Ri = Ψi + nω. We introduce two Bernoulli random variables that describe the initial
situation of the R&D success of both firms:

X :
{
1 q
0 1 − q

Y :
{
1 p
0 1 − p

Let us consider the case inwhich n = 1. TheR&Dsuccess or failure of a firmgenerates
an information revelation that influences the investment decision of the other firm. So,
firmA’s success probability q changes in positive information revelation q+ in the case
of firm B’s success; otherwise, it changes in negative information revelation q− in the
case of firm B’s failure. Symmetrically, firm B’s R&D success probability modifies in
p+ or in p− in case of firm A’s success or failure, respectively. Using Dias (2004)’s
model, it results that:

q+ = Prob[X = 1|Y = 1] = q +
√
1 − p

p
· √

p(1 − p) · ρ1

q− = Prob[X = 1|Y = 0] = q −
√

p

1 − p
· √

p(1 − p) · ρ1

2 Probabilities (6) are distributed as a sigmoid function in the interval [0,1[ and we assume that when the
research investments Ψi tend to infinity, then the probabilities p and q tend to 1. On the other hand, when
Ψi approaches zero, then the success probabilities reach zero. A similar application is given in Petrohilos-
Andrianos and Xepapadeas (2017).
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where ρ1 is the intensity of the information revelation between the two firms. In the
same manner, we can write p+ and p−. So that q± and p± are in [0, 1[, the condition
0 ≤ ρ1 ≤ ρmax must be satisfied, where

ρmax = min

{√
q(1 − p)

p(1 − q)
,

√
p(1 − q)

q(1 − p)

}
(7)

is the intensity of the information when firms form an alliance by setting up a joint
venture. The information revelation process exists only when the R&D investment is
not realised at the same time by both firms.

Let us consider the case in which the experiments are n = 2. In this scenario,
we have a revelation process composed of two outcomes, which can be positive or
negative. Using a recombining revelation process, firm A’s success becomes:

q++ = q+ +
√
1 − p+
p+ · √

q+(1 − q+) · ρ2

q+− = q+ −
√

p+
1 − p+ · √

q+(1 − q+) · ρ2

q−+ = q− +
√
1 − p−
p− · √

q−(1 − q−) · ρ2

q−− = q− −
√
1 − p−
p− · √

q−(1 − q−) · ρ2

where q+− = q−+ if and only if ρ2 = q+ − q−√
p+q+(1−q+)

1−p+ +
√

(1−p−)q−(1−q−)

p−
.

Symmetrically, firm B’s success probability changes in p++, p+− = p−+ and
p−−.

Generalising, let us assume that the R&D process is composed of n experiments.
If firm B realises h successes and n − h failures, the success probability of firm A
becomes:

q j,y = q j−1,y +
√
1 − p j−1,y

p j−1,y ·
√
q j−1,y(1 − q j−1,y) · ρn

= q j,y−1 −
√

p j,y−1

1 − p j,y−1 ·
√
q j,y−1(1 − q j,y−1) · ρn
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where j =
h︷ ︸︸ ︷+ + +, y =

n-h︷ ︸︸ ︷− − − and

ρn = q j−1,y − q j−2,y+1√
p j,y−1q j,y−1(1 − q j,y−1)

1 − p j,y−1 +
√

(1 − p j−1,y)q j−1,y(1 − q j−1,y)

p j−1,y

Symmetrically for firm B we have pε,θ where ε =
k︷ ︸︸ ︷+ + + and θ =

n-k︷ ︸︸ ︷− − −.

3.2 Growthmarket coefficients (GMC)

An important element that influences the evaluation of R&D investments is the set of
externalities that determine a growth in the market size. For these reasons, we assume
that, in the case of mutual R&D successes, the market size enlarges. Let us denote
Ki
t0k t0h

, Ki
t0k t1h

, Ki
t1k t0h

, Ki
t1k t1h

for i = A, B, the GMC of firm i in the case of k
successes of firm A and h successes realised by firm B. The subscripts t0 and t1 denote
the instant in which the research investment is realised. If A and B invest in R&D at
time t0 and t1 with k and h successes, respectively, firm A takes K A

t0k t1h
while firm B

obtains K B
t1h t0k

. The full failure of the other player does not produce externalities, and
therefore,

Ki
t0k t00

= Ki
t0k t10

= Ki
t0k

; Ki
t1k t00

= Ki
t1k t10

= Ki
t1k

; for i = A, B.

However, in the case of that all experiments fail, the GMC will be equal to zero, i.e.
Ki
t00 t0h

= Ki
t00 t1h

= 0 and Ki
t10 t0h

= Ki
t10 t1h

= 0. In addition, we can set the relations
among the GMC with these assumptions:

– Positive network externality. As is shown in Huisman (2001), the GMC in the case
of both players’ success will be larger than that in which only one firm invests
successfully:

Ki
t0k t0h

> Ki
t0k

(8)

– Time of R&D success. The GMC increases if the mutual R&D success is realised
at time t0 rather than t1:

Ki
t0k t0h

> Ki
t1k t1h

(9)

– First mover’s advantage. If k = h, the firm performing the experiments in t0 will
receive a higher GMC than the other player that postpones the realisation at time
t1:

Ki
t0k t1k

> Ki
t1k t0k

(10)

To analytically determine the GMC, we assume that they depend on the parameters
αi1 and αi2 with αi2 < αi1 multiplied by the square root of successful experiments
realised by both players and by the extend of R&D benefits until the deadline T .

123



70 G. Villani, M. Biancardi

Fig. 1 GMCand success probabilities forA andB assuming n = 2 testswhenA realises its R&D investment
at time t0 while B postpones until time t1

In particular, αi1 denotes the direct effect that the R&D innovation produces on the
market share of firm i , while αi2 the indirect effect due to the R&D investment of the
second player. In the case of an asymmetric investment, the firm i that invests in t0
obtains the first mover advantage and so its market share will be αi1 from t0 to T and
αi2 from t1 to T . On the other hand, if firm i realises its investment in t1, it loses the
market share from t0 and t1. We can describe the GMC of firms A and B as:

K A
t0k t0h

=
(
αA1

√
k + αA2

√
h
) √

T ; K B
t0h t0k

=
(
αB1

√
h + αB2

√
k
) √

T

K A
t1k t1h

=
(
αA1

√
k + αA2

√
h
) √

T − t1; K B
t1h t1k

=
(
αB1

√
h + αB2

√
k
)√

T − t1

K A
t0k t1h

= αA1
√
kT + αA2

√
h(T − t1); K B

t1h t0k
= αB1

√
h(T − t1) − αB2

√
kt1

K A
t1k t0h

= αA1

√
k(T − t1) − αA2

√
ht1; K B

t0h t1k
= αB1

√
hT + αB2

√
k(T − t1)

with k �= 0 for K A and h �= 0 for K B .
Figure 1 graphically depicts the success probability flow after the information rev-

elation and related to GMC of firms A and B assuming n = 2 tests.

3.3 The Leader’s payoff

We analyse the Leader’s payoff assuming that firm A (Leader) invests in R&D at time
t0, while firmB (Follower) decides to wait to invest.We consider the scenario with just
one experiment, i.e. n = 1. The Leader invests RA at time t0 and obtains, in the case of
its R&D success with probability q, the development option. If the Follower’s R&D
investment is successful at time t1 with probability p+, the GMC will be K A

t01 t11
and

the Leader holds the development option s
(
K A
t01 t11

V , K A
t01 t11

D, T
)
. If the Follower’s

R&D fails with probability (1 − p+), the Leader’s market coefficient will be K A
t01
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and it will receive the development option s
(
K A
t01
V , K A

t01
D, T

)
. We remark that the

development investment is proportional to the market share. Obviously, in the case
of the Leader’s failure with probability (1 − q), its result will be equal to zero. We
summarise the Leader’s payoff with n = 1 as the expected value:

LA(V , 1) = −RA + q
[
p+s

(
K A
t01 t11

V , K A
t01 t11

D, T
)

+ (1 − p+) s
(
K A
t01

V , K A
t01

D, T
)]

Symmetrically, we derive firm B’s payoff as Leader:

LB(V , 1) = −RB + p
[
q+s

(
K B
t01 t11

V , K B
t01 t11

D, T
)

+ (1 − q+) s
(
K B
t01

V , K B
t01

D, T
)]

Now we consider the case with n = 2 experiments. The success probability of Leader
A will be q2 in the case of two successes and 2q(1 − q) in case of one success and
one failure. So, the Follower’s success probability is p++ or p+−, respectively. The
Leader’s payoff with two successes is denoted by L2

A:

L2
A = (p++)2 s(K A

t02 ,t12
V , K A

t02 ,t12
D, T )

+2p++(1 − p++) s(K A
t02 ,t11

V , K A
t02 ,t11

D, T )

+(1 − p++)2 s(K A
t02
V , Kt02

D, T )]

The Leader’s payoff with one success and one failure denoted by L1 is:

L1
A = (p+−)2 s(K A

t01 ,t12
V , K A

t01 ,t12
D, T )

+2p+−(1 − p+−) s(K A
t01 ,t11

V , K A
t01 ,t11

D, T )

+(1 − p+−)2 s(K A
t01
V , K A

t01
D, T )]

Obviously, in the case of two failures for the Leader, its payoff result is L0 = 0.
Summarising, the Leader’s payoff is the expected value

L A(V , 2) = −RA + q2L2
A + 2q(1 − q)L1

A

where RA = ΨA + 2ω. Generalising, the Leader’s payoff assuming n experiments is:

L A(V , n) = −RA +
n∑

k=0

(
n
k

)
qk(1 − q)n−k

×
[

n∑
h=0

(
n
h

) (
pε,θ

)h(
1 − pε,θ

)n−h
s(K A

t0k ,t1h
V , K A

t0k ,t1h
D, T )

]
(11)
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3.4 Follower’s payoff

We now focus on the Follower’s payoff assuming that firm B (Follower) decides
to postpone its R&D investment decision at time t1 and firm A (Leader) invests at
time t0 assuming that n = 1. If the Leader’s R&D investment is successful, the
Follower’s probability of success becomes p+ and its GMC is K B

t11 t01
. After the invest-

ment RB , the Follower holds with a probability p+ and the development option is
s(K B

t11 t01
V , K B

t11 t01
D, τ ). So the Follower’s payoff at time t0 is a CEEO with matu-

rity t1, exercise price equal to RB and the underlying asset is the development option
s(K B

t11 t01
V , K B

t11 t01
D, τ ). The CEEO payoff at deadline t1 with positive information

revelation is:

c(p+s(K B
t11 t01

V , K B
t11 t01

D, τ ), RB , 0) = max[p+s(K B
t11 t01

V , K B
t11 t01

D, τ ) − RB, 0]

According to Carr (1988) model, we assume that RB = ϕBD is a proportion of asset
D. Hence, denoting c(p+) the CEEO at time t0, namely

c(p+) = c(p+s(K B
t11 t01

V , K B
t11 t01

, ϕBD, t1)

we write the value of CEEO with positive information using Eq. (5) as:

c(p+) = p+K B
t11 t01

Ve−δvT N2

(
d1

(
P

P∗
up

, t1

)
, d1 (P, T ) ; ρ

)

−p+K B
t11 t01

De−δd T N2

(
d2

(
P

P∗
up

, t1

)
, d2 (P, T ) ; ρ

)

−ϕBDe−δd t1N

(
d2

(
P

P∗
up

, t1

))
(12)

where P∗
up is the critical value that makes the underlying asset of c(p+) equal to the

exercise value. Hence, P∗
up solves the following equation:

p+s(K B
t11 t01

V , K B
t11 t01

D, τ ) = ϕBD

and assuming asset K B
t11 t01

D as numeraire, we can rewrite the above equation as:

P∗
up e

−δvτ N (d1(P
∗
up, τ )) − e−δdτ N (d2(P

∗
up, τ )) = ϕB

p+K B
t11 t01

Alternatively, in the case the Leader fails, the Follower’s success probability changes
in p− and its market coefficient is K B

t11
. The Follower’s payoff at time t0 is a CEEO

with maturity t1, exercise price RB and underlying asset the development option
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s(K B
t11
V , K B

t11
D, τ ). Hence, the CEEO payoff at expiration date t1 with negative infor-

mation revelation is:

c(p−s(K B
t11
V , K B

t11
D, τ ), RB , 0) = max[p−s(K B

t11
V , K B

t11
D, τ ) − RB, 0]

Denoting c(p−) as the CEEO at time t0 with negative information, i.e.

c(p−) = c(p−s(K B
t11
V , K B

t11
D, τ ), ϕBD, t1)

we write, using Eq. (5), the value of CEEO with negative information:

c(p−) = p−K B
t11
Ve−δvT N2

(
d1

(
P

P∗
dw

, t1

)
, d1 (P, T ) ; ρ

)

−p−K B
t11

De−δd T N2

(
d2

(
P

P∗
dw

, t1

)
, d2 (P, T ) ; ρ

)

−ϕBDe−δd t1N1

(
d2

(
P

P∗
dw

, t1

))
(13)

where P∗
dw is the critical price that solves the following equation:

P∗
dw e−δvτ N (d1(P

∗
dw, τ)) − e−δdτ N (d2(P

∗
dw, τ)) = ϕB

p−K B
t11

.

The Follower obtains the CEEO c(p+) in the case that the Leader succeeds with
probability q or the CEEO c(p−) in the case that the Leader fails with probability
(1 − q). Hence, the Follower’s payoff at time t0 is the expected value:

FB(V , 1) = q c(p+) + (1 − q) c(p−) (14)

Symmetrically, we derive firm A’s payoff when it is Follower:

FA(V , 1) = p c(q+) + (1 − p) c(q−) (15)

Let us assume n = 2. The Follower’s probability success becomes p++ in the case
that both Leader’s successes with probability q2, then the Follower’s payoff is:

F2
B = c

(
(p++)2s(K B

t12 t02
V , K B

t12 t02
D, τ )

)

+c
(
2p++(1 − p++)s(K B

t11 t02
V , K B

t11 t02
D, τ )

)

In the case of one success and one failure of the Leader with probability 2q(1 − q),
the Follower’s payoff is:
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F1
B = c

(
(p+−)2s(K B

t12 t01
V , K B

t12 t01
D, τ )

)

+c
(
2p+−(1 − p+−)s(K B

t11 t01
V , K B

t11 t01
D, τ )

)

and in the case of the Leader failing both timeswith probability (1−q)2, the Follower’s
payoff is:

F0
B = c

(
(p−−)2s(K B

t12
V , K B

t12
D, τ )

)
+ c

(
2p−−(1 − p−−)s(K B

t11
V , K B

t11
D, τ )

)

Summarising, the Follower’s payoff is the expected value:

FB(V , 2) = q2F2
B + 2q(1 − q)F1

B + (1 − q)2F0
B (16)

Generalising, if we assume to have n experiments, the Follower’s payoff (firm B)
results:

FB(V , n) =
n∑

k=0

(
n
k

)
qk(1 − q)n−k

×
n∑

h=0

c

((
n
h

) (
pε,θ

)h(
1 − pε,θ

)n−h
s(K B

t1h t0k
V , K B

t1h t0k
D, τ ), ϕB D, t1

)
(17)

3.5 Simultaneous investment payoff

We suppose that both firms invest in R&D at time t0. There is no information rev-
elation since the investment is simultaneous, but players can benefit from network
externalities. Let us set n = 1. Assuming the success of firm B, firm A receives the
development option with a GMC K A

t01 t01
in case of its R&D success; instead, in the

case of failure of firm B, firm A receives the development option with a GMC K A
t01
.

Hence, firm A’s payoff in the case of simultaneous investment is the expected value:

SA(V , 1) = −RA+q
[
p s

(
K A
t01 t01

V , K A
t01 t01

D, T
)

+ (1 − p) s
(
K A
t01
V , K A

t01
D, T

)]

Symmetrically, firm B’s payoff is:

SB(V , 1) = −RB+p
[
q (s

(
K B
t01 t01

V , K B
t01 t01

D, T
)

+ (1 − q) s
(
K B
t01
V , K B

t01
D, T

)]

Generalising, if we assume that the number of experiments is n, it results:

SA(V , n) = −RA +
n∑

k=0

(
n
k

)
qk(1 − q)n−k

×
[

n∑
h=0

(
n
h

)
ph(1 − p)n−h s

(
K A
t0k t0h

V , K A
t0k t0h

D, T
)]

(18)
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Symmetrically, we can determine firm B’s payoff in the case of simultaneous invest-
ment.

3.6 Waiting investment payoff

We suppose that both firms decide to delay their R&D investment decision at
time t1 and we assume that there is no information revelation. Also in this case,
firstly we assume n = 1. Considering the R&D success of firm B, the GMC
of firm A will be K A

t11 t11
. So, after the investment RA at time t1, firm A holds

with probability q the development option s(K A
t11 t11

V , K A
t11 t11

D, τ ). Then, firm A’s
payoff at time t0 is a CEEO with maturity t1, exercise price RA and the under-
lying asset s(K A

t11 t11
V , K A

t11 t11
D, τ ) with probability q. According to Carr (1988)’s

model and assuming that RA = ϕAD, the CEEO in the case of firm B’s success is

c(q s(K A
t11 t11

)) = c
(
q s(K A

t11 t11
V , K A

t11 t11
D, τ ), ϕAD, t1

)
and specifically:

c(q s(K A
t11 t11

)) = K A
t11 t11

Ve−δvT N2

(
d1

(
P

P∗
ws

, t1

)
, d1 (P, T ) ; ρ

)

−qK A
t11 t11

De−δd T N2

(
d2

(
P

P∗
ws

, t1

)
, d2 (P, T ) ; ρ

)

−ϕADe−δd t1N

(
d2

(
P

P∗
ws

, t1

))
(19)

where P∗
ws is the critical value that solves the following equation:

q s
(
K A
t11 t11

V , K A
t11 t11

D, τ
)

= ϕAD ⇐⇒
P∗

wse
−δvτ N (d1(P

∗
ws, τ )) − e−δdτ N (d2(P

∗
ws, τ )) = ϕA

qKt11 t11

In the case of firm B’s failure, firm A’s GMC will be K A
t11
. After the invest-

ment RA at time t1, A obtains the development option s(K A
t11
V , K A

t11
D, τ ) with

probability q. Thus, firm A’s payoff at time t0 is a CEEO where the underlying

asset is s(K A
t11
V , K A

t11
D, τ ) with probability q that we denote as c

(
q s(K A

t11
V )

)
=

c
(
q s(K A

t11
V , K A

t11
D, τ ), ϕAD, t1

)
, i.e.:

c
(
q s(K A

t11
V )

)
= qK A

t11
Ve−δvT N2

(
d1

(
P

P∗
w f

, t1

)
, d1 (P, T ) ; ρ

)

−qK A
t11

De−δd T N2

(
d2

(
P

P∗
w f

, t1

)
, d2 (P, T ) ; ρ

)
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−ϕADe−δd t1N

(
d2

(
P

P∗
w f

, t1

))
(20)

where P∗
w f is the critical value that solves the following equation:

q · s
(
K A
t11
V , K A

t11
D, τ

)
= ϕAD ⇐⇒

P∗
w f e

−δvτ N (d1(P
∗
w f , τ )) − e−δdτ N (d2(P

∗
w f , τ )) = ϕA

qK A
t11

Hence, firm A’s payoff is the expected value:

WA(V , 1) = p c
(
q s(K A

t11 t11
V , K A

t11 t11
D, τ ), ϕAD, t1

)

+(1 − p) c
(
q s(K A

t11
V , K A

t11
D, τ ), ϕAD, t1

)

Similarly, we determine firm B’s payoff.
Generalising, the waiting payoff of firm A with n experiments is:

WA(V , n) =
n∑

h=0

(
n
h

)
ph(1 − p)n−h

×
n∑

k=0

c

[(
n
k

)
qk(1 − q)n−k s(K A

t1k t1h
V , K A

t1k t1h
D, τ ), ϕAD, t1

]
(21)

4 Competition and cooperative scenario

We investigate the situation in which firms decide to compete using the information
revelation or to sign a strategic alliance that allows them to use the information ρmax.
Figure 2 shows the bimatrix of firmA and B’s payoffs with respect to the immediate or
waiting investment strategies in the case of competition.We solve the game computing
the Nash equilibria. In the competitive scenario, payoff values were computed in the
previous section. The following propositions help us to determine the Nash equilibria
NA and NB .

Proposition 1 There exists a unique critical market value V ∗
Wi such that Li (V ∗

Wi , n) =
Wi (V ∗

Wi , n). It results that Li (V , n) < Wi (V , n) when V < V ∗
Wi and Li (V , n) >

Wi (V , n) when V > V ∗
Wi for i = A, B, respectively.

Proposition 2 If ∂Si
∂V >

∂Fi
∂V , then there exists a unique critical market value V ∗

Fi such
that Si (V ∗

Fi , n) = Fi (V ∗
Fi , n). It results that Si (V , n) < Fi (V , n) when V < V ∗

Fi
and Si (V , n) > Fi (V , n) when V > V ∗

Fi for i = A, B, respectively. Otherwise, if
∂Si
∂V <

∂Fi
∂V , then Si (V , n) < Fi (V , n) for each value of V .
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Fig. 2 Bimatrix payoffs in the
competitive case

Proofs are illustrated in “Appendix”.
In the case of cooperation, the surplus is provided by the difference between the

cooperation value C(A ∪ B) = max[WC , LFC , FLC , SC ] and the Nash equilibrium
when A and B compete. There are four cooperation strategies: both players decide to
delay their investment at time t1, then WC (V , n) = WC

A (V , n) + WC
B (V , n); firm A

invests at time t0 while firm B postpones its decision at time t1, then LFC (V , n) =
LC
A(V , n)+FC

B (V , n); symmetrically, firmB invests at time t0 andAdelays its decision
at time t1, then FLC (V , n) = FC

A (V , n)+LC
B(V , n); finally both firms decide to invest

simultaneously at time t0, then SC (V , n) = SCA (V , n) + SCB (V , n). The surplus of
cooperation is split according to success probabilities, and so the cooperative payoffs
are:

CoopA = NA + q

p + q
[C(A ∪ B) − (NA + NB)] ; (22)

CoopB = NB + p

p + q
[C(A ∪ B) − (NA + NB)] ; (23)

5 Numerical applications

In order to support our approach, we present a case study, i.e. a collaboration between
Volkswagen (firm A) and Ford (firm B) in order to form Argo, i.e. the joint venture
R&D that deals with self-driving cars.3 The agreement provides a research investment
of approximately ΨA = 600 million dollars for Volkswagen and ΨB = 1.1 billion for
Ford,ω = 800million dollars for tests related to self-driving cars, and the development
cost is quantified at D = 7 billion dollars. Moreover, the deadline to commercialise
these innovations is T = 7 years and the delayed time to realise R&D investment is
t1 = 3 years. To value σv and σd , we assume as proxy the volatilities of the automotive
and technology-sensorial sector, respectively. Sowe have σv = 0.67, σd = 0.54with a

3 This is an illustrative example of ourmodel. The data have been taken from the Ford andVolkswagenweb-
site and refer to the year 2018 (for more details https://media.ford.com and https://www.volkswagengroup.
it/eng/media). The growth market innovation coefficients αi,1 and αi,2 are provided by Allied Market
Research. The coefficients βi were determined by the ratio between the impacts of R&D investments on
profits.
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Table 1 Evolution of success probabilities with ρ1 = 0.30, ρ2 = 0.2303 and ρ3 = 0.1869

q = 0.2091 q+ = 0.4296 q++ = 0.5480 q+++ = 0.6217

q− = 0.1416 q+− = 0.3197 q++− = 0.4307

q−− = 0.1054 q+−− = 0.2513

q−−− = 0.0828

p = 0.2343 p+ = 0.4814 p++ = 0.6141 p+++ = 0.6967

p− = 0.1690 p+− = 0.3815 p++− = 0.5139

p−− = 0.1339 p+−− = 0.3193

p−−− = 0.1120

correlation coefficient ρvd = 0.15. We assume a level of non-cooperative information
revelation ρ1 = 0.30 and dividend yields δv = 0.15, δd = 0. The efficiency level of
R&D investments is βA = 0.7076 for Volkswagen and βB = 0.4342 for Ford. Finally,
the growth market innovation is assumed as αA,1 = 0.40, αA,2 = 0.05, αB,1 = 0.40
and αB,2 = 0.05.

Based on formula (6), we determine that the initial success probabilities of firm
A is q = 0.2091, B is p = 0.2343 and the maximum information revelation is
ρmax = 0.9294. The evolution of success probabilities is illustrated in Table 1.

Let us assume n = 1. Then, the non-cooperative critical market values are:

V ∗
W A(1) = 42, 770 $; V ∗

WB(1) = 50, 470 $;
V ∗
FA(1) = 40, 455 $; V ∗

FB(1) = 47, 950$

Using Propositions 1 and 2, if V < 42, 770 $ then the waiting policy (WA,WB) is
the Nash equilibrium; when 42, 770 $ < V < 47, 950 $ the Nash equilibrium is
(LA, FB), if V > 47, 950$ we realise the Nash equilibrium (SA, SB). In case of a
cooperation between firms A and B, Fig. 3 shows that the optimal Pareto strategy isWC

for V < 34, 750$, LFC when 34, 750$< V < 62, 600$ and when V > 62, 600$
the optimal Pareto payoff is SC .

Table 2 contains the cooperative payoff when the market value changes and the
bold values denote the maximum joint payoff. Another important consideration about
the optimal cooperation strategy is that the firm with better success probability invests
at time t0 and the other postpones its research investment at time t1 benefiting from
the maximum information revelation, namely LFC .

Let’s assume n = 2. For our numerically adapted simulations, we have the non-
cooperative critical market values as:

V ∗
W A(2) = 31,518 $; V ∗

WB(2) = 34,090 $;
V ∗
FA(2) = 28,315 $; V ∗

FB(2) = 31,236 $

From Propositions 1 and 2, we see that the waiting policy (WA,WB) is a Nash equi-
librium when V < 31,236$. If 31,236$< V < 31,518$ two Nash equilibria exist,
i.e. (WA,WB) and (SA, SB). Finally, if V > 31,518$, we have a simultaneous equi-

123



Competition and strategic alliance in R&D investments:… 79

Fig. 3 Cooperation payoffs with
n = 1

Table 2 Cooperative payoffs with n = 1 experiment

Market V LFC FLC SC WC N (A) N (B) CoopA CoopB

20,000 350 −2 −913 871 432 439 432 439

40,000 2748 2545 2588 2093 1264 1324 1339 1408

60,000 5308 5240 4612 5235 2631 2603 2665 2642

80,000 7949 8003 8442 6791 4146 4296 4146 4296

100,000 10,638 10,804 11,687 9063 5678 6008 5678 6008

librium (SA, SB). We observe that critical market values decrease with respect to the
previous scenario n = 1. One explanation is that the increase in information revela-
tion with the two experiments induces firms to invest at a lower market value than
in the previous case, i.e. V > 31,236$. About the cooperative strategy, as depicted
in Fig. 4a, it results in C(A ∪ B) = WC if V < 20,340$, C(A ∪ B) = LFC if
20,340$< V < 94,700$ and C(A ∪ B) = SC when V > 94,700$. The novelty
in this case with only one experiment is that the range in which the strategy LFC is
optimal increases. Table 3 summarises this scenario assuming different market values.

Finally, we analyse the scenariowith n = 3 experiments. Using the same procedure,
we obtain:

V ∗
W A(3) = 27,440 $; V ∗

WB(3) = 28,367 $;
V ∗
FA(3) = 24,760 $; V ∗

FB(3) = 26,490 $

Following Propositions 1 and 2, the waiting policy (WA,WB) is a Nash equilibrium
when V < 26,490$. If 26,490$< V < 27,440$, then two Nash equilibria exist,
i.e. (WA,WB) and (SA, SB). Finally, if V > 27,440$, we have the simultaneous
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Fig. 4 Cooperative payoffs

Table 3 Cooperative payoffs with n = 2 experiments

Market V LFC FLC SC WC N (a) N (b) CoopA CoopB

10,000 − 725 −1660 −2974 439 218 220 218 220

20,000 1375 −206 −344 1522 749 772 749 772

40,000 6709 2999 5394 4572 2688 2706 3308 3400

60,000 12,204 6367 11,392 8215 5536 5856 5918 6285

80,000 17,852 9812 17,513 12,177 8443 9070 8602 9249

100,000 23,586 13,302 23,707 16,337 11,384 12,323 11,384 12,323

Table 4 Cooperative payoffs with n = 3 experiments

Market V LFC FLC SC WC N (a) N (b) CoopA CoopB

10,000 −912 −2029 −3744 551 274 276 274 276

20,000 2368 −2 19 1977 974 1 003 1158 1209

40,000 9951 4446 8231 6109 4026 4204 4837 5113

80,000 26,535 13,895 25,572 16,628 12,297 13,275 12,751 13,783

100,000 35,123 18,738 34,435 22,436 16,524 17,910 16,848 18,274

180,000 70,272 38,444 70,404 47,274 33,680 36,723 33,680 36,723

equilibrium (SA, SB). Moreover, as is illustrated in Fig. 4b, it results that if V <

17,865$, thenC(A∪B) = WC , if 17,865$< V < 164,550$, thenC(A∪B) = LFC ,
and when V > 164,550$, then C(A ∪ B) = SC . Table 4 lists several strategy values
when n = 3.

Summarising, we observe that as the number of tests increases, the market value
threshold forwhich investment is profitable decreases. Unlike the competitive case, the
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Fig. 5 Competitive Nash Equilibria assuming ρ = 0.30 when the delayed time t1 changes

creation of Argo joint venture resulting from the collaboration between Volkswagen
and Ford increases the value of their investment and also suggests a different strategy.
While in the competitive case generally the Nash equilibrium is the waiting policy or
simultaneous investment, in the cooperative case the LFC strategy is more convenient,
i.e. Volkswagen makes the R&D investment at t0 and transmits the information to
Ford for the realisation of its investment at t1. Moreover, the range for which the LFC
strategy is optimal increases when the number of tests goes up.

6 Sensitivity analysis

In this section, we study the effects that the delayed time t1 and the information
revelation produced on the equilibria of the game. Assuming the same parameters in
the previous section, we change the delayed time assuming several values between
t1 = 1 year and t1 = 2.5 years. Figure 5 shows how the Nash equilibria change
as the delayed time t1 varies if the experiments carried out are n = 1, n = 2 and
n = 3. In particular, by analysing Fig. 5a, we remark how in the scenario with one
test, the market region in which the (LA, FB) strategy is a Nash equilibrium is reduced
when the postponement time t1 increases, but is the best replay for medium market
values. When n improves, the strategy set and its elements make significant changes.
In fact, comparing Fig. 5b, c, when the firm with the lowest probability of success
(Volkswagen) invests first, then the other firm (Ford) does not appear if t1 = 2.5 and
begins to leave the optimal strategy for medium–highmarket values. In addition, when
t1 increases, (WA,WB) and (SA, SB) play more and more crucial roles in the optimal
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Table 5 Cooperative value C(A ∪ B) when the delayed time t1 varies

Delayed time WC LFC FLC SC

n = 1

t1 = 1 V < 22,105 22,105 < V < 58,450 58,450 < V < 142,800 V > 142,800

t1 = 1.5 V < 26,035 26,035 < V < 62,325 62,325 < V < 121,435 V > 121,435

t1 = 2 V < 29,765 29,765 < V < 66,470 66,470 < V < 88,035 V > 88,035

t1 = 2.5 V < 32,842 32,842 < V < 70,268 70,268 < V < 70,298 V > 70,298

t1 = 3 V < 34,750 34,750 < V < 62,600 V > 62,600

n = 2

t1 = 1 V < 16,200 V > 16,200

t1 = 1.5 V < 17,526 V > 17,526

t1 = 2 V < 18,875 18,875 < V < 92,745 V > 92,745

t1 = 2.5 V < 20,192 20,192 < V < 93,857 V > 93,857

t1 = 3 V < 20,340 20,340 < V < 94,700 V > 94,700

n = 3

t1 = 1 V < 14,533 V > 14,533

t1 = 1.5 V < 15,267 V > 15,267

t1 = 2 V < 16,103 V > 16,103

t1 = 2.5 V < 16,984 V > 16,984

t1 = 3 V < 17,865 17,865 < V < 164,550 V > 164,550

strategy set. This means that the benefits of information revelation are less than the first
mover advantages and they decrease over time. Therefore, the increase in the number
of tests and the delayed time encourages firms to wait or invest simultaneously.

Surprisingly, the set of optimal strategies changes profoundly if we analyse the
cooperative aspect. As is illustrated in Table 5, in the case of n = 1, the optimal
strategy is to wait for low market values, LFC for low–medium values, FLC for
medium–high values, and finally, the simultaneous investment SC is optimal for high
market values. We observe how the FLC strategy disappears after t1 = 2.5. We can
see how the advantage of waiting to invest WC increases over time but decreases with
increasing number of tests. In this way, when the number of tests increases, the two
firms may consider investing at different times for lower market threshold values in
order to attain the greatest benefits of information revelation. The best cooperative
strategy with a differentiated investment is LFC , if the tests carried out are greater
than one.

Finally, Fig. 6 depicts the equilibria when the information revelation changes. Also
in this case, the number of experiments plays an important role. We observe in Fig. 6a
that, in the competitive case, when the information revelation ρ1 increases, then the
Nash equilibrium (LA, FB) occurs for broader market values. This market range is
the largest in the cooperation case when the strategy LFC occurs for the ρmax value.
But, when the number of tests increases, as is illustrated in Fig. 6b, c, the (L A, FB)

equilibrium disappears for low information revelation intensities. In this case, both
players will prefer to wait or to invest simultaneously. The (LA, FA) strategy appears
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Fig. 6 Competitive Nash equilibria and cooperative value assuming t1 = 3 when the information revelation
ρ1 changes

when ρ1 = 0.40 with n = 2, and when ρ1 = 0.60 with n = 3. So, this means that
the increase in the number of tests makes the strategy with differentiated investments
preferable when the information revelation becomes considerable. However, in the
cooperation case, the LFC strategy is always significant and the increase in the number
of tests widens the market values for which this strategy fits best.

7 Concluding remarks

In our paper, we proposed a real option game between two firms investing in R&Dwith
multiple experiments. We contemplated two scenarios in which firms can compete or
cooperate. In both cases, four strategies can be achieved: the waiting strategy in which
each firm postpones its investment at time t1 waiting for better market conditions;
the simultaneous strategy in which both players realise their R&D investments at
initial time t0; the Leader and Follower strategies in which the Leader realises the
investment at time t0 benefiting from a first mover advantage while the Follower
delays its investment to time t1 obtaining an information revelation. In particular,
we have considered that, in the case of a cooperation, firms completely internalise
the overall information revelation. We have carried out our analysis supposing that
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firms can realise several experiments and, in the case of success, the growth market
coefficients go up and the Follower’s success probability improves.

We proposed some numerical simulations starting from a case study that described
the agreement betweenVolkswagen and Ford collaborating to formArgo joint venture.
In a particular way, we have underlined the role of the number of tests realised. We
observed, in the competitive case, that the Nash equilibria are represented by waiting
or simultaneous strategies when the tests number is more than one. Otherwise, in
the cooperative case, the strategy with a differentiated investment over time (Leader–
Follower)mayoccur.We completed our analysiswith a study of the effects that delayed
time and information revelation produce on the equilibria of the game.

Appendix

Proof of Proposition 1 Weanalyse the strategic payoffs assuming as variable themarket
value V . We can observe that:

L A(0, n) = −RA; WA(0, n) = 0;
∂L A

∂V
= N (d1(P, T )) e−δvT

n∑
k=0

(
n
k

)
qk(1 − q)n−k

[
n∑

h=0

(
n
h

) (
pε,θ

)h(
(1 − pε,θ

)n−h
Kt0k t1h

]

∂WA

∂V
= N2

(
d1

(
P

P∗
w

, t1

)
, d1(P, T ); ρ

)
e−δvT

×
n∑

h=0

(
n
h

)
ph(1 − p)n−h

[
n∑

k=0

(
n
k

)
qk(1 − q)n−k Kt1k t1h

]

As N (d1(P, T )) > N2

(
d1

(
P
P∗

w
, t1

)
, d1(P, T ); ρ

)
, moreover, pε,θ > p and

Kt0k t1h
> Kt1k t1h

, it results that
∂L A

∂V
>

∂WA

∂V
> 0. This condition assures us a

unique critical market value V ∗
A,W . The same results occur for firm B. 	


Proof of Proposition 2 We observe that:

SA(0, n) = −RA; FA(0, n) = 0;
∂SA
∂V

= N (d1(P, T )) e−δvT
n∑

k=0

(
n
k

)
qk(1 − q)n−k

[
n∑

h=0

(
n
h

)
ph(1 − p)n−h K A

t0k t0h

]

∂FA

∂V
= N2

(
d1

(
P

P∗ , t1

)
, d1(P, T ); ρ

)
e−δvT
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×
n∑

h=0

(
n
h

)
ph(1 − p)n−h

[
n∑

k=0

(
n
k

) (
q j,y

)k(
1 − q j,y

)n−k
K A
t1k t0h

]

with ∂FA
∂V > 0 and ∂SA

∂V > 0 and ∂FA
∂V ≷ ∂SA

∂V . The same results occurs for firm B. 	
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