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Abstract The paper proposes an elementary agent-based asset pricing model that,
invoking the two trader types of fundamentalists and chartists, comprises four features:
(i) price determination by excess demand; (ii) a herding mechanism that gives rise
to a macroscopic adjustment equation for the market fractions of the two groups;
(iii) a rush towards fundamentalism when the price misalignment becomes too large;
and (iv) a stronger noise component in the demand per chartist trader than in the
demand per fundamentalist trader, which implies a structural stochastic volatility in
the returns. Combining analytical and numerical methods, the interaction between
these elements is studied in the phase plane of the price and a majority index. In
addition, the model is estimated by the method of simulated moments, where the
choice of the moments reflects the basic stylized facts of the daily returns of a stock
market index. A (parametric) bootstrap procedure serves to set up an econometric test
to evaluate the model’s goodness-of-fit, which proves to be highly satisfactory. The
bootstrap also makes sure that the estimated structural parameters are well identified.
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1 Introduction

In the last two decades numerous models with heterogeneous interacting agents and
simple heuristic trading strategies have been designed that in this way seek to con-
tribute to an explanation of the behaviour of financial markets.1 Guided by question-
naire evidence (Menkhoff and Taylor 2007), this literature focusses on the behaviour
of fundamental and technical traders.2 The latter, also called chartists, employ trading
methods that attempt to extract buying and selling signals from past price movements
(Murphy 1999). By contrast, fundamentalists bet on a reduction in the current mis-
pricing with respect to some fundamental value of the asset (see already Graham and
Dodd 1951).

Small models with extremely simple versions of these two strategies have proven
to be quite successful in generating dynamic phenomena that share central character-
istics with the time series from real financial markets, such as fat tails in the return
distributions, volatility clustering and long memory effects. Two features are partic-
ularly useful in this respect. First, a device that permits the agents to switch between
fundamentalist and technical trading, so that the market fractions of the two groups
endogenously vary over time. Second, the concept of structural stochastic volatility
(SSV henceforth). By this, we mean a random term that is added to the determinis-
tic “core demand” of each of the two strategies, which is supposed to capture some
of the real-life heterogeneity within the groups. Given that the two noise terms may
differ in their variance, the variations of the market fractions will induce variations
in the overall noise level of the asset demand, which then can carry over to the price
dynamics.

Several models with these features have been put forward and (partly) also success-
fully estimated by Franke (2010) and Franke and Westerhoff (2011, 2012a, b). The
present paper reconsiders a model of this origin that emphasizes a herding mecha-
nism. Here we wish to provide an in-depth inquiry into its dynamic properties, which
takes place in the phase plane of a majority index and the asset price. Integrating
analytical and numerical methods, this framework allows us to study the conditions
of a stochastic switching between a tranquil fundamentalist regime of relatively long
duration and a more volatile chartist regime of shorter duration. In this way, we are
able to go beyond the mere observation of a simulation outcome and obtain a better
understanding of why the model performs so effectively.

We also take up the issue of estimating this model once again, albeit with two new
aspects. First, the computation of the weighting matrix for the objective function is
based on an alternative bootstrap procedure, which we have not seen applied before
and which we believe is superior to the block bootstrap used in previous work. Apart

1 For recent surveys of this burgeoning field of research, see Chiarella et al. (2009), Hommes (2006),
Hommes and Wagener (2009), LeBaron (2006), Lux (2009a) and Westerhoff (2009), among others.
2 Other evidence is based on laboratory experiments; see, e.g., Heemeijer et al. (2009) or Hommes et al.
(2007).
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Simple herding model 3

from this improvement, wewish tomake sure that the resulting parameter estimates are
nevertheless robust. Second, complementary to themeasures of amodel’s goodness-of-
fit discussed in other contributions, we propose the concept of a more straightforward
p value. This statistic is derived from a large number of re-estimations of the model
which, in particular, give us a distribution of the minimized values of the objective
function under the null hypothesis that the model is true. The model fails to be outright
rejected if this p value exceeds the five per cent level; and the higher it is, the better
the fit.

The estimation approach itself, which proves most suitable for our purpose of
reproducing the aforesaid stylized facts, is the method of simulated moments (MSM).
“Moments” refers to the time series of one or several variables and means certain
selected summary statistics computed from them, the empirical values of which the
model-generatedmoments should try tomatch. In our case, the latter have no analytical
expressions but must be simulated. Hence the estimation searches for the parameter
values of a model that minimize the distance between the empirical and simulated
moments, where the distance is defined by a quadratic loss function (specified by
the weighting matrix mentioned above). In the present context, the moments that we
choosewill reflectwhat is considered to be themost important stylized facts of the daily
stock returns from the S&P 500 stock market index, in particular, volatility clustering
and fat tails. After all, this is what the evaluation of the models in the literature usually
centres around. It thus also goes without saying that the MSM estimation approach
may equally be applied to other financial market models of a similar complexity.3

The remainder of the paper is organized as follows. The model is introduced in the
next section. In Sect. 3 its dynamic properties are studied in the phase plane, first in
a deterministic and then in the full stochastic setting. Section 4 briefly recapitulates
the MSM approach, carries out the estimation on the empirical moments and then
applies the econometric testing of the model’s goodness-of-fit. At the same time these
computations provide us with the confidence intervals of the estimated parameters.
Section 5 concludes. Several appendices are added for the discussion of finer details.
Appendix 1 summarizes the value added of the present paper vis-à-vis previous work.
Appendix 2 contains a few remarks on the technical treatment of our herding mecha-
nism in the earlier literature. The mathematical proofs of two propositions in the main
text are relegated to Appendices 3, 4 and 5 collect some estimation details.

2 Formulation of the model

2.1 Excess demand and price adjustments

We consider a financial market for a risky asset on which the price changes are deter-
mined by excess demand. The market is populated by two types of speculative traders,
fundamentalists and chartists. Fundamentalists have long time horizons and base their

3 The choice of MSM does not rule out that other estimation methods may be tried as well. For a brief
summary of the comparative advantages of MSM, see Franke (2009, pp. 804f). In our opinion, its main
merits are the high transparency in the evaluation of a model’s goodness-of-fit, and the relatively low
computational cost.
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4 R. Franke, F. Westerhoff

demand on the differences between the current price and the fundamental value. Even
though they might expect the gap between the two prices to widen in the immediate
future, they do not trade on the likeliness of this event and rather choose to place their
bets on an eventual rapprochement. Chartists, on the other hand, have a short-term per-
spective and bet on the most recent price movements, buying (selling) if prices have
been rising (falling). However, the agents are allowed to switch from one strategy to
the other, where their choice is governed by a herding mechanism combined with an
evaluation of the most recent price levels.

Let us start with the demand for the asset.4 We join numerous examples in the liter-
ature and, in the first step, postulate two extremely simple deterministic rules. These
rules govern what we may call the core demand in each group. For the fundamental-
ists, this demand is inversely related to the deviations of the (log) price pt from its
fundamental value p�, where we treat the latter as an exogenously given constant (for
simplicity and to show that no random walk behaviour of the fundamental value is
required to obtain the stylized facts). On the other hand, the core demand of the group
of chartists is hypothesized to be proportional to the returns they have just observed,
i.e. (pt − pt−1), where as already indicated, the time unit may be thought of as one
day.

A crucial feature of our models is that we add a noise term to each of these demand
components (and not just their sum). The two terms are meant to reflect a certain
within-group heterogeneity, which we do not wish to describe in full detail. Since
the many individual digressions from the simple rules as well as their composition
in each group will more or less accidentally fluctuate from period to period, it is
a natural short-cut to have this heterogeneity represented by two independent and
normally distributed random variables ε

f
t and εc

t for the fundamentalists and chartists,
respectively.5 Combining the deterministic and stochastic elements, the net demands
of an average fundamentalist and chartist trader for the asset in period t are supposed
to be given by

d f
t = φ (p� − pt ) + ε

f
t ε

f
t ∼ N (0, σ 2

f ) φ > 0 (1)

dc
t = χ (pt − pt−1) + εc

t εc
t ∼ N (0, σ 2

c ) χ ≥ 0 (2)

where here and in the following Greek symbols denote constant and nonnegative
parameters. Total demand (normalized by the population size) results frommultiplying
d f

t and dc
t by the market fractions of the two groups.

4 To be exact, by demand we mean the orders (positive or negative) per trading period, not the desired
positions of the agents.
5 For example, individual and presently active traders with a fundamentalist strategy may adopt different
values for their fundamental price, they react with different intensities to their trading signal, or they exper-
iment with more complex trading rules which may also be continuously subjected to further modifications.

Similarly so for the chartists, which explains the independence of ε f
t and εc

t . In short, the two noise variables
can be conceived of as a most convenient short-cut of certain aspects that are more specifically (but to some
extent also more arbitrarily) dealt with in models with hundreds or thousands of different agents that one
would have to keep track of over time (see Farmer and Joshi 2002; LeBaron 2006).
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Simple herding model 5

It is an intricate matter to judge whether or not the stochastic noise may “dominate”
the deterministic terms in (1) and (2). More specifically, it may be observed that a
higher signal-to-noise ratio within the fundamental rule (1) implies a stronger mean-
reversion, which would eventually lead to (counterfactual) negative autocorrelations
in the raw returns. On the other hand, a higher signal-to-noise ratio within the chartist
rule (2) will bring about more pronounced bubbles and thus positive autocorrelations
in the returns (which would equally be counterfactual). We will leave it to the data
to decide about the levels of these ratios and, in particular, whether the coefficients φ

and χ are significantly different from zero. In this regard, it may be noted that χ = 0
would turn the chartists into pure noise traders. Even the additional assumption of
a zero variance σ 2

c = 0 would make sense; under these circumstances ‘chartism’ is
tantamount to not trading at all. In other words, the agents would choose between
fundamentalist strategies and complete inactivity.6

Concerning the market fractions of fundamentalism and chartism, it will be conve-
nient below to fix the population size at 2N . Then, with n f

t and nc
t being the number

of fundamentalists and chartists, define xt := (n f
t − nc

t )/2N as the majority index
of the fundamentalists. By construction, xt is contained between −1 (all traders are
chartists) and +1 (all traders are fundamentalists). Expressing the population shares
of the two groups in terms of this index yields7

n f
t /2N = (1 + xt )/2, nc

t /2N = (1 − xt )/2 (3)

Total (normalized) excess demand,which is thus given by (1+xt ) d f
t /2+(1−xt ) dc

t /2,
will generally not balance. Amarket maker is assumed to absorb any excess of supply,
and to serve any excess of demand from his inventory. He reacts to this disequilibrium
by changing the price for the next period, where we make use of the derivation of
the market impact function in Farmer and Joshi (2002, p. 152f), according to which
the market maker adjusts the price with a factor μ > 0 in the direction of excess
demand.8 The coefficient μ is inversely related to market liquidity, or market depth.
Following common practice in models that do not further discuss the microstructure
of the market, it is treated as a fixed parameter. In sum, the equation determining the
price for the next period t + 1 may be written as

pt+1 = pt + μ

2

[
(1 + xt ) φ (p� − pt ) + (1 − xt ) χ (pt − pt−1) + εt

]
(4)

6 In actual fact, χ = σc = 0 results from an estimation of the USD–DEM exchange rate; see Franke and
Westerhoff (2011, Section 7). The situation for φ = 0 and, possibly, σ f = 0 would be formally analogous.
In this case, however, the price dynamics would no longer be anchored on the fundamental value.
7 To see this, define nt = (n f

t − nc
t )/2 = xt N , write the identity n f

t + nc
t = 2N as n f

t /2 = N − nc
t /2

and add n f
t /2 on both sides of this equation. This yields n f

t = N + nt and, after division by 2N , the first
part of Eq. (3). The derivation of the second part is analogous.
8 As usual in this kind of framework, any other feedbacks when his inventory continues to deviate from
some target are ignored, which (in a stochastic model) is clearly an inconsistency. It could be removed by
adding the risk aversion concept of the market maker (and also the other agents) studied in Franke and
Asada (2009). We forgo this option to avoid blurring the central mechanisms of the model.
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6 R. Franke, F. Westerhoff

εt ∼ N (0, σ 2
t ), σ 2

t = [(1 + xt )
2 σ 2

f + (1 − xt )
2 σ 2

c ] / 2 (5)

Equation (5) is derived from the fact that the sum of the two normal distributions in
(1) and (2), which are to be multiplied by the market fractions (1 ± xt )/2, is again
normally distributed, with mean zero and the variance being equal to the sum of the
two single variances. Obviously, if σ 2

f and σ 2
c are different, σ 2

t will change with the

changes in the majority index xt . The time-varying variance σ 2
t will, in fact, be a key

feature of the model. While this stochastic volatility component might be akin to a
GARCH-type of modelling, we stress that it is not just a handy technical device but
emerges from a structural (though parsimonious) modelling approach. The random
components introduced in the formulation of the group-specific demandmay therefore
be said to give rise to structural stochastic volatility (SSV) in the returns (i.e. the log
differences in prices).9

Before continuing, a general feature is worth pointing out. First, in a pure chartist
regime, xt ≡ −1, the two-dimensional price process is easily seen to have a zero
and a unit root. Second, in a pure fundamentalist regime, xt ≡ 1, the root of
the one-dimensional price dynamics is 1 − μφ, where in estimations the prod-
uct μφ turns out to be around 0.01 or less. Hence there is broad scope for per-
sistent price misalignment, which is certainly a good general selling point for the
model.

2.2 Evolution of the market fractions

The model is completed by setting up the motions of the majority index xt . In light
of earlier presentations in the literature (e.g. Weidlich and Haag 1983; Lux 1995), we
wish to emphasize that xt is the index actually prevailing in period t (and not some
expected value; see the discussion in Appendix 2). The index is predetermined in each
period, and only changes from one period to the next.10

The law governing the adjustments of xt rests on the supposition that in period t
all fundamentalists, whose population share is (1 + xt )/2, have the same transition
probability π

f c
t to convert to chartism, and all chartists, whose population share is

(1− xt )/2, have the same probability π
c f
t to convert to fundamentalism. If the number

of agents is sufficiently large, the intrinsic noise from different realizations when the
individual agents apply their random mechanism can be neglected. So the changes in
the groups are given directly by their size multiplied by the transition probabilities.

9 Randomized demand functions of heterogeneous traders were also considered in Westerhoff and Dieci
(2006) and Westerhoff (2008). The idea as such may be traced back to Westerhoff (2003). However, the
implied feature of stochastic volatility and its scope for matching certain stylized facts of (daily) returns
was not fully elaborated there. More on the particular effects of SSV can be learned from the investigation
in Franke (2010), where this principle of heterogeneous noise was incorporated into two other model types.
10 This is different from the discrete choice approach, which is a constituent part of the Brock–Hommes
(1998)model variety. There, the population shares of the agents—and not their rates of change—are directly
a function of the state variables of the model. However, introducing an asynchronous updating of strategies
in the latter, it becomes essentially the same as the Weidlich–Haag–Lux approach (see the discussion in
Franke 2013).
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Simple herding model 7

Accordingly, the population share of the fundamentalists decreases by π
f c

t (1+ xt )/2
due to the fundamentalists leaving this group, and it increases by π

c f
t (1 − xt )/2

because of the chartists who newly join this group. As a net effect, the following
deterministic adjustment equation for xt is obtained,11

xt+1 = xt + (1 − xt ) π
c f
t − (1 + xt ) π

f c
t (6)

As indicated by the time subscripts, the two transition probabilities are not constant.
The effects determining their changes over time are summarized in a switching index
s = st . An increase in st is supposed to increase the probability that a chartist becomes
a fundamentalist, and to decrease the probability that a fundamentalist becomes a
chartist. Assuming that the relative changes of πc f

t and π
f c

t in response to the changes
in st are linear and symmetrical, the specification of the transition probabilities reads
(where ‘exp’ is the exponential function),12

π
c f
t = πc f (st ) = ν exp(st ), π

f c
t = π f c(st ) = ν exp(−st ) (7)

Certainly, (7) ensures positive values of the probabilities. They also remain below
unity if the switching index is bounded and ν is sufficiently low.13

A special feature of (7) is π
c f
t = π

f c
t = ν > 0 in a situation st = 0. Hence

even in the absence of active feedback forces in the switching index, or when the
different feedback variables behind st neutralize each other, the individual agents will
still change their strategy with a positive probability. These reversals, which can occur
in either direction, are ascribed to idiosyncratic circumstances. Although they appear
as purely random from a macroscopic point of view, in the aggregate they will only
cancel out in a balanced state when xt = 0. For nonzero values of the switching
index, on the other hand, the coefficient ν measures the general responsiveness of the
transition probabilities to the socio-economic aspects summarized in st . So ν may be
generally characterized as a flexibility parameter (Weidlich and Haag 1983, p. 41).

The switching index itself is specified as follows,

st = s(xt , pt ) := αo + ax xt + αm · (pt − p�
t )

2 (8)

The coefficient αo can be interpreted as a predisposition parameter, since in a state
where the other effects in (8) cancel out, a positive αo gives rise to a probability π

c f
t

11 In contrast to the more elaborate treatment in Lux (1995, 1997), this reasoning, which can also be found
in Lux (1998, p. 149), is sufficient for an infinite population. A rigorous mathematical argument that begins
with a finite population size and the intrinsic noise it implies is spelled out in Franke (2008a; 2008b).
12 The precise hypothesis is dπ

c f
t /π

c f
t = α dst and dπ

f c
t /π

f c
t = −α dst for some constant α, which

may be unity without loss of generality (since st may be arbitrarily scaled). Integrating these relationships
with an integration constant ν yields (7).
13 As it depends on the other parameters in the model, it is a priori not clear what “sufficiently low” would
exactly mean. When for the numerical simulations we had to settle down on a specific positive value of ν,

we checked that indeed the upper-bound of unity for π
c f
t , π f c

t was never reached.
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8 R. Franke, F. Westerhoff

of switching from chartism to fundamentalism that exceeds ν = ν · exp(0), while the
reverse probability π

c f
t is less than ν (and vice versa for αo < 0).

The second term on the right-hand side of (8) captures the idea of herding. The
greater the number of traders who are already fundamentalists (i.e. the higher xt ), the
higher the probability that the remaining chartists will also convert to fundamentalism
(and vice versa, since xt < 0 if chartists are in the majority). In addition, it will be
seen in the analysis below that suitable values of αx , which may be called a herding
parameter, can give rise to one, two or three equilibrium points of the deterministic
skeleton of the model.14

With αm > 0, the third term in (8) measures the influence of misalignment, or
distortion. The idea behind it also has some empirical support. It states that when the
price is further away from its fundamental value, “professionals tendmore andmore to
anticipate” its “mean-reversion towards equilibrium” (Menkhoff et al. 2009, p. 251).
In our context, this means that the probability of becoming a fundamentalist rises.
The underlying expectations should actually be self-fulfilling and should constitute a
stabilizing mechanism, by virtue of the negative feedback in the core demand (1) of
the fundamentalists.

To sum up, the two central dynamic equations of the model are (i) the price adjust-
ments (4), (5) with the structural stochastic volatility component σ 2

t , and (ii) the
changes in the majority index xt described in (6)–(8), which basically represent a
herding dynamics curbed by a control for strong price misalignment. The pivotal
point of the model is that the time-varying population shares from the mechanism in
(ii) feed back on the variance σ 2

t in (i) and may therefore lead to variations in price
volatility.

3 How the model functions

3.1 The deterministic skeleton

Although the structural stochastic volatility in the form of the time-varying variance in
(5) is essential to themodel’s desired properties, it is useful to analyze the deterministic
skeleton in order to understand how the model works. To this end, we first study
the number of equilibrium points and their location as two of the parameters in the
switching index (8) are varied. Subsequently, the nature of the resulting dynamics is
sketched in phase diagrams in the (xt , pt )-plane. The discussion does not deal with all
of the phenomena that are a priori possible. Instead, we concentrate on the cases that
lead, step by step, to the scenario that will generate the stochastic trajectories with the
desired properties.

To begin with the deterministic equilibrium points, it is clear from themarket maker
Eq. (4) that the price is at rest if and only if it coincides with the fundamental value p�.
On the other hand, as it is typical for models employing the switching mechanism (6),

14 There are several stories about theways inwhich xt influences the transitionprobabilities. If the individual
agents base their switching decision on the publicly available knowledge of the current majority index, these
observations might also involve some noise. We disregard this option for simplicity.
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Simple herding model 9

(7), the majority index can attain multiple equilibrium values. The cases of interest to
us are collected in a separate proposition. Its proof is given in Appendix 3.

Proposition 1 A stationary point of the deterministic skeleton of the dynamic system
formulated in Sect. 2 is constituted by a price p = p�, while the following cases can
be distinguished for the majority index x:

(a) If the herding parameter satisfies 0 < αx < 1, then there exists a unique interior
equilibrium value xo of the majority index.

(b) If the herding parameter exceeds unity and the predisposition parameter is zero,
αx > 1 and αo = 0, then there exist three equilibrium values xcd , xo, x f d of the
majority index, with −1 < xcd < xo < x f d < 1. This configuration is maintained
if αo is moderately lowered below zero (or increased above zero).

(c) If for given αx > 1 the predisposition parameter αo is sufficiently negative, then
again a unique interior equilibrium value xcd of the majority index exists, which
is closer to −1 than the value of xcd brought about by αo = 0.

Clearly, the superscript cd for the majority index indicates a distribution of trading
rules where the chartists dominate, and fd represents one where fundamentalism is
dominant.15 Often multiple equilibria configurations, such as that in part (b), are
a good basis for interesting dynamic phenomena; in particular, because the outer
equilibria typically prove to be attracting and can thus be said to describe ‘bubble
equilibria’, i.e. a persistently bullish or bearish market, respectively (a characteristic
example of this is analyzed in Lux 1995). In the present model, however, it is part (c)
of the proposition with its dominance of chartist traders that will turn out to be the
most promising situation for our purpose, i.e., for generating volatility clustering in
the stochastic model further below.

In the next step of the analysis we turn to the deterministic motions of the market
fractions of traders. We need to know in which regions of the state space the majority
index rises or falls. As is easily seen from (6) to (8), the change in x depends only
on the contemporaneous values of x itself and the price. Hence the movements of
the majority index can be conveniently sketched in the (projection onto the) phase
plane for the variables (xt , pt ). The basic information for this is given by the isoclines

xt+1 = xt+1 − xt = 0, that is, the geometric locus of all pairs (xt , pt ) on which
(6)–(8) would temporarily cause xt to come to a halt. The description of the isoclines
and whether xt increases/decreases above or below them in the plane makes use of the
following function g(·) of the majority index,

g(x) := αo + αx x − 1

2
ln

[1 + x

1 − x

]
(9)

The analytical conditions on the combinations of (xt , pt ) under which xt rises or falls
are summarized by the next proposition. Its proof can again be found in Appendix 3.

15 Symmetrically to point (c) in the proposition, a sufficiently positive predisposition parameter αo would
establish a unique equilibrium value of x = x f d where fundamentalism takes over. As has just been stated,
this situation will be of no concern to us.
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10 R. Franke, F. Westerhoff

Table 1 Numerical benchmark parameters (rounded)

φ 0.198 Aggressiveness of fundamentalists in the market

χ 2.263 Aggressiveness of chartists

σf 0.782 Noise in fundamentalist demand

σc 1.851 Noise in chartist demand

μ 0.010 Market impact factor of demand

p� 0.000 Log of fundamental value

ν 0.050 Flexibility parameter in the population dynamics

αo −0.155 Predisposition parameter in the switching index

αx 1.299 Herding parameter in the switching index

αm 12.648 Misalignment parameter

Proposition 2 (a) Suppose the majority index in a period t brings about g(xt ) = 0.
Then xt+1 > xt if at the same time pt �= p�, and xt+1 = xt if pt equals the
fundamental value.

(b) The case g(xt ) > 0 implies xt+1 > xt , irrespective of the current level of the
price.

(c) Suppose g(xt ) < 0 . Then xt+1 > xt if either

pt > p� + √−g(xt )/αm or pt < p� − √−g(xt )/αm .

Furthermore, xt+1 = xt if equality prevails in these relationships, and xt+1 < xt

if the inequality signs are reversed.

The geometric locus of the isocline 
xt+1 = 0 is therefore given by the equality
relationship in Proposition 2(c). Deducing the properties of g(·) and the square root
function from a general mathematical analysis would be possible but rather cum-
bersome and not very illustrative. On the other hand, a few numerical examples are
sufficiently informative about the number of equilibria, the shape of the isocline in
the phase plane, and the cases of different branches that may have to be distinguished
(in the latter case we may also use the plural, isoclines). As can be seen from Propo-
sition 2, the isocline depends on the three parameters αo, αx , αm in the switching
function only. For a plot of some typical trajectories, however, the other reaction coef-
ficients are required as well. Table 1 presents a benchmark parameter scenario for
this investigation. Including the standard deviations for the noise terms, it actually
anticipates the result of the estimation in Sect. 4, where the underlying time unit is
one day. Of course, the values p� = 0 and μ = 0.010 are just a matter of scaling, and
for the present analysis of the deterministic model we put σf = σc = 0.

Regarding the role of the coefficients αo, αx , αm , let us first consider the herding
parameter αx . This is best done by abstracting from a possible predisposition towards
chartism or fundamentalism. So for the moment being we set αo equal to zero, adopt
the other parameter values (except σf , σc) from Table 1, and plot the equilibria and
isoclines from Propositions 1 and 2 for selected values of αx in Fig. 1.
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Simple herding model 11

Fig. 1 Phase diagrams of the deterministic skeleton under ceteris paribus variations of the herding para-
meter αx .Note: αo = σf = σc = 0, other parameters from Table 1. Thin (green) solid lines are the isoclines

xt+1 = 0

The upper-left panel shows the outcome for a relatively low level of herding, αx =
0.50. Here, as stated in Proposition 1(a), we have a unique equilibrium (x�, p�), which
by virtue of αo = 0 is given by (x�, p�) = (0, 0) and which is globally attracting.16

The isocline 
xt+1 = 0, the thin (green) solid line, divides the plane into two regions
in which xt increases and decreases, respectively. The sample trajectories, the bold
(blue) lines, indicate that left to the isocline the majority index rises so fast relative
to the price that the motion is almost horizontal. We emphasize that such a phase of
temporarily strongherding in the convergence process is a universal phenomenon in the
model; we find it for practically all parameter combinations that are of any relevance.
On the price side, the main reason for it is the relatively low value of φ in comparison
with χ , which limits the mean-reverting tendencies from the fundamentalist strategy.
But once again, this only applies in a part of the phase plane.

It may also be noted in the first panel that near the equilibrium the upper branch of
the isocline is a concave function, and it eventually becomes convex for x sufficiently
high (of course, the lower branch is symmetric to this). A ceteris paribus increase of
αx shifts the point of inflection closer and closer to the equilibrium, until at αx = 1.00
the entire branch is a convex function. This case is illustrated in the upper-right panel
in Fig. 1.

According to Proposition 1(b), a qualitative change occurs when nowαx rises above
unity. In thisway the previously stable equilibrium (x�, p�) = (0, 0) becomes unstable
(indicated by the empty dot) and two new equilibria arise symmetrically to its left and
its right, which are locally stable (indicated by the filled dots). The lower-left panel in
Fig. 1 illustrates the situation for the minimal increase up to αx = 1.010. The isocline

xt+1 = 0 from the upper two panels remains qualitatively the same, except that it

16 A mathematical proof is omitted.
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12 R. Franke, F. Westerhoff

is no longer anchored in (x�, p�) = (0, 0) but in the equilibrium (x f d , p�) ≥ (0, 0)
(and there is no symmetry in that no isocline runs through the opposite equilibrium).
The fundamentalist equilibrium attracts the great majority of all motions, while the
basin of attraction of its chartist counterpart (xcd , p�) is so small that none of our three
sample trajectories happens to converge to it.

Since (xcd , p�) is so close to the inner equilibrium (0, p�), we cannot see what
happens in the small region between the two. This dynamics becomes clear when αx

is increased to our benchmark value αx = 1.299 in the lower-right panel, the reaction
being that the (unstable) inner equilibriumstays put and the other two (stable) equilibria
shift to the outside. In this way a second part of the isocline grows and forms a lens
between xcd and x� = 0, withinwhich themarket converges to the chartist equilibrium
(the lens is already present, though hardly visible, in the lower-left panel).

We may so far distinguish between weak and strong herding; weak herding is
constituted by αx ≤ 1 in the upper two panels in Fig. 1 with their unique equilibrium
at (x�, p�) = (0, 0), and strong herding prevails for αx > 1 in the lower two panels.
The latter brings about two additional bubble equilibria, where the higherαx , the larger
the corresponding majority of fundamentalists or chartists, and the broader the scope
for convergence towards (xcd , p�) by increasing the lens just mentioned.

Interestingly, the estimation suggests strong herding. However, besides fixing the
herding coefficient at αx = 1.299, it also advises us to decrease the predisposition
parameter αo below zero. Let us see in Fig. 2 what this means for the isoclines and
equilibria.

To begin with, the top-left panel reproduces the situation αx = 1.299 and αo =
0.000 from Fig. 1. The effect of a moderate decrease in αo to αo = −0.10, which
represents a moderate predisposition towards chartism, is that the
xt+1 = 0 isoclines
in the left and right half of the plane move towards each other; see the top-right panel
in Fig. 2. In particular, the inner equilibrium is no longer fixed but moves to the right,
too. Nevertheless, the trajectories remain largely unaffected. It requires a stronger bias
towards chartism (a stronger fall of αo) for the system to undergo a structural change,
such that in line with Proposition 1(c) the fundamentalist equilibrium disappears.
Geometrically, when αo further declines below −0.10, the two equilibria (xo, p�)

and (x f d , p�) first collapse into a single point and then dissolve, so that the separate
two original isoclines are now connected. This has happened in the middle-left panel,
where αo attains the value of the benchmark scenario from Table 1, αo = −0.155.

Here the chartist equilibrium (xcd , p�) is not only unique but also globally stable.
This derives from the fact that the price increases (decreases) if pt < p� (if pt > p�);
that the majority index xt decreases if the system is inside the region bounded by the
upper and lower branch of the isocline; and that eventually every trajectory will enter
this region (which can also be algebraically verified). Moreover, as already observed
in Fig. 1, farther away from the isocline the price reactions are so slow relative to the
strategy changes that the motions of (xt , pt ) trace out almost horizontal lines.

The trajectory starting in the lower-left corner of the middle-left panel illustrates
the stabilizing force of the misalignment component in the switching mechanism
(represented by the parameter αm in (8)). Due to the strong initial misalignment, the
market first moves straight into the fundamentalist region. However, there is no more
fundamentalist equilibrium towards which it could converge or around which it could
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Simple herding model 13

Fig. 2 Phase diagrams of the deterministic skeleton under ceteris paribus variations of αo and αm . Note:
σ f = σc = 0, other parameters (in particular, αx = 1.299) from Table 1

fluctuate. Hence, sooner or later such a trajectory must return to the chartist region.
On this path, the switches in strategy will again be relatively fast once the trajectory
disconnects from the isocline in the local maximum (minimum) in the lower (upper)
half of the phase plane. Now the price misalignment is of secondary importance, and
the herding mechanism reinforced by the predisposition effect (the behavioural bias
towards chartism) re-establishes a chartist regime.

The main features of the 
xt+1 = 0 isocline are maintained under the parameter
variations considered in the remaining three panels of Fig. 2. As shown in the middle-
right panel, it makes good sense that a stronger predisposition towards chartism (a
further ceteris paribus decrease in αo) enlarges the region where convergence takes
the form of a declining xt , i.e. where the market fraction of the chartists steadily
increases. Likewise, a weaker or stronger influence of price misalignment (lower or
higher values of the coefficient αm in the lower two panels, with αo reset to −0.155))
widen or narrow, respectively, this region in the phase space with its dominance of the
herding mechanism.

In sum, the three parameters αx , αo, αm fulfil the following tasks: a sufficiently
strong herding αx brings the two bubble equilibria into existence; a sufficiently strong
predisposition towards chartism (αo sufficiently negative) lets the fundamentalist as
well as the inner equilibrium disappear; and the aversion αm against the risk of price
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14 R. Franke, F. Westerhoff

misalignment governs the curvature of the 
xt+1 isocline. The latter becomes impor-
tant for fine-tuning the volatility clustering in the stochastic dynamics in the next
subsection. This extension will also qualify the significance of the remaining, glob-
ally stable chartist equilibrium in the deterministic setting; there will still be sufficient
scope for a temporary fundamentalist regime.

3.2 The stochastic dynamics

Let us now study the full model that includes the daily random perturbations to the
price. The numerical parameters are those from Table 1. On the basis of the determin-
istic dynamics in the middle-left panel of Fig. 2, a first and immediate idea might be
that not many interesting things can happen here since themarket will eventually settle
down in a region around the unique and globally stable chartist equilibrium. While
the general noise σ 2

t in the system would perhaps be high, the variations of the result-
ing volatility of the returns would be rather limited, leaving not much room for long
memory effects or a non-normal distribution of the returns. This reasoning, however,
does not take into account that a sequence of the random shocks εt in (4) may cause
the system to jump across the 
xt+1 = 0 isocline. If this happens at a stage where xt

has declined towards the chartist equilibrium value and the noise level σ 2
t from (5) has

increased accordingly, the motion would be reversed towards fundamentalism and σ 2
t

may even systematically decline again for a while.
In order to check whether events of this type might be able to lead to significant

clusters of low and high volatility, the model has to be simulated. The first three panels
in Fig. 3 present a sample run over 6,867days. These roughly 27 years cover the same
time span as the empirical returns from the S&P 500 stock market index, which is
plotted in the bottom panel.17

The top panel in the figure illustrates the model-generated fluctuations of the (log)
price around the fundamental value p� = 0. They clearly reproduce the informal
stylized fact of fairly long and irregular swings with a considerable amplitude. The
second panel displays the corresponding composition of the traders in the form of
the market share of chartists, nc

t /2N = (1 − xt )/2 as stated in (3). It shows that the
market is ruled by the fundamentalists most of the time. Every now and then, however,
a relatively rapid motion to a chartist regime is observed. Normally these regimes do
not last very long, although there are exceptions where chartists are in the majority for
even more than one year (roughly 300 days from t = 3,450 onward). The conditions
for these features to occur will become clearer from the discussion of Fig. 4.

Comparing the upper two panels in Fig. 3, it can be seen that fundamentalists take
over in the presence of stronger mispricing, and chartists only gain ground when the
price returns to the fundamental benchmark. This phenomenon is easily explained by
the term αm (pt − p�

t )
2 in the switching index st in (8), higher values of which increase

the probability that the agents convert to fundamentalism rather than to chartism. In

17 Reckoning 250 days per year. Specifically, the empirical sample period is January 1980 to March 2007
(just before the financial crisis began to unfold).
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Simple herding model 15

Fig. 3 Sample run of the model and empirical daily returns. Note: Numerical parameters from Table 1.
Vertical dotted lines indicate the subperiods shown in Fig. 4

combination with the other parameters, αm ≈ 12 is high enough for this mechanism
to become effective.

The third panel in Fig. 3 demonstrates the implications of the irregular regime
switches for the returns rt , which are specified in percentage points,

rt := 100 · (pt − pt−1) (10)

Owing to the greater variability in chartist demand vis-à-vis fundamentalist demand,
σ 2

c > σ 2
f in (1), (2) or (4), (5), respectively, the noise level in the returns during a

chartist regime exceeds the level in a fundamentalist regime. Since the fundamentalists
dominate the market over longer periods of time, it looks as if a certain “normal” noise
in the returns is occasionally interrupted by outbursts of increased volatility. In other
words, the pattern in the evolution of the simulated returns can indeed be characterized
as volatility clustering.
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16 R. Franke, F. Westerhoff

Fig. 4 Subperiods of sample run from Fig. 3 in the phase plane. Note: As indicated by the (red) empty
dots, panel 1 (top-left) starts from (x, p) = (0.64, 0.036), panel 2 (top-right) from (0.34, 0.086), panel 3
(middle-left) from (0.39, 0.018), panel 4 from (0.92, −0.205), panel 5 from (0.51, −0.056), and panel 6
from (−0.73,−0.119)

The bottom panel in the diagram displays the daily returns from the S&P 500 over
the same time horizon. A comparison with the third panel shows that the qualitative
pattern of the alternation of periods of tranquillity and volatility in the returns is similar
for the simulated and empirical series. Also the quantitative outbursts are comparable
in size (note that the two panels do not have the same scale). Differences can be seen in
the bandwidth of the returns in the periods of relative tranquillity.While the noise level
is then constant in the simulated series, the empirical series exhibits certain changes
from the first, say, 1,800days of the sample to the period between t = 3,000 and
t = 4,000, where the band becomes narrower, and from there to the end of the series,
where the band again widens somewhat. Obviously, a simple model cannot easily
endogenize these more refined ‘regime shifts’, if they were found to be significant at
all.

To obtain a better understanding of what we observe in the time series diagrams,
let us follow the dynamic evolution of the market over six consecutive subperiods in
the phase diagrams of Fig. 4. These periods are indicated by the vertical dotted lines
in Fig. 3. The 
xt+1 = 0 isocline is reproduced from the middle-left panel in Fig. 2,
but the vertical price axis now covers a wider range.
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Simple herding model 17

The discussion of Fig. 4 begins at t = 1,750, when the system is at (xt , pt ) =
(0.64, 0.036) and the chartist share amounts to 18 per cent. The system remains in
the inner region bounded by the two branches of the 
xt+1 = 0 isocline and, in
herding towards the chartist equilibrium, hovers around the fundamental value for
more than one hundred days. Then the shocks start to shift the market to the upper
isocline. Eventually, after 8.5 months at t = 1,927, the market crosses it—at a time
when the market fraction of the chartists has risen to almost 80 per cent. From then
on, the trajectory (essentially) stays above the isocline for the next few hundred days,
and the misalignment mechanism in the switching index leads the market back to a
fundamentalist regime. Note that it nevertheless takes a while until the chartist share
falls again below values of, say, 20 or 10 per cent.

The second panel in Fig. 4 sets in at t = 2,150; its starting point at (xt , pt ) =
(0.34, 0.086) is the final point in the first panel. From here, the system moves up the
isocline, and after about half of the second subperiod it returns into the inner region.
In this episode, the speculators’ herding towards fundamentalism was first reinforced
by the misalignment term, while with the ensuing stabilization, i.e. reduction in the
mispricing, the fundamentalist regime eased off somewhat. In fact, at the end, around
t = 2,550, the system is close to the situation where it had started from in the first
panel. The third (middle-left) panel, however, shows that this time the dynamics leaves
the inner region much earlier and downwards across the lower isocline, from which
time on the price remains below the fundamental value. Consequently, the dynamics
re-enters a pronounced fundamentalist regime. At the end of the third and for most of
the fourth subperiod, it crawls up and down the outer lower branch of the isocline in
the lower-right corner of the two panels.

At the end of the fourth subperiod, from approximately t = 3,290 on, the system
continues to stay in the inner region, where we also find the starting point of the fifth
subperiod. Although it is close to the boundary, it does not cross it once again. Instead,
within 120days until t = 3,470, the system relatively quickly builds up a chartist
majority. Since strong shocks happen to be absent then, the deterministic stability of
the chartist equilibrium continues to work out and the chartist share stays between 85
and 92 per cent. Correspondingly, at this stage the market fluctuates up and down the
steep part of the 
xt+1-isocline. At the end of the fifth and the beginning of the sixth
subperiod, the trajectory moves slightly to the right in the phase diagrams, then for a
short while returns to the chartist equilibrium, until finally the shocks drive the price
so low that the market rushes towards the fundamentalist regime in the lower-right
corner in the sixth phase diagram.

To summarize this discussion, the deterministic structure of the model with, in
particular, the three coefficients αx , αo, αm establishes the nonlinear 
xt+1 = 0 iso-
cline, which serves to see in which subregions of the phase space the market share of
the chartists systematically increases and decreases. The random forces are, however,
strong enough to lead the dynamics towards and across the isocline. On the other hand,
they are not strong enough to let the market permanently fluctuate back and forth near
this geometric locus. Occasionally, the deterministic core of the model becomes dom-
inant, that is, the market remains on one side of the isocline for a longer time, implying
that it changes from a more or less fundamentalist regime to a chartist regime, or vice
versa.
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18 R. Franke, F. Westerhoff

On thewhole, the present numerical scenario renders thesemechanisms so effective
that we obtain the volatility clustering of the temporary chartist markets demonstrated
in Fig. 3. We may furthermore expect that this pattern of the returns gives rise to
a non-normal distribution or fat tails, respectively. This is certainly a qualitatively
satisfactory result. In the next section, we must make sure that the usual summary
statistics describing these phenomena also match their empirical counterparts in a
quantitatively satisfactory manner.

4 Estimation of the model

This section is devoted to a rigorous estimation of the model by the method of simu-
lated moments (MSM). The first subsection begins with a recapitulation of the MSM
approach, explaining itsminimization of the quadratic distance between certainmodel-
generated and empirical summary statistics, i.e. “moments”. Subsequently, two spe-
cific problems will be addressed: (a) the determination of the weighting matrix for the
moments by a more suitable (nonparametric) bootstrap procedure than the usual block
bootstrap; (b) the sample variability in the model’s stochastic simulations, which we
propose to straighten out by the concept of a “representative estimation”.

A second subsection introduces another (parametric) bootstrap. It generates asmany
artificial moments as we want in order to re-estimate the model on them. From the
frequencydistributionof the thusminimizedvalues of the objective function, ameasure
will then be derived (actually a p value) that can serve for an overall evaluation of
the model’s goodness-of-fit. At the same time, a (marginal) distribution for each of
the re-estimated parameters is obtained, by which we can assess the precision of the
original estimation. The subsection is concluded with a brief discussion on how to
assess the “dominance” of the stochastic noise as it is implied by the estimation.

4.1 The method of simulated moments

The model has been designed to explain—at least partially—the most important styl-
ized facts of financial markets.18 Referring to the price changes at daily intervals, we
aim to check the four features that have received the most attention in the literature on
agent-based models. These are the absence of autocorrelations in the raw returns, fat
tails in their frequency distributions, volatility clustering, and long memory (see Chen
et al. 2012).19 For the quantitative analysis, we measure these features by a number of
summary statistics or, synonymously, moments. The first moment is the volatility of
the returns, which we define as the mean value of the absolute returns vt = |rt | (here
and in the autocorrelations below it makes no great difference whether one works with
the absolute or squared returns). Reproducing it is basically a matter of scaling, and
in the first instance it should have a bearing on the admissible general noise level in

18 Detailed descriptions of the statistical properties of asset prices can be found in Cont (2001), Lux and
Ausloos (2002), or Lux (2009b).
19 Generally, onemight also include a negative skewness of stock returns. Stylized small-scale asset pricing
models, such as the present one, do not, however, provide for any asymmetry in this respect.
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the model, as it is brought about by the two variances σ 2
f and σ 2

c . The second moment
is the first-order autocorrelation of the raw returns. The requirement that it be close
to zero should balance the reaction intensities of the chartists and fundamentalists in
the form of the parameters χ and φ (as χ is conducive to positive and φ to negative
autocorrelations). On the other hand, we checked that if this moment is matched, the
autocorrelations at the longer lags will practically all vanish, too. Because of this lack
of additional information, it suffices tomake use of only onemoment of the raw returns.

Next, in order to capture the long memory effects, we invoke the autocorrelation
function (ACF) of the absolute returns vt up to a lag of 100 days. As the ACF slowly
decays without becoming insignificant at the long lags, we have an entire profile to
match. We view it as being sufficiently well represented by the six coefficients for
the lags τ = 1, 5, 10, 25, 50, 100. The influence of accidental outliers that may occur
here is reduced by using the centred three-lag averages.20 Lastly, the fat tail property
is measured by the well-known Hill estimator of the tail index of the absolute returns,
where the tail is conveniently specified as the upper 5 per cent. Thus, on the whole,
we evaluate the performance of the model on the basis of nine moments, which we
collect in a (column) vector m = (m1, . . . , m9)

′ (the prime denotes transposition).
It has already been indicated that the simulated moments from the model should be

as close as possible to the empirical moments that we compute for the daily returns of
the S&P 500 stockmarket index. Tomake the informal summary of “fairly close”more
precise in a formal estimation procedure, it is only natural for us to employ the method
of simulated moments (MSM). To this end, an objective function, or loss function,
has to be set up that defines a distance between two moment vectors. It is given by
a quadratic function, which is characterized by a weighting matrix W ∈ R

9×9 (to be
specified shortly). Considering the general situation where a moment vector m ∈ R

9

is to be compared to another set of reference moments mref ∈ R
9, the function reads,

J = J (m, mref ) := (m − mref )′ W (m − mref ) (11)

The weighting matrix takes the sampling variability of the moments into account. The
basic idea is that the higher the sampling variability of a given moment i , the larger
the differences between mi and mref

i that can still be deemed insignificant. The loss
function can account for such a higher tolerance by correspondingly smaller diagonal
elements wi i . In addition, matrix W should provide for possible correlations between
the single moments. These two tasks are fulfilled by specifying the weighting matrix
as the inverse of an estimated variance-covariance matrix �̂ of the moments,

W = �̂−1 (12)

An obvious, since asymptotically optimal, choice for W would be the inverse of a
Newey-West estimator of the long-run covariance matrix of the empirical moments

20 That is, at lag τ the mean of the three autocorrelation coefficients for τ −1, τ , τ +1 is computed, except
for τ = 1, where it is the average of the first and second coefficient. It may also be noted that volatility
clustering, which describes the tendency of large changes in the asset price to be followed by large changes,
and small changes to be followed by small changes, is closely related to these long-term dependencies
between the returns.
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(see, e.g., Lee and Ingram 1991, p. 202, or the application of MSM in Franke 2009,
Sect. 2.2). Optimality, however, does not necessarily carry over to small samples.21 We
therefore choose a bootstrap procedure to construct, from the empirical observations
of length T , additional samples of the same size and derive the covariances in �̂ from
them.We nevertheless depart from the block bootstraps that have been used inWinker
et al. (2007) or Franke and Westerhoff (2011, 2012b), since the original long-range
dependence in the return series is interrupted every time two non-adjacent blocks are
pasted. The fact that our estimation is concerned with summary statistics and not the
one-period ahead predictions of a time series allows us to sample the single days tk
(k = 1, . . . , T ) and, associated with each of them, the history of the past few lags
required to calculate term tk in the formula for the lagged autocorrelations. Avoiding
thus the join-point problem, this alternative seems more trustworthy than a block
bootstrap (see Appendix 4 for details).

The bootstrap gives us a collection of b = 1, . . . , B values for each of the nine
moments, where B = 5,000 is large enough (indices b may be identified with the
random seed for the sequence of the (pseudo-)random numbers that set up the single
bootstrap samples). Letting mb = (mb

1, . . . , mb
9)

′ be the corresponding moment vec-
tors and computing the vector of their mean values m := (1/B)

∑
b mb, the bootstrap

estimate of the moment covariance matrix �̂ in (12) is given by

�̂ = 1

B

B∑
b=1

(mb − m)(mb − m)′ (13)

We are now ready to turn to the estimation problem.22 With respect to T = 6,866, the
length of the empirical sample of the returns, denote the moments computed from it by
memp

T . Let θ be the vector of the model parameters to be estimated.While they are gen-
erally contained in a certain set, beginning with possible nonnegativity constraints, we
can omit an explicit reference to it since no estimated values or their confidence inter-
vals will have any problem in this respect. MSM, then, means finding a parameter vec-
tor θ such that the simulatedmoments to which it gives riseminimize the loss function.

To limit the variability in the stochastic simulations, their sample size, designated
S, should be appreciably larger than the number of the empirical observations T ,
where S/T = 10 is a common proportion (S is the effective simulation size, after
discarding the first few hundred days to rule out any transient effects). Furthermore,
the comparability of different trials of θ requires them to have the same random
number sequence underlying.23 The latter are determined by a random seed, which
we generally identify by an integer number, such as a = 1, 2, . . ., let us say. Thus,
the moment vector obtained by simulating the model with a parameter vector θ over

21 To reduce the thus arising bias, even the identity matrix could be a superior weighting matrix; see Altonji
and Segal (1996).
22 We checked that the weighting matrix resulting from our bootstrap procedure is indeed positive definite.
23 For the normally distributed εt with variance σ 2

t in (4), (5), this means, more precisely, that for each
simulation run at time t the same random number ε̃t is drawn from the standard normal distribution N (0, 1)
and εt is set as σt ε̃t .
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S periods on the basis of a random seed a is denoted as ma(θ; S). The parameter
estimates based on this random seed a read θ̂a , and are the solution of the following
minimization problem,24

θ̂a = arg min
θ

J [ma(θ; S), memp
T ], S = 10 · T (14)

The fundamental value p� and the market impact factor μ are two parameters in
the model that just serve scaling purposes. We exogenously fix them at p� = 0 and
μ = 0.010. The flexibility parameter ν approximately scales the switching index st

(this would be exact if exp(·) were a linear function). Given the interpretation of ν in
the remark on Eq. (7) as an ‘autonomous’ switching probability, its value should be
distinctly below unity. Here we choose ν = 0.050, which says that in the hypothetical
absence of predisposition and any other influences, an agent would on average change
his strategy every 20 days, i.e. every month.25 On the whole, there are thus seven
parameters left to estimate.

Although it might seem that a simulation over S = 68,660days generates a large
sample to base the moments on, the variability arising from such different samples still
turns out to be considerable. Hence it would not be pertinent to pick out an arbitrary
random seed and present the corresponding results. This way, we may simply be lucky
or unlucky and obtain a particularly good or badmatch. Therefore, when for a succinct
estimation summary we will have to settle down on a specific parameter set, the loss J
it produces should be more or less ‘representative’, in the sense of an expected value.

To this end, it seems most appropriate to carry out a great number of estimations
and choose the one with an average loss. In detail, 1,000 estimations will suffice. We
then select the parameter set θ̂ , the associated loss of which is the median value of the
entire distribution of the 1,000 estimated losses. This outcome may be viewed as our
“representative” estimation, an idea that is apparently new in the literature. Formally,
with reference to (14),

θ̂ = θ̂ ã , where ã is such that Ĵ ã is the median of { Ĵ a}1000a=1 , and

Ĵ a = J [ma(θ̂a; S), memp
T ], a = 1, . . . , 1,000 (15)

The parameter vector θ̂ resulting from this battery of estimations has already been
reported in Table 1. For convenience, it is reproduced in the first row of Table 2. The
corresponding minimized loss amounts to 7.28,26

Ĵ := J [ mã(θ̂; S), memp
T ] = 7.28 (16)

24 We use the Nelder-Mead simplex search algorithm (see Press 1986, pp. 289–293) and restart it upon
convergence several times until no further noteworthy improvement in the minimization occurs.
25 Admittedly, the value ν = 0.57 in Franke andWesterhoff (2011) is psychologically not very convincing.
26 This value can be slightly reduced to Ĵ = 6.98 by treating ν as a free parameter, too.We then get a higher
value ν = 0.067 which, however, is something that we had sought to avoid. Besides, given the random seed
ã, a marginal improvement, J = 7.16, can also be obtained by a lower value of the flexibility parameter,
ν = 0.033.
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4.2 Evaluation of the estimation results

As such, the figure in Eq. (16) is not very informative. To put it into perspective,
whether it indicates a good or a bad overall match of the moments, we make use of
another bootstrap procedure. It is a parametric bootstrap, which means we work with
the null hypothesis that there is a parameter vector θo for which the model is a true
description of the aspects of the stock market summarized by our moments. In other
words, the moments simulated with θo over an horizon S = 10 · T are assumed to
be drawn from the same distribution as the data in the real world. Naturally, the true
parameter vector θo is proxied by the estimated, “representative” vector θ̂ from (15).27

Nevertheless, the null hypothesis allows us to produce as many returns series of
an empirical length T and artificial moment vectors as we like—and to re-estimate
the model on them. In this way, we obtain an entire distribution of minimized losses,
to which we can then compare our benchmark value Ĵ from (16). If the null applies
and the empirical moments, too, could therefore have been generated by the model, Ĵ
should be in the range of that loss distribution. Conversely, the null has to be rejected,
and it must be concluded that the model is definitely incompatible with the data at a
5% significance level, if Ĵ exceeds the 95% quantile of the distribution.

In detail, take the estimated parameter vector θ̂ , consider c = 1, . . . , 1,000 different
random seeds, simulate the model over the empirical time horizon for each of them,
compute the moments mc(θ̂; T ) from these series, and then re-estimate the model on
the latter.28 These MSM estimations are carried out on the basis of different random
seedsd = 1, . . . , 1,000, one suchd for each artificial samplemc(θ̂; T ). This procedure
provides us with a distribution of estimated parameters θ̂d and their losses Ĵ d ,

θ̂d = arg min
θ

J [md(θ; S), mc(θ̂; T )], (c, d) = 1, . . . , 1,000 (17)

Ĵ d = J [md(θ̂d; S), mc(θ̂; T )] (18)

where, with a slight slip in notation, the pairs (c, d) are also referred to by the integers
1, . . . , 1,000. The critical value for our test of the model’s goodness-of-fit is the 95%
quantile of the loss distribution { Ĵ d}1000d=1 , which results as J0.95 = 13.23. Since Ĵ from
(16) falls short of it we fail to reject the null hypothesis, even by a wide margin as it
seems.

We can take a small step further than the reject-or-not decision and put forward a
quantitative evaluation of the model. This is readily done by deriving a p value from

27 In Franke and Westerhoff (2011, 2012b), a nonparametric bootstrap was employed. There we also
discussed statistical measures that could characterize the matching of the single moments.
28 To perfectly imitate the original estimation, one would also have to take into account that different return
series rc

t (in obvious notation) give rise to different weighting matrices in the loss function. Unfortunately,
this would mean carrying out an extra bootstrap for each of the 1,000 artificial samples. We refrain from
this additional computational effort and employ the original weighting matrix W from (12), (13) for all of
the re-estimations.
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Table 2 Estimation results (rounded)

φ χ σf σc αo αx αm p

Est. 0.198 2.263 0.782 1.851 −0.155 1.299 12.65 17.3

Lower 0.145 1.621 0.737 1.531 −0.194 1.265 7.97 8.7

Upper 0.239 2.571 0.837 2.119 −0.132 1.498 15.36 32.6

Exogenously fixed are μ = 0.010, p� = 0, ν = 0.050. The first row is the ‘representative’ estimation (15),
with the p value from (19) (all p values in per cent). The two bottom rows indicate the 95% confidence
intervals for the distributions of θ̂d in (17) and pa in (20); the Hall percentile intervals for the former (as
explained in Appendix 5) and the standard percentile intervals for the latter. Bold face figures summarize
the overall model evaluation

Fig. 5 Distribution { Ĵ d } from
(18), its 95% quantile J0.95, and
the estimated Ĵ from (16)

the loss distribution { Ĵ d}.29 With respect to the estimated loss in (16), it is given by

pvalue = solution of
{
(1 − p) quantile of { Ĵ d} = Ĵ

}
(19)

This statistic says that if Ĵ were employed as a benchmark for model rejection, then
p is the error rate of falsely rejecting the null hypothesis that the model is true. Thus,
if the p value exceeds the 5% level, it gives us an impression of the width of the
margin by which we fail to reject the null. Incidentally, it is also a particularly useful
measure if there are several models to compare. As reported by the last entry in the
first row of Table 2, we compute a p value of 17.3% for the present model. Figure 5
illustrates the concept with the additional information about the 95% quantile of the
loss distribution { Ĵ d}.30

While the 17.3% error rate evaluates themodel’s goodness-of-fit as it emerges from
our representative estimation, the same concept can be applied to the other losses Ĵ a

from the original estimations on the empirical moments in (15). In this way, we also

29 Concerning symbol p, there should be no confusion with the log prices pt , which by now will have
disappeared from the scene.
30 The density functions in this and the next diagram are estimated using the Epanechnikov kernel; see
Davidson and MacKinnon (2004, pp. 678–683) for the computational details.
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obtain an entire distribution {pa} of p values,

pa = solution of
{
(1 − p) quantile of { Ĵ d} = Ĵ a

}
, a = 1, . . . , 1,000 (20)

A 95% standard percentile interval gives us a reliable range over which, owing to
the small-sample variability in the simulations for the MSM estimations, the p values
can vary; the upper and lower boundary are reported in the last column of Table 2. In
particular, the 2.5% quantile of {pa}, p = 8.7%, is a very conservative measure of
the model’s ability to generate the desired stylized facts. Still, even that value exceeds
the critical 5% level.31 Howmuch the range of the p values in (20) could be narrowed
by adopting a larger simulation size S might be left for future research.32

In concluding our investigation of the model’s general goodness-of-fit, it may be
recalled that the positive evaluation at which we arrived is conditional on the spe-
cific choice of the moments the model is desired to match. Certainly, if more and
qualitatively different moments were added to the present list, for which (at least
intentionally) the model was not designed, the p values will dwindle and eventually
lead to a rejection.

In a last step, we wish to assess the precision of our representative parameter
vector θ̂ in (15). Standard errors for its components can be derived from the diagonal
elements of the covariance matrix of the parameters as it results from the asymptotic
econometric theory.33 However, due to the considerable small-sample variability in
our estimations (as evidenced by the relatively wide range of p values), this approach
may perhaps not be wholly credible. On the other hand, we already have a distribution
of 1,000 parameters from our bootstrap procedures, namely, the distribution {θ̂d} that
we obtain from the re-estimations in (17) under the null hypothesis of a true model.34

They readily provide us with confidence intervals for the single parameters.
Figure 6 shows the frequency distributions of the seven single components θ̂d

i ,
where the shaded area indicates the probability mass of the standard percentile confi-
dence intervals, the lower and upper bounds of which are given by the 2.5 and 97.5%
quantiles. It is immediately apparent that all of the parameters are well identified.35

We can therefore say that the numerical specification of the model rests on solid
grounds.

In finer detail, it has to be taken into account that, although the standard percentile
confidence intervals in Fig. 6 are a straightforward specification, they may not have
the desired coverage probability. This is, for instance, the case with the distributions of
χ or αx , for which one may infer that the estimates from (15) are biased. This feature
suggests that the bootstrap distribution of these parameters will be asymptotically

31 In fact, among the 1,000 estimations there is only one case where pa is slightly below 5%.
32 Since presently a set of 1,000 estimations on an average personal computer takes between 27 and 31
hours, an increase in S would require a parallel computing device.
33 See Lee and Ingram (1991, p. 202).
34 The estimates {θ̂a} in (15) only take the sample variability in the simulations into account but not the
variability arising from different realizations of the data generation process.
35 On the basis of a number of explorations, we are confident that the intervals continue to be bounded and
so the conclusion remains valid if ν is also treated as a free parameter.
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Fig. 6 Distributions of parameter re-estimates θ̂d from (17).Note: The shaded areas represent the standard
95% confidence intervals. The short vertical bars (in red) indicate the benchmark estimates θ̂i from (15)

centred around the pseudo-true value plus a bias term, which would imply that the
intervals shown are the 95% confidence interval for the latter quantity. Thus, they may
have a grossly distorted range as a confidence interval for the pseudo-true parameter
value.36 An alternative that solves the problem is Hall’s percentile confidence interval
(see Appendix 5). This is the reasonwhy the lower and upper boundaries that we report
in Table 2 are based on this device. The Hall intervals for χ and αx , in particular, are
seen here to be fairly different from the intervals in Fig. 6. The feature of a limited
range of the intervals is, of course, maintained.

At the end of the evaluation of the structural parameters we should not conceal a
problem that some perceptive readers might have with the estimation’s overall noise
level brought about by σf and σc. If one compares the in some sense typical order
of magnitude in the price changes as they are caused by the deterministic and by
the stochastic forces, the latter are found to strongly dominate the former. Is this
more than an interesting observation and even a sufficient reason to discard the model
altogether?37

36 Even though themodelmay bemisspecified, a pseudo-true parameter vector θo is awell-defined concept.
If mo is the expected moment vector of the true model of the stock market, θo satisfies J [m(θo), mo] ≤
J [m(θ), mo] for all admissible θ , where m(θ) = limS→∞E[ma(θ; S)] (assuming ergodicity, the expected
values converge to the same limit for all random number sequences). This definition corresponds to that in
Hnatkovska et al. (2011, p. 6), where the expected moments of the model can be analytically computed.
37 A conclusion that actually was strongly insinuated to us by some severe readers of a previous version
of the paper.
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We would like to make three points on this issue. To begin with, we know of no
model of similar complexity in the literature that would fare better in this respect.
In fact, the present paper is the first pointing out this problem at all. Second, the
word ‘dominate’ does not mean that the stochastic forces are also more important
than the deterministic forces. The analysis in Sect. 3 has clearly shown that it is just
the permanent interaction of the two types of forces that generate the stylized facts;
one of them is absolutely useless without the other. This is more directly supported
by the re-estimations of the deterministic and stochastic parameters φ, χ and σf , σc,
respectively, all of which are definitely bounded away from zero.

The third point is that we should not be too surprised about the relatively high noise
levels since after all the model is still very simple. It is rather by no means obvious that
just the two noise sources in the agents’ demand are already so efficient, if they are
suitably scaled. Our perspective is that we can take them as a point of departure and
that it is now time to build more structure into them. It is presently an open question for
us whether this could be satisfactorily done with furthermore a few groups of agents
or whether we would have to introduce a great number of individual agents with more
differentiated strategies (using individual thresholds to become active on the market,
for example). In other words, we understand the observation of the ‘dominating’ noise
not as a vice but as a challenge to enter a new stage of agent-based modelling.

5 Conclusion

In the recent past increased efforts have been made to create small-scale agent-based
models that are able to reproduce the stylized facts of financial markets, especially
regarding the volatility clustering and fat tails of the daily returns. In previous work,
we put forward the concept of structural stochastic volatility which, despite its par-
simony, appeared to be fairly successful in this respect. Generally, it consists of two
components. First, the core excess demand of two groups of speculative traders, to
each of which a random term is added that is said to reflect the heterogeneity within
the groups. Second, a mechanism that governs endogenous switches of the agents
between the two strategies. If the noise terms differ in their variance, the variations of
the two market fractions will induce variations in the overall noise level of the asset
demand, and thus in the returns.

In this paper, a version of this modelling device with fundamentalist and chartist
traders was reconsidered where the switching mechanism incorporates three socio-
economic principles: herding, a certain predisposition towards chartism, and a propen-
sity to withdraw from chartism as the gap between prices and the fundamental value
widens. Beyond a mere observation of the model’s ability to mimic the statistical reg-
ularities that we find in the empirical daily returns, a deeper understanding of these
phenomena was obtained by an analysis of the dynamics in the phase plane of the
asset price pt and a strategy majority index xt .

The key elements in this investigation are the isoclines of the majority index, i.e. the
geometric locus where temporarily, in the deterministic part of the model, 
xt+1 =
0. Our analysis highlighted the fact that it is the synthesis of the deterministic and
stochastic components that make the model work. The deterministic part would be
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nothing without the random forces, and the latter would remain ineffective without an
appropriate shape of the nonlinear 
xt+1 = 0 isoclines, which can be brought about
by a skillful combination of the behavioural parameters in the switching function.

While these parameters are essentially responsible for the qualitative volatility
clustering effects, the other parameters take care of the quantitative effects. The precise
numerical values were obtained by a formal econometric estimation. As the ‘stylized
facts’ are readily described by a set of summary statistics, or ‘moments’, our method
of choice is the method of simulated moments (MSM), which seeks for values of the
structural coefficients such that the simulated moments of the model come as close as
possible to their empirical counterparts.

In addition to finding suitable parameters, we advanced the concept of a p value for
the model’s overall goodness-of-fit (conditional on the chosen moments, of course).
Treating the estimated model as the true data generation process, simulating samples
of artificial moments from it, and then re-estimating the model on them, this p value
is the original estimation’s error rate of falsely rejecting the null hypothesis. It should
be higher than five per cent, and the higher it is, the better the fit. Moreover, by
estimating the model with MSM on the empirical moments a great number of times,
we took account of the problem of small-sample variability in the model simulations.
In this way, we were able to compute an entire distribution of p values, one for each of
these re-estimations, and finally set up a confidence interval for them. Thus we arrived
at an upper and lower boundary for the p values of 32.6 and 8.7%, respectively, which
is the paper’s main message to summarize the model’s performance.

On the whole, besides another application of MSM as a powerful estimation
approach, this paper proposed a further rigorous and simulation-based economet-
ric test to quantify the goodness-of-fit of an asset pricing model. We believe that the
aforementioned figures can be considered a success and present a challenge to other
models of similar complexity. Regarding the analytical underpinnings of the present
model’s dynamic properties, the switching mechanism of which is based on the tran-
sition probability approach, it may be worthwhile to attempt a similar analysis for its
“twin” model, which is based on the discrete choice approach and fared so well in the
model contest discussed in Franke and Westerhoff (2012b). In this sense, the paper is
more of a stimulus for further research than a final once-and-for-all result, where we
have not yet mentioned the challenge for richer modelling discussed at the end of the
previous section.

Appendix 1: Value added of the present contribution

Given that twopapers of ours (Franke andWesterhoff 2011, 2012b; abbreviated ‘FW’),
deal with the same model, one may wonder about the current paper’s original fea-
tures.38 Although they are mentioned when they are introduced in the text, it may be
convenient to collect them in a self-contained overview.

38 Incidentally, large parts of this paper were written before we even started with FW (2011, 2012b).
Unfortunately, after its completion it took a rather thorny path through the journal landscape.
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• FW (2011, 2012b) are mainly concerned with estimation issues. The geometric
analysis in Sect. 3 about the functioning of the model, which allows us to discuss
the precise nature of the interplay between the random shocks and the model’s
deterministic skeleton with its specific nonlinear isoclines, is entirely original
material. Actually, as far as we know, there is no comparable in-depth analysis in
the literature on agent-based asset pricing models.

• While in FW (2011) the flexibility parameter ν was estimated at the not very
convincing value ν = 0.57, it is here (and in FW 2012b) exogenously set at
ν = 0.050, which [as pointed out in the paragraph following Eq. (14)] makes
more psychological sense. The estimates of the other parameters are somewhat
affected by this change, but not too much. This robustness is not obvious and
perhaps even a bit surprising.

• The weighting matrix W in the loss function J is given by the inverse of the
covariance matrix �̂. In the other two papers the latter was obtained from a block
bootstrap, which is plaguedwith the so-called joint-point problem.As a remedywe
nowproposewhatwe call a history sampling bootstrap [mentioned in the paragraph
following Eq. (12)]. Despite the straightforward idea onwhich it is based, we know
of no precursor in the bootstrap literature.

• A general problem of the method of simulated moments is that the estimation rests
on a given sequence of random numbers; another sequence—another solution of
the loss minimization in eq. (14). Here we introduce the concept of a “representa-
tive” estimation (see the brief discussion of eq. (15)), which is a new idea.

• A common feature of this and the other two papers is that we generate a frequency
distribution of values {J b}B

b=1 of the loss function and take its 95% quantile as a
yardstick to evaluate the previously estimated loss Ĵ . It also serves to determine
a p value for the model. In FW (2011, 2012b), such a reference distribution was
obtained from a nonparametric bootstrap, which only makes use of the empirical
data.39 In the present paper, a parametric bootstrap is employed, which involves the
model and its previous “representative” parameter estimates. This is now pointed
out in footnote 27.

Appendix 2: A note on the nature of variable x in the literature

The role of the majority index xt in an adjustment equation such as (6) may seem
slightly unclear in some of the literature, so that the concepts involved here may
not always have been fully understood.40 In early publications, the equation was only
formulated after the transition probabilities were utilized to set up the so-calledMaster
equation. From this point of view, the stochastic process is characterized not by the
actual values of xt and some other state variables, but by entire probability distributions

39 In fact, we are now aware that we did not fully exploit the information that could be obtained from a
nonparametric bootstrap, where the critical point is a recentring of the loss function [cf. the discussion in
Franke (2012), Sect. 2.2]. The parametric bootstrap in the present paper does not suffer from this kind of
problem.
40 The present authors do not exempt themselves from this.
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of them, which are furthermore subject to change over time. The adjustment equation,
which is a deterministic equation, is referred to here as “an approximative mean value
equation for the original stochastic system”, whose analysis “is sufficient to determine
the most probable development from any initial state.” Neglecting the other aspect of
the probability distributions can technically be justified “by the convenient assumption
of a sharply peaked initial distribution” (Lux 1995, p. 885; emphasis in the original).

Two questions arise from these presentations. (1) As the probability distribution
varies over time, is it ensured that it remains so sharply peaked?41 (2) Equilibrium
(i.e. time-invariant) probability distributions that have a bimodal density function are
of particular interest. This implies that over longer periods of time a sample trajectory
fluctuates around some (low) value of the majority index, then eventually switches
over into the neighbourhood of another (high) value of x , fluctuates around it for
another period of time, until it switches back into a neighbourhood of the first value,
etc. Since the probability distribution does not change during all this, its mean value
does not change either. The specific value it attains would indeed be some constant
in an intermediate range between the two more extreme values. In this situation, the
assumption of peakedness is violated, although the stochastic process itself is in its
(unique) equilibrium. The expected value would only provide misleading information
about what is actually going on between the agents.

The ambiguities can be resolved by deriving the so-called Langevin equation for
xt . Although it looks similar to Eq. (6), xt is here not an approximative mean value
but the actual value of the majority index in a sample trajectory. This equation can be
viewed as a stochastic adjustment rule for xt . In general, it includes an additive noise
term with a variance that decreases with the population size. It moreover becomes the
deterministic Eq. (6), i.e. the variance tends to zero, as the population size becomes
infinitely large.

For more information about the historical background of the transition probability
approach as well as a rigorous derivation of Eq. (6) in a stochastic and the present
deterministic version, see Franke (2008a, b).

Appendix 3: Mathematical proofs

Proof of Proposition 1 To determine the equilibrium value(s) of the majority index,
it proves useful to resort to the definition of the hyperbolic sine and cosine (sinh and
cosh). This allows us to rewrite (6) and (7) as 
xt+1 := xt+1 − xt = 2ν { [exp(st ) −
exp(−st )]/2 − xt [exp(st )+exp(−st )]/2 } = 2ν [sinh(st )−xt cosh(st )].With tanh =
sinh / cosh for the hyperbolic tangent, we then get


xt+1 = xt+1 − xt = 2ν {tanh[s(xt , pt )] − xt } cosh[s(xt , pt )] (21)

Since cosh is an everywhere positive function, 
xt+1 = 0 if and only if the term
in curly brackets vanishes. Hence, taking p = p� in the switching index (8) into

41 For a specific system, this question is answered by an explicit (elaborate) mathematical analysis in Lux
(1997, Sects. 4.1 and 4.2).
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account, any equilibrium value of x has to satisfy the relationship tanh(αo +αx x) = x .
Applying the inverse function arctanh(·) to both sides of this equation and using the
identity arctanh(x) = (1/2) ln[(1 + x)/(1 − x)], the equilibrium condition for the
majority index can be reformulated as

g(x) := αx x − 1

2
ln

[1 + x

1 − x

]
+ αo = 0 (22)

To locate the roots of the function g(·), note that it tends to +∞ as x approaches −1
from the right, and to−∞ as x approaches+1 from the left. In addition, the derivative
is computed as g′(x) = αx − 1/(1 − x2). If, as in part (a) of the proposition, αx is
contained between zero and unity, g′(x) is negative over the entire domain. Hence a
unique equilibrium value xo exists in this case.42

Consider next αx > 1 together with a zero intercept αo = 0 in the switching index.
One equilibrium value satisfying (22) is then given by xo = 0, in which g(·) is now
upward sloping. Equating the derivative to zero, it is seen that g(·) has exactly one
local minimum between −1 and xo, in which g is negative, and (symmetrical to it)
exactly one local maximum between xo and +1, in which g is positive. From the
limiting behaviour of the function for x → ±1, we thus infer the existence of exactly
two additional outer equilibria; one between −1 and xo and the other between xo and
+1. This proves part (b) of the proposition.

As for part (c), fix αx > 1 and, starting from zero, let the predisposition parameter
αo decrease. Obviously, this shifts the function g(·) downwards. As a consequence,
xo and x f d move towards each other, xo as the interior and x f d as the outer-right
point of intersection of g(·) with the zero line. Eventually, as the downward shift of
αo continues, the local maximum of g(·) will be zero. When this occurs, xo and x f d

collapse into one single point of intersection. Subsequently, if αo decreases further,
they disappear. Under these circumstances, xcd remains as the only equilibrium point,
where the shifting procedure has moved it monotonically to the left all the time. This
observation completes the proof. �


Proof of Proposition 2 Given a pair (xt , pt ), we have 
xt+1 ≥ 0 if and only if the
term in curly brackets in (21) is nonnegative, or tanh[αo+αx xt +αd(pt − p�)2] ≥ xt .
Applying the strictly increasing arctanh function on both sides of the inequality and
using the abovementioned identity for arctanh(xt ) as well as the definition of the
function g(·), this relationship is equivalent to g(xt ) ≥ −αd (pt − p�)2. It is certainly
fulfilled if g(xt ) > 0 or, in the case g(xt ) = 0, if pt �= p�.

If g(xt ) < 0, we can multiply the inequality by −1, which reverses the inequality
sign, and then take the square root on both sides. This yields the condition pt − p� ≥√−g(xt )/αd if pt > p� and pt − p� ≤ −√−g(xt )/αd if pt < p�. The remaining
statements in part (c) are obvious. �


42 Incidentally, the argument remains the same if αx ≤ 0, although we would then have the opposite of
herding.
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Appendix 4: The history-sampling procedure in bootstrapping the empirical
moments

Bootstrapping the empirical autocorrelations of rt and vt = |rt | requires a second
thought. As a representative example, consider the hth-order autocorrelation of vt

(h ∈ N), which for a sample of size T reads,

ρv(h) = (1/T )

T∑
t=1+h

(vt − v̄) (vt−h − v̄) / s2v ,

where v̄ = (1/T )

T∑
t=1

vt , s2v = (1/T )

T∑
t=1

(vt − v̄)2

With a view to the bootstrap procedure to be specified shortly, it is convenient to define
the set of time indices

I o = {1, 2, . . . , T }

and rewrite the autocorrelation as

ρemp
v (h) = (1/T )

∑
t∈I o

(vt − v̄) (vt−h − v̄) / s2v (putting vt−h = v̄b if t − h ≤ 0)

(the superscript ‘emp’ has been added for greater clarity.)
Bootstrapping summary statistics that involve lagged values of the dynamic vari-

ables is often carried out as a block bootstrap of the time series data. For longer
lags h, however, this is not an entirely satisfactory procedure because the indepen-
dence between the randomly selected single blocks cannot reproduce the dependence
structure of the original sample, a phenomenon known as the join-point problem. In
addition, the variability of various moments may thus be increased (cf. Andrews 2004,
p. 674).

While these are serious problems in likelihood or dynamic regression estimations,43

they can be circumvented in the present moment matching approach. To put up a
bootstrap sample b, we need not form a new series of consecutive data points and
compute the moments from them, but can sample directly from the time indices:
alternatively to I o, they give us a new set I b onwhichwe can base the same calculations
as above (of course, the same index set I b for each of the moments, with and without
lags). Accordingly, a bootstrap sample in our approach is constituted by T random
draws with replacement from the set I o (each time index having the same probability
1/T ). Repeating this B times, we have b = 1, . . . , B index sets

I b = {tb
1 , tb

2 , . . . , tb
T }

43 For which Andrews (2004) proposes the concept of a block–block bootstrap.
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from which, analogously to the empirical magnitudes, we can subsequently obtain the
bootstrapped moments

ρb
v (h) = (1/T )

∑

t∈I b

(vt − v̄b) (vt−h − v̄b) / (s2v )b, b = 1, . . . , B; (23)

where vt−h = v̄b if t ≤ h, v̄b = (1/T )
∑

t∈I b

vt , (s2v )b = (1/T )
∑

t∈I b

(vt − v̄b)2

It might be noted that, while in an empirical autocorrelation ρ
emp
v (h) exactly h of the

T terms in the sum vanish, there may be more or less such zero terms in a bootstrapped
autocorrelation ρb

v (h). Given the large sample we have, however, this effect will be
negligible.

The statistics computed according to (23) are the components of themoment vectors
mb from which subsequently the covariance matrix �̂ in (13) is made up.

Appendix 5: Hall’s percentile confidence interval

Let a collection { θ̂b : b = 1, . . . , B } of parameter re-estimates be given. With respect
to a significance level α = 0.05, let θ̂i,L be such that only a fraction α/2 of all the
bootstrap estimates θ̂b

i are less than this value, and likewise let θ̂i,H be the value that is
exceeded by only α/2 of the bootstrap estimates. The standard percentile confidence
interval is then given by

CIS(θi ) = [ θ̂i,L , θ̂i,H ] (24)

(where the index S indicates that (24) is regarded as the standard method). To fix the
problem that CIS(θi ) will not have the desired coverage probability in the presence of
a bias, Hall’s percentile confidence interval is proposed (see Hall 1992, Chapter 3).
With respect to the original estimate θ̂i on the empirical moments, it is defined as

C IH (θi ) = [ 2θ̂i − θ̂i,H , 2θ̂i − θ̂i,L ] (25)

(presupposing that it does not contain inadmissible values of the parameter). Letting
θo

i be the pseudo-true parameter value, this specification is based on the idea that
the bootstrap distribution (θ̂b

i − θ̂i ) approximates the distribution (θ̂i − θo
i ). This

implies that Prob(θ̂i,L − θ̂i < θ̂i − θo
i < θ̂i,H − θ̂i ) ≈ Prob(θ̂i,L − θ̂i < θ̂b

i − θ̂i <

θ̂i,H − θ̂i ) = 1 − α, and the first probability expression is easily seen to be equal to
Prob(2θ̂i − θ̂i,H < θo

i < 2θ̂i − θ̂i,L) = Prob(θo
i ∈ CIH (θi )). Hence Hall’s percentile

method (25) is asymptotically correct.
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