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Abstract The financial crisis led to a number of new systemic risk measures and
a renewed concern over the risk of contagion. This paper surveys the systemic risk
literature with a focus on the importance of contributions made by those emphasiz-
ing a network-based approach, and how that compares with more commonly used
approaches. Research on systemic risk has generally found that the risk of contagion
through domino effects is minimal, and thus emphasized focusing on the resiliency
of the financial system to broad macroeconomic shocks. Theoretical, methodologi-
cal, and empirical work is critically examined to provide insight on how and why
regulators have emphasized deregulation, diversification, size-based regulations, and
portfolio-based coherent systemic risk measures. Furthermore, in the context of net-
work analysis, this paper reviews and critically assesses newly created systemic risk
measures. Network analysis and agent-based modeling approaches to understanding
network formation offer promise in helping understand contagion, and also detecting
fragile systems before they collapse. Theory and evidence discussed here implies that
regulators and researchers need to gain an improved understanding of how topology,
capital requirements, and liquidity interact.
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1 Introduction

The 2008 global financial crisis was the result of numerous failures across a highly
interconnected dynamic network. This systemic event—which had no identifiable
beginning and a number of potential causes—highlighted the importance of under-
standing financial network dynamics and characteristics. In the wake of the crisis,
researchers have attempted to map financial networks and quantify the risk of a future
systemic collapse (i.e., systemic risk). Network-based models offer one analytical
framework to examine the issue of systemic risk in financial markets. This paper
surveys the development of these network-based models, and discusses the ways in
which the approach could be better integrated with other risk measures based on an
equilibrium approach.

In 2013, Janet Yellen presented a narrative of the financial crisis that described how
issues of counterparty risk and contagion were seen as minimal risks by regulators
prior to the crisis.1 Additionally, much of the pre-crisis theoretical literature discussing
financial networks had shown minimal dangers of counterparty risk and contagion
(Upper 2011; Drehmann 2009; Eisenberg and Noe 2001). Early network-based mod-
els finding that these risks were of little importance led to certain policy prescriptions,
including diversification, deregulation, reliance on market discipline, and the use of
portfolio-based risk measures (Allen and Gale 2000; Aragonés et al. 2008). Interbank
lending market models like those found in Allen and Gale (2000) were the founda-
tion of the literature supporting these policy prescriptions, and remains the focus of
many studies since the financial crisis. Recent financial innovations like credit default
swaps—which were being sold by numerous unregulated firms—unearthed glaring
holes in regulation and oversight which appeared only after the crisis began (Markose
et al. 2010).

This papermeets several ends through a survey of the literature on financial network
modeling and systemic risk, with a focus on providing a summary of the successes and
remaining gaps in the literature. Models of financial networks attempting to under-
stand systemic risk have their roots in a traditional economic equilibrium (i.e., general
equilibrium) approach. As described below, early theoretical models by Allen and
Gale (2000) and Freixas et al. (2000) have overshadowed subsequent work on empir-
ical networks, agent-based models, and other work which challenges the notion that
financial markets gravitate towards a steady-state of stability or non-existence. The
hallmark of the general equilibrium approach to networks often entails static agent
behavior including rational expectations and representative agents. Historically net-
work models of systemic risk are often overlooked for various reasons, including the
types of networks considered, the algorithms used to solve models, and the scope of
study.2 In the context of network modeling, this paper reviews and critically assesses

1 Subsequent work by Caballero and Simsek (2013), Jorion and Zhang (2009) and European Central Bank
(2009) further describe the issues presented by Yellen (2013).
2 Two prominent examples of how network models are glossed over include the Chan-Lau et al. (2009)
Global Financial Stability Review which discusses networks using aggregated rather than firm-level data,
and Bisias et al. (2012) who discusses network models using mostly reduced form estimation methods and
aggregated data.
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new systemic risk measures designed to detect or mitigate future financial crises. By
linking research fromdifferent perspectives,we can provide a suitablywide foundation
for studying systemic events. Examination of contrasting approaches, including gen-
eral equilibrium, empirical, simulation, network, and agent-based modeling, reveals
many areas where research is needed.3 This survey also suggests changes to the cur-
rent regulatory approach, including variable capital and liquidity requirements, greater
transparency, and improved bankruptcy laws.

Recent research on financial networks offers important insights into systemic risk
by studying contagious links and fragile network structures. Regulators should expand
their focus beyond firms that exhibit certain traits (e.g., size) to include entities where
new contagious links might develop. Recent network research also shows considera-
tions might need to be taken regarding mergers, acquisitions, and break-ups as they
could weaken the network structure. Regulators cannot reasonably expect to prepare
for every contingency, nor can they track every type of asset. However, a number of
potential crises are currently being ignored bywidespread use ofmethods that focus on
only the investments and relationships of a few large institutions. There are numerous
theories and empirical studies indicating regulators and researchers should focus on
the interaction of network topology and regulations like capital and liquidity require-
ments. Agent-based models have helped deepen behavioral foundations, as seen in
models including network-based financial and leverage accelerators which produce
risk endogenously. These accelerators help explain why networks can becomemore or
less conducive to contagion. An improved understanding of these agents’ behavioral
foundations promises to help us better comprehend systemic risk.

The remainder of this survey is organized as follows. Section 2 provides a taxonomy
of systemic risk, a discussion of relevant externalities, and introduces the concept
of endogenous risk. Section 3 reviews recent research on networks, complexity, and
agent-basedmodels as it relates to systemic risk. Section 4 reviews both traditional and
network-based systemic risk measures. Section 5 discusses the reliability of systemic
risk measures, and Sect. 6 concludes.

2 Defining, categorizing, and measuring systemic risk

This paper does not claim to be the first paper to survey the literature on systemic
risk, and this fast progressing field of study implies that any attempt at an exhaustive
review would be out of date before publication. There are several existing survey
articles that can help interested researchers understand the scope of study on systemic
risk (Table 1).

There are many different taxonomies used to categorize systemic risk, but one
proposed by De Bandt et al. (2010) (“De Bandt” hereafter) provides the most straight-

3 General equilibrium models are differentiated from those which explore financial markets using network
theory focusing on topology and evolution without resorting to a general equilibrium or representative
agent framework. Theoretical network models often use simple behavioral foundations which assume no
feedback effects. Bargigli and Tedeschi (2014) describes these models as having global interaction, where
actors behavior depends on that of all others. Agent-based network models go a step further by allowing
interaction to affect behavior through local network feedback and adaptive behavior by economic actors.
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forward description of systemic events that might occur (Fig. 1).4 Narrow systemic
events impact a single (or a few) financial institutions leading to adverse effects on
other banks. Broad systemic events occur when simultaneous adverse or systematic
shocks impact a large number of financial institutions. Broad systemic events are likely
to occur when institutions have highly correlated exposures. Strong systemic events
result in the failure of financial institutions that were fundamentally solvent prior to
the event. Conversely,weak systemic events do not result in failures.Contagion occurs
when a strong and narrow systemic event occurs, and systemic risk (in either a broad
or narrow sense) is defined as the risk of experiencing a strong systemic event. Thus,
under De Bandt’s taxonomy, systemic risk measurement is an attempt to quantify the
occurrence of contagion or a widespread macroeconomic shock resulting in the failure
of a number of financial institutions.

De Bandt also extends this taxonomy to include horizontal systemic events as those
that occur only in the financial sector without spreading to the general economy, and
vertical events as those with spillovers to real activity. While a great deal of systemic
risk research reviewed here focuses on the financial sector alone—and therefore hor-
izontal events—the more interesting events are arguably vertical events in which the
financial sector has negative impacts on the broader economy. Hence, any model of
vertical events must incorporate a financial system that serves a role in helping the real
economy function. Recent work has shown that increases in credit and more lenient
lending standards are associated with increases in output growth (Cappiello et al.
2010; Bernanke and Gertler 2010; Kashyap and Stein 2000; Bernanke et al. 1999). A
weakness in De Bandt’s taxonomy is that systemic events generally must be caused by
an exogenous—and often large–shock to an individual or group of institutions. Borio
and Drehmann (2009) note that a taxonomy like De Bandt’s rules out the possibility
that the financial system is actually the source of the shock and resulting contagion.

Borio andDrehmann (2009) provide three categories of analytical frameworks used
to model financial distress: self-fulfilling v. fundamental; the result of endogenous
financial cycles or exogenous negative shocks amplified by the system; and how broad
versus narrow shocks can impact the system through spillovers. They also note that
a commonality in these analytical frameworks is how “aggregate risk is endogenous
to the collective behavior” of individuals, and that this endogenous risk is destabi-
lizing to the overall system. This endogeneity is particularly relevant to network and
agent-based models of the financial system. Endogenous risk can be described as the
“conjunction of (i) individuals reacting to their environment and (ii) where the indi-
vidual actions affect their environment” (Daníelsson and Shin 2003). Endogenous risk
is present wherever actions of market participants influence the movements, correla-
tions, and payoffs of assets, unlike systems where agents act independently and cannot
affect the ultimate course of events.

Three episodes have been described as the result of endogenous risk: the 1987
stock market crash; the LTCM crisis; and the dollar/yen collapse in October 1998
(Daníelsson and Shin 2003). In each of these events the structure of the system con-
tributed to vicious feedback loops of actions and outcomes that ultimately culminated

4 There aremany taxonomies of systemic risk, enough that Borio andDrehmann (2009) dedicate significant
space to discussing a brief list of papers describing risk taxonomies.
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246 A. R. Neveu

Fig. 1 Description of broad, narrow, and endogenous systemic events a narrow shock, b broad shock, c
new link and entering firm, d new entrant, e exiting firm, f final network NS narrow shock, NL new link,
BL broken link

in a systemic event. A portion of the systemic risk that was realized in each situa-
tion is inherently due to the rapid changes in prices that firms pay for assets (Zigrand
2010). Furthermore, the size and scope of the networks evolve in each event as some
participants enter while others exit.

Evolution fits into modeling of financial markets in a couple of key ways. General
equilibrium models with static networks and behavioral assumptions typically speak
in terms of transition dynamics, moving from one steady state to another. In network
modeling, static behavior is still often assumed for agents, but the modeler can account
for evolution of network connections and how shocks are transmitted. Agent-based
models might loosely be considered those that incorporate both evolving networks
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and behavior. There is a tradeoff in the shift towards more realistic modeling of agent
and network behavior in the sense that calibration and validation of these models is
exponentially more difficult.5

The role of evolution in financial system modeling is treated differently when pro-
gressing from the general equilibrium approach to agent-based modeling. In general
equilibrium models like Shleifer and Vishny (2011), evolution is often simplified
as being either network or pecuniary externalities resulting from exogenous shocks
(Shleifer and Vishny 2011). Network and pecuniary externalities are both important
components of endogenous risk, and can be modeled directly. A network external-
ity would exist if market participants failed to internalize the benefits or losses from
changes in the size of the network, and a pecuniary externality would exist when price
changes are not compensated by those entering (or leaving) a market (Liebowitz and
Margolis 1994). From a modeling perspective, ignoring these externalities and focus-
ing on equilibrium effects (as in Shleifer and Vishny 2010) may gloss over potentially
useful regulatory solutions to crises. The risk of endogenous events manifests when
panic spreads, key firms cease trading, followed by subsequent declines in both the
size of the system and prices (Fig. 1c–f). Sections 3.2 and 3.3 address network research
exemplifying the importance of understanding evolving topology and asset prices.6

From a network-modeling perspective, endogenous risk is closely related to both
the topology of the network and behavior of agents. Adaptations of network topology,
agent behaviors, and regulations on capital or liquidity requirements can result in a
fundamentally weaker structure depending on the importance of the individual firms
(Madhavan 2012; Daníelsson and Zigrand 2012; Daníelsson et al. 2013). Therefore,
an inherently weaker financial system might collapse from a small shock that has
contagious effects on behavior. These behavioral changes can occur on either side of
the balance sheet by broadly affecting asset values or through bank runs—wholesale
or retail.

The risk of contagion is very specific to both the markets being considered, and the
timing of exogenous events that might stress a system (Degryse and Nguyen 2007;
Roukny et al. 2013; Hasman 2013). At this time there is little research or understanding
of the linkages and synergies of multiple layered—or multiplex—markets.7 Thurner
and Poledna (2013) stresses that interbank markets are important, but that collateral
and credit derivative markets also play an important role in the shock amplification
facilitated by financial networks. The lack of timely detailed information about balance
sheet exposures in the variety of networks considered here is a common critical theme
in the literature.

Upper (2011) provides a survey of the simulation literature and the different chan-
nels through which contagion in financial networks might operate. He offers a mostly

5 Thurner (2011) provides a discussion on the limitations of agent-based models as it relates to systemic
risk. Bargigli et al. (2014) provides one recent example of a calibrated agent-based network model.
6 Relabeling changes in the number of market participants as a only a network externality would be a
mistake since the agents are usually able to internalize the benefits or losses. Nor should endogenous risk
be labeled solely as a pecuniary externality—although those may exist in incomplete markets—since it can
be the nature of the network that amplifies a possibly very small initial shock.
7 A few notable multiplex research studies are listed in Table 5.
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skeptical view on the usefulness of research on simulating contagion which has
generally focused on how shocks to one financial institution can—like a domino
effect—either directly or indirectly impact other institutions. Generally, the risk of a
simulated targeted shock causing contagion is found to be low, but if it does occur the
losses can be severe and widespread.8 However, the typical methods reviewed within
the literature to determine this are very stylized, lack important theoretical founda-
tions, and might be generally too narrow in scope to be useful for future indicators.
The main positive contribution in the literature reviewed there, is that network model-
ing can help detect the systemically important nodes in a network, and has kept some
emphasis on the potential issue of contagion (Upper 2011).9

Network-based research has identified the importance of the robust-yet-fragile
nature of financial networks. This has been seen in many studies where more highly
connected networks have a low probability of a contagious event, due to risk shar-
ing. Yet, when a contagious event occurs the outcome will be more damaging and
widespread due to the same connectivity that helps prevent some events (Chinazzi and
Fagiolo 2013). A spontaneous unraveling due to financial imbalances might be more
likely to occur in one state versus another, taking an otherwise harmless event and
amplifying it into an “endogenous extreme event” (European Central Bank 2010b;
Thurner 2011). Papademos (2009) highlights the importance of structural shifts stat-
ing, “systemic risk is partly endogenous as it depends on the collective behaviour of
financial institutions and their inter-connectedness, as well as the interaction between
financial markets and the macroeconomy.” While some regulators have taken a closer
look at endogenous risk, little attention is actually paid to it via the most common
systemic risk measures put in place since the crisis. Improved network maps are nec-
essary in order to gain a better understanding of the resiliency of financial markets,
but a general lack of data and transparency has made this difficult.

While data are often insufficient, there has been no shortage of attempts at quanti-
fying systemic risk. Bisias et al. (2012) provide a list and code for 31 such measures,
many of which assume that “systemic risk arises endogenously within the system.”
They provide a taxonomy of risk measures by data requirements with a separate cat-
egory for network measures with granular foundations.10 While this would seem to
place network modeling squarely in the center of risk measurement, the network mod-
eling research cited by Bisias et al. (2012) are mostly limited in scope and often rely on
aggregate data. One of the aims here is to highlight the foundation of network research
to those examining systemic risk, and to look at the linkages with other approaches.

8 Hasman (2013) provides a brief overview of research on the risk of contagion in the banking industry.
9 Montagna and Kok (2013) represents one recent effort to help detect systemically important nodes using
a network modeling approach.
10 The groups in Bisias et al. (2012) data requirements taxonomy are: macroeconomic measures; granular
foundations and network measures; forward-looking risk measures; stress-test measures; cross-sectional
measures; and measures of illiquidity and insolvency. They also provide three other taxonomies for these
same 31 measures, grouping them by time horizon; supervisory scope; and research method. While we
discuss some of these 31 measures here, we refer readers to their work for further discussion.
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3 Networks and systemic risk

Recent empirical research has helpedmap various financial network structureswith the
limited data that is available. Unfortunately, the lack of data also implies the true nature
of the process of financial network formation and evolution will remain a mystery for
some time. Generally, there is insufficient data on the dynamic linkages across firm
balance sheets which has led to a continued reliance on theoretical and simulation
methods.11 Empirical and general equilibrium network models are also able to offer
insights on relationships and laws governing networks, but generally understate the
role of deeper fundamental issues including: complexity; bounded rationality; and herd
behavior.12 Evenwhere data aremore complete—as is the case in the interbank lending
market—any individual asset being studied is only a minor contributor to overall
systemic risk. Strategies taken by firms may begin as broadly heterogeneous in nature,
but competitive pressures may lead to herding and a more homogeneous or fragile
state. Each of the following facets of this literature are reviewed below in the context of
understanding systemic risk: theoretical foundations; network solving algorithms; firm
and asset heterogeneity; empirical research; and simulated networks and dynamics.13

3.1 Theoretical foundations of systemic risk

Financial market regulations have a history of being developed from theoretical
research which found increased diversification and interconnectedness lowered sys-
temic risk. A number of network studies reviewed here demonstrate that these early
models ignored certain potential downsides of a more complex system. Policy trends
supporting increased diversification (e.g., the 1999 Financial Modernization Act (i.e.,
Gramm-Leach-Bliley Act) and interconnection (e.g., the Commodity Futures Mod-
ernization Act of 2000) were based on the notion that markets operate most efficiently
in the presence of minimal regulatory interference.

Seminal theoreticalwork byAllen andGale (2000) showed thatmore completemar-
kets with increased diversification and interconnection are always a positive thing.14

Since the publication of Allen and Gale (2000), numerous examples of contrary evi-
dence have been published—and are outlined below. However, political debates and
public discourse have been slow to dislodge from this narrative.

Financial networks have become increasingly interlinked through asset derivatives
like credit default swaps that are intended to diversify risk throughout a system.While

11 Notable exceptions are work by Huang et al. (2013) and Levy-Carciente et al. (2015) who examine
balance sheet data in the US and Venezuela respectively. Squartini et al. (2013) notes that their methods
require only a map of connections rather than dollar values, and offer some hope that comprehensive data
requirements are not necessary.
12 Herding is often depicted as a broad economic shock which fails to consider who is part of a herd or
why.
13 Allen and Babus (2009), and De Bandt provide an overview of some earlier theoretical and empirical
network research on financial markets.
14 Allen andGale (2000) do note that incomplete markets with low connectivity have little risk of contagion
since firm liquidity is not linked. Low connectivity in incomplete markets leaves isolated firms at a greater
risk of failure.

123



250 A. R. Neveu

increasing interconnectedness is not necessarily a problem, it is troubling how little is
understood regarding systemic risk when network topology rapidly changes and asset
liquidity disappears. In markets with completely isolated firms holding correlated
risks, the only potential systemic risk would be a broad shock impacting all agents
separately. As the network becomes connected, the previously created risk is still held,
but is now diversified. It is the act of diversification itself along with the assumption
of liquid markets which introduces the potential for contagion.

The general equilibrium approach to financial market contagion suggested poli-
cymakers deregulate the industry while encouraging widespread risk sharing. Allen
and Gale (2000) provide the seminal starting point for studying a general equilibrium
approach to financial market contagion and systemic risk. Based on needs for liquidity
in a theoretical interbank network, Allen andGale (2000) find that more completemar-
kets are more stable. Bank relationships are an important factor in determining market
fragility, but highly correlated liquidity shocks are associated with an increasingly
fragile financial system. Freixas et al. (2000) similarly found that more tightly linked
interbank markets help individual institutions avoid the problem of asset illiquidity.
While these might be interesting theoretical solutions to general equilibrium network
models, the implications of these findings were far reaching. The assumption of a
complete network with full risk sharing is not valid in the real world, and subsequent
research has shown that small shocks can in fact lead to large contagious events (Allen
and Gale 2004).

Three theoretical models stand out in their unique extensions to the early work by
Allen and Gale (2000) in that fragile but highly connected networks are considered
ex-ante optimal. Leitner (2005) expands the Allen and Gale (2000) model by allowing
linked banks to coordinate for a bailout after the threat of contagion has arisen. Leitner
(2005) shows that “private sector bailouts may be a feature of an optimal-risk sharing
structure.” The implication is that banks willingly accept the risk of contagion, in part
because an existing coordinationmechanism provides firms a form of insurance which
cannot be contracted prior to the contagious event. However, if the shock to the system
is large enough, the private sector bailout may be insufficient and the entire system
may collapse as a result. Brusco and Castiglionesi (2007) take a different approach
to extending the Allen and Gale (2000) model to include a gambling asset which
allows a role for moral hazard. Depositors willingly accept increased risk since long-
term investment and welfare rises as a result of the liquidity coinsurance of interbank
deposits. The tradeoff is that the risk of contagion endogenously and rationally devel-
ops as bank linkages increase (Brusco and Castiglionesi 2007). Thus, there is a welfare
tradeoff present in requiring banks to hold more capital since investment and growth
would subsequently decline. Castiglionesi and Navarro (2008) use a model similar to
Brusco and Castiglionesi (2007), and find ex-ante optimal networks like those pro-
duced in Leitner (2005). A key difference between Castiglionesi and Navarro (2008)
and Leitner (2005) is that the coordination mechanism—which was key to the earlier
work—does not need to exist to attain a similar optimally fragile financial network.
The ultimate network structure of Castiglionesi and Navarro (2008) is tiered (i.e.,
core-periphery or money-center), but increasingly connected as the gambling asset
becomes less risky (Table 2).
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Table 2 Systemic risk and network theory

Authors General topic Key contributions

Allen and Gale (2000)
(AG2K) and Freixas et al.
(2000)

Liquidity and
interbank
markets.
Seminal works
on importance
of networks

Diversified and completely connected networks
are more stable. Basic foundation of network
theory on financial contagion in banking
systems

Leitner (2005), Castiglionesi
and Navarro (2008), Babus
(2005), Babus (2007), Allen
and Gale (2006) and Allen
and Carletti (2013)

AG2K extensions:
general
agreement or
support for
AG2K w.r.t.
diversification

Models generally include strategic (endogenous)
network formation. Leitner advances AG2K
theory using coordination mechanism allowing
for private sector bailouts to be a feature of an
optimal risk-sharing structure. Castiglionesi
and Navarro drops the coordination
mechanism of Leitner, but reveals similar
findings. Babus suggests that complete
networks are least susceptible to contagion.
Strategic action and privately determined
connections are found to be resilient to
contagion

Brusco and Castiglionesi
(2007), Blume et al. (2011),
Acemoglu (2012),
Dasgupta (2004) and Iori
et al. (2006)

AG2K extensions:
generally
contradict or
challenge AG2K
w.r.t.
diversification

Models generally include strategic (endogenous)
network formation. Brusco and Castiglionesi
suggests that more interconnected systems
may be more fragile. Blume et al., Acemoglu,
Iori et al., and Dasgupta use strategic network
formation models to show that more stable
(and interconnected) networks may be welfare
reducing and robust-yet-fragile

Delli Gatti et al. (2010),
Battiston et al. (2012b),
Stiglitz (2010) and Riccetti
et al. (2013),
Bargigli et al. (2014) and
Tedeschi et al. (2012)

Financial
accelerators,
strategic
network
formation, and
leverage

More complete networks may be more
susceptible to contagion. These works
introduce financial accelerators to create trend
reinforcement and endogenous risk/events.
Variable leverage helps create credit cycles
and worsen impact of financial accelerators

Amini et al. (2010, 2011),
Gai et al. (2011), Grilli
et al. (2015) and Tedeschi
et al. (2012)

Topology and
heterogeneity Amini et al. find tradeoff between risk sharing

and contagion leads to more complete
networks being more susceptible to contagion.
Role of exposures and network heterogeneity
as important to understanding probability of
contagious failure. Role of derivatives in
expanding risk

Subsequent work by Ana Babus extends the earlier work of Allen and Gale (2000)
to incorporate endogenous network formation (Babus 2007) and bank choice of the
degree of linkage (Babus 2005). Babus (2005) shows that banks exhibiting loss averse
behavior under a given network structure yield suboptimal results when networks
are incomplete. In complete networks, “banks choose a degree of interdependence
such that contagion risk is at a minimum” (Babus 2005). Babus (2007) allows banks
to endogenously create a network as banks form links to insure against contagion.
Generally, Babus (2007) finds that the networks that are formed through strategic
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action to insure against liquidity risk exhibit endogenously determined probabilities
of contagion. The efficient networks that form as a result of these interactions are
found to be very resilient to contagion.

More expansive views of the Allen and Gale (2000) model find that a highly inter-
connected and diversified system may in fact be more fragile (Battiston et al. 2012b;
Brusco and Castiglionesi 2007; Stiglitz 2010; Blume et al. 2011; Dasgupta 2004;
Amini et al. 2010; Acemoglu 2012; Iori et al. 2006; Grilli et al. 2015; Tedeschi et al.
2012). If increased diversification and connectivity can result in instability, policies
discouraging the spreading of risk may be required. Battiston et al. (2012b) use a
financial accelerator model along with interdependence to show that increases in inter-
connectivity do not monotonically decrease risk.15 Financial accelerators were first
introduced into the agent-based network model of Delli Gatti et al. (2010), expanded
in work by Riccetti et al. (2013), and empirically calibrated by Bargigli et al. (2014).
Delli Gatti et al. (2010) raised the issue that accelerators could be at the root of con-
tagion, suggesting topology was closely related. Expansions by Riccetti et al. (2013),
Bargigli et al. (2014), and Tedeschi et al. (2012) incorporate a leverage accelera-
tor alongside a network-based financial accelerator, yielding pro-cyclical credit. The
leverage accelerator introduced by Riccetti et al. (2013) describes firms which raise
their leverage ratios during good times, and reduce them during a downturn. The key
issue raised by Battiston et al. (2012a, b) is that contagion remains a potentially impor-
tant issue where the benefits of diversification can be overwhelmed. Battiston et al.
(2012a) develops a similar model of default cascades, but shows that diversification
can be detrimental from within the contagion itself. In comparison to Battiston et al.
(2012b)—where the accelerator works outside the cascade—the contagion in Battis-
ton et al. (2012a) occurs because the number of defaulting agents have an effect on
the probability another party will default. Thus, default cascades can develop because
counterparty risk combines fire-sale losses which amplify the direct loss of default
(Battiston et al. 2012a; Cifuentes et al. 2005).16 Once fire-sales take hold systemic
risk rises as credit risk interacts with market risk and counterparty risk (Cifuentes
et al. 2005). The accelerator processes described here are one way of accounting for
the augmentation of shocks that might otherwise have limited impact.

Network theory can help identify the thresholds of connectivity where contagious
effects might develop and become meaningful (Amini et al. 2010, 2011). Regulators
might only need to understand contagious links rather than entire network structures
whenusing incompletefinancialmarket networkmaps (Amini et al. 2011).Derivatives,
such as credit default swaps (CDSs) and repo holdings are only a couple examples of
contagious links that were not well understood before the crisis yet proved to be how

15 The financial accelerator might best be described as a shock being amplified when financial condi-
tions deteriorate for a firm and they are subsequently less able to secure necessary loans or revenue in the
future. The accelerator creates a viscous feedback loop where investment declines because of reduced inter-
nal/external funding, which decreases output, future revenue, and collateral values. Financial accelerators
were introduced by Bernanke et al. (1999), and played a major role in the explanation of the monetary
policy response to the financial crisis (Bernanke and Gertler 2010).
16 Tedeschi et al. (2012) provides a simulation test of a model similar to Battiston et al. (2012b) and Riccetti
et al. (2013), also finding a robust-yet-fragile topography.

123



A survey of network-based analysis... 253

many firms were interconnected. If theoretical thresholds existed to measure network
safety, contagious links could be monitored by regulators.

Both theory and empirical evidence have provided conflicting guidance with regard
to the proper level of capital or liquidity requirements (Allen and Carletti 2013).
Increased capital requirements on banks might lead monitored financial institutions
to transfer credit risk to unmonitored insurers increasing systemic risk (Allen and
Gale 2006). Thus, rather than increase regulation and capital requirements, Allen
and Gale (2006) suggest the opposite in order to bring credit risk back from the
shadows, lowering overall systemic risk. Cifuentes et al. (2005) also show that capital
requirements in combinationwithmark-to-market accounting can exacerbate systemic
risk, amplifying an otherwise minor shock. Cifuentes et al. (2005) suggests raising
liquidity standards, but other studies have shown that regulatory policies like higher
reserve requirements could lead to reductions in output growth (Tedeschi et al. 2012).

Policy exercises by Gai et al. (2011) show that tougher and time-varying liquid-
ity requirements reduce the risk of contagion in a theoretical network model. Gai
et al. (2011) test randomly constructed versus concentrated (i.e., hub) networks for
resilience in markets with liquidity hoarding due to haircut or margin shocks. Cer-
tain network structures prove to be beyond tipping points where liquidity hoarding
spreads across the entire network. Concentrated and more highly connected networks
are more likely to face contagious effects, and shocks targeted at major participants
are also likely to spread widely. Additionally, greater transparency is found to help
prevent liquidity hoarding by reducing the size of haircuts in the system. However, the
objections of Allen and Gale (2006) that credit risk will move to an unregulated sector
or country are still relevant as long as there is someplace where firms can operate
without being heavily regulated. It is therefore important to further examine where the
suggested tipping points occur with respect to certain regulations like liquidity and
capital requirements.

3.1.1 Algorithms and network contagion

Numerous studies searching for the causes of financial network crises have found
contagion due to narrow shocks of second order importance relative to broad correlated
shocks (Upper 2011; Elsinger et al. 2006a, b; Pokutta et al. 2011; Giesecke andWeber
2004; Aikman et al. 2009; Drehmann 2009; Eisenberg and Noe 2001). However, it
still unresolved that contagion and counterparty risk from narrow shocks should not
be considered a potential problem by regulators. Network research on contagion and
systemic risk has been simplified using algorithms to estimate the scope of knock-on
effects from a single default. These algorithms help put dollar values on potential
losses of contagion during systemic events, while testing for varying levels of capital
and liquidity requirements. Unfortunately, the algorithms used to conclude contagion
is a second-order risk often underestimate the magnitude of the problem.

The Eisenberg and Noe (2001) algorithm (EN algorithm) is a commonly used
method of measuring the risk of contagion.17 The EN algorithm can be employed

17 Furfine (2003) developed a sequential algorithm to estimate the impacts of contagion in interbank
markets. The contagion risk considered by Furfine (2003) is limited to a one-way cascade (Upper 2011).
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to estimate stress in a financial system by using snapshots of interbank positions
and available exposure information (Aikman et al. 2009; Boss et al. 2004; Battiston
et al. 2012b; Gai andKapadia 2010). Using amatrix of exposures to “clear the network
following the default of one or more institutions,” the EN algorithm is intended to help
determine how a contagious default spreads, as well as estimate resulting counterparty
credit losses (Aikman et al. 2009).

While the EN algorithm explicitly accounts for the risk of contagion, the costs are
potentially underestimated in three main ways. First, the algorithm is simply a method
of determining a clearing vector in a network with a central counterparty. In markets
without a central counterparty to clear transactions, systemic risk must be higher since
firms are necessarily more illiquid (Table 3). Also, the EN algorithm assumes there
is no delay between an initial bankruptcy and the final determination of payments.
In fact, delays in bankruptcy proceedings can increase uncertainty and lead to further
insolvency through feedback mechanisms without any further shocks to the system.
Finally, it is unclear if the correlation of defaults is considered by those using the
algorithm, since the original paper only considers stochastic and not strategic firm
behavior.

Modified versions of the EN algorithm provide evidence that uncertainty in bank-
ruptcy costs (Elsinger et al. 2006a), or accounting for fire-sales (Hałaj and Kok 2013,
2015) (i.e., the leverage accelerator) can lead to higher costs of contagion. Further-
more, Cont et al. (2013) show that the algorithms used by Elsinger et al. (2006a) still
drastically understate the risk of contagion and systemic risk by averaging the impact
of an individual failure across all firms (i.e., the maximum entropy approach). Evi-
dence from the Brazilian banking system shows contagion risk is increased at larger
and more interconnected institutions (Cont et al. 2013).18 As market clearing algo-
rithms become more realistic, estimated costs of contagion have risen which implies
previous studies have largely understated those risks. Regulatory changes that could
help clear a system following a bankruptcy would be those allowing for a faster res-
olution of insolvent financial institutions. Less uncertainty in bankruptcy would give
more credence to commonly used network clearing algorithms and their estimates of
systemic risk. In the absence of efficient bankruptcy laws, regulators and researchers
should be cautious of ignoring the potential extraordinary costs to contagion.

One of the more significant new methods of estimating contagion and systemic
risk has been offered in a series of studies that could be categorized as the DebtRank

Footnote 17 continued
For example, if one bank failure leads to a second bank failure, a sequential algorithm ignores secondary
losses that the first bank may incur. Sequential algorithms can vastly understate the potential costs of
contagion.
18 Cont et al. (2013) creates a Contagion Index (CI), a conditional measure based on exposures which
can be applied to individual institutions to estimate systemic risk. Cont et al. (2013) also simulate default
contagion by assuming short-run losses are complete in the case of a default. This method deviates from the
approach of Eisenberg and Noe (2001) who assume losses are quickly calculated and remaining debts are
easily recoverable. Cont et al. (2013) suggest targeting capital requirements at the riskiest firms, a proposal
already under consideration by many regulators. The theoretical models employed by Cont et al. (2013)
were developed in Amini et al. (2010) and Amini et al. (2011). Mistrulli (2011) uses a similar method to
Cont et al. (2013) by departing from the maximum entropy approach used by others. It is worth reiterating
that the maximum entropy approach likely misstates the level of systemic risk.
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Table 3 Algorithms in network theory

Algorithm Key aspects Key papers

Sequential One-way knock-on effects of
a firm failure

Furfine (2003) provides basic
method for clearing network.
Subsequent work by Degryse and
Nguyen (2007), Upper and Worms
(2004), Blåvarg and Nimander
(2002) expands on original
algorithm to examine net v. gross
exposures. See Upper (2011) for an
excellent survey

Eisenberg and Noe (2001)
(EN) and extensions

Incorporates feedback effects.
Assumes central
counterparty and short-run
recoverability of funds from
bankrupt firms

Aikman et al. (2009), Boss et al.
(2004), Battiston et al. (2012b),
Caccioli et al. (2012), Elliott et al.
(2014) and Gai and Kapadia (2010)
are common examples of EN in
use. Two extensions of note include
Cifuentes et al. (2005) who add a
component for fire sales of assets,
and Battiston et al. (2012a) who
add credit constraints

Modified-EN or
maximum entropy (ME)

Incorporates feedback effects,
correlated shocks. ME
methods of equally spread
impact of individual failure
across all firms

Elsinger et al. (2006a), Elsinger et al.
(2006b) and Elsinger et al. (2013)

Contagion Index Individual level potential
impact on network.
Assumes short-run
complete losses in default

Cont et al. (2013), Cont et al. (2010),
Mistrulli (2011), Amini et al.
(2010) and Amini et al. (2011)

DebtRank Estimate how distress
propagates without
observing failing institution

Battiston et al. (2012c) introduces the
concept formally, and further
developed in papers including
Bardoscia et al. (2015), di Iasio
et al. (2013) and Thurner and
Poledna (2013)

approach pioneered by Battiston et al. (2012c). The DebtRank (DR) approach is a
measure similar to feedback centrality which recursively accounts for distress in one
or more institutions. A key difference from the EN algorithm (Eisenberg and Noe
2001), Contagion Index (Cont et al. 2013), and default cascade (Battiston et al. 2012a)
approaches, is that the DR measure can simulate distress propagation without observ-
ing a failing institution. DebtRank is a “measure of the total economic value in the
network that is potentially affected by a node” (Battiston et al. 2012c). Using panel
data of the Federal Reserve’s discount lending program from 2007 to 2010, in combi-
nation with data on equity relationships of the same institutions, the DR measure can
track the centrality ranking of a firm as it adapts over time. At the peak of the crisis in
2008, Battiston et al. (2012c) find that most firmswere very fragile, and also had a high
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DR, implying they were more likely to fail and that those failures were more likely
to spread. Importantly, Battiston et al. (2012c) find that size is not the sole dominant
force driving systemic risk. Battiston et al. (2012c) find where firms that firms which
held less than 10% of assets were able to impact an estimated 70% of the network.

It should be noted thatDebtRank suffers from the same shortcomings in data as other
measures, and relies on proxies for firm relationships. Thurner and Poledna (2013)
proposes requiring transparency of individual institutions DR measures as a way of
remedying the systemic risk endogenously created by firms. Thurner and Poledna
(2013) notes, “opacity in financial networks rules out the possibility of rational risk
assessment, and consequently, transparency, i.e., access to system-wide information
as a necessary condition for any systemic risk management.” By making a bank’s DR
public, and punishing those who borrow from risky lenders, systemic risk becomes
far less significant. Another shortcoming of the original DR measure is that banks
can only propagate a shock the first time it is received, potentially underestimating
the risk of contagion (Bardoscia et al. 2015). Bardoscia et al. (2015) alter the original
DR algorithm, and use it to test a network of European banks from 2008 to 2013,
and estimate the network can amplify exogenous shocks between a factor of three
(normal phase) to six (crisis phase). The network endogenously adjusts over time, and
has differing amplification of shocks depending on the network and individual firm
fragility.

3.1.2 Firm and asset heterogeneity

A theoretical understanding of systemic risk sources demands a deeper knowledge of
the systems that have proven robust over time to large systemic shocks (May et al.
2008). Less diverse systems, especially when highly interconnected, have been found
to face an increased risk of systemic events. Haldane (2009a) posits that the financial
system had become too homogenized. Firms copied others behavior reducing diversity
while becoming more interconnected. Haldane and May (2011) suggest using three
macroprudential tools to help reduce homogenization and shape the topology of finan-
cial networks: setting stronger regulatory capital and liquidity ratios; creating systemic
regulatory requirements; and create a centralized system for netting and clearing of
derivatives.19 Reversing the trend of homogenization through policies such as the
Volcker-rule could help separate financial risks within institutions, increase modular-
ity, and reduce systemic risk (Haldane and May 2011).

The assessment that homogenization should be reversed is not universally agreed
upon however, since the wrong type of compartmentalization could limit the policy’s
effectiveness, increase local risk, and may lead to negative feedback loops raising
overall risk (May et al. 2008). Furthermore, while there appears to be a declining trend
in the diversity of firm activities, new loanswere becoming increasingly heterogeneous
and riskier. The level of compartmentalizationmaybe critical to reducing systemic risk,

19 Microprudential regulation is aimed at preventing the failure of individual financial institutions, while
macroprudential regulation is a focused “effort to control the social costs associated with excessive balance-
sheet shrinkage on the part of multiple financial institutions hit with a common shock” (Hanson et al. 2011).
(Emphasis in original.)
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but both diverse and homogeneous networks are susceptible to greater systemic risk
as long as there is little to no transparency at the level of asset origination. Following
the Gramm-Leach-Bliley Act of 1999, financial institutions were able to diversify
and de-compartmentalize their activities. Hedge funds acted more like banks while
banks took on more hedge fund like risk. Additionally, tax preferences for debt over
equity contributed to the long-term trend of increased debt reliance by banks and the
financial system tilted towards increased leverage and risk taking activity (Allen and
Carletti 2013). At the same time the overall level of underlying risk was increasing in
a way that strict compartmentalization might have only pushed more risk taking into
a more lightly regulated sector (Allen and Gale 2006). Unless compartmentalization
prevented the real estate bubble from inflating in the first place, it is hard to see how a
broad systemic event could have been stopped by walling off risks. Risky sub-prime
assets were held by most large financial institutions, and their collapse turned out to
be highly correlated.

Johnson (2011) further criticizes the Haldane and May (2011) model for the fact
that “tiny changes in the model’s assumptions…can inadvertently invert the emergent
dynamics.” Since agents can change how they interact, simplistic assumptions about
behavior are prone to erroneous conclusions and possibly bad policy. Johnson (2011)
also argues that simulated models need to consistently use quantitative estimates for
parameters rather than ad hoc measures often employed in models. Upper (2011) pro-
vides a more detailed criticism of the toy model problem raised by Johnson (2011),
explaining that a failure to provide solid behavioral foundations and assuming a rudi-
mentary behavior leads to simulations with inaccurate or misleading results. In most
simulations analyzed by Upper (2011), banks are caught off guard by the failure of a
linked financial institution, creating losses that can cascade through a network.20 In
reality however, agents act strategically and may herd as some institutions are able
to observe the deterioration of a failing institution beforehand and attempt to unwind
or hedge their relationship before a failure occurs. Studies of herding behavior in
financial networks will require an agent-based approach with microfoundations and
strategic behavior at the firm level. Recent work in progress by Bluhm et al. (2013)
provides a model with microfoundations to bank behavior and endogenous network
formation.21 Using the EN algorithm to simulate cascades, Bluhm et al. (2013) show
prudential regulations offer tradeoffs between provision of credit and systemic safety.
The individually optimal unwinding of relationships can ultimately contribute to the
failure of an institution as was the case with Lehman Brothers. Most network-based
models would have failed to predict the collapse of Lehman Brothers, and also would
have provided little help understanding the potential knock-on effects due to their fail-
ure (Upper 2011). Government intervention limited the immediate damage due to the
failure of Lehman Brothers, and future models should focus on giving the government
a role in potentially intervening in market failures.

20 Upper (2011) provides a breakdown of 15 studies using sequential and EN algorithms to estimate the
risk of contagion, and summarizes that the greatest systemic risk is due to correlated default rather than
domino effects.
21 Agent-based models such as Bluhm et al. (2013) are discussed further in Sect. 3.3.
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3.2 Empirical network research

Where data is available empirical studies have shown networks like interbank markets
and payment systems exhibit scale-free topology such that the largest firms (i.e., hubs)
not only capture a large number of all connections in financial markets, but also that
the vast majority of transactions run through these firms.22 Empirical network research
can help determine which network fundamentals producemore robust financial frame-
works (May et al. 2008). In scale-free distributed networks, hubs are generally found
to be the most likely sources of systemic risk where shocks have the potential to lead
to contagious defaults. Randomly distributed networks, where traffic is not dominated
by a few firms, do not suffer the same problems of contagion as scale-free networks.
Random networks must experience shocks exceeding a certain threshold in order to
bring down a large part of a network. The critical nature of network dynamics comes
from collective effects where relatively simple behavioral components lead to emer-
gent phenomenon (Bouchaud 2009). In general it is likely true that robustness in real
world networks is an emergent feature which cannot be engineered through top-down
risk controls (Kambhu et al. 2007). Empirical studies have been able to uncover some
real world network features which have proven relatively robust to certain external
shocks.

Soramäki et al. (2007) employ Fedwire data to examine 62 daily networks of inter-
bank payment flows in the US around September 11th, 2001, and find that the number
of nodes (firms) and links in the network fell significantly around that date but quickly
recovered. A unique feature of Fedwire is that the entire network can be mapped on a
given day, such that all types of systemic risk addressed here can be understood. The
US interbankmarket is stable, susceptible to targeted shocks on hubs, and exhibits sig-
nificant topological shifts when confrontedwith broad non-financial shocks (Soramäki
et al. 2007).23

Varying topologies of financial markets reveals different regulatory requirements
are necessary for most markets. As previously mentioned, preventing systemic crises
may require regulators to steer financial network topology towards stability by adjust-
ing capital and liquidity requirements, limiting size (i.e., mergers and acquisitions),
or walling off risks. The natural variation inherent in international financial markets
implies regulators might want to avoid applying one-size-fits-all rules to different
networks. International evidence reveals that interbank market topologies are signifi-
cantly different, with each requiring unique regulations. Interbank markets in Austria,
Germany, Sweden, Italy, Belgium, and Japan are similar in some ways to the US (Boss
et al. 2004; Craig and Peter 2014; Blåvarg and Nimander 2002; Mistrulli 2011; Inaoka
et al. 2004). The Austrian interbank topology is approximately scale-free and similar
to the US (Boss et al. 2004). Simulations by Boss et al. (2004) show that a fully inte-

22 Hüser (2015) provides a thorough list of empirical and theoretical papers on interbank networks.
23 Bech andAtalay (2010) also provide insight on theUS interbank network, showing the system is directed
in such a way that surplus reserves are typically lent from small banks, to regional banks, and then on to
money center banks in New York, Boston, or Chicago. Hernández et al. (2010) and Hale (2011) provide
similar evidence using co-lending data to show US network structures are highly dynamic in response to
shocks and do not rule out the potential risk for contagion.
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grated Austrian interbank market would actually be less stable than the topology seen
at the time. Boss et al. (2004) suggested that the reason they see a divergence from the
theories of Allen and Gale (2000) is due to the scale-free nature of the networks. Craig
and Peter (2014) and Blåvarg and Nimander (2002) both display a tiered structure in
the German and Swedish interbank markets respectively, where money-center banks
dominate an otherwise sparse network. Bank balance sheets correlate with purposeful
behavior, and the topology is at least partially determined by these decisions (Craig
and Peter 2014). The most widely studied market is Italy’s e-MID interbank network,
which has a heterogeneous microstructure that is not scale-free in terms of the size
of firms, but does exhibit a heavier tail than seen in a random network (Iori et al.
2008). The e-MID market also has a clustering coefficient lower than a random net-
work, implying intermediaries in Italy are not necessary to create interbank loans and
raising the possibility of widespread preferential lending between banks. Iazzetta and
Manna (2009) and Delpini et al. (2013) also examine the e-MID market, and show
that a consolidation trend has led towards a tiered structure with few hubs from a more
fully connected network. The resulting system is more robust to random shocks, but
targeted shocks would likely have much larger effects in a tiered network. Since tiered
networks can be caused by mergers and changes in lending practices it is highly likely
that any simple reorganization of asset holdings is not neutral to the overall structure
of risk. Degryse and Nguyen (2007) examine the Belgian interbank market, and find it
has also shifted to a tiered structure over time through mergers and acquisitions. The
Belgian banking system has also become far more reliant upon international linkages,
making any management of the system more difficult. Degryse and Nguyen (2007)
also find that increased concentration of the Belgian interbank market has reduced the
potential risk and impact of contagion. The Japanese financial network is similar to
the US in terms of topology, but a careful examination reveals the “structure is a result
of the pursuance of ’efficiency’ rather than ’stability”’ (Inaoka et al. 2004). Other
markets in Portugal, Netherlands, and Switzerland have topology that is significantly
different from the US (Cocco et al. 2009; Squartini et al. 2013; Müller 2006). In the
case of the fragmented Portuguese interbank market bilateral agreements are evidence
of cooperation under repeated interaction between banks which help determine terms
of loans such as interest rates and duration (Cocco et al. 2009). The Dutch interbank
system is not characterized by a core-periphery structure (Squartini et al. 2013).While
the Swiss banking system is highly centralized with two very large banks playing key
roles and several subnetworks exhibiting different, more homogeneous characteristics
(Müller 2006).

Topology plays an important role in contagion through interbank markets, where
more complete and homogeneous networks are typically found to be more robust to
random shocks than fragmented networks. However, Craig and Peter (2014) note that
the commonly observed tiered money-center banking system is not dense as would be
predicted by Allen and Gale (2000), Babus (2005) and Leitner (2005) (Table 4). The
observed core-periphery structure is also persistent, a factwhich “clasheswith the view
that random shocks are the basis for understanding interbank activity” (Craig and Peter
2014). Mistrulli (2011) proposes another empirical challenge to the diversification-is-
good argument of Allen and Gale (2000) and others. Mistrulli (2011) examines the
widespread use of maximum entropy methods when data are incomplete on interbank
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Table 4 Empirical network
analysis

Country Key papers

Austria Boss et al. (2004)

Belgium Degryse and Nguyen (2007)

Germany Craig and Peter (2014)

Italy Delpini et al. (2013), di Iasio et al. (2013),
Iazzetta and Manna (2009), Iori et al.
(2008) and Mistrulli (2011)

Japan Inaoka et al. (2004)

Mexico Martínez-Jaramillo et al. (2010)

Netherlands Squartini et al. (2013)

Portugal Cocco et al. (2009)

Sweden Blåvarg and Nimander (2002)

Switzerland Müller (2006)

United States Soramäki et al. (2007), Bech and Atalay
(2010), Hernández et al. (2010) and Hale
(2011)

exposures. Essentially, the maximum entropy approach assumes risk exposures are
evenly spread across the entiremarket (i.e., completemarkets).24 In the e-MIDmarket,
Mistrulli (2011) finds that themaximumentropy approach under a narrow shockwould
provide a questionable measure of the severity of contagion since the assumption is
all institutions are impacted, but by a very small amount. The alternative approach
of Anand et al. (2015) is to look at the minimum density (MD) to determine how a
network might be distributed in a cost optimizing way. Degryse and Nguyen (2007)
also examine an alternative to the maximum entropy approach by endogenizing the
losses in the event of default. In a similar spirit as financial and leverage accelerators,
losses are amplified under certain weaker topographies (Degryse and Nguyen 2007).
The maximum entropy approach likely overstates the spread of an individual shock
on the basis of the number of firms impacted, but understate the transmission that it
would have on a real-world counterparty. Generally, this research finds that complete
markets are not universally more resilient to contagion, but may in fact be worse in
some circumstances (Mistrulli 2011).

3.3 Simulated networks and dynamics

While data exists for the payments and interbank systems they are not the only relevant
networks for understanding systemic risk and contagion (May et al. 2008). To improve
the understanding of market dynamics where complete maps of markets are lacking,
researchers can experiment on simulated topologies. Given that many systemic risk
issues are related to balance sheets which are only periodically available, simulation
is needed to assess asset-pricing bubbles and credit crises (May et al. 2008).

24 Mastromatteo et al. (2012), Squartini et al. (2013), and Anand et al. (2015) also explore alternatives and
criticisms of maximum entropy methods.
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Nier et al. (2007) use simulated networkmodels to show that increased connectivity
does not monotonically decrease systemic risk. A negative relationship between con-
tagion and capital exists, suggesting greater capital requirements might help regulators
prevent contagion (Nier et al. 2007). Simulated variations to the structure of financial
networks can lead to ranging levels of systemic risk. An even broader implication is
that the size of the shock that hits a system will have varying effects depending on
the structure of the network. Other simulation work demonstrates financial networks
exhibit a “robust-yet-fragile tendency: while the probability of contagion may be low,
the effects can be extremely widespread when problems occur” (Gai and Kapadia
2010).25 This also serves as a warning against assuming that previous resiliency is
evidence of resiliency in the present since structures may shift dramatically over time
(Gai and Kapadia 2010).26 Roukny et al. (2013) takes an approach similar to Gai
and Kapadia (2010) and Battiston et al. (2012a) and simulate a wide array of net-
work topologies, firm capital ratios, market liquidity, and narrow versus broad shocks.
Roukny et al. (2013) show that topology is one key to stability, but that market liq-
uidity is a more important determinant of optimal market architecture. When markets
are more illiquid, topology plays a more important role. Gaffeo and Molinari (2015)
use a simulation approach to studying proposed Basel III rules on liquidity and capital
requirements, noting significant tradeoffs for regulators who wish to impose stricter
policies. While these studies are unique in their approach, Nier et al. (2007), Gai and
Kapadia (2010), Roukny et al. (2013), and Gaffeo and Molinari (2015) are relatively
weak in terms of behavioral foundations. However, their approach is appealing for
approximating systemic risk by generalizing beyond a single network to examine the
broader role for regulation and interaction.

There is a significant amount of empirical research that shows certain finan-
cial markets—particularly interbank—are tiered (i.e., core-periphery, money-center).
While some evidence points tomore homogeneous behavior (Haldane andMay 2011),
other research has shown a significant shift away from complete markets (Degryse and
Nguyen 2007; Iazzetta andManna 2009). One potential implication of this trend is that
firms might actually be becoming more heterogeneous in terms of size and behavior.
Lenzu and Tedeschi (2012) and Tedeschi et al. (2012) both take a simulation approach
to studying the role of firm heterogeneity on systemic risk, and produce similar results.
The key contributions by Lenzu and Tedeschi (2012) and Tedeschi et al. (2012) were
to incorporate the leverage accelerator into agent-based simulated network models.
A decline in market liquidity here can be the main culprit in leading to otherwise
healthy firms failing. Like some of the empirical research which stress-tested real-
world markets, Lenzu and Tedeschi (2012) find that random networks are more stable
than scale-free topologies in the face of random shocks. Caccioli et al. (2012) use the
methods of Gai and Kapadia (2010) to find essentially the opposite from Lenzu and
Tedeschi (2012). In Caccioli et al. (2012) and Georg (2013), scale-free systems are
more resilient to random shocks, and contagion is more likely to occur when one of the

25 Emphasis in original. Also see Iori et al. (2006) and Tedeschi et al. (2012) for similar findings.
26 Preliminary work by Pegoraro (2012) examines a number of scenarios including targeted attacks at
different types of networks (e.g., random, small-world, and scale-free). The approach by Pegoraro (2012)
includes the use of network statistics which imply susceptibility to attack and contagion.
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larger or more connected institutions are shocked. Georg (2013) used a dynamic bank-
ing system which allows firms to optimize balance sheets, and provides an additional
theoretical model to show that network structure is significant in times of crisis. While
not ruling out the importance of contagion, Georg (2013) emphasizes consideration
of broad shocks as being more important. Since broad shocks impact multiple firms,
the likelihood of systemic risk is higher when a greater number of critical agents are
impacted. Delpini et al. (2013) examines the question of which firms are most critical
to the system using the e-MID market and simulation methods. Delpini et al. (2013)
finds that the firms that are most connected or the largest lenders are not necessarily
the firms that are most likely to lead to contagion. Rather, the key to contagion in the
e-MID market is a reduction in liquidity and trust—the same accelerators described
before. The key difference between these strands of the literature is that stronger behav-
ioral foundations and the presence of an accelerator process can reverse the general
findings. However, these somewhat conflicted studies do highlight the important role
played by both liquidity and capital requirements in predicting contagion.

Aproposed regulatory target is themandated use of central counterparties for certain
assets like CDS. Simulated networks have been used to explore the effects of concen-
tration and tiering—reflecting the ratio ofmembers and general clearingmembers—on
network stability (Galbiati and Soramäki 2012).27 Fewer general clearing members
who trade directly with the central counterparty would require additional precaution-
ary funds and raising the individual cost of participation (Galbiati and Soramäki 2012).
On the other hand, more concentrated networks with more inequality across general
clearingmembers decreases the risk for the central clearing system. Simulated random
networks of banks, firms, and insurers linked directly by contracts and indirectly by
CDS arrangements increases instability if banks are taking the opportunity to raise risk
when hedged via an external insurance sector (Heise and Kuhn 2012). As expected,
members of the insurance sector face larger risks of insolvency when they are hedg-
ing the banking system. If the banks are trading CDS between themselves without
an external insurance sector, the overall risk of maximum losses rises, and the sys-
tem is even further destabilized. This research by Galbiati and Soramäki (2012) and
Heise and Kuhn (2012) makes the point that increased connectivity is not necessarily
a stabilizing force, and that regulating CDS will depend on how the derivatives are
used. Puliga et al. (2014) examine the CDS market in conjunction with the housing
market and report that CDS spreads—which are commonly presumed to be predictive
of stress—actually are only coincident and not leading indicators of crises.When CDS
are combined with housing data and the DebtRank approach to estimating contagion,
there is an increase in the ability for CDS to perform as predictive measures (Puliga
et al. 2014). Puliga et al. (2014) shows that macroeconomic risk alone cannot capture
the systemic risk created during a general downturn in home prices, but that incor-
porating network effects reveals a larger concern. Research by Kaushik and Battiston
(2013) examines the role that interdependence and trend reinforcement play in deter-
mining the level of systemic risk, finding that high levels of individual risk tend to be
associated with other firms facing stress. This is evidence that the financial accelerator

27 Teteryatnikova (2014) provides a theoretical model showing similar effects of tiering on system stability.
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Table 5 Agent-based network analysis

Approach Key papers Findings

Default cascades Battiston et al. (2012a),
Lenzu and Tedeschi
(2012), Tedeschi et al.
(2012), Roukny et al.
(2013) and Markose
et al. (2010)

Examining the roles played by various network
structures and propagation of shocks. Greater
connectivity either found to be ambiguous or
negatively impacting network stability. Topology
matters when contagion is present, and heterogeneity
can be destabilizing in tiered networks. Markose et al.
(2010) examines a separate model of contagion in the
CDS market, finding the market structure is unstable

Multiplex Bargigli et al. (2015),
Poledna et al.
(2015),Bluhm et al.
(2013) and Montagna
and Kok (2013)

Examine layers of bank networks such as interbank,
long and short term bilateral exposures, common
exposure to assets, as well as foreign exchange and
derivatives markets. Systemic risk when calculated on
the interbank market alone is found to be vastly
underestimated

Financial and
leverage
accelerators
(network
formation)

Delli Gatti et al. (2010),
Riccetti et al. (2013)
and Bargigli et al.
(2014)

Riccetti et al. (2013) adds leverage accelerator to AB
financial accelerator model. Bargigli et al. (2014)
examines model for endogenous network structure
and stability

Structural
contagion
(liquidity)

Sordi and Vercelli
(2012), Giansante et al.
(2012) and Thurner and
Poledna (2013)

Behavioral rules from Sordi and Vercelli (2012) are
used to create an AB model in Giansante et al. (2012)
that shows the linkage between liquidity and fragility.
Thurner and Poledna (2013) uses a simple AB model
with DR algorithm to show the importance of
transparency to reducing contagion

Bailouts and
resolution

Klimek et al. (2015),
Bluhm et al. (2013) and
Riccetti et al. (2013)

Klimek et al. (2015) examines the role of externally v.
internally provided liquidity bailouts, while Bluhm
et al. (2013) incorporates a role for the central bank
externally providing liquidity. Klimek et al. (2015)
finds ambiguous results under different market
conditions, while Bluhm et al. (2013) see a generally
beneficial role in central bank liquidity provision in
preventing contagion

Market
connectivity and
network
formation

Grilli et al. (2015), Hałaj
and Kok (2015) and
Lenzu and Tedeschi
(2012)

Experiment on stability of networks that emerge from
AB models. All show possibility of non-linear
contagion risk as network connectivity rises

does appear to play a role in CDS markets, as collateral would deteriorate across the
system as interdependent firms—but not necessarily similarly exposed—firms would
face more difficult borrowing constraints. Additional evidence demonstrates that the
expansion of financial instruments for speculation and hedging may in fact destabilize
markets rather than increase systemic safety (Brock et al. 2009). Margin requirements
which prevent collapse depend on the topology of the network, and fragility depends
on who is considered part of the system being monitored. Hedging risk outside of the
narrowly defined financial sector does not make it disappear, but in fact raises overall
risk.
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The lack of meaningful behavioral foundations and unrealistic scenarios are com-
mon in over a dozenwidely cited simulation studies (Upper 2011).Network parameters
need to be better estimated and firm behavior needs to have realistic behavioral foun-
dations since rules are shown to significantly affect the emergent topology (Schweitzer
et al. 2009). Oneway of improving on the simulated networkmodels are to incorporate
behavioral foundations through an agent-based approach (Fig. 1). The agent-based
modeling approach also played an important role in developing the network-based
financial accelerator and leverage accelerators described earlier (Battiston et al. 2012a;
Tedeschi et al. 2012; Lenzu and Tedeschi 2012; Roukny et al. 2013; Bargigli et al.
2014; Riccetti et al. 2013; Grilli et al. 2015). The endogeneity of behavior—and
therefore topology—can only be modeled by allowing for heterogeneous behavior of
agents (Table 5). Lenzu and Tedeschi (2012) also take an agent-based approach to
simulate endogenous network formation, which can then be stressed by a series of
shocks.28 When trying to determine if a certain market topology is more stable than
another it is also important to determine if the network-based financial accelerator or
leverage accelerator play a role in any potential contagion. In addition to concerns
about systemic risk in interbank markets, there are other markets that might interact
and amplify risk. Montagna and Kok (2013) provide an agent-based model showing
that the interaction across multiple markets results in non-linearities in systemic risk.
Thus, these accelerators might play a meaningful and synergistic role across multiple
markets where a single firm operates. There has yet to be much discussion regard-
ing the layering—or multiplex—of financial markets, and this shortcoming presents
a potential avenue for future research (Thurner and Poledna 2013).

4 Measuring systemic risk

Network researchers should be aware of the recent advances in measuring systemic
risk since these measures can be used to judge policy effectiveness. An array of new
measures are aimed at locating potential systemic risk at large publicly-traded financial
institutions. A survey by Bisias et al. (2012) noted 31 measures of systemic risk which
is certainly out of date considering the speed of research in this field. The intention
here is not to update the list provided by Bisias et al. (2012) or others, but to relate
what can be learned from these measures. One feature that many new systemic risk
measures share is a fundamental shortcoming by using a portfolio approach tomeasure
risk. The portfolio approach understates potential risk because it is unable to match
the scope of the problem. Measures like value-at-risk (VaR) and expected shortfall
(ES) have been employed in an attempt to quantify the systemic risk of systemically
important financial institutions (SIFIs). The primary intent of VaR and ES models is
quantifying potential losses for portfolios of assets where the composition of the port-
folio is known and one can estimate probabilities and correlations of potential returns
to the individual assets. Measures such as VaR and ES are unable to capture risks that

28 Hałaj and Kok (2015) similarly look at a model of endogenous network formation, but utilize an opti-
mizing agent approach rather than bounded rationality agent-based methods. Iori et al. (2006) is not billed
as an agent-based model, but is repeatedly used as a baseline approach to network design.
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are diversified outside the scope of firms beingmonitored. Thus the portfolio approach
questionably assumes that all firms that might be systemically important are actually
being monitored by regulators before any crisis begins, the necessary information on
those firms is available, and the tools to take effective action are already in place.
Of additional concern, most newly constructed systemic risk measures overstate their
ability to deal with black swans—those events that occur with extremely low proba-
bility and have enormous financial losses (Taleb 2010). Network modeling can move
beyond these standard measures to show where they might fail to detect otherwise
unforeseen risks.

Debates over the scope of systemic risk analysis start at the point of defining SIFIs.
Officially, SIFIs in the US are determined using a size threshold including only those
firms with over $50 billion in consolidated assets. Firms are deemed systemically
significant due to their “nature, scope, size, scale, concentration, interconnectedness,
or mix of activities” of the firm (Labonte 2010). Firms meeting the $50 billion in
consolidated assets threshold would need to surpass one additional threshold in order
to be considered systemically important. The Financial Stability Oversight Council
(FSOC) decides which firms should be regulated based on a six-factor framework.29

“Three of the six categories—size, substitutability and interconnectedness—seek to
assess the potential impact of the nonbank financial company’s financial distress on
the broader economy” (Financial Stability Oversight Council 2011). The other three
categories, “leverage, liquidity risk and maturity mismatch—seek to assess the vul-
nerability of a nonbank financial company to financial distress” (Financial Stability
Oversight Council 2011). Therefore, SIFIs are examined for their potential suscepti-
bility to both narrow and broad shocks.

4.1 Conventional measures of systemic risk

Measures like VaR and ES were not designed to measure systemic risk since they
do not incorporate network effects beyond the direct linkages of a firm. These mea-
sures and others have recently been adapted to measure systemic risk by estimating
the correlations of risk across multiple firms. Increased complexity through diver-
sification and interconnectivity often reduce the risk exposure measured by VaR or
ES at an individual firm, while increasing overall risk in the system. Micropruden-
tial regulations often focus on measures such as VaR which estimate the maximum
likely loss at some pre-specified confidence level (Aragonés et al. 2008).30 The VaR
measure is notably blind to what might happen during tail events, and so ES mea-
sures were developed to estimate the losses conditional upon tail events occurring

29 The FSOCs proposed rules require firms to be identified in the first stage as those which exceed one or
more of the following thresholds: more than $30 billion in credit default swaps outstanding; $3.5 billion
in derivative liabilities; $20 billion in loans and bonds outstanding; leverage of greater than 15-to-1; and a
short-term debt ratio of more than 10% (Financial Stability Oversight Council 2011).
30 A typical firm’s VaR would be an estimate of the potential losses given market returns at the bottom 5th
or 1st percentile over a given time horizon based on historical data.
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(Aragonés et al. 2008).31 However, ES measures also fall short by assuming risk neu-
trality across tail events thereby underestimating the black swan problem of convexity
(i.e., low probability/high-loss events) (Taleb 2011).32 Most new systemic risk mea-
sures are improving the ability to identify the most important firms when confronted
with broad shocks, but still fail to capture much of the risk from narrow or endogenous
system shocks.

Measures like VaR and ES have been improved by taking greater account of conta-
gion and network effects. An institution’s CoVaR relative to the system is the VaR of
the system conditional on that institution being in distress (Adrian and Brunnermeier
2009). Adrian and Brunnermeier (2009) also describe how CoVaR can be used to
measure the increased risk at one institution given that another institution has become
distressed. CoVaR measures for the U.K. raised estimated median bank risk by 40%,
evidence that the measures are able to account for some of the potential knock-on
effects that result from stress in another part of the system (Haldane 2009b). While
this is a notable improvement in measuring overall risk, VaR and CoVaR measures of
systemic risk have been shown to ignore tail risk, and are not based on any existing
explicit economic theory (Acharya et al. 2010). In response to criticisms of using
CoVaR to measure risk, Adrian and Brunnermeier (2009) suggest using conditional
expected shortfall (Co-ES) to examine the expected shortfall conditional on one firm
falling into distress. CoVaR and Co-ES rely on estimating the distress of the over-
all economy using available market measures including liquidity spreads, changes to
market interest rates, credit spreads, andmarket measures for the stockmarket implied
volatility. For CoVaR and Co-ES to be employed the firms being monitored must be
publicly traded, a potentially dubious assumption.

The ECB generally recommends following slightly different measures to estimate
systemic risk: the systemic expected shortfall (SES) and marginal expected shortfall
(MES) (European Central Bank 2010a).33 The MES and SES methods incorporate
power-law risks due to the largest firms and shocks when estimating systemic losses
(Brownlees andEngle 2011;Acharya et al. 2010). Evidence shows that theMESwould
have been able to detect some of the firms that failed during the crisis had the measure
been in use ex ante(Acharya et al. 2010). The NYU Volatility Laboratory or V-Lab is

31 Expected shortfall (ES) measures are weighted averages under a range of VaR measures, effectively
integrating over the probability distribution used to estimate losses conditional on a certain VaR threshold
being breached. Adrian and Brunnermeier (2009) provide a derivation of the difference between VaR and
ES.
32 Aragonés et al. (2008) also discuss spectral risk measures and probable maximum losses which take
closer account of a firm’s risk aversion and use extreme value theory often employing functions such as
generalized Pareto distributions. The authors discuss how risk committees should assign probabilities to
extreme events under certain forward-looking scenarios. Subjective scenarios are often overlooked due to
the lack of historical evidence and the lack of senior management involvement in the risk management
process. Thus, we might think of the consideration of home prices falling in the recent crisis as subjective
scenario that was likely discounted for lack of historical evidence or the belief that such an event was simply
implausible.
33 The MES is estimated as the expected value of losses when the market return is below a particular
percentile during a given time frame, such as the 5th percentile. TheSESmeasure is essentially a combination
of the MES and leverage. Twice a year, the ECB releases the Financial Stability Review which examines
possible sources of risk to financial stability.
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based off the work of Brownlees and Engle (2011), and has resulted in a running list
of the top ten firms in terms of MES, systemic risk contributions, and leverage (http://
vlab.stern.nyu.edu/welcome/risk). Again however, it should be noted that reliance on
available historical data understates the risk of future extreme events

An array of other systemic risk measures have been developed based on higher
frequency market data.34 At the firm level, intraday stock prices and CDS spreads for
insurance firms and banks have been employed to measure systemic risk (Chen et al.
2013). Linear and nonlinearGranger causality tests showbanks create systemic risk for
insurers by transferring risk to the insurance sector (Chen et al. 2013). These new high
frequency risk measures face a couple of notable shortcomings and unusual features.
Under certain conditions, Zhou (2013) finds increased capital requirements could
result in more systemic risk by increasing the correlation of holdings across different
institutions. If liabilities are significantly different than the asset side, increased capital
requirements can lower systemic risk. One factor potentially undermining this research
is that transitional dynamics are ignored, and only equilibrium conditions are focused
on. Reliance on using correlations prevents many systemic risk measures from taking
account of truly extreme events, and their limitation to analyzing publicly traded firms
is also somewhat troubling (Segoviano and Goodhart 2009). Since correlations can
rapidly change and privately held firms may be systemically important, it is unclear if
these measures are sensitive enough to be practical and timely in the event of another
crisis.

If the total potential government cost to a systemic event could be estimated well
in advance, it might be optimal to have firms bear a proportionate responsibility for
their individual contribution to the overall cost. Costs could be allocated to individual
firms in the form of risk-based insurance fees capturing their isolated contribution to
an overall measure of systemic risk. Contingent claims analysis (CCA) is intended
to capture tail dependence between multiple entities, with the goal of estimating the
market value of government liabilities in the event of a systemic crisis (Gray and Jobst
(2010) and Gray et al. (2007)). Information from equity and CDS markets is used in
estimating an implicit put option yielding the systemic CCA.35 Gray and Jobst (2010)
argue that their proposed CCA method is an improvement over the CoVaR, SES, and
DIPmeasures of systemic risk in that the estimates are time varying. It is further argued

34 Huang et al. (2009) developed the distress insurance premium (DIP), which is similar to the MES, but
also incorporates information on CDS and equity prices. Segoviano and Goodhart (2009) developed three
measures—the banking stability index (BSI), the joint probability of default (JPoD)), and distress between
banks (DiDe)—utilizing CDSs, out of the money option prices, and sovereign debt holdings. Zhou (2010)
proposes two measures: a vulnerability index (VI) which estimates how vulnerable a given bank is to other
bank failures in the system; and the systemic impact index (SII) intended to capture the level of financial
institution interconnectivity measuring the expected number of failures that would occur given a particular
institution fails. Billio et al. (2010) use publicly traded equity returns as a proxy for illiquidity to provide
evidence that systemic risk might originate outside the financial sector. Including sectors that are not purely
financial, linear Granger causality tests by Billio et al. (2010) provide some statistical evidence that periods
of distress have occurred after the fact.
35 The CCA estimates market-implied contingent liabilities, through a combination of financial market
data and accounting information to estimate risk-adjusted balance sheets (Gray and Jobst 2010). Gray and
Jobst (2010) note that the CoVaR and SES measures are only quarterly, while the DIP and systemic CCA
measures can be estimated daily.
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that the systemic CCA is also able to capture multivariate dependence across firms,
rather than just a bivariate dependence in the case of CoVaR and SESmeasures. While
the CCA is a very practical and timely measure, like other conventional measures it
is limited to large publicly traded firms.

4.2 Stress tests

To make stress testing effective in measuring more forms of systemic risk, methods
should consider counterparty risk, collective actions taken by other institutions, and
endogenous systemic effects affecting both assets and liabilities. In practice, stress
tests fail to capture the interconnected nature of the financial system and counterparty
risk. Stress-tests of individual banks have been the most widely publicized approach
for measuring the risk of broad systemic events. Under this approach, when individ-
ual banks are deemed safe, the broader system is also considered to be safe. The 19
banks identified as SIFIs in April 2011 completed individually specified stress tests
under the Comprehensive Capital Assessment Review (CCAR), and commonly spec-
ified scenarios under the Supervisory Capital Assessment Program (SCAP) (Dudley
2011). Often, counterparty risk is downplayed in stress testing since it only arises after
insolvencies take place, “[o]nce a bank is insolvent because of credit or market risk
exposures counterparty credit risk in the interbank market crystallises” (Drehmann
2009). Moody’s Analytics reported that the CCAR stress tests would likely have been
unable to predict the 2008 failure of Washington Mutual, one of the largest banks in
the US during the midst of the crisis (Hughes et al. 2012).

The shortcoming of both the SCAP and CCAR stress tests is that they generally
fail to take account of second-order effects, and ignore network externalities that
would be present when a bank actually fails a stress test (Haldane 2009b). As noted
earlier, simplifying network effects as only externalities may be dangerous. Certain
network structures are more vulnerable than others, and the evolution towards those
states must be studied further (Acemoglu 2012). Recent financial market reforms can
be criticized on the grounds that neither the Dodd-Frank Wall Street Reform and
Consumer Protection Act nor Basel III really attempts to reform the problem of the
shadow banking system, or “mitigate the fire-sales and credit-crunch effects that can
arise as a consequence of excessive short-term debt anywhere in the financial system
(Hanson et al. 2011).”36 More specifically, systemic risk measures should not only be
able to identify individually systemic institutions, but also those that are systemic as
part of a herd (Adrian and Brunnermeier 2009).

4.3 Network measures of systemic risk

Network analysis and simulation has marginally added to the debate on measuring
systemic risk. While empirical network analysis suffers from problems due to the
lack of data, these models benefit by being able to account for narrow and endoge-

36 Emphasis in original.
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nous events as well as potential regulatory changes. Under recent Basel rulings, banks
were allowed to reduce their capital held against assets which were insured using
credit default swaps. Markose et al. (2010) conduct stress tests using a Systemic Risk
Ratio—based on US CDS data—which are comparable to the US SCAP stress test
program. Credit default swaps allowed the financial system to spread in terms of scope
to hedge funds, insurers, and private equity funds, while at the same time being incred-
ibly opaque instruments. The authors find a “hub like dominance of a few financial
entities in the USCDSmarket,” concluding that the network is fundamentally unstable
(Markose et al. 2010). Based on a agent-based theoretical model the measures would
likely bemore in tune during periods of stresswhenmarket-based reduced formmodels
might become unhinged. Agent-based models have the capacity to model both vary-
ing firm size and behavior as well as incorporate varying regulatory strategies.37 Only
recently have agent-based models incorporating these features come into existence.38

Kaushik and Battiston (2013) provide a different look at how CDS data can be
used to estimate systemic risk. By examining CDS data, they are able to calculate two
systemic risk measures, impact centrality and vulnerability centrality. Impact central-
ity rises for firms who impact many systemically important firms, and vulnerability
centrality rises when a firm has “strong dependencies from many nodes which are in
turn heavily vulnerable” (Kaushik and Battiston 2013). Together, these measures can
help determine which firms are more important to the stability of the overall system.
Due to interconnectedness and trend reinforcement an institution that is highly levered
would have wide-reaching impacts if they suffered only a minor shock. While impact
and vulnerability centrality help determine the identity of systemically important insti-
tutions, Battiston et al. (2012c) note that the DebtRank measure has an advantage in
light of its ability to estimate monetary losses.

Network models have helped traditional risk measures take account of potential
fire sales. Boss et al. (2006) and Martínez-Jaramillo et al. (2010) combine a CoVaR
approach using Credit Risk+, to model default dependency across assets. Boss et al.
(2006) crafted the Systemic RiskMonitor (SRM) for use in theAustrian central bank—
Oesterreichische Nationalbank. Using data from the Major Loans Register, the SRM
combines standard riskmanagementwith a networkmodel.Without using a theoretical
model for agent behavior, the SRM aggregates the banking system using a portfolio
approach employed by many others. Martínez-Jaramillo et al. (2010) build on Boss
et al. (2006) to analyze systemic risk in the Mexican interbank system adding a risk
measure for the entire system which can be decomposed into baseline shocks and
contagious effects. Additional accounting for correlated holdings of banks helps to
simulate the possibility of a broad shock leading to a contagious event. In general it is
found that the distribution of shocks might be more important than the topology of the
system at a point in time. Simulations conducted using a variety of risk correlations
provide evidence that even with highly correlated holdings banks face a low risk of a
systemic event.

37 Markose et al. (2010) is one example of an agent-based network model of financial markets and regu-
lation.
38 Bargigli and Tedeschi (2014) offers a survey of the literature on the agent-based approach in network
modeling.
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Empirical network research has provided a few notable estimates of systemic risk
(Levy-Carciente et al. 2015; Bargigli et al. 2015; Huang et al. 2013). Huang et al.
(2013) offer a newmodel of contagion that they apply to a snapshot of the US banking
network in 2008. As the banking system was reeling from the real estate market crash,
the authors are able to mostly replicate which banks failed under a simulation. Levy-
Carciente et al. (2015) expand on this approach, by making their model dynamic
in an application to Venezuela. Thier dynamical bank-asset bipartite network model
DBNM-BA method allows tracking the risk of both assets and institutional stability.

Preventing contagion through bailouts may be costly to governments, but the bene-
fits of prevention might outweigh the potential costs. The effective credit rating grade
(ECRG) model developed by Sieczka et al. (2011) uses simulation methods to show
that bailouts might help arrest contagion. The ECRGs are modeled to interact across
institutions, and shows that a single default can lead to a contagion of downgrades in
creditworthiness across the system. Thus, while most measures show contagion is a
second-ordermatter to broad shocks, there is still evidence showing that understanding
narrow shocks might be worth the trouble.

5 Do these systemic risk measures work?

What method should be used to measure systemic risk? Individually, the conventional
risk measures all offer the benefit of helping to identify which firms might be consid-
ered systemically important. All of the aforementioned measures fail to fully capture
the convexity present in the very worst states of the world. A 1% CoVaR or SES
would still heavily weight the outcomes closest to the 1% threshold, and put very little
emphasis on the magnitude of losses in the one in a million events. While any measure
of risk has its shortfalls, large increases in risk like the CoVaR estimates by the Bank
of England should be alarming (Haldane 2009b).

One of the most troublesome features of the systemic risk measurement literature
is the emphasis on coherent risk measures where the components of risk are both
subadditive and linearly homogeneous (Aragonés et al. 2008).39 Subadditivity implies
that diversification of two combined portfolios have lower risk than the individual
portfolios (ρ(A + B) ≤ ρ(A) + ρ(B)). When estimating systemic risk it might be
worth considering risk measures which allow for destructive synergistic effects as
in the case of two portfolios whose correlations might rapidly change or a network
structure where contagious defaults are more likely to occur. Additionally, the activity
of creating new risky long-lasting underlying assets only increases overall risk even if
it is coherently measured. At the firm level risk is likely coherent, but overall systemic
risk may rise suddenly if a large amount of a particular type of asset is created. With
an abundance of overpriced assets in the market a widespread decline in asset prices
may be much more severe than anticipated—leading to a serious miscalculation in
potential system wide losses.

39 Coherent risk measures are also monotonic in the sense that an asset with higher losses at all outcomes
has a higher risk measure, and the addition of cash reduces the risk of a portfolio dollar for dollar (Artzner
et al. 1999).
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Cont et al. (2010) provides evidence that coherent risk measurement procedures
such as expected shortfall are not robust to small changes in the data ormisspecification
errors used to calibrate estimators. “There is a conflict between coherence (more
precisely, the subadditivity) of a risk measure and the robustness in the statistical
sense…” (Cont et al. 2010). The use of historical data to estimate the risk of future
losses in coherent risk measures is highly sensitive to outliers and overstates the case
for diversification.40 Cont et al. (2010) provides further reason to be concerned about
using coherent risk measures to approximate systemic risk when estimation methods
and robustness checks might be as important.

The assumption that portfolios are linear combinations of risk is weak (de Vries
2005). Systemic risk is a result of interconnection, such that “a very large shock
may topple the entire system, since no bank is able to bear its share in the adverse
movement” (deVries 2005). Diversification can spread risk around, serving to increase
systematic and systemic risk where multiple institutions would be impacted by shocks
to correlated portfolios.

Generally speaking, the financial system faces a common resource problem of
systemic safety. Institutions have choices to make regarding the types of assets they
create. If one institution creates a single relatively risky asset like a subprimemortgage
and partially hedges that position there would be a negligible contribution to systemic
risk. The asset originator would see their risk measure rise marginally if hedging were
incomplete. The seller of insurance would also see their risk measure rise marginally.
If other institutions create similar assets and purchase the same insurance the total
risk is increased rather than decreased through diversification. Therefore, total risk in
the system rises through credit creation and might be hidden if the originators offload
their risk to non-regulated firms. Even if regulators presumably monitor the insurers,
coherent systemic risk measures ignore counterparty risk. Diversification of assets out
of the formal banking sector has led to rapid growth in the total amount of assets
held by banks (de Vries 2005). Should one or more counterparties from outside the
formal sector fail, the banking system may suddenly reclaim massive amounts of risk
presumably insured or diversified out of the financial system. In the period leading up
to the failure of an unmonitored firm, systemic risk measures might have suggested
systemic riskwas low. This happened in the recent crisiswhenLehmanBrothers failed,
leading to fire sales, margin spirals, and other systemic events.

Furthermore, the linear homogeneous assumption implies a doubling of the size of
a portfolio simply doubles the risk. One bad mortgage might have an expected loss of
$100,000, but if a systemic crisis erupts, ten thousand badmortgagesmight have losses
of $200,000 each, violating the linear homogeneous assumption. The basic problem
is that the probabilities or payoffs in real world black swan events are never actually
known. Coherent riskmeasures are practically useless from amacroprudential point of
viewwhen considering the robustness of a system that includes very large unmonitored
sectors. At the firm level, it is entirely possible thatmanagement does not care about the
states of the world in which the firm fails due to very low-probability/high-loss events.
However, systemic risk regulators should not blindly accept these types of measures

40 Cont et al. (2010) cites previous work by Ibragimov and Walden (2007) that shows diversification may
not decrease the risk of large tail events.
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for systemic well being. A potential solution would be for network researchers to
use methods similar to the stress test methodology presently employed by banks.
Network models could be calibrated to approximate reasonable risk measures (e.g.,
VaR, CoVaR, SES, etc…), and subsequently stress the same models using a variety of
narrow and broad shocks. One example of this method is Battiston et al. (2015) who
use theDebtRankmethodology to conduct stress-tests of 183 European banks between
2008 and 2013.41 In addition to estimating first-round external shocks, Battiston et al.
(2015) examine second-round (liquidity) and third-round (fire sale) effects in their
estimations. Their framework also includes calibrating their model to VaR and CoVaR
measures to provide a system wide understanding of vulnerability. This approach is
new in the literature, and can help incorporate the importance of network research to
the regulatory community.

Another problem in the current financial system is the abundance of assets with
poorly understood risks, unclear linkages across firms, and ignorance of what Taleb
(2010) refers to as meta-probabilities and incomputable risk.42 The risk measures
discussed above have been shown to rank the risk of different assets in a similar and
consistent way even with fat tailed assets (Daníelsson et al. 2006). While it might be
useful to know that these risk measures are consistent when distributions are known,
the ability to estimate the weight of the tails is flawed given limited data exposure.
More precisely, even when estimating power-law tail distributions of firm size we
should be skeptical of estimates of the exponents (Taleb 2010). If available data yields
an incorrectly high estimate for a power-law exponent, then risk measures will all be
consistent, and consistently underestimate risk.

With this in mind, it is worth noting that no meaningful definition of systemic
risk existed that would have applied in the recent crisis. Fundamentally the assets
that were created at the point of origination were knowingly more risky than some
safer assets, and yet no model examines how riskier assets at the origination stage
contribute to the load of systemic risk. Through diversification low-quality assets were
redistributed and held throughout the financial system. The ultimate derivative assets
were even more poorly understood and had begun to decline in value well before
the Bear Stearns and Lehman Brothers events. Any regulator would have needed
to prevent—or at least monitor—the accumulation of illiquid and risky assets and
the associated deterioration in lending standards. In the future, regulators cannot be
expected to prevent the widespread failure of complicated securitized assets created
from assets that were poorly designed at a fundamental level.

The prospect of charging fees for implicit insurance is themost notable feature of the
risk measures presented above. Forcing banks to internalize the cost of their implicit
guaranteesmight reduce the threat ofmoral hazard in the future.Using availablemarket
data gives an idea about whomight be the source of systemic risk and estimates of the
cost of their collapse. However, the portfolio method of analyzing systemic risk is too

41 di Iasio et al. (2013) perform a similar stress test of the Italian e-MID interbank market using the
DebtRank algorithm.
42 Knightian risk and uncertainty can be grouped together as both being incomputable if one agrees with
Taleb (2010) that real world probabilities and parameters used to estimate Knightian risk are unknown.
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reliant on knowing and including all the relevant entities that play a role in housing
systemic risk.

6 Conclusion

Researchers have made substantial progress in providing useful information regarding
what kind of conditions may lead to the creation of systemic events. With that being
said, there is conflicting theory and empirical evidence on several aspects of systemic
risk research, particularly as it relates to policy prescriptions. Changing assumptions,
algorithms, or the scope of analysis has provided conflicting theoretical predictions on
many issues. Increased connectivity and diversification leading to systemic stability
used to be thought of as a universal truth, but this theory has struggled to hold up
under recent empirical evidence and theoretical scrutiny. Contagion might only be a
faint risk, but if it does occur it is still expected to be a large and important event.
The network-based research reviewed here has shown that the severity of a systemic
event will depend on the structure of the market, and the agent behavior that created
the topology. Rather than simply mapping financial networks, recent research has
largely been about understanding the behavioral foundations of endogenous network
formation and the financial accelerators that are inherently part of the shock amplifi-
cation process. Network modeling can help determine which firms are systemically
most important, and working alongside more traditional researchers may help make
necessary progress through both competition and coordination.

Conflicting theory and evidence implies that regulators and researchers need to
gain an improved understanding of how topology, capital requirements, and liquidity
interact.43 In most countries, a few firms dominate the financial marketplace [e.g.,
Blåvarg and Nimander (2002), Boss et al. (2004), Castiglionesi and Navarro (2008),
Craig and Peter (2014), Iori et al. (2008)], and the tiered structures we see are often not
close to the complete network envisioned by theoretical work in this field (Allen and
Gale 2000; Babus 2005; Leitner 2005). With a core-periphery structure, heterogeneity
in firm size and connectivity is an important factor to consider in determining systemic
risk (Iori et al. 2008; Iazzetta and Manna 2009; Degryse and Nguyen 2007; Delpini
et al. 2013). However, the recent literature has shown that these are not the only
factors in determining who should be monitored and regulated. Generally, systemic
events are most likely to be caused by broad economic shocks (Upper 2011; Elsinger
et al. 2006a, b; Pokutta et al. 2011; Giesecke and Weber 2004; Aikman et al. 2009;
Drehmann 2009; Eisenberg and Noe 2001). However, many of these studies point out
that contagion from narrow shocks may still occur with extraordinary costs, where
weak networks are endogenously constructed with financial and leverage accelerators
playing an important role. Finally, increased diversification and risk-sharing is not
universally a good thing. Real-world market limitations and fragile networks can
mean increased diversification is a potential source of systemic risk (Battiston et al.
2012a, b; Mistrulli 2011). Topology matters, particularly when the economy is in a

43 Battiston and Caldarelli (2013) clearly makes this point. Allen and Gale (2003) discuss the theoretical
shortcomings as applied to capital requirements, while often advocating for looser capital requirements.
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crisis. In normal times, topology does not appear to matter much, and most financial
networkswill be resilient to all but the largest shocks.However, the leverage accelerator
approach provides an endogenous channel through which future risks can accumulate.
Once risks endogenously build to a significant degree, a small shock or change to the
system can lead to a systemic event. Thus, financial markets appear to endogenously
display robust-yet-fragile characteristics (Chinazzi and Fagiolo 2013;Gai andKapadia
2010; Gai et al. 2011; Haldane 2009a).

The ability to understand systemic risk suffers from a lack of transparency and
data at the level of the relevant entities being studied (Lo 2009; King et al. 2010;
Turner 2011). However, demands by regulators for additional data will continue to
suffer from the opacity of privately held institutions and the shadow-banking system,
implying that these networks will remain unmapped and thus not well understood.
Better data alone will not be enough however. Commonly employed market-based
systemic risk measures often neglect to take many aspects of complexity into account,
and fail to recognize that black swans are rare events with extreme and previously
unseen losses. Predicting future systemic risk using historical data and assuming the
market acts as a portfolio are fundamentally flawed from this perspective, and will
give regulators only a lower bound on the potential risk faced in the system (Cont
et al. 2010; de Vries 2005). The network approach partially addresses this dilemma
by accounting for contagious and counterparty effects, but must include the entirety
of the system to capture the potential problems raised by herding of unmonitored
institutions. Network modeling is not a universal remedy but it does help identify the
sources of contagion. Recent efforts to examine layered (i.e., multiplex) networks, and
the accelerator mechanisms that amplify small shocks are important additions to the
literature. Thurner and Poledna (2013) notes that the three networks that need a deeper
understanding are the interbank markets, credit-derivative networks, and collateral
networks. Agent-based models like those used to explain the accelerators, can further
improve the understanding of multiplex networks by incorporating heterogeneity in
assets, firm sizes, and behavioral responses by firms and the government. Bargigli
et al. (2015) is a notable addition to the multiplex literature, finding that the different
layers of the Italian banking networks are in fact structured differently. Poledna et al.
(2015) goes a step further than Bargigli et al. (2015) by studying data from Mexican
banks to how systemic risk might be measured in a multiplex. Utilizing the DebtRank
technique along with data on deposits, cross-holdings of securities, derivatives, and
foreign exchange, Poledna et al. (2015) track systemic risk on a daily basis between
2007 and 2013. They show that systemic risk is underestimated by nearly 90% and
is non-linear as risk compounds across layers of the financial system. Individual data
shortcomings prevent them from indicating which banks bear most of the risk, but this
early work on multiplex networks exemplifies both the need for network modeling
and the data deficiencies confronted by researchers.

Recently developedmeasures of systemic riskmight prove useful to regulatorswhen
attempting to determine if a firm’s eminent failure will lead to a financial panic or con-
tagion. With new measures in place regulators might take different actions depending
on the state of stress in the economy. Even with numerous systemic risk measures in
hand there is still no agreement on when the recent financial crisis began. Without
an independent organization similar to the NBER business cycle dating committee
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to declare the turning points of systemic events, it is still difficult to say what exact
moment was the beginning and end of the systemic event. Rather than signifying turn-
ing points, events like the failure of Long-Term Capital Management and the Lehman
Brothers bankruptcywere in all likelihood just notable occurrenceswhich led to further
declines in a fundamentally weak system. If macroprudential regulations are intended
to prevent widespread financial crises, they must also help avoid the emergence of
fragile systems. Regulations like increased capital and liquidity requirements can not
only work to prevent individual firms from failing during a broad systemic event,
but also protect the system from building up those risks in the first place. Unfortu-
nately increased capital and liquidity requirements have significant tradeoffs of slower
growth and a potentially more fragile system. Furthermore, there is no consensus on
what level capital or liquidity requirements should be set at, who should be subject to
the provisions, or how they should be applied to different assets or countries. Another
important tradeoff of raising requirements or requiring more transparency is that risk
can be chased into the shadow banking system. Here, it is not clear if market discipline
and competition can perform any better given the opacity of financial markets. Thus,
a piecemeal approach is necessary for effective financial regulation since it is unlikely
that any one-size-fits-all regulatory approach will work across markets or borders.

Regulators will never be able to prevent all future systemic crises but can hope to
have a better understanding of how and where they might manifest and to stop con-
tagion. It is highly unlikely that anyone would have had enough notice of the exact
entities that created the last crisis had these risk measures been in place before hand.
The scope of the problem was simply beyond any size-based measure categorizing
SIFIs. Those interested in understanding the complex nature of the economy should
be wary of focusing on prediction, and be particularly cautious of model error. Epis-
temological questions arise about whether models—complex or not—for measuring
systemic risk can be trusted for prediction. Instead, researchers should focus on the
goal of understanding what types of systems are more robust, and help craft more
effective regulation to reach that goal.
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