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Abstract Some bargaining solutions may remain unchanged under any extension of
a bargaining set which does not affect the utopia point, despite the fact that there
is room to improve the utility of at least one agent. We call this phenomenon the
stagnation effect. A bargaining solution satisfies stagnation proofness if it does not
suffer from the stagnation effect. We show that stagnation proofness is compatible
with the restricted version of strong monotonicity (Thomson and Myerson in Int J
Game Theory 9(1):37–49, 1980), weak Pareto optimality, and scale invariance. The
four axioms together characterize the family of the bargaining solutions generated by
strictly-increasing paths ending at the utopia point (SI PU P-solutions).
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Introduction

When the feasible set of a bargaining problem (Nash 1950) is expanded leaving the
utopia point unaffected, some bargaining solutions are not responsive to potential
improvements, whereas some other solutions can translate the expanded possibilities
into better payoff of at least one agent.Wecall this lackof responsiveness the stagnation
effect.

This phenomenon is not an issue for 2-agent bargainingproblems, since the axiomof
strong Pareto optimality1 implies the avoidance of the stagnation effect. However, our
concern is that the vast majority of bargaining solutions do not satisfy this axiomwhen
there are 3 or more agents. In addition, with 3 or more agents, strong Pareto optimality
is not compatible even with restricted versions of monotonicity (García-Segarra and
Ginés-Vilar 2015). In contrast, most of the well-known bargaining solutions satisfy
weak Pareto optimality for the case of n agents. Weak Pareto optimality does not
guarantee the avoidance of the stagnation effect since some of the solutions satisfying
it remain stagnant under all possible expansions of the bargaining set that keeps the
utopia point unchanged.

In view of the stagnation effect, we introduce a new axiom, stagnation proofness.
Whenever a bargaining solution satisfies this property such bargaining solution does
not suffer from the stagnation effect.

Many bargaining solutions are defined by means of monotone paths, for instance,
the egalitarian solution and the solution characterized by Kalai and Smorodinsky
(1975) (hereinafter KS).2 Two interesting results about families of solutions gener-
ated by monotone paths deserve especial attention. The first one is a characterization
of a family of solutions generated by strictly increasing paths that holds for n-agent
problems (Thomson and Myerson 1980). This result focuses on the environment of
solutions where there is interpersonal comparability of utility across agents. The egal-
itarian solution, for instance, belongs to this family. The second one is a family that
generalizes a particular weighted version of the KS solution (Alós-Ferrer et al. 2017),
i.e., solutions generated by increasing paths ending at the utopic point (which is the
point that reflects the maximum aspirations of each agent given a bargaining problem.)
There are two characterizations of this family. One of them holds for 2-agent problems
(Peters and Tijs 1985), while the other one holds for the case of three or more agents
(Peters and Tijs 1984). Both characterizations refer to the environment of solutions
in which there is no interpersonal comparability of utility. Obviously, the KS solution
belongs to this environment.

The solutions characterized in Thomson and Myerson (1980) do suffer from the
stagnation effect. In contrast, the family of solutions characterized in Peters and Tijs
(1984, 1985) satisfy the axiom of strong Pareto optimality, therefore they do not suffer
from the stagnation effect. However, in order to provide a characterization for n-agent
problems, a restriction on the bargaining domain is required (Peters and Tijs 1984).

1 The axioms of strong and weak Pareto optimality are formally defined in Sect. 1.
2 See Thomson (1994) for a review of the main bargaining solutions in this literature.
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Stagnation proofness in n-agent bargaining problems 217

Relying on the axiom of stagnation proofness, we provide a characterization of the
family of solutions generated by strictly increasing paths (as the ones in Thomson and
Myerson 1980) ending at the utopia point (as the ones in Peters and Tijs 1984, 1985)
that holds for n agents and for the whole class of canonical bargaining problems.

The paper is organized in four sections. Section 1 contains definitions and notation.
In Sect. 2, we introduce the stagnation effect and the concept of stagnation proofness.
In Sect. 3, we state and prove our main result. Section 4 concludes.

1 Definitions and notation

An n-agent bargaining problem consists of a set of agents N = {1, ..., n} with n ≥ 2,
a vector of utilities d = (d1, ..., dn) ∈ R

n , and a compact, convex subset S ⊂ R
n of

utility vectors containing d and at least one element x with x > d.3 In addition, we
ask for the fulfillment of d-comprehensiveness, i.e., for every x ∈ S and every y ∈ R

n

with d ≤ y ≤ x , it follows that y ∈ S. The interpretation is that the set S is the set of
feasible expected utility payoffs to the players. Those can be achieved by unanimous
agreement, but if an agreement is not reached, the disagreement vector d ensues. Let
� be the class of such pairs (S, d).4

A bargaining solution is a function f defined on the class of bargaining problems
� which provides a feasible outcome for every pair, i.e., f : � �→ R

n such that
f (S, d) ∈ S for every (S, d) ∈ �. The point f (S, d) is the solution of the bargaining
problem represented by the pair (S, d). Following Kalai and Smorodinsky (1975)
and Kalai (1977), we only consider solutions such that f (S, d) ≥ d, i.e., that satisfy
individual rationality.

For a given bargaining problem (S, d), the utopia point, m(S, d) is a point defined
by the maximum outcome reachable by each agent i on the individually rational part
of the set S. Formally, for each i ,

mi (S, d) ≡ max{xi |x ≥ d, x ∈ S }.

For simplicity we fix d = (0, ..., 0) ≡ 0 and we will refer to a bargaining problem
(S, 0) as S. We remark that this is without loss of generality if we consider solutions
satisfying translation invariance, i.e. the property that f (S + t, d + t) = f (S, d) + t
for all t ∈ R

n .
The strong and weak Pareto frontiers of a bargaining set S are the sets SPO(S) ≡

{x ∈ S | � y ∈ S with y ≥ x} and WPO(S) ≡ {x ∈ S | � y ∈ S with y > x},
respectively.

3 The basic mathematical notation is as follows: Let {Yi }i∈I be a family of sets Yi indexed by I . We denote
by yJ the projection of y onto Y

J . If x, y ∈ R
I , then x ≥ ymeans that, for each i ∈ I , xi ≥ yi , analogously,

x > y means that for each i ∈ I , xi > yi .
4 We refer to this class of problems as the canonical bargaining problems.
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2 The stagnation effect

Some bargaining solutionsmay remain unchanged under any extension of a bargaining
set which does not affect the utopia point, despite the fact that there is room to improve
the utility of at least one agent. We call this phenomenon the stagnation effect. Bar-
gaining solutions such as the weighted KS solution (Thomson 1994), the egalitarian
solution, the family of solutions generated by strictly monotone paths (Thomson and
Myerson 1980), and the proportional solutions (Kalai 1977) are affected by this stag-
nation effect. When a bargaining solution satisfies SPO this implies that the solution
does not suffer from the stagnation effect.

For 2-agent problems, it would be possible to find solutions failing SPO (but still
fulfilling WPO) that do not suffer from stagnation effect, however these solutions
would not be among the ones typically studied in the literature. The picture is different
if we focus on problems with 3 or more agents, since then we can observe some
well-known WPO-solutions suffering from stagnation effect and some others that
do not. This is why we illustrate the stagnation effect using a 3-agent problem. In
Fig. 1, we have two WPO-solutions generated by monotone paths. However, they
behave differently when the bargaining set is expanded without affecting the utopia
point. The path connecting the disagreement point (d = A) with the utopia point
(m(S) = D), i.e., the segment AD, recommends the outcome at point C . Hence,
an eventual expansion in the bargaining set without affecting the utopia point may
improve the outcome of at least one agent. In contrast, the solution generated by
the path connecting AB recommends an outcome that remains stagnant at point B
irrespectively of any expansion of the bargaining set. We provide a formal definition
of the stagnation effect.

Definition 1 A solution suffers from the stagnation effect if and only if there is a set
S ∈ �, withm(S) /∈ S, such that for each S′

� S withm(S′) = m(S), f (S′) = f (S).

Fig. 1 The stagnation effect
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Stagnation proofness in n-agent bargaining problems 219

We define the axiom of stagnation proofness as the logical negation of the stagnation
effect.

Stagnation proofness For each S ∈ �, with m(S) /∈ S, there is at least one S′
� S

with m(S′) = m(S) and one agent j ∈ N , such that f j (S′) > f j (S).
Stagnation proofness says that for each bargaining set S such that utopia pointm(S)

is not feasible there is at least one superset S′ with the same utopia pointm(S′) = m(S)

such that, for at least one agent j , the solution of the superset S′ is greater than
the solution of the bargaining set S. In other words, this axiom requires the logical
negation of the stagnation effect, therefore says that given a bargaining set, a solution
can improve the payoff of at least one agent for at least one expansion of the bargaining
set that keeps the utopia point unchanged.

There are many solutions satisfying stagnation proofness. Examples include the
individually-monotonic solutions (Peters and Tijs 1984, 1985), the Nash solution
(Nash 1950), the utilitarian solution, theKS solution, andmany other solution concepts
(Dubra 2001; Imai 1983; Chun and Peters 1989; Salonen 1987; Herrero and Marco
1993; Herrero 1998; Driesen 2016).

3 Main result

We present here several axioms used in the literature to characterize bargaining solu-
tions (for a discussion, see Thomson 1994). The first two axioms capture the economic
idea of efficiency.

Strong Pareto optimality: For every S ∈ �, f (S) ∈ SPO(S).
Weak Pareto optimality: For every S ∈ �, f (S) ∈ WPO(S).
Strong Pareto optimality says that all gains from cooperation should be exhausted,

while weak Pareto optimality states that no opportunity that benefits all agents should
be ignored. Obviously, the former implies the latter since SPO(S) ⊆ WPO(S). Pare-
tian axioms are standard requirements in the characterization of bargaining solutions.

The next axiom reflects the idea of monotonicity. Monotonicity is a desirable prop-
erty in interpersonal bargaining, since human decision makers usually associate this
property with fairness concerns.

Restricted strongmonotonicityFor eachpair S, T ∈ �, if S ⊇ T andm(S) = m(T ),
then f (S) > f (T ) or f (S) = f (T ).

This axiom says that, if there is an expansion of the feasible set leaving unaffected its
utopia point, all agents should benefit from the new opportunities. It can be interpreted
as full solidarity, in the sense that the agents only benefit from an expansion when-
ever all agents improve their utility, otherwise no one benefits from such expansion.
Restricted strong monotonicity is a straightforward version of the strong monotonic-
ity axiom introduced by Thomson and Myerson (1980). The only difference between
these axioms is that the restricted version requires the utopia point of the bargaining
set to be unaffected. It is also a strengthening of restricted monotonicity proposed by
Rosenthal (1976), which allows for an improvement of some agents leaving the rest
unaffected. Therefore, if a solution satisfies restricted strong monotonicity, then also
satisfies restricted monotonicity. To the best of our knowledge nobody introduced this
axiom before as we formally defined in this paper.
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220 J. García-Segarra, M. Ginés-Vilar

Fig. 2 The paths that generate
SI PU P-solutions

Scale invariance is an axiom that deals with the possibility of normalizing the bar-
gaining set by means of a positive transformation. Let R

n+ ≡ {x ∈ R
n | x ≥ 0 }.

For every λ ∈ R
n+, let λS ≡ {(λ1s1, ..., λnsn) | s ∈ S}, and λ f (S) ≡

(λ1 f1(S), ..., λn fn(S)). Formally, this axiom is stated as follows:
Scale invariance: For each S ∈ �, λ f (S) = f (λS).
When a solution satisfies scale invariance, a bargaining set can be normalized and

transformed into another set with utopia point m(S) = (1, ..., 1) ≡ 1. Therefore, the
scale of units in which agents measure their utility does not matter.

We now turn to our characterization result. Our aim is to identify the family of
solutions fulfilling stagnation proofness, plus the natural axioms introduced above. For
this purpose, we define a family of solutions through a small change in the definition
of Peters and Tijs (1984). This change allows us to focus on solutions generated by
strictly increasing paths ending at the utopia point (SIPUP). Specifically, given a path
γ : [1, n] �→ R

n+ such that γ1(p) + · · · + γn(p) = p for every p ∈ [1, n] (this means
that the sum of the coordinates of γ equals to p), we say that γ is a strictly-increasing
path ending at the utopic point if for each p, q ∈ R with 1 ≤ p, q ≤ n, p < q implies
γ (p) < γ (q). Let us denote these paths by �. See Fig. 2 for an illustration of the paths
that generate the SI PU P-solutions.

Definition 2 The family of the SIPUP-solutions for n-agent bargaining problems is
given by all solutions gγ with γ a strictly increasing path ending at the utopia point,
where

gγ (S) = max{γ (p) ∈ S|p ∈ [1, n]} (1)

for each S ∈ � with m(S) = 1.

By definition, S is a set bounded fromabove andγ is a continuous strictly-increasing
path ending at the utopic point. Therefore, gγ (S) is well defined.
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Stagnation proofness in n-agent bargaining problems 221

Analogously to Peters and Tijs (1984), if m(S) �= 1, by scale invariance we can
normalize the set S, hence, we apply the solution gγ to the new normalized set and
we rescale back the solution to the original set S.

The following result characterizes the SI PU P-solutions for n-agent problems and
for the whole class of canonical bargaining problems.

Theorem 1 A solution f satisfies weak Pareto optimality, scale invariance, restricted
strong monotonicity, and stagnation proofness if and only if there is a γ ∈ � such that
f = gγ .

Proof Part 1, “if”. The SI PU P-solutions are defined as bargaining solutions gener-
ated by strictly-increasing paths that connect the disagreement with the utopia point
of each bargaining set. Thus, by construction, gγ satisfies weak Pareto optimality,
scale invariance, and restricted strong monotonicity. To see the latter, note that if
S ⊆ T with m(S) = m(T ), and gγ is a SI PU P-solution, then there are p ≤ q such
that gγ (S) = γ (p) and gγ (T ) = γ (q). Two possibilities arise, since γ is a strictly
increasing function, if p = q then gγ (S) = gγ (T ), if p < q then gγ (S) < gγ (T ).
Therefore the SI PU P-solutions satisfy restricted strong monotonicity.

We have to show that gγ also satisfies stagnation proofness. Let S ∈ � be a bar-
gaining set with m(S) = 1 and m(S) /∈ S. If m(S) �= 1, by scale invariance we
normalize the set. We define comp(1, 0) ≡ {x ∈ R

n|0 ≤ x ≤ 1} � S. By restricted
strong monotonicity, either gγ (S) = gγ (comp(1, 0)) or gγ (S) < gγ (comp(1, 0)).
Since gγ (comp(1, 0)) = 1 /∈ S, we conclude that gγ (comp(1, 0)) > gγ (S). There-
fore there is at least one expansion of S keeping m(S) unchanged that provides an
improvement for at least one agent.

Part 2, “only if”. Let f be a solution that satisfies the axioms of Theorem 1. For
each t ∈ [1, n], we define Vt ≡ {x ∈ comp(1, 0)|∑n

i=1 xi ≤ t}. Note that Vt is
a compact and convex subset of comp(1, 0) for each t with Vn = comp(1, 0) and
Vs ⊆ Vt whenever s, t ∈ [1, n] with s ≤ t .

We show that the bargaining solution f defines a strictly increasing path ending at
the utopia point, γ̂ . For each t ∈ [1, n], define γ̂ (t) = f (Vt ). First, we show that γ̂ is
well defined in two steps.

Step 1. We have to show that for each t ∈ [1, n], ∑i∈N γ̂i (t) = t .
Suppose that there are t ′ and p ∈ [1, n] such that p = ∑

i∈N γ̂i (t ′) =∑
i∈N fi (Vt ′) < t ′. It follows that f (Vt ′) ∈ Vp. By weak Pareto optimality of f (Vt ′),

there is j ∈ N such that f j (Vt ′) = 1. By stagnation proofness, there is S � Vt ′
with m(S) = m(Vt ′) = 1 and there is a k ∈ N such that fk(S) > fk(Vt ′). By
restricted strong monotonicity, f (S) = f (Vt ′) or f (S) > f (Vt ′). Since k is such that
fk(S) > fk(Vt ′), then f (S) > f (Vt ′). This contradicts the fact that f j (Vt ′) = 1.
Step 2. We have to show that for each t, t ′ ∈ [1, n] with t < t ′, we have that

γ̂ (t) < γ̂ (t ′).
Since Vt ′ ⊇ Vt , by restricted strong monotonicity we have that either f (Vt ′) =

f (Vt ) or f (Vt ′) > f (Vt ). By step 1, f (Vt ′) > f (Vt ). It follows that, γ̂ (t ′) = f (Vt ′) >

f (Vt ) = γ̂ (t) as desired. Therefore, γ̂ is well defined.
Finally, we prove that f = gγ̂ . Let S be a bargaining set. If m(S) �= 1, by scale

invariance we can normalize the set into another set with m(S) = 1. Suppose by
contradiction that f (S) �= gγ̂ (S). Let q ∈ [1, n] such that q = ∑

i∈N fi (S). By
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definition of Vq , f (S) ∈ Vq . It follows that f (S) ∈ S∩Vq . We know that S ⊇ S∩Vq ,
by restricted strong monotonicity, f (S) = f (S ∩ Vq) or f (S) > f (S ∩ Vq). Suppose
f (S) > f (S ∩ Vq), by weak Pareto optimality of f (S ∩ Vq), f (S) /∈ S ∩ Vq which
is a contradiction. Therefore, f (S) = f (S ∩ Vq) and

∑
i∈N fi (S ∩ Vq) = q.

Analogously, Vq ⊇ S∩Vq . By restricted strong monotonicity, f (Vq) = f (S∩Vq)
or f (Vq) > f (S ∩ Vq). Suppose f (Vq) > f (S ∩ Vq), this contradicts the fact that∑

i∈N fi (S ∩ Vq) = q = ∑
i∈N fi (Vq). Hence, f (Vq) = f (S ∩ Vq). Therefore, we

conclude that f (S) = f (S ∩ Vq) = f (Vq) = γ̂ (q).
By definition of gγ̂ , there is a p ∈ [1, n] with p ≥ q such that gγ̂ (S) = γ̂ (p). If

p > q, since γ̂ is an strictly increasing function in every component, gγ̂ (S) = γ̂ (p) >

γ̂ (q) = f (S). This is a contraction of weak Pareto optimality of f . Therefore, we
conclude that p = q and f (S) = gγ̂ (S) as desired. ��

We now show that the axioms of Theorem 1 are independent. First recall that the
KS solution is given by: Let λ(S) = max {λ ∈ [0, 1] | λm(S) ∈ S },

K S(S) = λ(S)m(S)

1. Dropping weak Pareto optimality. We define a solution G that satisfies the rest of
axioms in Theorem 1. For each S ∈ �, define

G(S) =
{

0 if
∑n

i=1
si

mi (S)
≤ 1 for all s ∈ S

K S(S) otherwise.

For the sets with G(S) = 0 there is a violation of weak Pareto optimality.
2. Dropping restricted strongmonotonicity, theNashbargaining solution (Nash1950)

becomes admissible.
3. Dropping scale invariance. We define a bargaining solution H that satisfies the

rest of axioms in Theorem 1. For each S ∈ � and γ 1 ∈ � with gγ 1
(S) �= K S(S),

let

H(S) =
{
gγ 1

(S) i f m(S) = 1
K S(S) otherwise.

Clearly, for each S ∈ � withm(S) �= 1, if λ =
(

1
m1(S)

, . . . , 1
mn(S)

)
, thenm(λS) =

1. Hence, H(λS) = gγ 1
(S) �= λK S(S) = λH(S). Therefore, the bargaining

solution H fails scale invariance.
4. Dropping stagnation proofness, the weighted Kalai–Smorodinsky solutions

(Thomson 1994) satisfy the remaining axioms of Theorem 1.

Our main result can be compared with other characterizations of solutions generated
by monotone paths as the ones mentioned above. For instance, the solutions in Peters
and Tijs (1984, 1985) are characterized by strong Pareto optimality, scale invariance,
and restricted monotonicity. Our characterization also relies on scale invariance, but
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the rest of axioms are different. For instance, we use a stronger version of monotonic-
ity, which is however a restricted version of strong monotonicity used by Thomson and
Myerson (1980) to characterize a family of solutions generated by strictly increasing
paths that do not satisfy scale invariance. Finally, we relax strong Pareto optimality
asking forweak Pareto optimality and stagnation proofness (note that SPO implies the
latter two). Regarding the characterization of Peters and Tijs (1984) for n-agent prob-
lems, by the impossibility result of García-Segarra andGinés-Vilar (2015) a restriction
on the bargaining domain has to be imposed, otherwise there is no solution satisfying
strong Pareto optimality and restricted monotonicity for the whole class of canonical
bargaining problems.

4 Concluding remarks

We have shown that some bargaining solutions remain stagnant under every possi-
ble expansion of a bargaining set that do not affect the utopia point. We call this
phenomenon the stagnation effect. Whenever a solution satisfies SPO , such solution
does not suffer from this effect. However, there are many solutions that fail to satisfy
this axiom for 3 or more agents. For instance, the K S solution satisfies SPO when
there are 2 agents but only satisfies WPO for problems with 3 or more agents. Some
other solutions fail to satisfy SPO even for 2-agent problems, e.g., the proportional
solutions (Kalai 1977). In this paper we introduce the axiom of stagnation proofness,
which is the logical negation of the stagnation effect. Therefore, solutions satisfying
this axiom do not remain stagnant to every possible expansion of a bargaining set that
keeps the utopia point unaffected.

This axiom is satisfied bymanywell-behaved solutions andwe use it to characterize
the family of SI PU P-solutions. The SI PU P-solutions are those solutions generated
by strictly increasing paths (in all components) that connect the disagreement point of
each bargaining problem with its utopia. Although we characterize a narrower family
of solutions than Peters and Tijs (1984), our result holds for n agents and for the whole
class of canonical bargaining problems.
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