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Abstract
We present a dynamical model for the price evolution of financial assets. The model
is based on a two-level approach: In the first stage, one finds an agent-based model
that describes the current state of investors’ beliefs, perspectives or strategies. The
dynamics is inspired by a model for describing predator–prey population evolution:
Agents change their mind through self- or mutual interaction, and the decision is
adopted on a random basis, with no direct influence of the price itself. One of the
most appealing properties of such a system is the presence of large oscillations in the
number of agents sharing the same perspective, what may be linked with the existence
of bullish and bearish periods in financial markets. In the second stage, one has the
pricing mechanism, which will be driven by the relative population in the different
groups of investors. The price equationwill depend on the specific nature of the species,
and thus, it may change from one market to the other: We will present a simple model
of excess demand in the first place and then consider a more elaborate liquidity model.
The outcomes of both models are analyzed and compared.

Keywords Models of financial markets · Interacting agent models · Stochastic
processes

1 Introduction

Financial models based on interacting agents possess a large tradition in the economic
literature (Hommes 2006)—one of the first references in which the evolution of a
market is related to the activity of individual investors dates back to 1974 (Zeeman
1974)—but they have gained relevance in the interdisciplinary literature in relatively
recent years (De Martino and Marsili 2006; Samanidou et al. 2007). The complete list
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30 M. Montero

of suchmodels is so extensive and their properties so diverse that we canmerely sketch
here the recurrent traits shared by most of the models, and address the reader to the
references cited in Hommes (2006), De Martino and Marsili (2006) and Samanidou
et al. (2007).

The pioneeringwork of Zeeman (1974) already contains one of themore ubiquitous
ingredients in the subsequent agent-based models: heterogeneity. Agents are assumed
to be heterogeneous to some extend, and therefore, they can be aggregated into one
out of a finite set of categories. Since the minimum number of different categories is
two, and simplicity is often a plus, investors are usually arranged into two (competing)
groups. The terms used to name them and their defining properties are uneven across
the literature—chartists and fundamentalists in Zeeman (1974), trend followers and
contrarians in De Martino et al. (2004), speculators and producers in Zhang (1999),
imitators and optimizers in Conlisk (1980)—but the underlying ideas are similar, and
can be well represented by chartists and fundamentalists. Chartists are (sometimes
adaptive) agents whose investment strategy is based on the belief that past informa-
tion may contain clues about the future evolution of the security and, therefore, that
they can infer future prices. Fundamentalists are in essence agents who think they can
deduce the present value of a firm on the basis of the information currently available,
such as dividend payments or earning rates. Fundamentalists operate in a rather pre-
dictable way since they expect the market to correct any observed deviation between
fundamental and market prices: They sell overpriced securities and buy underpriced
ones. The picture is not so simple for chartist-like investors since at the end they
deploy rule-of-thumb strategies, sometimes based on market indicators like the mov-
ing average convergence–divergence (MACD) indicator or the relative strength index
(RSI), two tools of technical analysis broadly used by actual financial practitioners.
Therefore, the list of available strategies in agent-based models may be so large that,
in the most extreme situation, strategies may differ for any pair of investors in the
market, as in some instances of the minority game market model (Challet and Zhang
1997; De Martino and Marsili 2006). In fact, any single agent may combine technical
trading rules with fundamental ones, or decide among them, what makes evolve the
profile of the investors. There is no doubt that this diversity adds more heterogeneity
into the model.

Another general trait of current models is that agents have bounded rational-
ity (Simon 1979): They decide their actions in the next time step on the basis of a
limited and possibly incomplete amount of information. They ignore the beliefs of the
rest of investors and usually cannot evaluate the consequences of their own decisions.
Under these circumstances, selfish agents try to maximize a payoff or utility function,
a measure of their individual success.

The final ingredient is the pricing mechanism. The usual paradigm when the activ-
ity of the agents does not explicitly set the price of the asset is to define a differential
equation or a finite difference equation that relates the price evolution to the rele-
vant (global) variables of the model. Since these variables are affected by the mutual
interaction of the investors in a complex way, two complementary approaches are
generally considered: The behavior of the system is computer simulated and/or the
complexity is reduced by considering that the number of agents approaches to infinity,
the thermodynamic limit.
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Predator–prey model for stock market fluctuations 31

As we will shortly show, some of the previous ingredients either are not present
in this agent-based model or have been introduced with a different philosophy. The
model was inspired by a previous article on population dynamics by McKane and
Newman (2005), where the authors reported the presence of large oscillations in the
species densities due to a finite size stochastic effect. We export this idea into the
financial language with the development of a model that describes general aspects
of investor dynamics. The behavior of the asset price is first obtained by assuming a
simple model of excess demand, and subsequently, we follow the same approach to
model the interplay between limit and market orders in a stock market. The overall
result exhibits similarities with prevailing agent-based financial models (see, e.g., Beja
and Goldman 1980; Kirman 1993; Lux andMarchesi 1999; Cont and Bouchaud 2000;
Challet et al. 2001).

The paper is structured in three main sections. Section 2 deals with the agent model
strictly speaking: First, we define who are the agents and the three different states in
which they can be found at every moment, the mechanisms that govern the changes
from one state to the other and the transition rates between states. Then we derive a
master equation that characterizes the time evolution of the system, and analyze the
stationary solutions of this equation in the thermodynamic limit. Finally, we find the
second-order corrections and show their relevance in finite size models. In Sect. 3,
we establish a first connection between the agent model and market price changes:
We simulate the time evolution of the system under representative market conditions,
analyze the most relevant traits and compare them with well-known empirical prop-
erties of actual financial time series. In Sect. 4, we propose a second identification for
the species categories (liquidity providers and liquidity takers), and a different price
formation procedure is considered. The outcome presents new properties that are still
consistent with what one may find in practice. This reinforces the potentials of the
model. Conclusions are drawn in Sect. 5, and some technical aspects are left to the
appendices.

2 Agent dynamics

As we have just stated, this section deals exclusively with the intrinsic features that
the agent interplay generates. For this aim, as we will see, we do not need a detailed
description of the internal properties of the agents. Themost important point to bemade
here is about the motivation and plausibility of the agent-based approach introduced.

Along this article, we will assume that any trader that may ever operate in our finan-
cial market can be accommodated in two great, well-defined and excluding groups.
The first and most populated group of investors will constitute what is usually termed
as noise traders (Challet et al. 2000, 2001). We will assume that each one of these
traders acts in a purely random fashion, independently of the rest of agents in the
market. We are not considering this kind of traders as individuals; they merely act as
a some sort of thermal bath or noise source, what reinforces the foundations of the
stochastic character of the dynamics to be introduced.

The second group of traders is the set of those whichwewill call qualified investors,
but the term informed traders (Hachmeister 2007; Brody et al. 2009) would be fit for
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them as well. As we are showing below, we will connect the price evolution with
the collective state of these players, so we will consider that this group embraces the
main actors with bigger influence in financial terms: mutual funds, investment banks
or corporations in general. The total amount of such participants in a real market is
much more moderate (Lillo et al. 2008), what makes sense to consider a finite size
agent model to describe them. We will assume that the instantaneous state of these
investors will fluctuate within three categories (termed A, B and E) as a consequence
of their interaction with noise traders but also with the rest of qualified investors, being
the latter another source of noise.

2.1 The interactions of the species

Let us consider then a finite set of N fully connected interacting agents who, at every
instant of time t , may be found in one out of three possible states that we will label
by the letters A, B and E . In a very general sense, which must be further refined from
case to case, we will assume that an abundance of agents in state A, NA(t), is related
to a bear market scenario, that the increasing of population in the B side, NB(t), leads
to a bull market scenario, whereas the market is not sensitive to changes in the number
of agents of type E , NE (t), beyond the fact that N = NA(t) + NB(t) + NE (t) is
fixed. We delay the precise economic interpretation of states A and B until particular
market models are introduced; see Sects. 3 and 4. Note that, in any case, E will always
represent a neutral position within our formulation.

The mechanism that allows these agents to change their minds and move from one
state to another is based on self- and mutual interactions. Decisions are not affected
by the previous history (what renders the mechanism Markovian); they will only be
constrained by the relative abundances of agents in the states involved and depend on
some rate intrinsic to the interaction. This will allow us to describe this model by using
the language of population dynamics. We have two species living in a finite world:
the A’s which will play the role of preys and the B’s which will be the predators. The
E’s, those agents without a definite or explicit intention, will act as empty space.

The basic unitary interaction in population problems is the death process, A
p→ E

and B
q→ E . Each one of these two processes (and the same applies for the rest of

interactions) may encompass the aggregate effect of disparate contributions.1 In this
scheme, p andq are the intensities of Poissonprocesses,measures of the probability per
unit of time that a given active agent when observed separately passes into inactivity.
The same kind of notation is used in the description of the remaining transitions.

Yet another typical unitary interaction in populationmodels in the spontaneous birth
of preys, E → A, but this is not considered here. All birth processes are due to those
binary interactions that also occur in the system. At this point, it can be useful from a
practical point of view to establish the probability ν of having rather a two-component
transition than a single-component one.

1 Note, however, that our approach for the agent dynamics is mostly phenomenological. The available
interactions were selected with the aim of capturing generalmacroscopic features of financial markets. The
interpretations of those interactions in terms of microscopic events that appear throughout Sect. 2 serve
illustrative purposes.
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Predator–prey model for stock market fluctuations 33

Table 1 The table summarizes the allowed interactions, the corresponding intensities and the associated
transition rates

Iteration Type Intensity Transition rate

A → E Unitary p T (n − 1,m|n,m) = (1 − ν)p
n

N

B → E Unitary q T (n,m − 1|n,m) = (1 − ν)q
m

N

AB → EE Binary a T (n − 1,m − 1|n,m) = 2νλa
n

N

m

N − 1

AB → BB Binary b T (n − 1,m + 1|n,m) = 2ν(1 − λ)b
n

N

m

N − 1

AE → AA Binary c T (n + 1,m|n,m) = 2νc
n

N

N − n − m

N − 1

Remind that ν represents the probability of having binary rather than unitary interactions, while λ distin-
guishes between the two possible outcomes of AB interactions

The first two-component interaction that we are going to introduce is AB
a→ EE .

This interaction, in a broad sense, conveys a form of agreement between two active
investors in such away that none of them convinces the other. This annihilation process
is not usually considered in population models: It represents a situation in which both
individuals, predator and prey, die after fighting. The ordinary result in predator–prey

models after AB interactions is predation: AB
b→ BB. In our case, this counts for the

possibility that an active investor may perform a change in the evaluation of the market
scenario (from bear to bull) due to the predominance of B’s. This may eventually lead
to a market bubble. Once again, it may become useful to consider that a fraction λ of
AB interactions conduces to annihilation, whereas 1 − λ of them ends in predation.

Our third binary interaction is AE
c→ AA, in which an agent that was not interested

in operating in the market comes into activity in the A side. Under financial optics,
this imitative behavior can lead to market panic and ultimately to a crash. Here lies our
birth mechanism for preys which also incorporates in the model population pressure
against unbounded prey growth.

Therefore, as it is summarized in Table 1, we are assuming that:

(i) states A and B can spontaneously decay into inactivity;
(ii) there is a basic non-trivial interaction that is not sensitive to the interchange of

the roles of A’s and B’s;
(iii) B’s can convince A’s only; and
(iv) A’s can convince E’s only,

where the asymmetry in the two last items expresses the fact that bubbles and crashes
in actual stock markets are different in shape (Bouchaud and Cont 1998; Lillo and
Mantegna 2000). Since all agents are identical, the heterogeneity of our model relies
on these asymmetric interactions.

2.2 Themaster equation

The complete state of the agent system at a given instant t is fully determined by the
number of investors belonging to species A and B, NA(t) and NB(t), respectively.
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34 M. Montero

Since these numbers will be stochastic magnitudes, we are interested in obtaining an
expression for P(n,m, t), the probability of having n A’s and m B’s at time t :

P(n,m, t) = Pr{NA(t) = n, NB(t) = m}. (1)

To this end, we will consider the transition rates T (n′,m′|n,m), the transition proba-
bilities (per unit of time) between macroscopic states (n,m) and (n′,m′), in terms of
which one can express the master equation (ME), the equation that defines the time
evolution of P(n,m, t):

dP(n,m, t)

dt
=

∑

n′

∑

m′
T (n,m|n′,m′)P(n′,m′, t)

−
∑

n′

∑

m′
T (n′,m′|n,m)P(n,m, t). (2)

Based on the above interactions, one has five transition rates which change n and/or
m in one unit, see again Table 1, whereas those not listed there are forbidden: i.e.,
T (n,m + 1|n,m) = 0, T (n + 1,m + 1|n,m) = 0 and T (n + 1,m − 1|n,m) = 0.
Note that the terms in (2) containing T (n,m|n,m) mutually cancel out and that the
Markov character of the model makes superfluous considering more sophisticated
transition rates in the elaboration of the ME.

With this proviso, Eq. (2) can be rewritten as

dP(n,m, t)

dt
= (αAA − γA)(E +1

x − 1)[nP(n,m, t)]
+γB(E +1

y − 1)[mP(n,m, t)]
+αAB − βAB − αAA

2
(E +1

x E +1
y − 1)

[
n

m

N − 1
P(n,m, t)

]

+αAB + βAB − αAA

2
(E +1

x E −1
y − 1)

[
n

m

N − 1
P(n,m, t)

]

+αAA(E −1
x − 1)

[
n
N − n − m

N − 1
P(n,m, t)

]
,

where we have introduced the following increment/decrement operators

E ±1
x f (n,m, t) ≡ f (n ± 1,m, t),

E ±1
y f (n,m, t) ≡ f (n,m ± 1, t),

and five new parameters

γA ≡ 2νc − (1 − ν)p

N
, (3)
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Fig. 1 Flux diagram for a discrete-time update procedure of the state of the agents

γB ≡ (1 − ν)q

N
, (4)

αAA ≡ 2νc

N
, (5)

αAB ≡ 2ν
λa + (1 − λ)b + c

N
, (6)

βAB ≡ 2ν
(1 − λ)b − λa

N
, (7)

which encode all the relevant information of the model parameterization. Let us stress
that λ and ν were defined in order to clarify how the update mechanism can be approx-
imately implemented, see Fig. 1, but they do not introduce further degrees of freedom
in the problem since they would disappear after a redefinition of the constants. This
is the case if one uses the exact algorithm by Gillespie (1976) in the simulation of the
system, as we have done.

The relevance of the new parameters becomes noticeable soon afterward. Suffice it
to say for the moment that we will proceed as they were independent of the size of the
system in what follows, because we will consider the expansion of the ME in terms
of powers of N . To this end, let us define RA,B(t),

RA,B(t) ≡ lim
N→∞E[NA,B(t)]/N ,

and introduce two new stochastic processes, X(t) and Y (t), in such a way that

NA(t) = N RA(t) + √
N X(t), (8)

NB(t) = N RB(t) + √
NY (t) (9)
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36 M. Montero

hold. X(t) andY (t) are thus responsible for the fluctuations of NA(t) and NB(t) around
their mean values. It is expected that the strength of those fluctuations will diminish
as the system reaches the thermodynamic limit, that is, when N � 1. Note that this
approach implies that, for any two given values of the population of the species, n and
m, we will have that

n = N RA(t) + √
Nx,

m = N RB(t) + √
N y,

where x and y—as well as RA(t) and RB(t)—are real magnitudes in spite that n and
m were integers. In such a situation, increment/decrement operators become partial
differential operators (see Van Kampen 1992, chap. X),

E ±1
x = 1 ± 1√

N
∂x + 1

2N
∂2xx + O(N−3/2),

E ±1
y = 1 ± 1√

N
∂y + 1

2N
∂2yy + O(N−3/2).

Finally note that P(n,m, t) must be replaced by Π(x, y, t),

Π(x, y, t)dxdy ≡ Pr{x < X(t) ≤ x + dx, y < Y (t) ≤ y + dy},

through

P(n,m, t) = 1

N
Π

(
n − N RA√

N
,
m − N RB√

N
, t

)
dxdy,

what affects the time derivative term in the ME in the following way:

dP

dt
= −

[
1√
N

dRA

dt
∂xΠ + 1√

N

dRB

dt
∂yΠ − 1

N
∂tΠ

]
dxdy.

2.3 First-order stationary solutions

The first-order approximation of the ME collects terms of order N−1/2, ignores those
of O(N−1) and leads to a set of coupled Volterra equations for RA(t) and RB(t),

dRA

dt
= [

γA − αAARA − αAB RB
]
RA, (10)

dRB

dt
= [

βAB RA − γB
]
RB . (11)

Let us analyze the factors appearing in these equations. γA as defined in Eq. (3) repre-
sents a trade-off between a positive term that comes from the imitation influence and
a negative term that measures the death rate of preys. If positive, it would correspond
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Predator–prey model for stock market fluctuations 37

to an effective birth rate of preys in Eq. (10). Recall, however, that in this system
preys suffer from population pressure instigated by the imitation interaction that con-
strains the growth of preys; see the definition of αAA in (5). The term with the αAB

factor counts for the reduction in the number of preys due to all binary operations,
not only predation, Eq. (6). The βAB term appearing in Eq. (11) is a consequence of
the imbalance between predation and annihilation alternatives, as it can be observed
in (7), whereas γB measures exclusively the death rate of predators, expression (4).
Summing up, there are two parameters, γA and βAB , with no definite sign, whereas
γB , αAA and αAB are positive constants ab initio.

Equations (10) and (11) present three stationary solutions for which

dRA

dt
= dRB

dt
= 0.

The first solution is the trivial one, RA = RB = 0. It represents the death of the
market due to a complete lack of activity. This is a feasible scenario that threatens
any real market. For instance, investors may lose interest in any given commodity that
becomes useless or exhausted. The stability analysis of this fixed point determines
that it will be a saddle point if γA > 0; otherwise, it would turn stable. The analysis
of the second stationary solution, RA = γA/αAA ≡ M/N < 1—note that γA < αAA

by construction, cf. expressions (3) and (5), and RB = 0, leads to the constraint

0 <
γB

βAB
<

M

N
, (12)

if one wants to avoid conferring stability to this fixed point as well.2 In conclusion, all
the parameters defined in (3)–(7) must be positive definite.

We must point out that the presence of those unstable equilibrium solutions is not
a flaw, but a merit of the model, as is the fact that the remaining stationary solution

RA = R◦
A ≡ γB

βAB
, (13)

RB = R◦
B ≡ γAβAB − γBαAA

αABβAB
, (14)

is always present, accessible and corresponds to a stable fixed point.
Regarding the occurrence of the fixed point, it is evident that R◦

A > 0, and Eq. (12)
leads to R◦

A < M/N < 1. The same equation determines that R◦
B > 0. Also R◦

B < 1,
as it can be proved as follows:

R◦
B = 1 − (αAB − γA)βAB + γBαAA

αABβAB
< 1,

2 Note how this situation may represent the worst market crash imaginable, where every active investor is
in the bear side, what would conclude in a liquidity crisis. In this sense, one may consider that M is related
to the finiteness of the total amount of tradable items.
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38 M. Montero

because trivially αAB > γA, cf. Eqs. (3) and (6). We can also show that R◦
A + R◦

B < 1,

R◦
A + R◦

B = 1 − (αAB − γA)βAB + (αAA − αAB)γB

αABβAB

< 1 − γB

γA

(αAB − γA)αAA + (αAA − αAB)γA

αABβAB

= 1 − γB(αAA − γA)

γAβAB
< 1,

because αAA > γA as we have just pointed out above.
The analysis of the stability of this fixed point leads to the conclusion that the point

is stable and that the transient term will exhibit oscillations when ω0 ∈ R
+,

ω0 ≡
√

αABβAB R◦
AR

◦
B − 1

4

(
αAAR◦

A

)2
, (15)

which is true whenever

αAA

βAB
< 2

(√
1 + γA

γB
− 1

)
.

When the system shows transient oscillations, there is a single characteristic timescale
for the decay rate,

τ0 = 2

αAAR◦
A
, (16)

and for t � τ0, the system would reach the stable solution. This assertion is no longer
true when a second decay rate appears. Let us define

T−2
0 ≡ τ−2

0 − αABβAB R
◦
AR

◦
B < τ−2

0 . (17)

If T−2
0 > 0, the steady state is reached when t−1 � τ−1

0 − T−1
0 . Therefore, we may

define t0, t
−1
0 ≡ τ−1

0 − �[T−1
0 ], and the steady state is always achieved for t � t0.

After the transient regime, and whenever N is finite, we will expect that the time
evolution of prey and predator densities, NA(t)/N and NB(t)/N , makes them attain
their limit values R◦

A and R◦
B , and exhibit some fluctuating activity afterward. Since

the characteristic size of the fluctuations is of order N−1/2, a naive analysis could
lead to the conclusion that if we have, let us say, 1000 interacting agents, the error
in neglecting the remaining terms in the ME should be around 3.2%. In Fig. 2, we
can find the outcome of a realization of the model with N = 1000—the complete
set of parameter specifications is listed in Sect. 3. The example shows that in such a
system fluctuations may be larger than expected, and further corrections to the first-
order equations must be taken into account (Challet and Marsili 2003; McKane and
Newman 2005).
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Fig. 2 Timeevolution of prey andpredator densities (solid red lines) for an exact realization of our interacting
agent model with N = 1000. The dashed black line depicts the first-order approach to the problem, whereas
in green is shown the stationary solution. We can see how fluctuations in both populations are larger than
expected (color figure online)

A final word on the N dependency of the above expressions before exploring the
next-to-leading-order terms in the ME. The analysis under progress relies on the fact
that the parameters defined in Eqs. (3)–(7) are independent of N . Note, however, that
the expressions for R◦

A, R
◦
B and M/N are not sensitive to this need. It only affects

those constants where time is involved, like τ0 orω0: See in Fig. 1 how the time needed
to update all the agents is not of order of δt , but of Nδt .

2.4 Beyond the first-order equations

When one gathers the terms of order N−1 in the ME expansion, a Fokker–Planck
equation for Π(x, y, t) emerges:

∂tΠ = [−γA + 2αAARA + αAB RB
]
∂x (xΠ)

+αAB RA∂x (yΠ) − βAB RB∂y(xΠ) + [
γB − βAB RA

]
∂y(yΠ)

+ RA

2

[−γA + αAA(2 − RA − 2RB) + αAB RB
]
∂2xxΠ

+ RB

2

[
γB + (αAB − αAA)RA

]
∂2yyΠ − βAB RARB∂2xyΠ.

If we concentrate our analysis of the previous equation for times large enough to let
RA(t) and RB(t) reach their steady-state values, R◦

A and R◦
B , the expression simplifies

considerably:

∂tΠ = μxx∂x (xΠ) + μxy∂x (yΠ) − μyx∂y(xΠ)

+1

2
σ 2
x ∂2xxΠ + 1

2
σ 2
y ∂2yyΠ − ρσxσy∂

2
xyΠ,
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40 M. Montero

with

μxx ≡ αAAR
◦
A = 2

τ0
, (18)

μxy ≡ αAB R
◦
A, (19)

μyx ≡ βAB R
◦
B, (20)

σ 2
x ≡ 2αAAR

◦
A

(
1 − R◦

A − R◦
B

)
, (21)

σ 2
y ≡ R◦

AR
◦
B (βAB + αAB − αAA) , (22)

ρ ≡ βAB
R◦
AR

◦
B

σxσy
, (23)

positive definite quantities.3 Therefore, we have a linear multivariate Fokker–Planck
equation for the joint probability density of X(t) and Y (t), whose solution can be
systematically obtained after some algebra (see again VanKampen 1992, chap. X). An
alternative approach is basedon the following set of coupled (Itô) stochastic differential
equations:

dX = −μxx Xdt − μxyYdt + σxdW1, (24)

dY = μyx Xdt − ρσydW1 + σy

√
1 − ρ2dW2, (25)

where W1 and W2 are two independent Wiener processes. Note that the same set
of equations can be recovered from the Kramers–Moyal expansion of the ME, see
“Appendix A.”

2.5 Themagnifying effect

To explore the reason for the abnormal magnitude of fluctuations, we should compare
X(t) and Y (t) with R◦

A and R◦
B , respectively. A quick analysis reveals that mean

values are not useful in this task because limt→∞ E[X(t)] = limt→∞ E[Y (t)] =
0—remember that (24) and (25) are valid for t � t0. We concentrate in variances
and covariances instead. In “Appendix B,” we can find how the stationary values of
E[X2(t)], E[Y 2(t)] and E[X(t)Y (t)] follow:

Cxx (0) = lim
t→∞E[X2(t)] = μyxσ

2
x + μxyσ

2
y

2μxxμyx
,

Cyy(0) = lim
t→∞E[Y 2(t)] = μ2

yxσ
2
x + (

μ2
xx + μxyμyx

)
σ 2
y − 2ρμxxμyxσxσy

2μxxμxyμyx
,

Cxy(0) = lim
t→∞E[X(t)Y (t)] = − σ 2

y

2μyx
,

3 Note in particular that βAB + αAB − αAA = 4ν(1 − λ)b/N > 0.
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and fluctuations will be appreciable if these quantities are larger than (R◦
A)2, (R◦

B)2

and R◦
AR

◦
B , respectively. If we define the magnifying factors Ωxx , Ωyy and Ωxy as

the corresponding quotient of these magnitudes, e.g.,

Ωxy ≡ lim
t→∞

E[X(t)Y (t)]
R◦
AR

◦
B

= Cxy(0)

R◦
AR

◦
B

,

fluctuations will be prominent when Ω ∼ N , because then one can overcome the
N−1/2 dumping factor of the second-order corrections. The analysis of the possible
values that Ω can take is difficult because the inner relationships that μxx , μxy , μyx ,
σx , σy and ρ do present. In fact, the difficulty is inherited from γA, γB , αAA, αAB and
βAB , which are neither bounded nor independent. Then, it is useful to introduce the
following (final) re-parameterization:

αAA = 1

χ

2

τ0
,

αAB = 1

ηχ

2

τ0
,

βAB = ξ

χ

1 − η

η

2

τ0
,

γA =
[
1 + 1 − χ

χ
ε

]
2

τ0
,

γB = ξ
1 − η

η

2

τ0
,

where the four new variables χ , ε, η and ξ are in the (0, 1) range and can be arbitrarily
set. With the proposed parameterization, all the constraints that affect the old param-
eters (the pure algebraic ones, as well as those coming from stability considerations)
are identically satisfied,4 and τ0 carries the characteristic timescale of the interactions
at the microscopic level. The magnifying factors in the new parameters read

Ωxx = (1 − ηε)
1 − χ

χ2 + 1

2

1 + ξ

ξ

1

χη
,

Ωyy =
{[

1 − χ

χ
(1 − ηε) − 1

]
ηξ + 1 + ξ

2

}
1 − η

(1 − χ)η2ε

+1

2

1 + ξ

ξ

χ

(1 − χ)2ηε2
,

Ωxy = −1

2

1 + ξ

ξ

1

(1 − χ)ηε
,

and the stationary first-order solutions are R◦
A = χ and R◦

B = (1 − χ)ηε.
The first point to be noted is that no τ0 appears in any of the these expressions.

So, the magnification effect does not depend on the characteristic timescale of the

4 The new parameterization proves incidentally that ρ < 1/2.
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correlations. The second aspect of importance is that, for fixed values of χ , ε and η,
the magnifying factors become unboundedly large as ξ → 0, and this parameter does
not contribute to the value of R◦

A and R◦
B . Then, magnification can be achieved for

any (regular) value of the species stationary densities. Another favorable scenario is
R◦
A → 0 and R◦

B → 0: Check, for instance, how for χ → 0, Ωxx → ∞. This implies
that the phenomenon is relevant in sparse systems as well, in spite of the fact that in
such cases N may be very large. Note finally that magnification is not connected with
the presence of oscillations of any peculiar frequency. On the one hand, the condition
that determines that T−1

0 replaces ω0 is

ξ <
χη

4(1 − χ)(1 − η)ε
,

and as we have shown above how ξ → 0 always leads to magnification. This is
reasonable since for a fixed τ0, T0 increases the microscopic correlation range—see
“Appendix B.” On the other hand, for a fixed value of ε, η and ξ , ω0 embraces the
whole positive real axis as χ varies. Therefore, in principle, one can consider models
with either a large value for ω0 and reproduce the typical bid–ask bounce in a liquid
market, as in Montero et al. (2005), or a smaller one, and capture some seasonal
character present in the market evolution, like in the electricity market analyzed by
Perelló et al. (2006). As it is shown in detail in “Appendix B” and it is shown in Fig. 2,
the oscillatory behavior is also present in the second-order terms.

Let us see magnification in a practical example. For clarity reasons, we will con-
dense the three magnifying factors defined above in a single plot. To this end, we
define Ωzz ,

Ωzz ≡ Ωxx + Ωyy − 2Ωxy = lim
t→∞E

[(
Y (t)

R◦
B

− X(t)

R◦
A

)2
]

,

a relevant quantity in the pricing models to be introduced below. Further, we assume
that R◦

A = χ is kept fixed, and that ε changes in a way that R◦
B = R◦

A is guaranteed—
we are interested in models in which no side is prioritized. This leaves η and ξ as
the only free parameters.5 In particular, we have set R◦

A = R◦
B = 0.2, since we are

looking formean states that aremacroscopically populated. In Fig. 3, we observe some
contour lines that represent configurations with the same amplification level, and how
these lines cross (or do not cross) the threshold that delimits those configurations with
and without oscillating properties. Thus, for instance, we have marked with a small
circle the location of the following parameter set: χ = 0.2, ε = 0.625, η = 0.4,
ξ = 0.2. With this configuration, M = 0.7N , and the amplification factor is about
one hundred.

5 With the proviso that η > χ/(1 − χ) to guarantee that ε < 1.

123



Predator–prey model for stock market fluctuations 43

Fig. 3 Contour plot of the
magnifying factor Ωzz . The
magnifying factor values, to be
compared with N , are 100
(dotted line), 250 (dashed line)
and 1000 (dot dashed line). The
solid line is the borderline
between the zones with
oscillating behavior (ω0) and
without it (T0). In this case, since
R◦
A = R◦

B = 0.2, η > 0.25

ω0

T0o

0.25 0.50 0.75 1.00
η

0.0

0.2

0.4
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3 Price dynamics in an excess demandmodel

As we have stated above, the formula that will determine the price dynamics must
depend on the nature of the species. Therefore, it is time to identify A and B
states and define how the evolution of the population of agents in each category
translates into prices changes. Within this first model, we will consider that NA(t)
represents the offer and NB(t) represents the demand in a certain financial mar-
ket.

Specifically, let us consider the case of a market that operates through a limit order
book: Limit orders are orders with a limit price that represents the minimum (respec-
tively, maximum) price the investor is accepting for selling (respectively, buying) a
given number of shares, the volume of the order. The limit order is placed in the so-
called limit order book, which is visible to rest of qualified investors, and it remains
there until one of the two following major events takes place: Someone accepts the ask
(respectively, bid) price and the transaction is completed, or the investor removes the
order from the book. Market orders, on the other hand, are orders that automatically
match the best opposite limit order in the limit order book.

The five interactions listed in Table 1 can be interpreted here as follows: If A
represents an ask order, a sell order, and B represents a bid order, a buy order, then
A → E and B → E can be either a canceled order or the result of a trade between
the limit order and an incoming market order. A trade between two agents leads to
AB → EE , whereas AB → BB is the replacement of a sell order by a buy order
because the agent awaits a change in the market evolution, from bear to bull. The
opposite situation, a change from bull to bear, produces that inactive investors enter
into the market in the ask side, AE → AA.

These two imitative reactions are supported by the assumption that in the market
under consideration excess return reacts linearly to excess demand: a classical and
ubiquitous point of view in the economic literature (see, e.g., Zeeman 1974; Beja and
Goldman 1980; Lux andMarchesi 1999; Cont and Bouchaud 2000; Challet et al. 2001;
Dibeh 2007). Excess return measures the logarithmic earnings of the stock beyond the
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risk-free interest rate r , R(t) ≡ ln
[
S(t)e−r t

]
, and excess demand is the difference

between NB(t) and NA(t). Therefore, we will have

dR(t) = Ξ

N
(NB − NA)dt

= Ξ

(
RB − RA + Y − X√

N

)
dt

t�t0−→ Ξ

(
R◦
B − R◦

A + Y − X√
N

)
dt,

where Ξ measures the sensitivity of prices to excess demand. This first pricing model
is a good testing ground since the agent model will be responsible for any observed
market property: we are simply integrating the differences in population.

Let us consider the following paradigmatic example with N = 1000 investors. We
have set τ0 = 10 min, so it is of the same order of magnitude as a typical correlation
length found in actual financial data by Masoliver et al. (2000). Beyond this, the rest
of values were not based on actual market observations. In fact, we have set χ = 0.2,
η = 0.4 and ξ = 0.2, like in the example we emphasized in the previous section,
but slightly increased the value of ε, ε = 0.643. This was intended to get R◦

B � R◦
A,

R◦
B ≈ 0.206, whereas R◦

A = 0.2. Note that R◦
B − R◦

A > 0 characterizes a growing
economy in which wealth is injected into the market. This term is also responsible for
any long-run exponential growth.

A possible realization of the dynamics of the species population was previously
introduced in Fig. 2, and in Fig. 4, we find the corresponding evolution of the stock
price when Ξ = 10−3 min−1. Here, we sampled the complete data series to consider
closingprices only, a usual practice in technical analysis.Moreover, in the confection of
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Fig. 4 Time evolution of the daily closing value of (discounted) stock prices. We can see how the market
suffers a market bubble (an upward trend followed by a downward trend) lasting 5 years and ending at the
beginning of year 25. After that, we find what is called a sideways trend, i.e., no trend at all, from the mid
of year 25 to the mid of year 27, followed by a new upward trend with corrective movements in the middle.
The inset shows the exponential growth in the long run
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Fig. 5 Fixed-horizon return behavior. We can see how probability density functions at small timescales
depart slightly, but clearly, from Gaussian behavior by exhibiting negative skew: The negative tail is fatter
than the positive tail. Returns were divided by their sampling standard deviations to make them commen-
surable

Fig. 4 and hereafter we are assuming that a trading day lasts 480min, and that there are
250 trading days in a year. We observe in Fig. 4 the appearing of typical market charts:
upward trends—an increasing succession of minima, downward trends—a decreasing
succession of maxima and sideways trends—a bouncingmovement between two price
levels.

In Fig. 5, we present the outcome of a statistical analysis performedwith the station-
ary data set of fixed-time returns R(τ ; t) = R(t + τ) − R(t), t > 100 min. We check
that for τ ∼ τ0 correlations are important, Gaussian limit is not attained and skewness
is observed, like in actual markets (Mantegna and Stanley 1995; Plerou et al. 1999;
Masoliver et al. 2000; Cont 2001). This phenomenon is even more noticeable when
the standard deviation of fixed-time returns, a measure of the volatility of the market,
is analyzed (Fig. 6). Since X(t) and Y (t) are anti-correlated, and the return change is
sensible to the difference of those magnitudes, we expect that volatility grows faster
for small timescales, and reaches the diffusive regime for τ > τ0. Abnormal (both sub-
and super-) diffusion has been reported to be present in real markets as well (Masoliver
et al. 2000, 2003, 2006).

In the confection of the previous plot, we have used the complete set of returns
available for each timescale τ , by assuming the statistical equivalence of every sample
R(τ ; t) as a function of t .Moreover, the above results seem to indicate that, for τ � τ0,
the samples R(τ ; t) and R(τ ; t + τ) ought to be also (almost) independent one from
the other. So, if we compute the realized n-τ volatility, Vn(τ ; k):

Vn(τ ; k) =
√√√√1

n

n∑

m=1

[
R
(
τ ; (k − m)τ

)
− 1

n
R
(
nτ ; (k − n)τ

)]2
,
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Fig. 6 Volatility growth. In this figure, we can see how the volatility growth presents two well different
regimes. For τ < τ0, the standard deviation of fixed-time returns shows (super-diffusive) linear growth,
whereas for τ > τ0 it scales as

√
τ , like in a diffusive process

we should expect the outcome to be uniform in k, as well as an absence of correlation
between Vn(τ ; k) and Vn(τ ; k + n). In order to check whether this assumption is true,
we have chosen τ = 1 day, and n = 20 trading sessions, as a proxy for the one-
month realized volatility, a typical choice among practitioners.6 The results were also
annualized, which means here that they were increased by a factor

√
12.5, and only

k ≥ 21 are considered—we ignore the whole first day of simulation. The outcome,
as it is shown in the inset of Fig. 7, is that the market alternates long periods where
the volatility is large, with periods of relative calm, a phenomenon known as volatility
clustering (Cont 2001). The presence clustering in the volatility is a well-documented
feature of real markets that is usually explained in terms of the existence of volatility
self-correlation. This correlation, as opposed to the return-to-return correlation, is long
ranged (Lo 1991)—confront timescales in Figs. 7 and 12.

In order to offer a plausible origin for this larger timescale,we have composedFig. 8.
Therewe present, in a phase diagram, themean recurrence time: For each possible state
of the system, we have recorded all the visiting times and performed a sample mean
with the inter-event times. Therefore, at least two visits to a given state are needed
in order to attach a nonzero value to that point. Once again, we have disregarded the
data within the first day. As it can be observed in this figure, the mean time grows in
an exponential fashion when we depart from the stable fixed-point values: NA = 200
and NB = 206. Since the scale is logarithmic, some lower bound must be chosen,
and we have decided to remove those data points with a mean recurrence time smaller

6 For instance, one-month volatilities are on the basis of VIX, the Chicago Board Options Exchange
pioneering volatility index for the Standard & Poor’s 500 index.
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Fig. 7 Volatility clustering. In this figure, we can see how the one-month annualized volatility presents
clustering (inset) and long memory. The increment of the correlation for times below 20 days is due to data
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Fig. 8 Phase diagram of the state of the system. We show the mean recurrence time, the mean time passed
between two consecutive visits to the same state

than 1 min. This retains in the plot almost all nonzero values7: The lowest recurrence
time near the core is attained at NA = 207 and NB = 203, yielding a value of 20.17
min. As we can see in Fig. 12 again, this magnitude coincides with the timescale for
which 1-min returns exhibit stronger anti-persistence. The slow decay in the volatility

7 Indeed, with this practice only few peripheral points were ignored: states that were visited several times
in a rapid succession before the system leaved that zone and never returned to it.
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Fig. 9 Leverage effect. In this figure, we can see how 20-session returns and volatilities are negatively
correlated, a phenomenon known as the leverage effect in the literature

self-correlation may have thus its origin in those long periods needed by the system to
return to the most outer zone, fromwhere the largest absolute returns come: The green
ring marks a recurrence time of about 60 days, the timescale for which the volatility
self-correlation is more intense—see Fig. 7.

Therefore, the agent model is capable of conciliating short-range correlations in the
microscopic level with long-range correlations in the macroscopic level, what may be
linked with the presence of large business cycles in the financial data (Burns and
Mitchell 1946).

Finally, another stylized fact that is commonly associated with clustering and long-
rangememory in the volatility is the so-called leverage or FischerBlack effect (Christie
1982;Cont 2001;Bouchaud et al. 2001). This phenomenon is generically characterized
by a negative relationship between returns and volatilities. In our case, this effect can
be barely observed when the cross-correlation between 20-day returns and volatilities
are depicted—see Fig. 9.Wemust point out, moreover, that there are features shown in
empirical studies related to this effect that are not detected in our example. For instance,
from Fig. 9 one cannot sustain the presence of a noticeable temporal asymmetry in the
correlation, as expected (Bouchaud et al. 2001).However,we can explain this departure
from what is observed in actual markets on the basis of the usual interpretation of the
leverage effect: The market digests with nervous the losses and with confidence the
rises. And we must remember at this point that the price information is not fed back
into the species, so it is not possible such a reaction here. Therefore, the slight anti-
correlation present in Fig. 9 could be a side effect of the volatility self-correlation, but
just some spurious result as well.
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4 Price dynamics in a liquidity model

Another possible identification of the two species comes from considering that an
agent in the A state is a liquidity provider, whereas an agent in the B state represents
a liquidity taker (Hachmeister 2007; Bouchaud et al. 2009). This scenario has some
contact points with the model proposed in Sect. 3, but shows differences as well.
Liquidity providers will introduce limit orders into the market as before, but in such
a way that they simultaneously hold buy and sell orders with the goal of ensuring that
these securities are always available on demand. Therefore, in the present case, we
are going to make no distinction between bid and ask orders, being NA proportional
to the amount of entries in the order book. On the contrary, liquidity takers operate
through market orders. This is just the way in which noise traders are assumed to
participate in the market, but, unlike them, liquidity takers survey the limit order book
and look forward to a convenient trading opportunity, like predators do (Vaglica et al.
2008). Note, however, that this results in transaction (AB → EE), not in predation
(AB → BB). These and the rest of interactions determine how qualified agents
migrate from one set to the other or remain inactive (Handa and Schwartz 1996; Hall
and Hautsch 2007).

In the current situation, A, B and E qualify the status of the agent in that market:
A → E and B → E measure the probability that an agent becomes temporarily
inactive. AB → BB is the response to the appreciation that the excess of liquidity
favors finding a bargain. Finally, acting as a liquidity provider deserves public recog-
nition and prestige for the agent, a financial institution or an investment bank, what
stimulates the transition AE → AA by imitation.

The present interpretation of the species in terms of liquidity providers and liquidity
takers ismore suitable for very liquidmarkets,where changes in offer or demand have a
small impact on prices. In such a situation, a relevant magnitude in the price formation
mechanism is the spread, the difference between the lowest ask price and the higher bid
price. Then, the pricing formula must connect the spread with the relative populations
of liquidity providers and liquidity takers, but the issue is not so straightforward as
in the case considered in Sect. 3. Here, we have decided to use a pricing expression
inspired by the works of Farmer (2002), and Farmer and Joshi (2002). Consider these
general guidelines:

1. The bigger the number of limit orders are in an order book, the lower the spread
will be, and therefore, the lower the price change will be.

2. If the number of liquidity takers is small with respect to the number of liquidity
providers, the price should tend to exhibit the typical bid–ask bounce pattern.

3. If the number of liquidity takers is large with respect to the number of liquidity
providers, the most likely is that the price shows a trend.

A feasible candidate that incorporates the above properties is the following discrete-
time update formula:

R(t + �t) = R(t) + Ξ [2Θ (R(t) − R(t − �t)) − 1]

[
NB(t)

NA(t)
− ζ

]
�t,
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Fig. 10 Time evolution of the daily closing value of (discounted) stock prices for the alternative dynamics
based on the liquidity model. Among the several trends that are present, the sudden large drops which
resemble market crashes are remarkable

where �t is the time between two consecutive changes in the state of the agents, Θ(·)
is theHeaviside step function and, for amatter ofmodel simplicity, wewill assume that
ζ = R◦

B/R◦
A. This liquidity pricing model will share some features with the previous

excess demand model, since for large values of N and t we have

R(t + �t) ∼ R(t) + Ξ√
N

[2Θ (R(t) − R(t − �t)) − 1]

[
Y (t)

R◦
B

− X(t)

R◦
A

]
�t,

and the two formulas become very similar when R◦
B ≈ R◦

A. The main distinguishing
trait is the presence of the factor with the Heaviside step function that may distort the
evolution that the agent model dictates and introduce new properties.

In Fig. 10, we see how a sample time series mimics again a typical stock market
evolution. In the confection of this plot, we have kept the same parameters as in
the previous market model with just one exception, and the sensibility was set to
Ξ = 0.05min−1, with the aim of recovering a similar growth in the long run. However,
we see how the market becomes much more volatile than it was in the previous case.

The impact of the new pricing dynamics in the probability density function of
returns is also noticeable. In Fig. 11, one observes how one may find in practice
changes amounting tens of standard deviations, like in actual markets (Mantegna
and Stanley 1995; Masoliver et al. 2000). Finally, the correlation length is affected,
but timescale τ0 is preserved: In Fig. 12, we show a comparison between the 1-min
return correlation curves for both cases. On the contrary, the pricing mechanism in the
liquidity model wipes completely the negative correlation that one can relate to ω0:
The characteristic timescale of the oscillations is about 44.4 min with our parameter
selection.
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Fig. 11 Fixed-horizon return behavior. We can see how probability density functions present fat tails at
intra-day timescales and how the Gaussian behavior is not fully recovered even in the case of daily returns
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Fig. 12 Linear correlation of 1-min returns for the two pricing models. The basic timescale τ0 = 10 min
can be observed in both cases

5 Conclusions

Along this article, we have introduced a dynamical model that describes ultimately
the evolution of financial prices. The main ingredient of the model is a finite set of
identical interacting agents that, at every moment, can be accommodated into one of
the three excluding categories. The agents represent those traders whose activity may
have a noticeably impact on the market, and the three available states characterize in
a broad sense the possible attitudes of investors.
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Active agents can spontaneously adopt a neutral attitude, but any other change is
the outcome of an agent-to-agent interaction: Agents may agree, or one agent can
convince the other following hierarchical relationships. These simple rules encode a
system in which the number of active agents may strongly fluctuate, thus overcoming
the second-order nature of the effect. We have looked for the conditions that promote
such amplification and concluded that it does not depend on the timescale of the
interactions and can be obtained for any choice of the first-order stationary densities—
even though it is more relevant in sparse systems, and it is not the result of a resonance.

Once we have analyzed the dynamics of the agent instantaneous properties, we
have moved into the pricing problem. We have considered two different ways of
identifying the categories, and in each case, a suitable pricing expression is set.Wehave
simulated the time evolution of the asset price for representative values of the involved
parameters. We have shown how sample realizations reproduce several stylized facts
reported in actual financial data sets: The price evolution displays upward, downward
and sideways trends; probability density functions of small timescale returns present
fat tails and skewness; volatility behaves accordingly in a non-diffusive way within
the same time horizon and presents clustering in a larger timescale; and traces of some
leverage effect can be found.

In a future work, we are planning to explore how the properties shown by the agent
model depend on the assumptions made, to refine its connections with actual financial
systems and to consider further alternative interpretations that may be relevant in
market dynamics not considered here.
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6 Appendix A: The Kramers–Moyal expansion

The Kramers–Moyal expansion of P(n,m, t), up to the second order in n and/or m,
reads

∂P(n,m, t)

∂t
= − ∂

∂n
[a1(n,m)P(n,m, t)] − ∂

∂m
[a2(n,m)P(n,m, t)]

+1

2

∂2

∂n2
[a11(n,m)P(n,m, t)] + 1

2

∂2

∂m2 [a22(n,m)P(n,m, t)]

+ ∂2

∂n∂m
[a12(n,m)P(n,m, t)] ,

(26)

where functions ai (n,m) and ai j (n,m) are defined on the basis of the transition rates
T (n′,m′|n,m) as
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a1(n,m) ≡
∑

n′

∑

m′
(n′ − n)T (n′,m′|n,m)

=
(

γA − αAA
n

N − 1
− αAB

m

N − 1

)
n, (27)

a2(n,m) ≡
∑

n′

∑

m′
(m′ − m)T (n′,m′|n,m) =

(
βAB

n

N
− γB

)
m, (28)

a11(n,m) ≡
∑

n′

∑

m′
(n′ − n)2T (n′,m′|n,m)

=
[
αAA

(
2N − 1 − n − 2m

N − 1

)
+ αAB

m

N − 1
− γA

]
n, (29)

a22(n,m) ≡
∑

n′

∑

m′
(m′ − m)2T (n′,m′|n,m) =

[
γB + (αAB − αAA)

n

N − 1

]
m,

(30)

a12(n,m) ≡
∑

n′

∑

m′
(n′ − n)(m′ − m)T (n′,m′|n,m) = −βAB

n m

N − 1
, (31)

and variables n andm are handled as discrete or continuous quantities at convenience.
The Fokker–Planck equation in (26) corresponds to the following set of coupled

stochastic differential equations for the original variables NA(t) and NB(t), cf. Eq.
(1),

dNA = μA(NA, NB)dt + σA(NA, NB)dW1, (32)

dNB = μB(NA, NB)dt − ρAB(NA, NB)σB(NA, NB)dW1

+σB(NA, NB)

√
1 − ρ2

AB(NA, NB) dW2, (33)

where W1 and W2 are two independent Wiener processes, and

μA(NA, NB) ≡
[
αAA

(
R◦
A − NA

N

)
+ αAB

(
R◦
B − NB

N

)]
NA, (34)

μB(NA, NB) ≡ βAB

(
NA

N
− R◦

A

)
NB, (35)

σ 2
A(NA, NB) ≡ 2αAA

(
1 − NA

N
− NB

N

)
NA − μA, (36)

σ 2
B(NA, NB) ≡

[
βAB R

◦
A + (αAB − αAA)

NA

N

]
NB, (37)

ρAB(NA, NB) ≡ βAB
NANB

NσAσB
. (38)

Note that for clarity reasons we have expressed γA and γB in terms of R◦
A and R◦

B ,
and that we have assumed that N � 1 to replace N − 1 by N . The decomposition
considered in Eqs. (8) and (9), i.e.,
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NA(t) = N RA(t) + √
N X(t),

NB(t) = N RB(t) + √
NY (t),

is also meaningful here since σA and σB are both O(
√
N ), whereas μA and μB are

O(N ). In fact, if one inserts (8) and (9) into Eqs. (32) and (33) and collects the O(N )

terms in (32) and (33) one gets Eqs. (10) and (11), while those terms of O(
√
N ) lead

to Eqs. (24) and (25) when t is large enough to allow the replacement of RA,B(t) by
R◦
A,B .

7 Appendix B: Correlation functions

The cross-correlation theorem states that, for any couple of two random variables X(t)
and Y (t), we can compute its stationary autocorrelation function though:

Cxy(τ ) ≡ lim
t→∞E[X(t)Y (t + τ)] =

∫ ∞

−∞
dω

2π
Pxy(ω)e−iωτ ,

where

Pxy(ω) = lim
t→∞

∫ ∞

−∞
dω′

2π
E[X̃∗(ω)Ỹ (ω′)]e−i(ω′−ω)t ,

X̃(ω) stands for the Fourier transform of X(t), and so forth. When Y (t) coincides
with X(t), Pxx (ω) is termed the power spectral density function of X(t), and cross-
correlation theorem is known as the Wiener–Khinchin theorem.

In our case, Eqs. (24) and (25) lead to

Pxx (ω) = μ2
xyσ

2
y + σ 2

x ω2

ω2μ2
xx + (

ω2 − μxyμyx
)2 ,

Pyy(ω) = μ2
yxσ

2
x + μ2

xxσ
2
y − 2ρμxxμyxσxσy + σ 2

yω2

ω2μ2
xx + (

ω2 − μxyμyx
)2 ,

Pxy(ω) = −μxxμxyσ
2
y + μxyμyxρσxσy

ω2μ2
xx + (

ω2 − μxyμyx
)2

+
i
(
μyxσ

2
x + μxyσ

2
y − μxxρσxσy

)
ω − ρσxσyω

2

ω2μ2
xx + (

ω2 − μxyμyx
)2 .

Note that every function has the same basic structure, namely

P(ω) = κ1 + iκ2ω + κ3ω
2

ω2μ2
xx + (

ω2 − μxyμyx
)2 ,
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therefore, we can compute the auto- and cross-correlation functions at once,

C(τ ) =
[
κ1 + κ3μxyμyx

μxxμxyμyx
cos(ω0τ) + κ1 − κ3μxyμyx

2μxyμyxω0
sin(ω0|τ |)

+ κ2

μxxω0
sin(ω0τ)

]
e−|τ |/τ0

2
,

where ω0 ∈ R
+ coincides with that defined in (15), and τ0 was introduced in (16). If

T0 ∈ R
+, see Eq. (17), we have instead

C(τ ) =
[
κ1 + κ3μxyμyx

μxxμxyμyx
cosh(τ/T0) + κ1 − κ3μxyμyx

2μxyμyx
T0 sinh(|τ |/T0)

+ κ2

μxx
T0 sinh(τ/T0)

]
e−|τ |/τ0

2
,

and two correlation timescales appear. Finally note that the corresponding variances
and covariances are obtained after setting τ = 0.
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