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Abstract Firms grow and decline by relatively lumpy jumps which cannot be
accounted by the cumulation of small, “atom-less”, independent shocks. Rather “big”
episodes of expansion and contraction are relatively frequent. More technically, this
is revealed by the fat-tailed distributions of growth rates. This applies across different
levels of sectoral disaggregation, across countries, over different historical periods
for which there are available data. What determines such property? In Dosi et al.
(The footprint of evolutionary processes of learning and selection upon the statistical
properties of industrial dynamics. Industrial and corporate change. Oxford University
Press, Oxford, 2016) we implemented a simple multi-firm evolutionary simulation
model, built upon the coupling of a replicator dynamic and an idiosyncratic learning
process, which turns out to be able to robustly reproduce such a stylized fact. Here,
we investigate, by means of a Kriging meta-model, how robust such “ubiquitousness”
feature is with regard to a global exploration of the parameters space. The exercise con-
firms the high level of generality of the results in a statistically robust global sensitivity
analysis framework.
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1 Introduction

Evolutionary theories of economic change have identified as the twomain drivers of the
dynamics of industries the mechanisms of market selection and of idiosyncratic learn-
ing by individual firms. In this perspective, the interplay between these two engines
shapes the dynamics of entry-exit, the variations of market shares and collectively the
patterns of change of industry-level variables such as average productivities. Learning
entails a various processes of idiosyncratic innovation, imitation, changes in technique
of production. Selection is the outcome of processes of market interaction where more
competitive firms gain market shares at the expense of less competitive ones.

Three overlapping streams of analysis try to explain how such interplay oper-
ates. The first one, from the pioneering work by Ijiri and Simon (1977) all the way
to Bottazzi and Secchi (2006), studies the result of both mechanisms in terms of
the ensuing exploitation of “new business opportunities”, captured by the stochastic
process driving growth rates. A second stream (see Metcalfe 1998), focuses on the
processes of competition/selection represented by means of a replicator dynamics.
Finally, Schumpeterian evolutionary models unpack the two drivers distinguishing
between the idiosyncratic processes of change in the techniques of production and the
dynamic of differential growth driven by heterogeneous profitabilities and the ensuing
rates of investment (Nelson and Winter 1982) or by an explicit replicator dynamics
(Silverberg et al. 1988; Dosi et al. 1995).

Whatever the analytical perspective, the purpose here is to further investigate one of
the key empirical regularities that emerges from the statistical analysis of the industrial
dynamics (for a critical survey see Dosi 2007), the “fat-tailed” distribution of firms’
growth rates.

In Dosi et al. (2016) we implement a “bare bones”, multi-firm, evolutionary sim-
ulation model, built upon the familiar replicator equation and a cumulative learning
process, which turns out to be able to systematically reproduce several stylized facts
characterizing the dynamics of industries, and in particular the fat-tailed distributions
of growth rates. However, the evaluation of the robustness of this result is done there
by the usual (restricted scope) sensitivity analysis, testing across different learning
regimes a limited sample of interesting points in the parameters space of the model.
Under this scenario it is not possible to guarantee that the expected results would hold
true for the entire range of variation of each parameter, in particular when more than
one parameter is changed at the same time (Saltelli and Annoni 2010), sometimes in
combinations that may not even hold economic sense.

Global scope sensitivity analysis of high-dimensional, non-linear simulation mod-
els has been a theoretical and—more so—a practical challenge for a long time.
Advancements in both statistical analytical frameworks and computer power have
gradually addressed this issue over the past two decades, starting in engineering and
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the natural sciences, but now also applied in the social sciences. Building on what in
the field is called meta-modelling, design of experiments and variance-based decom-
position, in this work we investigate how robust the fat-tailed “ubiquitousness” feature
is in our bare-bones model with regard to a global exploration of the parameters space.

In what follows, we apply the Kriging meta-modelling methodology to represent
our model by a mathematically tractable approximation. Kriging is an interpolation
method that under fairly general assumptions provides the best linear unbiased pre-
dictors for the response of more complex, possibly non-linear, typically computer
simulation models. The kriging meta-model is estimated from a set of observations
(from the original model) carefully picked using a near-orthogonal latin hypercube
design of experiments. This approach minimizes the required number of samples and
allows for high computational efficiency without impacting on the goodness-of-fit of
the meta-model. Finally, the fitted meta-model is used together with Sobol decompo-
sition to perform a variance-based, global sensitivity analysis of the original model on
all of its parameters. The process allows for a genuinely simultaneous analysis of all
parameters across the entire relevant parameters space while trying to deal with both
non-linear and non-additive systems.

The results below clearly confirm that the original model strictly reproduces the fat-
tailed growth rates distributions along most of the parametric space. The application
of a fitted Kriging meta-model, based on a near-orthogonal latin hypercube sampling
strategy, solved the previously existing computational restrictions. The estimatedmeta-
model allowed for an in-depth exploration of the model response surfaces, helped by
the identification of the critical parameters—for the “fat-tailedness” behaviour—by
the Sobol decomposition analysis.

The application of this set of analytical tools represents a relevant contribution in
the area of validation of agent-based models (ABMs). As one of the most common
criticisms to ABMs is the high degree of freedom the modeller has to set parame-
ters and initial conditions, this kind of analysis brings light on the relevance of the
assumed choices on the model’s results. Thus, relieving the analyst from the in-depth
knowledge of the underlyingmodel for the better understanding of its basic properties.
Nonetheless, a word of caution is needed when evaluating the meta-model results: the
latter is just a surrogate model, an approximation which cannot—and so should not
be used to—substitute the original model (see Sect. 5).

The paper is organised in six sections, including this introduction and a conclusion.
The second one presents our empirical and theoretical points of departures, summaris-
ing the related literature. Section 3brieflydiscusses the original agent-based simulation
model, its configuration and the analysis of the fat-tailed distributions of growth rates.
Section 4 goes over the process of sampling, meta-modelling and sensitivity analysis,
and presents the produced response surfaces. Section 5 discusses the application of the
proposed validation techniques in the current case and for ABMs in general, including
some potential pitfalls.
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Fig. 1 Tent-shaped size growth rate distributions (Italy, Istat Micro.1 data). Source: Bottazzi and Secchi
(2006)

2 Empirical and theoretical points of departure

Firms grow and decline by relatively lumpy jumps which cannot be accounted by
the cumulation of small, “atom-less”, independent shocks. Rather “big” episodes of
expansion and contraction are relatively frequent. More technically, this is revealed
by the fat-tailed distributions of growth rates. A typical empirical finding is illustrated
in Fig. 1. The pattern applies across different levels of sectoral disaggregation, across
countries, over different historical periods for which there are available data and it is
robust to different measures of growth, e.g., in terms of sales, value added or employ-
ment (for details see Bottazzi et al. 2002; Bottazzi and Secchi 2006 and Dosi 2007).
What could be determining such property?

In general, such fat-tailed distributions are a powerful evidence of some underlying
correlationmechanism. Intuitively, new plants arrive or disappear in their entirety, and,
somewhat similarly, novel technological and competitive opportunities tend to arrive
in “packages” of different “sizes” (i.e., economic importance). In turn, firm-specific
increasing returns in business opportunities, as shown by Bottazzi and Secchi (2003)
are a source of such correlations. In particular, the latter build upon the “island” model
by Ijiri and Simon (1977) and explore the hypothesis of a path-dependent exploitation
of business opportunity via a Polya Urn scheme, wherein in each period “success
breeds success”. This cumulative process does account for the emergence of fat tails.

In Dosi et al. (2016) we show, by means of a simple simulation model, that com-
petitive interactions induce correlation in the entry-growth-exit dynamics of firms
entailing the absence of Gaussian distributions of growth rates. Fat tails emerge inde-
pendently of the competition regime and the distributional forms of the innovation
shocks. Moreover, under the most empirical-friendly regime—which assumes some
level of cumulative learning—the distribution of growth rates produced by the model
were close to the Laplace distribution, as such a particular instance of fat-tailed dis-
tribution quite akin to the shape of Fig. 1. To further test the robustness of the results
obtained in that work, three methodological tools are proposed namely, in sequence:
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designof experiments selection (sampling),meta-modelling andvariance-basedglobal
sensitivity analysis. The challenge is to overcome the technical and computational con-
straints entangled in the originalmodel—in particular, non-linearity and non-additivity
(for thorough overviews, see Cioppa and Lucas 2007; Rasmussen and Williams 2006
and Saltelli et al. 2008).

As numerical simulation has become a standard tool in the natural sciences, and
more recently also in the social sciences, the challenge of parsimoniously evaluate
their results has become a paramount one. As models grow in size and complexity,
the “naive” efforts to accurately explore their behavior by “brute force” or “one factor
at a time” approaches quickly show their severe limitations in terms of computational
times required and the poor expected accuracy (Helton et al. 2006; Saltelli and Annoni
2010). Hence, the search for mathematically “well behaved” approximations of the
inner relations of the original simulated model, frequently denominated surrogate
models ormeta-models, has become increasingly common (Kleijnen andSargent 2000;
Roustant et al. 2012). The meta-model is a simplified version of the original model
that can be more parsimoniously explored—at reasonable computational costs—to
evaluate the effect of inputs/parameters on the latter and (likely) also on the former.
Usual techniques employed for meta-modelling are linear polynomial regressions,
neural networks, splines and Kriging.

Kriging (or Gaussian process regression), in particular, is suggested to be a simple
but efficientmethod for investigating the behavior of simulationmodels (seeVanBeers
and Kleijnen 2004 or Kleijnen 2009). Kriging meta-models came originally from the
geosciences (Krige 1951; Matheron 1963). In essence, it is a spatial interpolation
method for the prediction of a system response on unknown points based on the
knowledge of such response on a set of previously known ones (the observations)
to fit a real-valued random field. Under some set of assumptions, the Kriging meta-
model can be shown to provide the best linear unbiased prediction for such points
(Roustant et al. 2012). The intuition behind it is that the original model response
for the unknown points can be predicted by a linear combination of the responses
at the closest known points, similarly to an ordinary multivariate linear regression,
but taking the spatial information into consideration. Recent advancements extended
the technique, by removing the original assumption that the samples are noise free,
made Kriging particularly convenient for the meta-modelling of stochastic computer
experiments (Rasmussen and Williams 2006).

Kriging, as any meta-modelling methodology, is based on the statistical estima-
tion of coefficients for specific functional forms (described in Sect. 4) based on data
observed from the original system or model. Kriging meta-models are frequently
estimated over a near-orthogonal latin hypercube (NOLH) design of experiments1

(McKay et al. 2000, and nearer to our concerns here Salle and Yildizoglu 2014). The
NOLH is a statistical technique for the generation of plausible sets of points from
multidimensional parameter distributions with good space-filling properties (Cioppa
and Lucas 2007). It significantly improves the efficiency of the sampling process in

1 In the present case it may be more appropriate to call the choice of the sampling points in the parameters
space as quasi-experiment, as the conditions imposed for selecting the observations for the sample are
specified by the NOLH.
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comparison to traditional Monte Carlo approaches, requiring far smaller samples—
and much less (computer) time—to the proper estimation of meta-model coefficients
(Helton et al. 2006; Iooss et al. 2010).

Sensitivity analysis (SA) aims at“studying how uncertainty in the output of a model
(numerical or otherwise) can be apportioned to different sources of uncertainty in the
model input” (Saltelli et al. 2008). Due to the high computational costs of performing
traditional SA on the original model (e.g., ANOVA), authors like Kleijnen and Sargent
(2000), Jeong et al. (2005) or Wang and Shan (2007) argue that the meta-model SA
can be a reliable proxy for the original model behaviour. Building on this assumption,
one can propose the global SA analysis of the Kriging meta-model—as we attempt
here—to evaluate the response of the original model over the entire parametric space,
providing measurements of the direct and the interaction effects of each parameter.
Following Saltelli et al. (2000), for the present analysis we selected a Sobol decom-
position form of variance-based global SA analysis. It decomposes the variance of a
given output variable of the model in terms of the contributions of each input (param-
eter) variance, both individually and in interaction with every other input by means
of Fourier transformations. This method is particularly attractive because it evaluates
sensitivity across the whole parametric space—it is a global approach—and allows
for the independent SA analysis of multiple output models while being able to deal
with non-linear and non-additive models (Saltelli and Annoni 2010).

The approach proposed here has proved insightful for the analysis of non-linear
simulation models, including economic ones: see Salle and Yildizoglu (2014)2 on two
classic models and Bargigli et al. (2016) for an application to an agent-based model
of financial markets.

3 The original simulation model

The model of departure, extensively presented and discussed in Dosi et al. (2016),
represents the learning process by means of a multiplicative stochastic process upon
firms productivities ai ∈ R

+, i = 1, . . . , N , in time t = 1, . . . , T :

ai (t) = ai (t − 1) {1 + max [0, θi (t)]} (1)

where θi ∈ R
+ are realizations of a sequence of random variables {�}Ni=1, N is the

number of firms in the market and T is the number of simulation time steps. Such
dynamics is meant to capture the idiosyncratic accumulation of capabilities within
each firm (more in Dosi et al. 2000). The process is a multiplicative random walk
with drift: the multiplicative nature is well in tune with the evidence on productivity
dynamics under the further assumption that if a firm draws a negative θi , it will stick
to its previous technique (negative shocks in normal times are quite unreasonable!),
meaning that the lower bound for the support of the shocks θi distribution is zero.

2 Here, we closely follow, whenever possible, the analytical framework employed by those authors and
refer the readers to their paper for additional details and references.
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InDosi et al. (2016) we experiment with different learning regimes. Different speci-
ficationswere tested for θi . In particular,we focus here on the regimecalledSchumpeter
Mark II, after the characterization of the “second Schumpeter” (Schumpeter 1947). In
this specification, incumbents do not only learn, but do it in a cumulative way so that
a productivity shock in any firm is scaled by its extant relative competitiveness:

θi (t) = min

[
πi (t)

(
ai (t − 1)

ā(t − 1)

)γ

, μmax

]
,

ā(t − 1) =
∑
i

ai (t − 1)si (t − 1)
(2)

where γ ∈ R
+ is a parameter, 0 < si (t) ≤ 1 is the market share of firm i which

changes as a function of the ratio of the firm’s productivity (or “competitiveness”)
ai (t) to the weighted average of the industry ā(t) and πi ∈ R is a random drawn from
a set of possible alternative distributions, being a rescaled Beta distribution the default
case.3 πi (t) distribution has average equal to μ ∈ R

+. θi (t) is limited by an upper
bound μmax ∈ R

+, based on the empirical evidence on the existence of a finite limit
to the innovation shocks amplitude.

Competitive interactions are captured by a “quasi-replicator” dynamics:

�si (t, t − 1) = Asi (t − 1)

(
ai (t)

ā(t)
− 1

)
,

ā(t) =
∑
i

ai (t)si (t − 1)
(3)

where A ∈ R
+ is an elasticity parameter that captures the intensity of the selection

exerted by the market, in terms of market share dynamics and, indirectly, of mortality
of low competitiveness firms. ai (t) is calculated over the laggedmarket shares si (t−1)
for temporal consistency.

Finally, firms with market share si (t) lower than the parameter 0 < smin < 1
exit the market (“die”) and market shares are accordingly recomputed. We assume
that entry of new firms occurs (inverse) proportionally to the number of “surviving”
incumbents in the market:

E(t) = N − I (t − 1) (4)

where E(t) : N → N defines the number of entrants at time t , I (t − 1) ∈ N is the
number of incumbents in the previous period and N is defined as above. The empirical
evidence supports the idea that there is a rough proportionality between entry and exit,
thus, in the simplest version of the model, we assume a constant number of firms with
the number of dying firms offset by an equal number of entrants.

The productivity of entrant j follows a process similar to Eq. (1) but applied to
the average productivity of the industry at the moment of entry, whose stochastic

3 The rescaled Beta distribution was preferred because of its superior flexibility in terms of parametrization
and the bounded support. Other than Beta, Laplace and Gaussian, Log-normal and Poisson distributions
were also tested in Dosi et al. (2016). Different distributions did not qualitatively affect the results.
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Table 1 Parameters and simulation default settings

Description Value

A Selection parameter 1.0

N Number of firms 150

smin Minimum market share 0.001

γ Cumulativity parameter 1.0

μ Distributions mean 0.05

μmax Distributions upper bound 0.2

Beta shocks (βα, ββ , βmin , βmax ) Shape/support parameters (1.0, 5.0, 0.0, 0.3)

Laplace shocks (α1, α2) Scale parameters (0.01, 0.015)

Gaussian shocks (σ ) Standard deviation (0.8)

(ai (1)) Initial productivity 1.0

(si (t0)) Initial market shares 1/N

T Number of time steps 200

M Number of MC runs 50

component θ j is again a random drawn from the applicable distribution for πi as in
Eq. 2 (under γ = 0):

a j (t) = ā(t)(1 + θ j (t)) (5)

being ā(t) calculated as inEq. (3).Of course, here θ j (t) can get negative values. Indeed,
the location of themass of the distribution—over negative or positive shocks—captures
barriers to learning by the entrant or, conversely, the “advantage of newness”. Entrant
initial size is constant at s j (t0) = 1/N .

Table 1 summarizes all the model and the alternative distributions parameter
settings—our “default” configuration for the model—as well the remaining model
simulation setup.4 We follow the same settings used in Dosi et al. (2016) for consis-
tency. It should be noted that the original model was not calibrated to empirical data.
However, the selected values are loosely expected to be compatible with the corre-
sponding orders of magnitude found in many contributions in the realm of industrial
dynamics.5

4 The simulation model is coded in C++ and it is run inside the LSD simulation platform (Valente 2014)
which is also employed for the NOLH sampling procedure, as explained below.
5 The parameterμ of the distributions (Beta, Laplace, Gaussian) was chosen in order to produce an average
innovation shock of 0.05 (or 5% increase in the productivity of adopted innovations). This value is loosely
connected to the order of magnitude of advancements in process innovation for many industries. Similarly,
μmax (0.20) represents an upper limit to the innovation process for distributions with infinite support
(Laplace, Gaussian), also loosely based on empirical evidence. The remaining distributions’ parameters
were set to keep at least 80% of the mass of the distributions below μmax . The number of firms was chosen
to be in line with empirical datasets when the analysis is done at 2–3 digits. The parameter A and γ were
set to 1 arbitrarily. The initial size was set to 1/N (all firms equal) with no loss of generality, as the model
is ergodic (see Dosi et al. 2016) and initial conditions are not relevant for a sufficiently long time frame.
Initial productivity is set to 1 as a reference.
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Because of the stochastic component in θi , themodel outputs are non-deterministic,
so the aggregated results must evaluated in terms of the mean and the variance of the
output variables over a Monte Carlo (MC) experiment. It is executed by a given
number of model runs under different seeds for the random number generator but with
the same parameters configuration. Considering the measured variance of the relevant
output variables and a target significance level of 5%, a MC sample of 50 runs was
determined as sufficient to fully qualify the model results.

3.1 Timeline of events

• There are N initial firms at time t = 1 with equal productivity and market share.
• At the beginning of each period firms learn according to Eq. (1).
• Firms acquire or lose market share, according to the replicator in Eq. (3).
• Firms exit the market according to the rule si (t) < smin .
• The number and competitiveness of entrants are determined as in Eqs. (4) and (5).
• After entry market shares of incumbents are adjusted proportionally.

3.2 Firm growth rates distribution

The growth rate of firm sizes is defined as:

gi (t) = log si (t) − log si (t − 1) (6)

where the market share si is used as a proxy for the firm size.
In order to test the robustness of the results to the shocks specification, in what

follows we experiment with three alternative distributions for the innovation shocks,
namely rescaled Beta, Laplace and Gaussian, configured with the parameters set forth
in Table 1. Figure 2 shows the simulation results for the three distributions. The depar-
ture from (log) normality and the emergence of fat tails is rather striking, independently
of the shape of the micro-shocks distribution.

To measure how “fat” the tails of the distributions are, we estimate the b parameter
of a symmetric Subbotin distribution:

fS(x) = 1

2ab1/b
(1/b + 1)
e
− 1

b

∣∣∣ x−μ
a

∣∣∣b
(7)

defined by the parameters m, a and b, wherein m is a location measure (the median),
a is the scale parameter and b captures the “fatness” of the tails. Such a distribution,
according to the value of the parameter b, can yield aGaussian distribution, if b = 2, or
a Laplace distribution, if b = 1, among other results for different values of b. Estimates
of the Subbotin distribution b parameter are also presented in Fig. 2.6 Across the three

6 Subbotin parameters estimation is performed by the maximum-likelihood method using the Subbotools
package (Bottazzi 2014).
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Fig. 2 Firm size growth rate distributions under different innovation shocks profiles (themarks indicate the
binned probability distribution densities and the lines are the Subbotin fits for this data and the respective
Subbotin b shape parameters are indicated in the box; b = 1 is the Laplace distribution case while b = 2
is the Gaussian one)

distributions, the value of the b parameter is always significantly smaller than 2 (the
normality case).

4 Exploring the robustness of the fat tails

As the results presented above suggest the presence of distributions “fatter” thanGaus-
sian across configurations, further inquiry on the generality of these findings seems
important. A first step in this direction is performed in Dosi et al. (2016) for some
alternative parameter settings. However, even if this approach is still the current stan-
dard for most computer simulations analyses, it is likely not sufficient for non-linear,
non-additive setups, as convincingly demonstrated by Saltelli and Annoni (2010).
Given the current model has a clear non-linear nature, the adoption of more general
investigation methods seems recommended. To address the task at hand we propose
the application of a numerical analysis procedure based on the framework discussed
in Sect. 2. The proposed steps are:

1. NOLH DoE construct an appropriate design of experiments (DoE) performing
efficient sampling via the NOLH approach.

2. Kriging meta-modelling estimate and choose among alternative Kriging meta-
model specifications.

3. Global sensitivity analysis analyse the meta-model sensitivity to each parameter
of the model using Sobol (variance) decomposition.
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4. Response surface graphically map the meta-model response surface (2D and 3D)
over the more relevant parameters and identify critical areas.

In a nutshell, the Kriging meta-model Y is intended to predict the response of a
given (scalar) output variable y of the original simulation model:7

Y (x) = λ(x) + δ(x) (8)

where x ∈ D is a vector representing any point in the parametric space domain D ⊂
R
k , being x1, . . . , xk ∈ R the k ≥ 1 original model parameters and λ(x) : Rk → R,

a function representing the global trend of the meta-model Y under the general form:

λ(x) =
l∑

i=1

βi fi (x), l ≥ 1 (9)

being fi (x) : R
k → R fixed arbitrary functions and β1, . . . , βl the l coefficients

to be estimated from the sampled response of the original model over the image of
y. The trend function λ is assumed here, for simplicity, to be a polynomial of order
l − 1, more specifically of order zero (β1 is the trend intercept) or one (β2 is the trend
line inclination). This is usually enough to fit even complex response surfaces when
coupled with an appropriate design of experiment (DoE) sampling technique.8

In Eq. (8), δ(x) : Rk → R models the stochastic process representing the local
deviations from the global trend component λ. δ is assumed second-order stationary
with zero mean and covariance matrix τ 2R (to be estimated), where τ 2 is a scale
parameter and R is an×nmatrix (n is the number of observations)whose (i, j) element
represents the correlation among δ(xi ) and δ(x j ), xi , x j ∈ D, i, j = 1, . . . , n. The
Kriging meta-model assumes a close correspondence between this and the correlation
across y(xi ) and y(x j ) in the original model. Different specifications can be used for
the correlation function, according to the characteristics of the y surface. For example,
one of the simplest candidates is the power exponential function:

corr(δ(xi ), δ(x j )) = exp

⎡
⎣−

⎛
⎝ k∑

g=1

ψg|xg,i − xg, j |
⎞
⎠

p⎤
⎦ (10)

where xg,i denotes the value of parameter xg at the point xi , ψ1, . . . , ψk > 0 are
the k coefficients to be estimated and 0 < p ≤ 2 is the power parameter (p = 1
for the ordinary exponential correlation function). They quantify the relative weight
of parameter xg , g = 1, . . . , k, on the overall correlation between δ(xi ) and δ(x j )

7 In this section we loosely follow the formalization proposed by Roustant et al. (2012) and Salle and
Yildizoglu (2014).
8 Second order polynomials with full interactions were evaluated but systematically producedmeta-models
with worse fitting than the original model, even whenmore samples are added to the DoE, as the interactions
and nonlinearities are usually better modelled by the correlation function. The Kriging trend function
coefficients are estimated using generalized least squares.
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Table 2 Parameters experimental space domain D

Parameter Description Minimum Maximum

Base model A Selection parameter 0.2 5.0

N Number of firms 50 350

smin Minimum market share 0.0001 0.0015

γ Cumulativity parameter 0.2 5.0

μ Distributions mean 0.015 0.15

μmax Distributions upper bound 0.2 1.0

Beta shocks βα Lower shape parameter 1.0 3.0

ββ Upper shape parameter 3.0 10.0

βmin Lower support bound 0.0 0.1

βmax Upper support bound 0.2 1.0

Laplace shocks α1 Lower scale parameter 0.005 0.05

α2 Upper scale parameter 0.005 0.05

Gaussian shocks σ Standard deviation 0.2 2.0

and, hopefully, among y(xi ) and y(x j ). Notice that a higher ψg represents a smaller
influence of parameter xg over δ.9

Therefore, the Kriging meta-model requires l + k + 1 coefficients to be estimated
over the n observations selected by an appropriate design of experiments (DoE).10 As
discussed before, l = 1 or 2 is adopted. k is determined by the number of parameters of
the original model that are being evaluated in the sensitivity analysis, so it is dependent
on the specification of the innovation shocks (rescaled Beta, Laplace or Gaussian).
The original simulation model has four base parameters: A (replicator sensitivity), N
(number of firms), smin (the market share below which a firm exits the market) and γ

(learning cumulativity). The alternative shocks distributions have two common param-
eters: μ and μmax (the average shock size and the upper support limit). Additionally,
rescaled Beta distribution requires βα , ββ (shape parameters), βmin and βmax (sup-
port limits), Laplace needs α1 and α2 (shape parameters) and Gaussian, σ (standard
deviation), leading to a total of k = 10, 7 and 6 parameters to test, respectively.

In practical terms, we constrained the experimental domain to ranges of the param-
eters that are empirically reasonable and respect minimal technical restrictions of the
original model,11 according to Table 2. The output variable tested (y) is the selected
“fat-tailedness” measure of the distribution of firms’ growth rates (b) on the original

9 Definitions for other correlation function alternatives can be found in Roustant et al. (2012).
10 The Kriging correlation function (kernel) coefficients are estimated by means of numerical maximum
likelihood. For the details on the technical implementation applied, see Roustant et al. (2012).
11 The technical feasibility criterion adoptedwas theminimally “normal” operation of themarket,measured
by the survival of at least twofirmsduring themajority of simulation time steps.Also, someof theparameters’
test ranges limit, in practice, the possible ranges of variation for other parameters (e.g., the distribution
average μ must be lower than the upper support of distributions μmax ).
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model. Therefore, y = b is estimated by the maximum-likelihood fit for the b shape
parameter of a Subbotin distribution (as defined above).

Three designs of experiments are created to evaluate each innovation shocks spec-
ification. We use the rescaled Beta distributed shocks case to present the results more
extensively. The other cases, conversely, will be presented in a more concise form. For
the rescaled Beta (k = 10) and the Laplace (k = 7) configurations, DoEs with n = 33
samples are created. For theGaussian (k = 6) case, while n = 17 is usually considered
an adequate DoE size, we also select n = 33 because both the Q2 and the RMSE
goodness-of-fit measures (see below) perform much worse under the smaller DoE
when compared to the other two cases. The near-orthogonal latin hypercube (NOLH)
DoEs are constructed according to the recommendations provided by Cioppa and
Lucas (2007). Yet, for the external validation procedures (see below), 10 additional
random samples are generated for each DoE. Because of the stochastic nature of the
original model, each point xi , i = 1, . . . , n in the parametric space is computed over
m = 50 simulation runs using different seeds for the pseudo-random number genera-
tor. The resulting y(xi ) = bi (xi ) is evaluated by the mean of the observed b̃i,m across
the m runs and its variance is used to specify the noise in—or the weight of—each
point of the DoE in the estimation of Y .12

As discussed above, adequate trend and correlation functions must be selected—in
Bayesian terms, they are the required priors—for estimation of the Kriging meta-
model. To choose among potential candidates, we perform an evaluation of the
goodness-of-fit (of the meta-model to the original model response surface) based on
both cross (in-sample) and external (out-of-sample) validation, as suggested by Salle
and Yildizoglu (2014). Cross validation is performed using the bounded Q2 predic-
tivity coefficient (a proxy of conventional R2).13 External validation is based on the
root mean square error (RMSE) measure. The two criteria are usually compatible and
for meta-model estimation we selected the function pair performing better according
to both criteria (50:50% weight). Results for the rescaled Beta case are presented in
Table 3. The analysis was performed for the three cases but not included here as the
general results are similar. The selected function pair for each case is presented next.

The estimated Kriging meta-models, according to Eqs. (8)–(10), are shown in
Table 4.14 General meta-model fitting was good, as measured by both cross Q2 and
external RMSE validations.

The magnitudes of the estimated ψ coefficients provide a rough indication of the
(inverse) importance of each parameter on the variation of the Subbotin’s b shape
parameter of the firm’s growth rates distribution. However, a more refined analysis

12 Noise is used in the entire estimation process to evaluate observations. Samples under too much noise
(sampling variance over 10 times the average) are discarded in the estimation process. Table 4 presents the
effective number of observations used.
13 However, the Q2 statistic is not lower-bounded to zero, like the R2, being possibly negative in the case
the model performs worse than the “no-model” estimate (the mean of the sample). To avoid confusion, we
lower bounded the values of Q2 to zero.
14 The meta-model estimation (using GLS for the trend and numerical ML for the correlation function
coefficients) and the following sensitivity analysis (using Sobol decomposition) was performed using the
DiceKriging, DiceOptim and DiceEval packages (Roustant et al. 2012; Dupuy et al. 2015) in R (R Core
Team 2016).
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Table 3 Comparison of alternative meta-model specifications (beta shocks)

Validation fi trend Matèrn 5/2 Matèrn 3/2 Gaussian Exponential Power exp.

Cross Constant 0.2763 0.3073 0.2527 0.0793 0.2879

(Bounded Q2) Linear 0.0000 0.0000 0.0000 0.0000 0.0000

External Constant 1.0249 1.0514 1.0015 1.2370 1.0179

(RMSE) Linear 1.0112 1.0112 1.0112 1.0112 1.0112

Higher Q2 and lower RMSE values are better

Table 4 Kriging meta-model estimation

Beta shocks Laplace shocks Gaussian shocks

Trend function Constant Constant Constant

λ(intercept) 1.4649 1.4092 1.9603

Correlation function Power exp. Matèrn 5/2 Matèrn 5/2

ψ(A) 3.5984 3.5630 3.2971

ψ(N ) 243.7065 101.5874 257.2181

ψ(sMin) 0.0005 0.0005 0.0010

ψ(γ ) 9.2324 2.0045 8.0193

ψ(μ) 0.2700 0.0966 0.1485

ψ(μmax ) 1.6000 1.6000 1.6000

ψ(βα) 3.8186

ψ(ββ) 10.4382

ψ(βmin) 0.2000

ψ(βmax ) 1.4909

ψ(α1) 0.0872

ψ(α2) 0.0900

ψ(σ) 3.6000

Cross validation Q2 0.2879 0.4391 0.6454

External validation RMSE 1.0179 0.7129 0.4721

NOLH samples used (n) 33 32 32

External validation samples 10 10 10

is proposed in Fig. 3. There we present the results of the Sobol (variance) decompo-
sition procedure, as proposed by Saltelli et al. (2000), comprised by the individual
and the interaction effects of each parameter on the variance of Y—and, likely, also
of y. Even considering the significantly different specifications, results are reason-
ably similar among alternative shocks configurations. Figures 3 and 5a, d show the
sensitivity analysis results. Unexpectedly, the smin parameter is the most influential
in the three cases. Considering the direct effects, in the rescaled Beta case (estimated
under a power exponential correlation function as per Eq. (10)) smin accounts for more
than 80% of the variance of b, while in the Laplace and the Gaussian cases (using a
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Fig. 3 Sensitivity analysis of parameters effects on meta-model response (beta shocks)

Matèrn 5/2 covariance kernel)15 this influence is under 60–50%, respectively. The
next relevant parameters are A and N for Beta (around 10% each), Laplace (20–40%
respectively) and Gaussian (30% each). μ is relevant for Laplace and Gaussian (25–
15% respectively). Only in the Laplace case, γ is also important (about 25%) but
mainly in interaction with the other parameters. μmax and all the distribution-specific
parameters are relatively unimportant for the meta-model output.Yet, the relevance of
interactions among parameters is also clear in Fig. 3, indicating the clear non-linear
nature of the original model.16

Considering the three dominant parameters detected by the Sobol decomposition,
Fig. 4 shows the response surfaces of the rescaled Beta shocks meta-model for the full
range of these parameters, as indicated in Table 2. The plots in the columns of Fig. 4
represent the same response surface, the top one in a 3D representation and the one
in the bottom using isolevel curves. In all plots, parameters smin ∈ [0.0001, 0.0015]
and A ∈ [0.2, 5] are explored over their entire variation ranges. The first and the last
columns (Fig. 4, plots [a], [c], [d] and [f]) show the response for the limit values of

15 TheMatèrn correlation function—the Fourier transform of the Student distribution density function—in
its 5/2 formulation can be specified as (Rasmussen and Williams 2006):

corr(δ(xi ), δ(x j )) =
(
1 + √

5h + 5

3
h2

)
exp

(
−√

5h
)

, h =
k∑

g=1

ψg |xg,i − xg, j |. (11)

16 One may question how such non-linear interactions can be captured if the employed Kriging trend
function is a polynomial of order zero or one. The answer is to be found on the Kriging correlation function
as the role of interactions was excluded only in the global trend. Note, instead, that the correlation function
does capture the interactions among the parameters, which are indeed stochastic (spatial correlation) and
not deterministic.
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Fig. 4 Response surfaces—beta shocks. All remaining parameters set at default settings (round mark at
default smin and A). a N = 50, b N = 150, c N = 350, d N = 50, e N = 150, f N = 350

parameter N ∈ [50, 350], while the centre column (plots [b] and [e]) depicts the default
model setup (except for smin and A). The round mark in the two plots represents the
meta-model response at the full default settings, as per Table 1. The prediction of the
meta-model for this particular point in the parameters space—which is not included
in the DoE sample—is b̂ = 1.58 while the “true” value from the original model is
b = 1.37, an error of +15% wholly inside the expected 95% confidence interval for
that point (ε = ±0.75).17 In particular, the default settings point is located at a level
close to the global maximum of the response surface, around b̂ = 1.75 (the minimum
is at b̂ = 1).

Coupled with the sensitivity analysis results, which show that smin , A and N are
the only parameters significantly affecting the predicted b̂, Fig. 4 seems to corroborate
the hypothesis that the model results are systematically fat-tailed, as can be inferred
from the condition b̂ < 2. However, considering the average 95% confidence interval
ε̄ = ±0.68 range for themeta-model response surface, it seems that still exists a region
where we cannot discard the absence of fat-tails (b̂ ≥ 2) at the usual significance
levels. Therefore, further analysis is required, this time focused in this particular area,
representing a small portion of the parametric space where the meta-model resolution
is not sufficient to completely specify the response of the original model. Considering
the critical region only (approximated to smin ∈ [0.0001, 0.001] and A ∈ [0.2, 3]), a
“brute force” Monte Carlo sampling approach is performed in the original model. Not
surprisingly, out of 20 random observations, considered sufficient given the predicted

17 Kriging predictions becomes more precise as the interpolated point gets closer to one of the DoE points,
where the error of the model is always zero by construction—and vice versa—so ε is not constant.
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Fig. 5 Sensitivity analysis and response surfaces—Laplace andGaussian shocks. All remaining parameters
set at default settings (round mark at default smin , N andμ). a Sensitivity analysis (Laplace). b 3D response
surface (Laplace). c Isolevels response surface (Laplace). d Sensitivity analysis (Gaussian). e 3D response
surface (Gaussian). f Isolevels response surface (Gaussian)

smoothness of the investigated area at a 5% significance level, the sampled interval true
response was in the range [1.25, 1.63], confirming that the meta-model predicted b̂,
in this particular region, is likely to overestimate the true value of the shape parameter
b. In conclusion, it seems very probable that the true response surface of the original
model is significantly under the b = 2 limit over the entire explored parametric space
for rescaled Beta innovation shocks.

Similar analysis is conducted for the Laplace andGaussian innovation shocksmeta-
models. The results are synthesized in Fig. 5. The Laplace case is in the upper row
(plots [a], [b] and [c]) which presents the Sobol decomposition sensitivity analysis,
already discussed, and the surface response for the top two critical parameters (smin ∈
[0.0001, 0.0015] and N ∈ [50, 350]). Again, the meta-model predicted response with
default settings is at a level b̂ = 1.51, close to the global maximum at b̂ = 1.77 and
above the minimum at b̂ = 0.91. The true value at the default point is b = 1.28 and the
prediction error is +18%, well under the 95% confidence interval ε = ±0.69 in that
point.As in the previous case, anddespite the entiremeta-model surface is substantially
below the critical level b̂ = 2, under the usual significance levels (ε̄ = ±0.77) there
is a region of the surface where we cannot discard b ≥ 2. However, once again the
Monte Carlo exploration of this critical region on the original model, also seems to
confirm the hypothesis of b < 2 for the whole parametric space of the original model
under Laplace innovation shocks.

Qualitatively close results come from the Gaussian meta-model. The dynamics of
the meta-model here is driven by smin ∈ [0.0001, 0.0015] and N ∈ [50, 350]. The
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produced response surface is slightly more rugged, as depicted in Fig. 5d–f. The meta-
model prediction for the default settings point is b̂ = 1.36,well in between the surface’s
global minimum at b̂ = 0.98 and the maximum at b̂ = 1.71. The prediction error, in
this case, is −3% given the true b = 1.40, easily inside the 95% confidence interval
ε = ±0.74. Again, considering the average 95% confidence interval ε̄ = ±0.47
over the entire surface, there is a small region of the response surface (the “hilltop”
around N < 70 and smin > 0.0010) where it is not possible to reject the absence of
fat tails. However, specific MC exploration in this area on the original model once
more produced no points sitting close to the b = 2 limit, confirming the meta-model
predictions of b < 2 for the entire region.

5 Discussion

Our results show that themodel is able to reproduce, overmost of the parameters space,
fat-tailed growth rates distributions—and even strict Laplace ones. The Kriging meta-
models confirm and strengthen the results obtained in Dosi et al. (2016), providing
evidence that the coupling of the two evolutionary processes of learning and selection
is a strong candidate to explain the observed fat-tailed distributions of firm growth
rates.

From the analysis made possible by themeta-models, the modeller can acquire a set
of relevant new information on the original model behaviour. However, care should be
taken to account for the expected prediction errors on the response surfaces: isolevels
and 3D surfaces should be understood with the associated confidence intervals (at the
desired significance level), that are not regular (constant) in Kriging meta-models. In
any case, the order ofmagnitude of the out-of-sample RMSE in Table 4 remains a good
indication of the limits to be expected on the overall confidence intervals. Moreover,
evenwhen the confidence intervalsmay be not sufficiently narrow to objectively accept
or reject a given proposition, the topological information provided by the meta-model
response surface has proved to be a powerful tool on guiding (and making possible)
the exploration of the original model by means of other (more data-demanding) tools,
like conventional Monte Carlo sampling.

According to the global effect of parameters on meta-models responses, provided
by variance decomposition, the elicited parameters in the three analysed cases in
order of significance are: (i) smin (exit market share), (ii) A (replicator sensitivity),
(iii) N (number of firms), and (iv) γ (degree of cumulativity). When they are relevant,
according to the shocks distribution case, both direct and interaction effects influence
the response surfaces. From the analysis of the latter, some regular patterns of the
parameter effects on the value of meta-models’ b̂ can be identified.

First, the smin parameter exerts a mostly monotonic influence on the change of b̂:
the higher the death-threshold the fatter the tails of growth rate distribution are. This
result, admittedly unexpected in its strength, is likely to capture the impact of that
extreme form of selection which is “death”, upon the whole distribution of growth
rates.

Second, the higher the value of the A parameter, in general the lower the value of b̂.
Similarly to smin , this parameter controls for the degree of selection operating among
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incumbent firms. In fact, higher selection in the market induces a greater reallocation
of shares among surviving incumbents. In the region where competition is fierce both
in the entry-exit and in the reallocation processes, characterised by high values for
smin and A respectively, very low levels of the b̂ parameter are recorded and almost
“pure” Laplacian tails emerge.

Third, the mechanism of cumulation in learning activities, modulated by γ , exerts
a positive influence on the tail-fatness in our meta-model specifications, as already
detected in Dosi et al. (2016). The process of cumulation of knowledge influences
directly firms productivity growth, and indirectly their performance in the market.

The results from the Kriging meta-models confirm and strengthen the previous
findings discussed in Dosi et al. (2016) but a word of caution is necessary when
interpreting the meta-model and in particular the effect of the coefficients ψg on
corr(y(xi ), y(x j )). In fact, a simplification of the deterministic component λ(x) puts
the burden of explanation on the stochastic part δ(x). Admittedly, focusing on the
modelling of λ by, say, a traditional fixed effects polynomial regression would yield
an increasing dimensionality of the meta-model, comprising all the k = 10, 7 or 6
parameters themselves, their interaction andhigher order terms. Intuitively, theKriging
rationale in privileging the modelling of cov(δ(x)), instead, is that it allows for the
capture the behaviour of Y (x) using much fewer observations while still keeping
global covariance-based sensitivity analysis possible. Indeed, a constant deterministic
function can be not only the result of the sum of constant x1, . . . , xk ∈ R parameters
but also, being λ(x) : Rk → R the function representing the global trend of the meta-
model Y , it may well proximately capture different dynamics for some parameters
xg: in such a case a constant deterministic component could “artificially” flatten the
meta-model. Of course the associated loss of information about the model sharply
falls as the number of parameters of the DoE samples increase.

Furthermore, even if the correlation function coefficients are estimated using data
coming from the original model, the ensuing covariances are fully precise only at the
exact DoE (sampling) points, as for all others we are using an interpolation of the
closest DoE points to predict the correlation values. That is why, in fact, the meta-
model is just a surrogatemodel, an approximationwhich cannot—and so should not be
used to—substitute the original model: the estimated coefficients in Table 4 represent
the overall expected effects of each parameter xg on the variance of meta-model’s
response and thus in the final predicted values Y (x), all subject to the usual restrictions
of any non-parametric Bayesian approximation, in particular the chosen priors (the
trend and the correlation functional forms). The coefficientsψ being estimated govern
“associations” among the original parameters (the covariation in the components of
the random effect δ(x)), but they do not represent directly (fixed) effects of the original
parameters xk on Y (x).

Notwithstanding these caveats, the meta-model approximate response surface is
still a powerful guide for the general exploration of the original model, as a kind
of “reduced map”, providing illuminating guidance on the sign of the effects of the
parameters on the output variable(s), on their relative importance, and on the ones
critical for particular “suspicious” points. Relatedly, the exercise hints to the region
of the parameters space to intensively search, on the ground of the original model,
performing traditional local sensitivity analysis, at this stage more feasible given the
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lower number of dimensions and factor ranges. That is, despite some possible—or
even likely—“false-positives” from the meta-models, any search in the original model
becomes at least better informed with them.

6 Conclusions

Empirically, one ubiquitously observes fat-tailed distributions of firm growth rates. In
Dosi et al. (2016) we built a simple multi-firm agent-based model able to reproduce
this stylised fact. In this contribution we use Kriging meta-modelling methodology
associated with a computationally efficient near-orthogonal latin hypercube design
of experiment which allows for the fully simultaneous analysis of all of the model
parameters under their entire useful ranges of variation. The exercise confirms the
high level of generality of the results previously obtained by means of a statistically
robust global sensitivity analysis. The mechanisms of market selection, both in the
entry-exit and in the market share reallocation processes, together with cumulative
learning, turn out to be quite robust candidates to explain the tent-shaped distribution
of firms’ growth rates.

Beyond the confirmation of the robustness of the original model, the proposed
application of a set of advanced analytical tools represents a relevant contribution to the
area of validation of agent-basedmodels. The high dimensionality—and the associated
high degrees of freedom to modellers—is probably the most common criticisms to
such modelling strategy. By the application of the proposed analytical framework, one
can obtain a far deeper understanding of the consequences of the modeller’s choices
on the results obtained. We believe this represents an important step forward for the
diffusion of simulation techniques in economics.
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