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Abstract Credit network configurations play a crucial role in determining the vul-
nerability of the economic system. Following the network-based financial accelerator
approach, we constructed an agent based model reproducing an artificial credit net-
work that evolves endogenously according to the leverage choices of heterogeneous
firms and banks. Thus, our work aims at defining both early warning indicators for
crises and policy precautionary measures based on the endogenous credit network
dynamics. The model is calibrated on a sample of firms and banks quoted in the
Japanese stock-exchange markets from 1980 to 2012. Both empirical and simulated
data suggest that credit and connectivity variations could be used as early warning
measures for crises. Moreover, targeting banks that are central in the credit network
in terms of size and connectivity, the capital-related macro-prudential policies may
reduce systemic vulnerability without affecting aggregate output.
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1 Introduction

After the 2007 crisis, systemic risk and macro-prudential policies have been at the
center of the economic debate (BaselCommittee 2010;Yellen 2011;Ghosh andCanuto
2013; MARS 2014). Several studies on interbank markets and credit networks show
that networks configurations play a crucial role in determining the vulnerability of the
economic system (Allen and Gale 2000; Iori et al. 2006; Battiston et al. 2012; Caccioli
et al. 2012; Allen et al. 2012; Palestrini 2013; Battiston et al. 2016).

Simulating an endogenous evolving credit network, we aim at gaining insights into
the relation between network configurations and systemic risk in order to select early
warning indicators for crises and define policy precautionary measures.

Following the network-based financial accelerator approach (Delli Gatti et al. 2010;
Riccetti et al. 2013; Catullo et al. 2015), we constructed amacroeconomic agent-based
model (Delli Gatti et al. 2005; Delli Gatti et al. 2010; Dosi et al. 2010) reproducing
an artificial credit network, which evolves endogenously through individual demand
and supply of loans of heterogeneous firms and banks. We modified both learning and
credit matching mechanisms of the Catullo et al. (2015) model in order to increase
the stability of individual leverage choices and to reduce the inertia of the network
configuration dynamics. Moreover, adopting the methodology followed by Schular-
ick and Taylor (2012), we isolated early warning indicators for crises (Alessi and
Detken 2011; Babecky et al. 2011; Betz et al. 2014; Drehmann and Juselius 2014;
Alessi et al. 2015) and we simulated different policy scenarios using capital-related
macroprudential policies1 (IMF 2011; Claessens 2014; MARS 2014; Angeloni 2014).

The model defines a simple interaction structure between firms and banks. Firms
fund production through internal resources and by borrowing money from banks. By
increasing the leverage, firms are able to raise their production level and thus boost the
expected revenues. However, firm revenues are influenced by idiosyncratic shocks.
Consequently, if a firm increases its leverage, its expected profits will augment. At the
same time, however, the firm’s exposure to negative shocks will raise along with its
failure probability (Greenwald and Stiglitz 1993; Delli Gatti et al. 2005; Riccetti et al.
2013). Moreover, high levels of target leverage are associated with high interest rates
on loans and high probability of suffering credit rationing. Similarly, high levels of
leverage result in the augmentation of the expected profits for banks, but also in the
raising of their exposure to the firm’s failure.

Therefore, firms and banks have to deal with the trade-off between increasing
their leverage to augment expected profit, and reducing exposure to contain failure

1 According to Adrian et al. (2015), policy interventions which aim to limit the leverage ratio and the
maximal exposure allowed, as well as to define countercyclical capital buffers, belong to the capital-related
macroprudential tools class.
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probability (Riccetti et al. 2013;Catullo et al. 2015). In the attempt of gaining satisfying
levels of profits without being exposed to excessive risks, firms and banks choose their
target level of leverage through a simple reinforcement learning procedure (Tesfatsion
2005; Catullo et al. 2015). Consequently, modifying individual credit demand and
supply, agent target leverage choices determine the evolution of the credit network.

We calibrated the model on a sample of firms and banks quoted on the Japanese
stock-exchange markets from 1980 to 2012 (Marotta et al. 2015), reproducing the
levels of leverage, connectivity and output volatility observed in the empirical dataset.

Model simulations generate endogenous pro-cyclical fluctuations of credit and con-
nectivity. Indeed, since they lend to relatively robust firms, banks are able to increase
their net-worth during expansions: hence, they do not suffer from firm failures. Con-
sequently, the bank’s supply of loans augments implying that borrowing money for
firms becomes easier. Thus, both the firm’s leverage and the integration of the credit
network tend to increase. However, the default risk increases with leverage, and high
connectivity may foster the diffusion of negative effects of firms and banks failure
(Delli Gatti et al. 2010; Riccetti et al. 2013; Catullo et al. 2015). In effect, aggregate
credit leverage and connectivity are positively correlated with the number of firm fail-
ures. Therefore, during expansionary phases credit, leverage and connectivity growth
may create the conditions for future recessions and crises (Minsky 1986).

Indeed, following the methodology developed by Schularick and Taylor (2012),
we found that both credit and connectivity growth rates are positively correlated with
crisis probability and that they are effective early warning measures in both empirical
and simulated data.

Moreover, the model is suitable for designing macro prudential policies which
exploit agent heterogeneity and the network’s interaction structure. Indeed, capital-
related measures which force banks to avoid lending to more indebted firms may
decrease the output’s volatility without causing consistent credit reductions and, thus,
output contractions.

We also tested permanent capital-related measures applied to larger and more con-
nected banks only. When interventions target banks that are relatively central in the
credit network in terms of size and connections, the vulnerability of the economic
system may be substantially reduced without affecting aggregate credit supply and
output. Thus, the analysis of credit network connectivity may be useful for assessing
the emerging of system risk. Besides, agent-based models that endogenize credit net-
work dynamics may be used for testing the effectiveness of early warning indicators
and the effects of different macro-prudential policies.

The paper is structured as follows. The next section describes the agent-based
model: agents behavioral assumptions, matching mechanisms between banks and
firms and leverage decisions. The third section illustrates simulation results. In first
instance, we will focus on the patterns of calibrated simulations. Secondly, we test
the effectiveness of connectivity measures as early warning indicators. After that, we
will implement simple macro-prudential capital-related measures. The last section
contains our conclusions.
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2 The model

Our artificial economy is populated by M banks and N heterogeneous firms. Firms
produce a homogeneous good using capital as the only input, they fund production
through their net-worth and thanks to bank loans. We assume that, in each period, both
banks and firms try to reach a target leverage level (Adrian and Shin 2010; Riccetti et al.
2013; Aymanns et al. 2016) chosen according to a reinforcement learning mechanism
based on Tesfatsion (2005).

2.1 Firms

Firms use capital (Kit ) to produce output through a non-linear production function:

Yit = ρK β
i t (1)

The firm’s balance sheet is:

Kit = Lit + φLit−1 + Eit (2)

Capital is given by net-worth (Eit ), loans contracted at time t (Lit ) and the share of
the loans borrowed at time t − 1 that have not been repaid yet (φLit−1). Firms can
receive loans from more than one bank, thus the amount of loan borrowed by a firm
is given by the sum of the loans received by the lending banks (z):

Lit =
∑

z

Lizt (3)

In each period the firms fix a target leverage level (λi t ) so that the loan demand
(Lit

d ≥ 0) derives from the target leverage chosen:

Lit
d = (λi t − 1) Eit − φLit−1

with the target leverage equal to:

λi t = (Eit + Lit
d + φLit−1)/Eit (4)

The higher the target leverage, the higher the level of indebtedness. If λi t = 1 the
capital is financed completely by internal sources. Each period, target leverage (λi t ) is
chosen following the reinforcement learning algorithm described in Sect. 2.4. Firms
can choose their leverage strategy (λi t ) among a given discrete set of strategies Λ f ,
with λi t ≥ 1. We assume that λi t can not be greater than a given maximum value,
which represents the maximum level of risk a firm is allowed to take.

The interest rate (rit ) associated to each loan is a function of the firm target leverage
and the interest rate (r ) payed by banks on deposits. The η parameter is a measure of
the sensitivity of banks to the borrower risk (η > 0):

rit = ηλi t + r (5)
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Profits derive from the difference between revenues (uitYit ) and costs, which are in
turn given by the sum of interests on loans (rit Lit +φrit−1Lit−1) and a fixed costs (F).

πi t = uitYit − rit Lit − φrit−1Lit−1 − F (6)

Net revenues (uitYit ) depend on the stochastic value uit , which represents uncertain
events that are not explicitly modeled (Greenwald and Stiglitz 1993; Riccetti et al.
2013):

uit = m + εi t (7)

εi t ∼ N (0, σ ) (8)

Thus, net revenues are given by both a fixed component (m) and a probabilistic one
representing idiosyncratic shocks on firms revenues (εi t ). Since the expected value of
εi t is zero, the expected marginal net revenue is equal to m.

A part of the profits is not accumulated (τπi t , 0 < τ < 1), thus net-worth becomes:

{
Eit = Eit−1 + (1 − τ)πi t πi t > 0
Eit = Eit−1 + πi t πi t ≤ 0

(9)

2.2 Banks

Banks supply loans (Lzt ) through their net-worth (Ezt ) and deposits (Dzt ): the banks’
balance sheet is given by Lzt = Dzt + Ezt . Banks establish the level of credit supply
following the same reinforcement learning algorithm used by firms, choosing a level
of target leverage λzt , from a discreet set of values (Λb). Deposits (Dzt ) are computed
as the residual between loans (Lzt ) and net-worth (Ezt ). The amount of new credit
potential supply is reduced by the sum of the loans to firms i (i ∈ Izt−1) that are not
already matured

Lzt
s = (λzt − 1) Ezt −

∑

Izt−1

φLizt−1 (10)

Thus, as for firms, riskier leverage strategies correspond to higher levels of λzt . Indeed,
the higher λzt , the higher the supply of loans that is not covered by net-worth (Ezt ) but
relies on deposits (Dzt ).We assume that banks have amaximum level of target leverage
because of prudential reasons and in conformity with international credit agreements
(Basel’s agreements). Moreover, for prudential reasons, a bank can provide to a single
firm only a fraction of its supplied loans according to the parameter ζ , hence ζ Lzt

s is
the maximum amount of loan that can be offered to a single firm.

Bank revenues are given by the interest payed on the loans by borrowers at time
t − 1, i ∈ Izt−1 and borrowers at time t (i ∈ Izt ). Bad debts (BDzt and BDzt−1) are
costs for banks, they are given by loans that are not payed back because of the failure
of the borrowing firms. Moreover, banks have to pay a given interest rate r on deposits
along with a fixed cost (F).

πzt =
∑

Izt

ri zt Lizt +
∑

Izt−1

rizt−1Lizt−1 − BDzt − BDzt−1 + Dztr − F (11)
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A part of the profits is not accumulated (τπzt , 0 < τ < 1), thus the net-worth (Ezt )
becomes:

{
Ezt = Ezt−1 + (1 − τ)πzt πzt > 0
Ezt = Ezt−1 + πzt πzt ≤ 0

(12)

2.3 Matching among banks and firms

Each period, banks and firms establish respectively their supply and demand of loans
choosing their target leverage. Each bank offers loans to demanding firms until its
supply is exhausted. On the other hand, firms may borrow credit from different banks
until their loan demand is satisfied. Thus, firms can be linked with more banks at each
time.

In first instance, firms ask for loans to linked banks. To each linked bank (z) firm i
asks for a fraction (Ld

izt ) of its total demand for loans (Ld
it ); this fraction is proportional

to the credit of the previous period provided by bank z to firm i (Lizt−1) divided by
the total credit received by firm i at time t − 1 (Lit−1).

Ld
izt = Ld

it
Lizt−1

Lit−1

If the loans received by firm i are lower than the ones asked to its linked banks, firm
i will ask for loans to randomly chosen other banks.

A bank can deny loans to riskier firms, the probability (pR) that the demand for
loans of firm i is not accepted increases in the firm target leverage (λi t ):

pR = ι(λi t )

If the bank loan supply is lower than the sum of the accepted demands of the linked
firms, the bank grants to each firm a loan proportional to its demand. Thus, the loan
given to firm i , in the set of the j linked firms (Ia) is given by:

Lizt = Ls
zt

Ld
izt∑

Ia L
d
jzt

On the contrary, when credit supply is higher than the accepted demand for loans,
a bank may provide credit to other firms.

Therefore, credit network evolves according to the individual demand and supply of
loans. A new credit link is established when the demand of loans of a firm is accepted
by a bank with which the firm was not previously linked, while the credit link between
a bank and a firm is cut when:

1. The firm or the bank fails;
2. The firm or the bank does not ask/offer loans at time t ;
3. The bank refuses to provide loans because the firm is considered too risky;
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2.4 Leverage choice

In each period, the agents (both banks and firms) choose a target leverage level (λxt ).
The target leverage (λxt ) is chosen among a limited set of values (Λ, in effect Λ f for
firms and Λb for banks). The set of possible levels of leverage is limited for banks
because they have to respect capital requirements (in line with Basel’s Agreements).2

It is limited for firms because we assume that banks do not provide credit to highly
indebted firms in order to reduce bad debts.

The choice mechanism is based on the Tesfatsion (2005) reinforcement learning
algorithm. In each period, firms and banks choose one of the possible levels of leverage.
At the beginning of the following period, the agents observe the result of their choices:
i.e., the profit (πxt−1) received. In this paragraph, we denote the past profit πxt−1 as
πxst−1 to underline that it is the profit deriving from the choice of a particular leverage
strategy, i.e. a particular value of λs at time t − 1 for agent i . The profit received in the
previous period, when the target leverage λs was chosen, is used to update q(λs)xt :

q(λs)xt = (1 − χ)q(λs)
F
xt−1 + χπxst−1 (13)

The strength of the memory of the agent is given by the parameter χ . At the beginning
of each period, the effectiveness of every leverage level q(λs)t−1 is reduced by a
small percentage (ξ ): q(λs)

F
xt−1 = (1− ξ)q(λs)xt−1, where ξ represents the extent of

‘forgetting processes’.
Agents may choose among a restricted set of possible levels of leverage (Λa ⊆ Λ).

In fact, since loans have a two-period maturity, agents have to consider also their past
debts, which leads to a certain level of leverage inherited from past loans. Moreover,
firms would not choose levels of leverage that generate costs higher that the expected
profits. Since the production function is concave, the higher the level of capital used,
the lower themarginal production and thus themarginal value of expected profit, while
financial costs increase linearly with leverage. According to Eqs. 1, 5 and 6, it is conve-
nient to take a certain level of leverage if the associated loan cost (rit LD

it ) is lower than
gains,mρ(K+L)β −ρ(K ). Therefore, firmswill choose among a reduced set of lever-
age target possibilities which may not include lower level of λxt because of the debt
inherited from the past. At the same time, this set excludes higher level of λxt because
at higher levels of leverage financial costs may overcome expected profits. Bank’s
leverage choices are reduced only if constrained by previous period loans (in Fig. 1,
in panel a the complete set of leverage, while the reduced set is illustrated in panel b).

Agents adjust their leverage only gradually, thus each period agents may choose
among three strategies: the leverage chosen in the past period and the two levels of
leverage immediately adjacent (for instance, in the Fig. 1 panel c, if leverage was 5,
the agent may choose among 4, 5 and 6). Thus, the agent’s choices are restricted to
the Λc set, with (Λc ⊆ Λa ⊆ Λ). If the past level of leverage is not into the available
set of leverage, the agent will choose the nearest level of leverage allowed (in Fig. 1

2 For the sake of clarity, we remind that we have defined the leverage λt = Total Assets
Equity as many others

in literature (Adrian and Shin 2010; Aymanns et al. 2016), which corresponds exactly to the inverse of the

Basel III leverage ratio, tier1capital
T otalExposure .
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a

b

c

d

Fig. 1 Target leverage choice

panel d, the level of leverage 6 is not allowed thus the agent will choose 4). Moreover,
if no level of λ is allowed, the agents will choose the one corresponding to the lowest
level of leverage, thus the lower λ. The lowest value of λ for firms is λ = 1, meaning
that in this case a firm does not borrow money but use only its internal resources and
previous loans, if any. The lowest level of λ for banks is higher than one, otherwise
with λ = 1 a bank would not offer any credit, thus, ceasing its activity.

Once the effectiveness of each strategy is valued, the agents will associate to each
strategy a certain probability that this strategy will be chosen in the following period.
The probability of choosing a particular level of leverage (strategy λs) among the
allowed levels of leverage (Λc) is given by p(λs)xt . This probability is different for
each agent according to its past profit results:

Xxst =
(
q(λs)xt

c

)ν

(14)

p(λs)xt = eXxst

∑

Λc

eXct
(15)
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where Xxst is the strength associated by agent x to a strategy at time t , which depends
on its effectiveness. The exponential values of the strength (Xxst ) of each strategy
are used to compute the probability of choosing it p(λs)xt . Taking the exponential,
strategies that aremore efficient have amore than proportional probability to be chosen.
The probability of choosing a strategy s is computed as the exponential value of its
strength divided by the sum of the exponential value of all the strategies among which
the agent may choose.

In general, choosing higher levels of leverage may lead to higher profits. However,
higher leverage implies higher risks for both firms and banks. Moreover, firms with
higher target leverage levels pay higher interest rates and they have a higher probability
of not being accepted as borrowers. Besides, banks with high target leverage have to
pay high volumes of interest on deposits while, in case of scarcity of credit demand,
they may not be able to lend all the credit they offer.

To allow a continuous exploration of the action space, there is a relatively little
probability (μ) that in each period the agents choose their leverage strategy randomly
without considering their respective effectiveness, always into the set of the allowed
levels of leverage (Λc). The forgetting mechanism and the random choice probability
allow agents to explore their strategy space avoiding the possibility of being trapped
in sub-optimal solutions or in strategies that are not more effective in a continuously
evolving economic environment.

3 Simulation results

3.1 Empirical data and simulation results

Simulated data are calibrated on a sample of firms and banks quoted on the Japanese
stock exchange markets from 1980 to 2012. This dataset collects yearly balance sheet
data and the value of loans among banks and firms. On average, the dataset includes
226.181 banks and 2218.152 firms, located in 35 prefectures.

We have run three groups of 10 differentMonte Carlo simulations andwe calibrated
the model in order to replicate in each of these simulated groups the same level of
leverage, connectivity and output volatility observed empirically. Indeed, high output
volatility may imply high crisis probability. Moreover, high leverage may increase the
vulnerability of the economic system, and high connectivity may foster the diffusion
of shocks throughout the economy.

In our simulations, we fix a ratio of 10 firms to each bank that is similar to the
empirical one. We assume that each simulated period corresponds to a quarter of year
and we run simulations for 500 periods. We analyze simulated data from the 368th to
the 500th period in order to have 132 quarters that correspond to 33 years, the same
time span of the empirical dataset.

An extensive stream of empirical literature has focused its attention on the study of
the size distributions of economic agents. Among the others, Axtell (2001) has ana-
lyzed the 1997 census data for U.S. firms and has discovered that firms size distribution
follows a Zipf’s Law. Janicki and Prescott (2006) replicate this analysis for the U.S.
banks, employing a dataset of the U.S. federal bank regulators. They have found that
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Fig. 2 Size and degree distribution of banks and firms in empirical data in 2012

the banks size follows a nested distribution which is lognormal in the lower-middle
part with a Pareto-distributed tail. In credit markets Masi and Gallegati (2011) and
Lux (2016) observe a more heterogeneous degree distribution for banks rather than
for firms. This means a thicker tail of the banks’ degree distribution compared to the
one of the firms. In other words, a pool of few banks finances a large set of firms.

Following themethodology proposed byClementi et al. (2006), Clauset et al. (2009)
we test the presence of ‘‘fat tails’’ in the distributions of size and degree in both empir-
ical and simulated data (Figs. 2, 3), hence considering the last year of our empirical
dataset and ten different Monte Carlo simulations (for a more detailed description
of the methodology see the “Appendix”). The estimation procedure consists of three
steps: the estimation of the power-lawdistribution scale (x̂min) and shape (α̂Hill) param-
eters, testing the goodness-of-fit of the power law hypothesis through data bootstrap
(Kolmogorov–Smirnov, as null hypothesis the distribution has a power low tail), test-
ing the power law hypothesis against a ‘‘light-tailed’’ distribution (we used the Vuong
(1989) test, testing the power law against the exponential hypothesis).

Tables 1 and 2 report the results of the three tests performed for both empirical and
simulated data respectively. Considering the Pareto α̂Hill parameters and the Vuong
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Fig. 3 Size and degree distribution of banks and firms in ten Monte Carlo simulated data

Table 1 Empirical data power law model estimates, year 2012

α̂Hill KS p value Vuong p value

Banks degree (kb) 1.860 0.112 0.52 0.19 0.84

Banks equity (Eb) 0.966 0.044 0.95 3.30 9e-03

Banks size (Ab) 1.074 0.051 0.79 3.03 2.3e-02

Firms degree (k f ) 3.202 0.073 0.81 1.67 0.09

Firms size (A f ) 0.784 0.046 0 10.66 0

Clauset and Hill tests for α̂Hill . Bootstrap test for power law goodness-of-fit, KS. Vuong test for fitted
models comparison, Vuong

tests, our estimates suggest that the distributions of firm and bank size (assets and
equities for banks) show the presence of “fat tails”. This evidence seems to be stronger
for the distribution of bank assets. Moreover, according to the Pareto α̂Hill parameters,
the degree distribution of banks seems to be more heterogeneous that the one of firms.
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Table 2 Simulated data power law model estimates, 10 Monte Carlo runs

α̂Hill KS p value Vuong p value

Banks degree (kb) 2.817 0.027 0.069 4.674 2.9e-06

Banks equity (Eb) 1.776 0.022 0.105 5.193 2e-07

Banks size (Ab) 1.514 0.016 0.96 4.319 1.5e-05

Firms degree (k f ) 4.226 0.011 0.063 −0.735 0.462

Firms size (A f ) 2.000 0.028 0.01 3.050 2e-03

Clauset and Hill tests for α̂Hill . Bootstrap test for power law goodness-of-fit, KS. Vuong test for fitted
models comparison, Vuong
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Fig. 4 Cross correlation among output and other macro-variable: leverage, credit, connectivity

Therefore, in both simulated and empirical data few banks seems to occupy a central
position in our credit network in terms of both size and connectivity.

The empirical dataset includes only yearly data over just 33 years, while simulated
data are collected frommultiple simulationswith a quarterly structure. Thus, simulated
data can be used to explore the relation between macro-variables considering the cross
correlation of their cyclical component detrended through the HP filter. As shown in
Fig. 4, the output is positively correlated with leverage and credit, thus high levels of
output are associated with high levels of credit and firm leverage. Also connectivity,
defined as the average normalized degree, is positively correlated with the output.
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Fig. 5 Cross correlation among number of firm failures and selected macro-variable: output, leverage,
credit and connectivity

In the simulated model, crises are triggered by the failure of firms: if indebted firms
suffer a negative idiosyncratic demand shock, they may fail. Failing firms do not repay
their debts to lending banks thus, in turn, some banks may fail or may contract their
loans supply. If the banks that are hit by failed firms are relatively central in the credit
network (in terms of both credit supplied and number of loans provided to firms) the
credit supply contraction may affect the whole economy and, consequently, aggregate
output may fall down. Figure 5 shows how failures are significantly correlated with
the four macro variable we considered above: output, credit, leverage and connectiv-
ity. Indeed, when leverage is high, also the probability of failure of firms increases;
also, as mentioned above, the leverage is positively correlated with output, credit and
connectivity. Moreover, these four macro variables seem to anticipates firm failures:
when their values increase, also the number of firm failures tends to augment in the
following periods.

Therefore, expansionary phases, characterized by high output, lead to increasing
leverage and connectivity growth, which in turns may augment the vulnerability of
the system, amplifying and diffusing the effects of local shocks as, for instance, firm
or bank failures. In fact, expansions may create the condition for following output
decrease. In the next section, we are going to test the effectiveness of these macro
variables as early warning indicators for crisis, conceived as huge output contractions.
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Fig. 6 Roc curves in simulated data made using credit variations and connectivity variations (deg)

3.2 Empirical and simulated relation between credit network dynamics and
crises

In order to detect the early warning properties of credit, leverage and connectivity, we
follow the methodology applied by Schularick and Taylor (2012). They showed that
after WWII, credit growth rates have a significant impact on crisis probability and,
then, credit variations are effective early warning measures for crises. The relation
between credit dynamics and crisis probability is tested implementing a Panel Logit
model on a dataset composed by annual data of 12 country over 140 years:

logi t (pit ) = β0i + β1(L)ΔlogCREDITit + β2(L)Xi t + εi t (16)

where (pit ) is the crisis probability, (L)ΔlogCREDITit are lagged credit logarith-
mic variations and Xi t are control variables. The higher the predicted values of the
regressions, the higher the probability of a crisis to occur.

Roc curve analysis is used to test the effectiveness of credit variations as early
warning measures, valuing the extent of the trade-off between false alarm and hit ratio
(Alessi andDetken 2011; Babecky et al. 2011; Betz et al. 2014; Drehmann and Juselius
2014; Alessi et al. 2015). Indeed an early warning indicator may be conceived as a
source of signal of different intensity. Over a certain threshold, the signal may alert
policymakers, since the stronger the signal, the higher the probability of crisis (Fig. 6).
Thus, if the policy maker intervenes only when the intensity of the signal is strong,
false alarm probability is reduced. Conversely, an alert threshold that is too high may
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discourage policy intervention even when a crisis is approaching, hence it reduces the
hit ratio of the indicator. Therefore, early warning indicators may be valued by their
capacity of reducing the trade-off between false alarms and hit ratio. A basic measure
of this trade-off is the Auroc, which is the area below the Roc curve: the largest this
area, the higher the effectiveness of the indicator as an early warning measure.

We implement this Logit regressions on our empirical dataset. In order to apply this
methodology, we build a Panel, dividing firms according to the prefecture they belong
to. In the dataset we have yearly data for 35 prefectures, for a 33 years time span.
However, to balance our Panel we consider only prefectures that are present in all the
periods of our dataset. Moreover, we drop those prefectures that have a small number
of firms (we fixed the minimum number of firm at twenty). Hence, our dataset shrinks
from 35 to 8 prefectures over 33 years. For each prefecture we compute the aggregate
output as the sum of firm revenues, and we define a crisis as an annual reduction of
aggregate output lower than −5%.3

Consequently, the effective dimensions of our dataset is quite limited. Nevertheless
—as suggested by Schularick and Taylor (2012)—credit variation lags seems to be sig-
nificant predictors of crisis probability (Table 3). Indeed, we test the relation between
credit variations for 5year lags (credit) and crisis probability (Table 3, column credit),
and we assume this specification as the baseline econometric model.

The third lag of credit variation is significant and positively correlated with credit
probability. The sum of the credit variation coefficients is statistically significant at
10%. Moreover, the Wald test on the five lags is significant at the 15% (χ2 lags)
and the whole regression χ2 is also significant at 1%. Besides the AUROC is greater
than 0.5. Thus, credit growth seems to contribute to generate the conditions for crisis
occurrence and it may be an effective early warning indicator for crises.

We control for lagged output variations (y), for a leverage level measured as credit
over output (credit/y) and for a connectivity measure (deg).4

Output variations seems to be slightly positively correlated with crises probability,
even if they do not contribute to increase the Auroc level. The leverage level does
not seem to impact on crisis probability in a significant way. Conversely, the connec-
tivity variations seem to be positively correlated with crisis probability. Three lags
are positive—the first, the fifth and the fourth—but only the first two are significant,
while the the second and the third are negative but not statistically different from zero.
Therefore, the sum of the lags is not significant while jointly connectivity variation
lags are significant at 10%. Adding connectivity among the regressors has increased
the Auroc: according to the De Long test, this increment is statistically significant at
20%. Indeed, connectivity variations are positively correlated with crisis probability,
since a strictly interconnected network may foster the diffusion of shocks.

3 We defined a dummy variable with values equal to one when output decrease is lower than −0.05%, else
the other periods the dummy variable is equal to zero. This dummy variable is used as dependent variable
in the panel logit regressions.
4 The connectivity measure we have considered is the average normalized degree, measured as the average
number of connections—in our case lending agreements—of each firm divided by the maximum number
of possible links, which corresponds to the total number of banks.
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Table 3 Relation between crisis and macro-variables variations in empirical data

Credit Credit+y Credit+credit/y Credit+deg All

L1 Δ log(credit) −2.543 −2.736 −2.548 −1.818 −0.976

(1.914) (2.081) (1.971) (2.035) (2.273)

L2 Δ log(credit) 1.371 −0.271 1.366 0.154 −1.918

(1.969) (2.218) (2.02) (2.128) (2.435)

L3 Δ log(credit) 5.136** 5.694** 5.132** 5.372** 4.801**

(1.999) (2.181) (2.038) (2.125) (2.348)

L4 Δ log(credit) 1.679 0.666 1.677 2.683 1.268

(1.928) (2.213) (1.941) (2.15) (2.491)

L5 Δ log(credit) 0.494 0.997 0.49 0.81 3.139

(1.895) (2.295) (1.924) (1.928) (2.636)

Sum Δ log(credit) 6.137* 4.351 6.117 7.201* 6.315

(3.579) (3.906) (4.044) (3.682) (4.357)

Test for credit lags (χ2) 8.661 7.971 8.274 8.473 6.376

p value 0.123 0.158 0.142 0.132 0.271

L1 Δ log(y) 0.393 −0.684

(1.888) (2.198)

L2 Δ log(y) 3.631* 4.411*

(2.127) (2.307)

L3 Δ log(y) −1.377 0.301

(1.625) (1.882)

L4 Δ log(y) 2.091 3.074

(1.822) (2.211)

L5 Δ log(y) −0.154 −2.365

(1.871) (2.343)

Sum Δ log(y) 4.583 4.737

(3.754) 5.275

Test for y lags (χ2) 7.971 6.376

p value 0.158 0.271

L1 log(cre/y) −0.005 0.202

(0.521) (0.718)

L1 Δ log(deg) 6.661* 7.034

(3.843) (4.346)

L2 Δ log(deg) −0.588 −2.352

(3.376) (3.778)

L3 Δ log(deg) −5.317 −6.509*

(3.267) (3.813)

L4 Δ log(deg) 2.511 0.103

(3.668) (4.127)

L5 Δ log(deg) 9.621** 12.427**

(4.526) (4.976)
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Table 3 continued

Credit Credit+y Credit+credit/y Credit+deg All

Sum Δ log(deg) 12.888 10.905

(9.118) (8.758)

Test for deg lags (χ2) 9.637* 11.141*

p value 0.086 0.084

Test for pref (χ2) 4.477 5.389 4.478 5.82 5.175

p value 0.723 0.613 0.812 0.561 0.639

Test for all (χ2) 53.51** 53.791** 53.513** 53.293** 54.68**

p value 0 0 0 0 0

Pseudo R2 0.153 0.175 0.153 0.197 0.225

AIC 251.54 255.891 253.54 250.012 254.391

AUROC 0.687** 0.689** 0.687** 0.729** 0.739**

(0.043) (0.042) (0.043) (0.04) (0.042)

Obs. 264 264 264 264 264

Group 8 8 8 8 8

Significance, **5%, *10%

In the last column, we jointly regress all the control variables (Table 3, column
all). This regression seems to confirm the results emerging from the previous ones:
credit variations are positively correlated with crisis probability, moreover output and
connectivity variations anticipate crises probability.

Nevertheless, taking into account the limits of our dataset (in particular the scarce
number of observations), our analysis seems to show that credit variations may be
correlated with crisis probability and connectivity may improve the effectiveness of
early warning measures of crisis.

We apply the same econometric analysis to simulated data, and we try to compare
it with the empirical one. Simulations gives the advantage of generating data from a
stylized and controlled process. However, in simulationwe don’t have different prefec-
tures. Thus, in order to build a Panel dataset—with a comparable dimension respect to
the empirical one—instead of prefectures we use ten different Monte Carlo runs of the
simulation model. Moreover, as for the calibration of the model, we repeat the analysis
three times, using each time only ten different simulation runs (see “Appendix”).

Credit variations are positively correlated to crisis probability (see Table 4, 9, 10,
column credit) in all the three sets of simulation that are taken into consideration. In
particular credit variations are strongly significant in both the second and third sets
(9 and 10), where both the sum of the lagged coefficients and the five lags are jointly
statistically significant at the 5%. Moreover, in all the simulated sets the associated
Auroc level is higher than 0.5 in a significant way. Thus, in simulated data, similarly to
empirical results, credit variation lags are positively correlated with crisis probability.

When we include output or connectivity in the regression (credit + y and
credit+deg), we observe that output and connectivity variations are correlated to cri-
sis probability and, according to De Long test, they produce an increase of the Auroc,
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Table 4 Relation between crisis and macro-variables variations in simulated data, first set

Credit Credit+y Credit+credit/y Credit+deg All

L1 Δ log(credit) −0.784 9.272 −4.67** −4.831** −27.064

(1.227) (14.575) (1.648) (1.988) (19.094)

L2 Δ log(credit) 3.156** 34.151** 0.025 0.087 9

(1.273) (15.636) (1.541) (2.163) (19.615)

L3 Δ log(credit) 0.692 −2.497 −1.968 0.928 −31.37 *

(1.21) (14.311) (1.442) (2.224) (18.535)

L4 Δ log(credit) 2.768** 3.393 0.821 −1.728 −38.045*

(1.208) (14.382) (1.387) (2.09) (19.601)

L5 Δ log(credit) −0.858 18.897 −2.842** −4.313** −5.714

(1.158) (13.71) (1.38) (1.9) (17.89)

Sum Δ log(credit) 4.974 63.216** −8.634* −9.856* −93.194*

(3.282) (29.612) (4.775) (5.385) (49.401)

Test for credit lags χ2 12.029** 7.614 12.431** 10.72* 7.999

p value 0.034 0.179 0.029 0.057 0.156

L1 Δ log(y) −17.699 33.356

(25.934) (32.868)

L2 Δ log(y) −54.815** −20.86

(27.331) (33.463)

L3 Δ log(y) 5.627 53.348*

(25.413) (31.751)

L4 Δ log(y) −1.061 62.741*

(25.536) (33.774)

L5 Δ log(y) −36.716 0.436

(24.607) (31.267)

Sum Δ log(y) −104.664** 129.021

(52.43) (80.548)

Test for y lags χ2 7.614 7.999

p value 0.179 0.156

L1 log(cre/y)) 14.652** 14.568**

(3.409) (4.416)

L1 Δ log(deg) 10.209** 8.482**

(3.071) (3.235)

L2 Δ log(deg) 3.705 2.549

(3.157) (3.445)

L3 Δ log(deg) −0.369 −1.125

(3.191) (3.483)

L4 Δ log(deg) 10.481** 8.602**

(3.567) (3.888)

L5 Δ log(deg) 2.501 2.197

(2.87) (3.061)
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Table 4 continued

Credit Credit+y Credit+credit/y Credit+deg All

Sum Δ log(deg) 26.527** 35.272**

(7.133) (8.55)

Test for deg lags χ2 19.877** 25.922**

p value 0.001 0

Test for run χ2 3.216 3.453 22.234 6.664 16.225

p value 0.955 0.944 0.014 0.672 0.062

Test for all χ2 60.04** 60.511** 61.94** 61.61** 63.107**

p value 0 0 0 0 0

Pseudo R2 0.243 0.266 0.319 0.313 0.371

AIC 284.402 286.783 261.118 270.862 263.308

AUROC 0.714** 0.74** 0.788** 0.794** 0.831**

(0.035) (0.034) (0.031) (0.03) (0.034)

Obs. 330 330 330 330 330

Group 10 10 10 10 10

Significance, **5%, *10%

significant at 5% level. The regression model with both credit and output variations
(credit+y) displays a stronger positive correlation between credit variations and crisis
occurrence, respect to the baseline specification (credit). Also the output variation
coefficients are significant even though they show a negative sign, which is at odds
with the empirical results. This is not due to a simple negative correlation between
output variations and crisis, since if we consider only the laggedΔ(y) as regressors we
get positive coefficients. Rather the (credit + y) model seems to capture two different
effects of opposite sign. On one hand, there is an “exposure” effect, i.e. the increase
of credit augments the likely of a crisis occurrence. On the other, there is a “patri-
monial effect”, namely during expansionary phases there is also a net worth increase
that augment agent’s resilience to negative shocks, and lowers the crisis probability
accordingly.

Similarly to the empirical dataset, in all the three simulation sets, the crisis proba-
bility is positively correlated with an increase in the average normalized degree. At the
same time, the correlation between crisis and credit variations becomes not significant
of negative. Indeed, credit plays a twofold role respect to crisis probability. On one
side, credit growth increases the systemic risk by fostering bilateral exposures; on the
other, it sustains output, thus, reducing the crisis probability. Adding the connectivity
variation among regressors, the bilateral exposure effect is catched by the normal-
ized degree variable. Therefore, the variation of connectivity is able to capture the
prevalence of systemic risk respect to the sharing risk.

Furthermore, the (credit + deg) model leads to a higher Auroc level, respect
to the baseline model (Fig. 6) and—in two out of three sets—to the (credit + y)
one. Moreover, including connectivity the R-squared increases and the AIC shrinks.
Besides, connectivity variations are significant even in the regression with all the
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independent variables (All), thus controlling also for output variations (y) and leverage
(credit/y). Therefore, simulation data suggest that connectivity variations may be
effective early warning measures for crisis.

Besides, in simulated data, following the same econometric approach we control
for other network measures that may be correlated to crisis probability: assortativity
with respect to leverage (assortativity) and the maximum value of agents page rank
(pageRank).

Assortativity measures the degree of homogeneity in terms of leverage among con-
nectedfirms andbanks.Assortativity varies betweenone andminus one. If assortativity
is near to one, it means that high leverage banks are connected with high leverage firms
and vice-versa, while if assortativity is close to minus one, high leverage banks are
connected with low leverage firms and vice-versa. Thus, assortativity may provide a
synthetic measure of bank credit diversification. The ‘PageRank’ algorithm is used by
Google for ranking agents connectivity. Indeed, for instance, Battiston et al. (2012)
and Thurner and Poledna (2013) applied the ‘DebtRank’, a measure inspired to the
‘PageRank’, to value agent centrality in credit networks.

Normalized degree variations (deg) show higher Auroc levels, which are associated
to higher R-squared and lower AIC, in two out of three sets. Thus, normalized degree
seems to be more efficient as an early warning measure with respect to assortativity
and ‘PageRank’ (Table 5, and in the “Appendix” tables).

4 Precautionary macro policy experiments

The previous paragraph suggested that credit and connectivity may be used as early
warningmeasures of crisis: in this sectionwe describe some simulation experiments on
precautionary policies aiming at reducing crisis probability (Alessi and Detken 2011;
Babecky et al. 2011; Betz et al. 2014; Drehmann and Juselius 2014; Alessi et al. 2015).
Agent-basedmethodology allows us to implement macroeconomic prudential policies
that focus on agents heterogeneity and their interactions (Popoyan et al. 2017), thus
we tested a simple capital-related measure: when a bank is targeted by the policy, this
bank can not provide credit to riskier firms, which are those firms with high leverage.5

Firstly, we permanently apply this policy to all the banks. After that, we focus the
policy only to bigger and more connected banks. We test these three scenarios running
30 simulations lasting 33 years as above. We apply the policy measures to the last 17
years of the simulation, and we use the same simulation seeds for the different policy
scenarios in order to reproduce the same conditions when each policy begins.

In order to show the effects of this capital-related measure on output level and crisis
probability, we apply it permanently to all the banks and we consider different levels
of firm riskiness allowed.

Figure 7 shows that starting from no intervention (‘no’) and gradually reducing
the maximum level of firm leverage allowed, the lower the firm leverage permitted,
the stricter the policy. Initially, the output slightly increases and the crisis probability

5 See, for instance, Bruno et al. (2017), Dell’Ariccia et al. (2017) for an extensive empirical investigation
on the relation and efficiency of leverage targeting as a prudential policy tool.
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Table 5 Relation between crisis and network measure variations in simulated data, first set

Credit Deg Assortativity PageRank

L1 Δ log(credit) −0.784 −4.831** −1.134 −0.445

(1.227) (1.988) (1.27) (1.271)

L2 Δ log(credit) 3.156** 0.087 2.643** 3.654**

(1.273) (2.163) (1.341) (1.352)

L3 Δ log(credit) 0.692 0.928 0.48 0.731

(1.21) (2.224) (1.31) (1.288)

L4 Δ log(credit) 2.768** −1.728 2.545* 2.758**

(1.208) (2.09) (1.338) (1.291)

L5 Δ log(credit) −0.858 −4.313** −1.23 −0.728

(1.158) (1.9) (1.3) (1.223)

Sum Δ log(credit) 4.974 −9.856* 3.303 5.969*

(3.282) (5.385) (3.788) (3.455)

Test for credit lags χ2 12.029** 10.72* 9.851* 11.894**

p value 0.034 0.057 0.08 0.036

L1 Δ log(networkMeasure) 10.209** −49.377 0.614

(3.071) (120.934) (1.433)

L2 Δ log(networkMeasure) 3.705 −193.564 2.239

(3.157) (133.754) (1.42)

L3 Δ log(networkMeasure) −0.369 18.577 0.832

(3.191) (129.35) (1.526)

L4 Δ log(networkMeasure) 10.481** 11.293 0.31

(3.567) (124.544) (1.603)

L5 Δ log(networkMeasure) 2.501 −50.55 0.991

(2.87) (114.662) (1.562)

Sum Δ log(networkMeasure) 26.527** −263.62 4.987

(7.133) (458.528) (3.805)

Test for network lags χ2 19.877** 3.778 3.227

p value 0.001 0.582 0.665

Test for run χ2 3.216 6.664 3.171 3.295

p value 0.955 0.672 0.957 0.951

Test for all χ2 60.04** 61.61** 60.944** 60.981**

p value 0 0 0 0

Pseudo R2 0.243 0.313 0.255 0.253

AIC 284.402 270.862 290.474 291.11

AUROC 0.714** 0.794** 0.732** 0.723**

(0.035) (0.03) (0.033) (0.035)

Obs. 330 330 330 330

Groups 10 10 10 10

Significance, **5%, *10%
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Fig. 8 Net-worth and normalized degree distribution of banks in simulated data

decreases.However,when policies become stricter, the level of output declines because
credit supply suffers an excessive compression that leads to output reduction.

The effective implementation of permanent credit restrictive measures applied to
all the agents may be problematic, while the previous paragraphs show that network
configuration dynamicsmay be correlated to crisis probability. Thus, we apply capital-
related measures to banks that are central in the credit network, which are the biggest
and most connected. Indeed, the distributions of net-worth and normalized degree of
banks in simulated data are characterized by the presence of few larger banks with
high levels of connectivity (Fig. 8; Tables 1, 2). In order to value the effect of the policy
we consider: output level, crisis probability and probability of intervention (i.e.; the
probability p(int) that in each period a bank is targeted by the policy).

Bank size is computed according to its relative net-worth level (Eit ): bigger banks
are those bank that cover a larger share of total banks net-worth in a given period
of the simulation. The credit restrictive policy is a temporary policy that is applied
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only when a bank overcomes a certain relative size threshold and consists in banning
credit to firmswith relatively high target leverage (target leverage λi t > 5.0)We tested
different relative size thresholds, starting from a high level of concentration (0.2: when
a bank controls more of the 20% of the total bank net-worth).

Indeed, when the credit restriction is applied to bigger banks only, the economy
becomesmore stable without reducing output levels (Fig. 9). For instance, if the policy
is applied to banks that represent more than the 10% of total bank net-worth, crisis
probability decreases, while output level remains stable. Moreover, the number of
banks involved by this measure is quite limited.

Finally, we target the previous capital-related measure only to the more connected
banks. Figure 10 shows the effects of this policy calibrated on different normalized
degree thresholds, starting from a threshold of 0.5 (i.e.; targeting the banks with a
normalized degree higher than 0.5 only, that are those bank connected with at least
half of the firms). When the policy is focused on the more connected banks, crisis
probability decreases without affecting the output. For instance, targeting banks with
a normalized degree higher than 0.3 consistently reduces crisis probability, while the
output level remains stable and the number of banks affected by this policy is extremely
low.

Therefore, policy interventions that target bigger or more connected banks only
seem to be effective macro prudential instruments. In fact, these selective policies
reduce the number of agents that should be monitored. Moreover, they could be cal-
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ibrated according to early warning measures. Thus, the coordination between early
warning indicators and agent specific interventions may help controlling systemic
vulnerability.

5 Conclusions

In this paper we described an agent-based model that reproduces the evolution of a
credit network as the result of the individual leverage choices of banks and firms.
We calibrated the model on an empirical credit network dataset and, following the
methodology used by Schularick and Taylor (2012), we analyzed the effectiveness of
connectivity as an early warning indicator for crises.

The model underlines the importance of credit network configurations for the anal-
ysis of systemic risk. The empirical data we used and particularly, simulated data,
suggest that credit and connectivity variations are effective early warning measures
for crises. Indeed, in our agent-based model, expansionary phases are associated with
increasing credit and connectivity which, in turn, may create the conditions for crises:
high levels of credit may be associated with high leverage, which increases firm fail-
ure probability. Firm failures affect negatively bank balance sheets, leading to credit
contractions, which in a strongly connected network, may affect the whole economy.
Therefore, credit network configurations may be used to define the timing of macro-
prudential policies.

Moreover, according to our simulated experiments, capital-related policies based
on quantitative restriction may be effective in reducing crisis probability. Selective
quantitative restriction measures focusing on larger or more connected banks may
reduce systemic risk without negatively affecting credit supply and output level. In
fact, capital-related policies that target agents that are central in the credit network, in
terms of both credit and connections, may reduce systemic vulnerability.

Themodel can be extended in different ways. For instance, if it would be possible to
access other datasets, the analysis developed in this paper may be tested by calibrating
simulations to other, possible larger, samples of firms and banks. Moreover, the model
could be extended to include different macro-prudential policies, trying to coordinate
interventions with early warning measures.

Appendix

Simulation parameters

Simulations last 500 periods, there are 500 firms and 50 banks (see simulation parame-
ters in Table 6). The initial value of firms’ net-worth is Ei = 1, that of bank’s net-worth
is Ez = 5. Firms and banks with non-positive net-worth levels exit from the market
and are substituted with firms and banks having a level of net-worth relatively lower
than the one of incumbents; entering firms have Ei = m f + U (−0.1, 0.1) ∗ m f and
entering banks have Ez = mb+U (−0.1, 0.1)∗mb, withm f the average size of firms
and mb the average size of banks. This entry condition assures that enters have a size
that is in line with the other competitors.
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Table 6 Simulation parameters Agents Learning

η 0.001 χ 0.3

φ 0.5 ν 0.45

ρ 0.5 c 0.1

τ 0.4 ξ 0.03

ζ 0.045 μ 0.03

F 0.001

σ 0.21

ι 0.001

r 0.001

m 0.04

β 0.83

The set of leverage value of firms is
Λ f = {1.0, 1.5, 2.0, 1.25, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0,
9.5, 10.0}.
The set of leverage value of banks is
Λb = {10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0, 55.0, 60.0, 65.0, 70.0,
75.0, 80.0, 85.0, 90.0, 95.0, 100.0}.

Calibration

In the empirical dataset we consider only banks and firms with strictly positive net-
worth, asset and liability values, in order to clear the dataset from uncertain values.We
calibrate themodel parameters in order to generate similar aggregate values (significant
at 2%) of empirical output volatility (output growth rate standard deviation), leverage
(average firm leverage) and connectivity (average normalized degree). We test three
groups of ten simulation each, the empirical dataset last for 33 years, thus the values
are computed over the last 33 years of simulated data (Table 7).

In the subset of data that we used for correlating crisis probability with credit,
connectivity and other macro-variables, the crisis probability, which by definition
corresponds to an output slowdown of −5% (Table 8).

Estimation of power law parameters

The estimation procedure we have followed to detect the presence of power law tails
in the distributions of the economic agents, is the one proposed by Clementi et al.
(2006), Clauset et al. (2009). Essentially, it consists of three steps6:

1. Estimating the power-law distribution parameters (scale xmin and shape α);

6 All the estimation procedure has been implemented in R, employing the packages poweRlaw (Gillespie
2014) and laeken (Alfons and Templ 2013).
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Table 7 Calibration of simulated data

Δ log(output) std. Av. firm leverage Av. normalized degree

Empirical data 0.069 2.800 0.089

Simulated data 0.075 2.726 0.084

Standard error 0.004 0.075 0.004

CI 0.065 0.085 2.551 2.9 0.075 0.094

Simulated data 0.067 2.866 0.095

Standard error 0.004 0.126 0.006

CI 0.058 0.076 2.574 3.159 0.082 0.109

Simulated data 0.071 2.966 0.095

Standard error 0.008 0.078 0.005

CI 0.053 0.089 2.784 3.149 0.084 0.105

Table 8 Crisis probability p (crisis) std.

Empirical data 0.215

Simulated data 0.203

Standard error 0.071

CI 0.150 0.256

Simulated data 0.215

Standard error 0.060

CI 0.171 0.259

Simulated data 0.182

Standard error 0.096

CI 0.111 0.252

2. Testing the goodness-of-fit of the power law hypothesis,
3. Testing the power law hypothesis against a “light-tailed” distribution (the Vuong

(1989) test);

In turn, the estimation of the power law parameter has been splitted in two different
steps according to Clementi et al. (2006);

(i) Fristly, we estimated the scale parameter xmin , according to Clauset et al. (2009) ;
(ii) Then, for a given xmin ,we estimated the shapeparametersα using theHill estimator

by Hill (1975).

The problem of finding the adequate cut-off, after which a distribution clearly dis-
plays a fat tail behaviour, it is always a sensitive issue. Clauset et al. (2009) propose
a methodology that avoids arbitrariness in such a choice. Their idea is to (optimally)
choose the value of xmin that minimizes the distance between the probability distri-
bution of our data and its best-fit power law model. The statistical distance of the two
probability distributions is expressed by the Kolmogorov–Smirnov (KS) statistic
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D = max
x≥xmin

|S (x) − P (x)| , (17)

Oncewe got an estimate for xmin , we use all the xi observations larger than xmin , to cal-
culate theHill estimator,which extracts the shapeparameter of thePareto distribution7:

αHill = k
∑k

i=1 ln (xN−k+i ) − k ln (xN−k)
, i = 1, . . . , N , k ≤ N . (18)

where k is the number of observation such that xi > xmin .
After the estimation of scale and shape parameters, we got a power law model for

our data. The next step is to measure whether such hypothesis is plausible. Following
Clauset et al. (2009) we have performed a goodness-of-fit test via bootstrap, based on
the KS statistics. The null hypothesis H0 is that (the tail) of our data are drawn from
a power law distribution. The bootstrap procedure works as follow: for a given xmin

and α, estimated from the original data, n distributions have been simulated from a
nested model composed by:

– An uniform random variable, U ∼ (1, xmin),∀xi ≤ xmin ;
– A power law with the same α of the original data, ∀xi > xmin .

TheKSstatistics of each simulateddistribution (K Ssim) is comparedwith the oneof the
original data (K Sd ). The resulting p value of the bootstrap test is the number of times
that the original data model outperforms the simulated models, i.e. (K Sd ≤ K Ssim)

(Gillespie 2014, see).
Even though a large p value may suggest that the power law is a good model for

the tails of our distributions, we need to rule out the possibility that even some other
distributions might provide an equally (or even better) reasonable fit. The Vuong test
fulfills this task, by calculating the statistical difference of twofittedmodels.According
to the null hypothesis H0, both the models are equally close to the true data generating
process (DGP). The alternative hypothesis H1 is that only one of them is closer to the
DGP. Under H0, the Vuong test statistic, V , is asymptotically distributed as a standard
normal (Vuong 1989, see). Furthermore, in case of rejection of H0, the value of V
gives information on which of the two model is closer to the true DGP. Namely, if
V > zα the model 1 is better than 2, and the reverse is true whether V < −zα .

In our case we have chosen to compare a “fat tailed” distribution (i.e. the power
law model) against a “light tailed” one (i.e. the exponential); in such a way that the
Vuong test is not only a test on two different distributions but also a statistical test on
the presence/absence of thickness in the tail of the considered distributions.

7 To avoid confusion, αHill returns the shape parameter of a Pareto distribution, whose probability distri-
bution is p(x) = αkα

xα+1 . Therefore, whenever in this paper we talk about power law distribution we refer

to the general form p (x) ∝ x−(α+1). Thus, in our notation, the power law scaling exponent is the Pareto
distribution shape parameter.
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Table 9 Relation between crisis and macro-variables variations in simulated data, second set

Credit Credit+y Credit+credit/y Credit+deg All

L1 Δ log(credit) 3.717** 27.218* 3.163* 1.013 19.645

(1.504) (14.588) (1.663) (2.367) (15.042)

L2 Δ log(credit) 4.89** −6.248 4.462** 0.593 −12.796

(1.482) (13.44) (1.587) (2.422) (14.263)

L3 Δ log(credit) 1.498 −12.379 1.069 0.439 −18.123

(1.457) (12.674) (1.568) (2.385) (14.029)

L4 Δ log(credit) 1.235 −8.181 0.895 1.366 −13.768

(1.359) (12.027) (1.433) (2.441) (13.382)

L5 Δ log(credit) 0.581 26.903** 0.31 −0.427 23.571*

(1.291) (13.012) (1.345) (1.911) (13.391)

Sum Δ log(credit) 11.921** 27.314 9.901* 2.984 −1.472

(4.59) (35.361) (5.262) (6.335) (38.363)

Test for credit lags χ2 13.385** 9.129 9.525* 0.647 8.812

p value 0.02 0.104 0.09 0.986 0.117

L1 Δ log(y) −39.979 −30.157

(25.225) (25.927)

L2 Δ log(y) 20.12 24.609

(23.585) (24.968)

L3 Δ log(y) 23.977 32.778

(22.547) (24.76)

L4 Δ log(y) 17.166 27.686

(21.349) (23.946)

L5 Δ log(y) −46.434** −44.119*

(22.998) (23.693)

Sum Δ log(y) −25.15 10.797

(62.444) (65.496)

Test for y lags χ2 9.129 8.812

p value 0.104 0.117

L1 log(cre/y)) 2.089 −1.157

(2.572) (3.062)

L1 Δ log(deg) 6.902** 6.752*

(3.21) (3.479)

Early warning measures

We report the results of the Logit regressions for other two groups of ten simulation
each. We test the correlation between crisis probability with respect credit, connectiv-
ity, leverage and output variations (Tables 9, 10). Moreover, we show the correlation
between crisis probability and different connectivity measures (Tables 11, 12).
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Table 9 continued

Credit Credit+y Credit+credit/y Credit+deg All

L2 Δ log(deg) 4.843 5.569

(3.292) (3.643)

L3 Δ log(deg) −0.627 −0.049

(3.298) (3.522)

L4 Δ log(deg) 0.105 1.032

(3.391) (3.668)

L5 Δ log(deg) 1.644 4.201

(2.77) (3.08)

Sum Δ log(deg) 12.868* 16.348**

(7.628) (7.545)

Test for deg lags χ2 7.648 7.971

p value 0.177 0.24

Test for run χ2 11.206 11.506 11.661 11.452 11.238

p value 0.262 0.243 0.308 0.246 0.26

Test for all χ2 75.405** 73.612** 74.943** 74.655** 73.53**

p value 0 0 0 0 0

Pseudo R2 0.243 0.274 0.245 0.267 0.299

AIC 286.417 285.97 287.745 288.189 289.376

AUROC 0.708** 0.75** 0.711** 0.736** 0.775**

(0.036) (0.034) (0.036) (0.033) (0.034)

Obs. 330 330 330 330 330

Group 10 10 10 10 10

Significance, **5%, *10%

Table 10 Relation between crisis and macro-variables variations in simulated data, third set

Credit Credit+y Credit+credit/y Credit+deg All

L1 Δ log(credit) 2.814** 19.839 −4.088* −1.306 −0.095

(1.319) (17.102) (2.123) (2.19) (19.731)

L2 Δ log(credit) 2.82** 3.761 −2.905 −0.493 −19.06

(1.369) (16.875) (2.015) (2.469) (19.49)

L3 Δ log(credit) 1.773 6.014 −3.57* 2.071 −17.034

(1.356) (17.023) (1.991) (2.512) (19.889)

L4 Δ log(credit) 3.372** 35.317** 0.157 3.874 14.096

(1.357) (17.87) (1.725) (2.538) (20.551)

L5 Δ log(credit) 1.784 33.82** −1.071 −3.128 20.607

(1.359) (16.617) (1.671) (2.224) (18.61)

Sum Δ log(credit) 12.563** 98.751** −11.477* 1.018 −1.486

(4.049) (44.739) (6.878) (6.625) (52.456)
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Table 10 continued

Credit Credit+y Credit+credit/y Credit+deg All

Test for credit lags χ2 11.174** 7.859 5.576 5.623 3.389

p value 0.048 0.164 0.35 0.345 0.64

L1 Δ log(y) −29.023 −13.058

(29.546) (33.617)

L2 Δ log(y) −1.361 25.577

(29.266) (33.55)

L3 Δ log(y) −7.52 27.484

(29.634) (34.944)

L4 Δ log(y) −55.199* −19.14

(30.824) (35.311)

L5 Δ log(y) −56.272* −41.6

(28.962) (32.372)

Sum Δ log(y) −149.376* −20.737

(77.688) (87.276)

Test for y lags χ2 7.859 3.389

p value 0.164 0.64

L1 log(cre/y)) 24.468** 23.513**

(5.62) (6.525)

L1 Δ log(deg) 10.446** 8.449**

(3.553) (3.834)

L2 Δ log(deg) 1.256 −2.711

(3.572) (3.962)

L3 Δ log(deg) −0.394 −3.381

(3.638) (4.024)

L4 Δ log(deg) 1.236 −2.198

(3.447) (3.924)

L5 Δ log(deg) 9.063** 5.954

(3.238) (3.655)

Sum Δ log(deg) 21.608** 29.627**

(8.457) (9.272)

Test for deg lags χ2 15.537** 22.075**

p value 0.008 0.001

Test for run χ2 16.532* 15.433* 34.69* 19.449** 29.552**

p value 0.057 0.08 0 0.022 0.001

Test for all χ2 78.89** 78.293** 79.48** 75.739** 76.673**

p value 0 0 0 0 0

Pseudo R2 0.268 0.29 0.345 0.324 0.387

AIC 260.408 263.373 237.985 252.623 244.972
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Table 10 continued

Credit Credit+y Credit+credit/y Credit+deg All

AUROC 0.739** 0.766** 0.802** 0.798** 0.844**

(0.037) (0.033) (0.033) (0.033) (0.033)

Obs. 330 330 330 330 330

Group 10 10 10 10 10

Significance, **5%, *10%

Table 11 Relation between crisis and network measure variations in simulated data, second set

Credit Deg Assortativity PageRank

L1 Δ log(credit) 3.717** 1.013 4.049** 3.435**

(1.504) (2.367) (1.547) (1.583)

L2 Δ log(credit) 4.89** 0.593 5.087** 5.321**

(1.482) (2.422) (1.572) (1.593)

L3 Δ log(credit) 1.498 0.439 1.54 2.209

(1.457) (2.385) (1.579) (1.562)

L4 Δ log(credit) 1.235 1.366 1.135 0.037

(1.359) (2.441) (1.486) (1.478)

L5 Δ log(credit) 0.581 −0.427 0.409 1.239

(1.291) (1.911) (1.378) (1.43)

Sum Δ log(credit) 11.921** 2.984 12.22** 12.24**

(4.59) (6.335) (5.081) (4.773)

Test for credit lags χ2 13.385** 0.647 13.932** 13.872**

p value 0.02 0.986 0.016 0.016

L1 Δ log(networkMeasure) 6.902** 92.968 −2.12

(3.21) (116.899) (1.785)

L2 Δ log(networkMeasure) 4.843 −31.367 0.227

(3.292) (127.09) (1.818)

L3 Δ log(networkMeasure) −0.627 −59.018 2.905

(3.298) (129.005) (1.827)

L4 Δ log(networkMeasure) 0.105 −9.287 −5.338**

(3.391) (119.174) (2.034)

L5 Δ log(networkMeasure) 1.644 −90.817 1.071

(2.77) (103.542) (1.801)

Sum Δ log(networkMeasure) 12.868* −97.521 −3.255

(7.628) (447.506) (4.149)

Test for network lags χ2 7.648 2.454 9.549*

p value 0.177 0.783 0.089

Test for run χ2 11.206 11.452 11.677 10.813

p value 0.262 0.246 0.232 0.289
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Table 11 continued

Credit Deg Assortativity PageRank

Test for all χ2 75.405** 74.655** 75.247** 75.986**

p value 0 0 0 0

Pseudo R2 0.243 0.267 0.251 0.274

AIC 286.417 288.189 293.669 285.879

AUROC 0.708** 0.736** 0.714** 0.741**

(0.036) (0.033) (0.037) (0.036)

Obs. 330 330 330 330

Groups 10 10 10 10

Significance, **5%, *10%

Table 12 Relation between crisis and network measure variations in simulated data, third set

Credit Deg Assortativity PageRank

L1 Δ log(credit) 2.814** −1.306 2.83** 2.734**

(1.319) (2.19) (1.392) (1.343)

L2 Δ log(credit) 2.82** −0.493 2.686* 2.795**

(1.369) (2.469) (1.434) (1.414)

L3 Δ log(credit) 1.773 2.071 1.654 1.796

(1.356) (2.512) (1.46) (1.416)

L4 Δ log(credit) 3.372** 3.874 3.202** 3.846**

(1.357) (2.538) (1.426) (1.426)

L5 Δ log(credit) 1.784 −3.128 1.38 1.304

(1.359) (2.224) (1.429) (1.39)

Sum Δ log(credit) 12.563** 1.018 11.752** 12.475**

(4.049) (6.625) (4.374) 4.145

Test for credit lags χ2 11.174* 5.623 9.16 11.439*

p value 0.048 0.345 0.103 0.043

L1 Δ log(networkMeasure) 10.446** −3.059 −0.297

(3.553) (181.884) (1.657)

L2 Δ log(networkMeasure) 1.256 70.548 0.031

(3.572) (194.906) (1.676)

L3 Δ log(networkMeasure) −0.394 −29.903 −1.446

(3.638) (202.662) (1.674)

L4 Δ log(networkMeasure) 1.236 −272.064 2.38

(3.447) (200.262) (1.644)

L5 Δ log(networkMeasure) 9.063** −292.817 −1.591

(3.238) (183.557) (1.71)

Sum Δ log(networkMeasure) 21.608 −527.296 −0.922

(8.457) (675.529) (3.933)
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Table 12 continued

Credit Deg Assortativity PageRank

Test for network lags χ2 15.537** 3.912 3.215

p value 0.008 0.562 0.667

Test for run χ2 16.532* 19.449** 16.359* 16.894*

p value 0.057 0.022 0.06 0.05

Test for all χ2 78.89** 75.739** 79.67** 78.685**

p value 0 0 0 0

Pseudo R2 0.268 0.324 0.281 0.278

AIC 260.408 252.623 266.36 267.081

AUROC 0.739** 0.798** 0.757** 0.75**

(0.037) (0.033) (0.036) (0.036)

Obs. 330 330 330 330

Groups 10 10 10 10

Significance, **5%, *10%
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