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Abstract We investigate whether the gravity model (GM) can explain the statistical
properties of the International Trade Network (ITN). We fit data on trade flows with a
GM using alternative estimation techniques and we build GM-based predictions for the
weighted topological properties of the ITN, which are then compared to the observed
ones. Our exercises show that the GM: (i) may replicate part of the weighted-network
structure only if the observed binary architecture is kept fixed; (ii) is not able to explain
higher-order statistics that, like clustering, require the knowledge of triadic link-weight
topological patterns, even if the binary structure perfectly replicates the observed one;
(iii) performs very badly when asked to predict the presence of a link, or the level of the
trade flow it carries, whenever the binary structure must be simultaneously estimated.

Keywords International Trade Network · Gravity equation · Weighted network
analysis · Topological properties · Econophysics
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1 Introduction

The International Trade Network (ITN), aka World-Trade Web (WTW) or World
Trade Network (WTN), is defined as the graph representing in each year the web of
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bilateral-trade relationships between countries in the World. The statistical properties
of the ITN, and their evolution over time, have been recently received a lot of attention
in a number of contributions.1

Understanding the topology of the ITN is important for two related reasons. First,
trade is one of the most important channels of interaction among countries (Helli-
well and Padmore 1985; Krugman 1995; Galvandatilde et al. 2007; Forbes 2002).
The knowledge of macroeconomic phenomena such as economic globalization and
internationalization, the spreading of international crises, and the transmission of eco-
nomic shocks, may be improved by looking at international-trade patterns in a holistic
framework, where indirect as well as direct linkages between countries are explicitly
taken into consideration (Fagiolo 2010).2 Second, ITN topological properties can help
to statistically explain macroeconomics dynamics. For example, Kali et al. (2007) and
Kali and Reyes (2010) have shown that country position in the trade network has sub-
stantial implications for economic growth and a good potential for predicting episodes
of financial contagion. Furthermore, Reyes et al. (2010) suggest that country centrality
in the ITN may help to account for the evolution of international economic integration
better than what standard statistics, like openness to trade, do.

The statistical properties of the ITN, in its undirected/directed or binary/weighted
characterizations, have been extensively studied and today we know a great deal about
the topological architecture of the web of international-trade flows. For example,
Serrano and Boguñá (2003) and Garlaschelli and Loffredo (2004) show that the binary-
directed representation of the ITN exhibits a disassortative pattern: countries with many
trade partners (i.e., high node degree) are on average connected with countries with few
partners (i.e., low average nearest-neighbor degree). Furthermore, partners of well con-
nected countries are less interconnected than those of poorly connected ones, implying
some hierarchical arrangements. Remarkably, Garlaschelli and Loffredo (2005) show
that this evidence is quite stable over time. This casts some doubts on whether eco-
nomic integration (globalization) has really increased in the last 30 years. Furthermore,
node-degrees appear to be very skewed, implying the coexistence of few countries with
many partners and many countries with only a few partners.

These issues are taken up in more detail in a few subsequent studies adopting a
weighted-network approach to the study of the ITN. The motivation is that a binary
approach, by treating all relationship equally, might dramatically underestimate the
impact of trade-linkage heterogeneity. This seems indeed to be the case: Fagiolo et al.
(2008, 2009, 2010) find that the statistical properties of the ITN viewed as a weighted

1 See for example Li et al. (2003), Serrano and Boguñá (2003), Garlaschelli and Loffredo (2004, 2005);
Garlaschelli et al. (2007), Serrano et al. (2007), Bhattacharya et al. (2007, 2008), Fagiolo et al. (2008, 2009,
2010), Reyes et al. (2008), Fagiolo (2010), Barigozzi et al. (2010a), Barigozzi et al. (2010b), De Benedictis
and Tajoli (2011).
2 For example, Abeysinghe and Forbes (2005) show that bilateral trade can only explain a small fraction
of the impact that an economic shock originating in a given country can have on another one, which is not
among its direct-trade partners. Similarly, Dees and Saint-Guilhem (2011) report that countries that do not
trade very much with the US are largely influenced by its dominance over other trade partners linked with
the US More generally, Ward and Ahlquist (2012, p. 2) argue that “as intuition would suggest and recent
theoretical advance has formalized, bilateral trade is not independent of the production, consumption, and
trading decisions made by firms and consumers in third countries”.
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undirected network crucially differ from those exhibited by its binary counterpart. For
example, the strength distribution is highly right-skewed, indicating that a few intense
trade connections co-exist with a majority of low-intensity ones. This confirms the
results obtained by Bhattacharya et al. (2007, 2008), who find that the size of the group
of countries controlling half of the world’s trade has decreased in the last decade.
Furthermore, weighted-network analyses show that the ITN architecture has been
extremely stable in the 1981–2000 period and highlights some interesting regularities
(Fagiolo et al. 2009). For example, countries holding many trade partners and/or very
intense trade relationships are also the richest and most globally central; they typically
trade with many partners, but very intensively with only a few of them, which turn
out to be very connected themselves; and form few but intensive-trade clusters (i.e.,
triangular trade patterns).

Most of existing network literature on the ITN, however, has been focusing on a
purely empirical quest for statistical properties, largely neglecting the issue of explor-
ing whether theoretical models are able to explain why the ITN is shaped the way it
is.3

This paper is a preliminary attempt to fill this gap. We extend the work in Fagiolo
(2010) to ask whether the gravity model (GM) can provide a satisfactory theoretical
benchmark able to reproduce the observed architecture of the ITN across time. The
GM (van Bergeijk and Brakman 2010) aims at explaining international-trade bilateral
flows using an equation obtained as the equilibrium prediction of a large family of
micro-founded models of trade (more on that in Sect. 2). The term “gravity” comes
about because the predicted relation between trade flows and explanatory variables is
similar to Newton’s formula: the magnitude of aggregated trade flows between a pair
of countries is proportional to the product of country sizes (e.g. the masses, as proxied
by country GDPs) and inversely proportional to their geographic distance (interpreted
as proxies of trade-resistance factors, e.g. tariffs). From an econometric perspective,
the original model-driven prediction can be augmented with a set of country-specific
explanatory variables (e.g., population, area, land-locking effects, etc.), as well as
with a set of bilateral variables (i.e., geographical contiguity, common language and
religion, colony relation, bilateral trade agreements, etc.). The GM can be fitted to
the data using different econometric techniques, ranging from simple ordinary least
squares (OLS) applied to the log-linearized equation, to zero-inflated two-stage non-
linear estimation, employed to correctly deal with the large number of zero trade
flows characterizing the data. Overall, the GM is very successful: independently on
the technique employed, it typically achieves a very high goodness of fit, e.g. in terms
of R-squared coefficients.

Motivated by the well-known empirical success of the GM, we fit data on bilateral-
trade flows to estimate GM-predicted weighted-directed representations of the ITN,
which we then compare to the observed one, constructed using original bilateral-
flow data. We employ both a static and a dynamic approach. In the static approach,
we assume that a GM holds in each subsequent year and we estimate a series of

3 See Bhattacharya et al. (2008) and Garlaschelli and Loffredo (2004) for exceptions. See also Squartini
et al. (2011a,b) for an alternative approach employing null random models that are able to predict whether
observed properties of the ITN are statistically meaningful or simply the result of “constrained” randomness.
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predicted ITN snapshots. In the dynamic approach, we control for time dummies in
the estimation to account for change over time and get a unique predicted ITN from
the unbalanced panel of predicted flows. In both cases, we end up with estimates for
both the probability that a link is present and for the probability of any given level of
bilateral-trade flow occurring between any two countries in a given year (given that
a link is present). We complement this information with standard errors of estimated
quantities, so as to evaluate the precision of GM-based predictions.

In a nutshell, our results suggest that a necessary (but not sufficient) condition for
the GM to well predict weighted ITN properties is to fix the binary structure equal to
the observed one. Even if one conditions trade-flow estimation to the true binary archi-
tecture, the GM may badly predict higher-order statistics that, like clustering, require
the knowledge of triadic link-weight topological patterns. Finally, the performance of
the GM is very poor when asked to predict ITN weighted properties together with its
binary architecture, or when one employs a GM specification to estimate the presence
of a link only.

The rest of the paper is organized as follows. Section 2 discusses the gravity model
and presents data and related methodologies. Our main results are reported in Sect. 3.
Finally, Sect. 4 concludes and flags some of the challenges facing ITN modeling in
the future.

2 Data and methodology

2.1 Bilateral trade-flow data

We use international-trade data taken from Subramanian and Wei (2003), which con-
tains aggregate bilateral imports reported by the IMF Direction of Trade Statistics,
measured in US dollars and deflated by US Consumer Price Index at 1982–1983
prices. We focus on seven unbalanced cross-sections for the years 1970–2000, with a
5-year lag. Letwi j (t) be exports from country i to country j in year t and let N (t) the
correspondent number of countries reporting at least a positive flow.

Table 1 summarizes some descriptive statistics. The number of participating coun-
tries and average per-country trade both increase over time. Entry of new countries in
the database may be possibly caused either by the availability of new data or by the
actual entry of the country in international-trade markets. New trade links, however,
seem to increase more than quadratically with the number of participating countries
in the last part of the sample, as testified by the rising density.4 Note also that the
number and percentage of countries making up 50 % of total trade seem to remain
stable across the years, hinting to a stable core of top traders. Conversely, the per-
centage of countries controlling 90 % of total world trade has substantially decreased.
The concentration process going on in the ITN, despite globalization and international
integration, is confirmed also by the decrease in both the number and percentage of
flows making up a certain share of total trade.

4 Defined as the ratio between L(t) (existing trade partnerships) and N (t) · [N (t)− 1] (all possible trade
partnerships).
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Table 1 Subramanian and Wei (2003) Database. Summary statistics

1970 1975 1980 1985 1990 1995 2000

Countries (no.) 129 135 142 148 145 157 154

Trade Flows (no.) 6,583 7,618 8,162 9,108 10,289 12,138 11,828

Density 0.40 0.42 0.41 0.42 0.49 0.50 0.50

Average trade 51.03 56.43 57.48 61.54 70.96 77.31 79.81

Countries making up 50 % of trade 7 8 7 7 7 8 8

Flows making up 50 % of trade 73 99 90 73 69 74 79

Countries making up 90 % of trade 39 39 38 37 31 32 33

Flows making up 90 % of trade 794 900 894 871 749 826 855

% Countries making up 50 % of trade 5.43 5.93 4.93 4.73 4.83 5.10 5.19

% Flows making up 50 % of trade 1.11 1.30 1.10 0.80 0.67 0.61 0.67

% Countries making up 90 % of trade 30.23 28.89 26.76 25.00 21.38 20.38 21.43

% Flows making up 90 % of trade 12.06 11.81 10.95 9.56 7.28 6.81 7.23

Given wi j (t) and N (t), we build weight matrices for the correspondent observed
trade networks. More precisely:

Definition 1 (Observed Weighted ITN) The observed weighted International Trade
Network in a given year t is represented by a weighted-directed graph, where the nodes
are the N (t) countries and link weights are fully characterized by the N (t) × N (t)
asymmetric matrix W (t), with entries wi j (t), i.e. exports from country i to country j .

Similarly, one can define the observed binary ITN, where links represent import-
export partnerships, as:

Definition 2 (Observed Binary ITN) The observed binary International Trade Net-
work in a given year t is represented by a binary-directed graph, where the nodes
are the N (t) countries and binary links are fully characterized by the N (t) × N (t)
asymmetric adjacency matrix A(t), with entries ai j (t) = 1 if and only if wi j (t) > 0,
i.e. exports from country i to country j are strictly positive.

This database has been studied from a binary/weighted network perspective in
De Benedictis and Tajoli (2011) and Abbate et al. (2012). They show that international
integration in trade has been increasing over time, but it is still far from being fully
accomplished. Indeed, a strong heterogeneity in the profiles of across-country trade
partnerships does emerge. This has important implications for both the role of regional
trade agreements (i.e., the WTO) and the interplay between extensive and intensive
margins of trade (Felbermayr and Kohler 2006). Furthermore, ITN properties are
very sensitive to geographical distance, i.e. the correlation structure between network
statistics may change when one considers links connecting countries separated by an
increasing geographical distance.

In this paper, we take an alternative approach. We characterize the topological
properties of the observed ITN and we compare them to the properties of GM-based
estimates of the ITN structure, which we define in the next sub-sections.
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2.2 Gravity-model specifications

The GM, independently proposed by Tinbergen (1962) and Pöyhönen (1963), is the
workhorse model to explain bilateral trade flows among countries as a function of
import and export market sizes (i.e., GDP) and trade-resistance factors, proxied by
geographical distance. The GM derives its name from the functional form linking trade
to size and distance, which resembles the expression for the attraction force between
two bodies derived by Isaac Newton in classical mechanics. Thus, in analogy with the
physics law, it is expected that trade flows increase with the product of some power
of country sizes and decrease with some power of geographical distance.

This empirically-inspired law has been found to be consistent with a number of
theoretical foundations (Anderson 1979; Bergstrand 1985; Deardorff 1998; Anderson
and van Wincoop 2003). In other words, many possibly-conflicting micro-foundations
can generate as their equilibrium outcome some gravity-like relation between trade,
market sizes and trade-resistance terms.5 For example, a gravity-like equation can
be derived in trade specialization models, monopolistic-competition frameworks with
intra-industry trade, or Hecksher-Ohlin models (see Fratianni 2009; De Benedictis
and Taglioni 2011, for comprehensive surveys).

Notwithstanding the preferred micro-founded explanation, modern empirical inter-
pretations of the gravity expression generalize the original idea including in the formu-
lation a list of additional explanatory variables, covering aspects related to geography,
culture, bilateral trade agreements, among others.6 In Table 2 we report the list of
explanatory variables that, following existing literature (see, e.g., Glick and Rose
2001; Rose and Spiegel 2002), we employ in our exercises. GM explanatory variables
can be typically grouped in country- or link-specific ones. The former include, in addi-
tion to GDP, other country-size proxies like population and geographical area, as well
as geographically-related aspects controlling for land-locking effects and continent
membership. The latter instead include relational variables characterizing bilateral
relationships, as geographical contiguity, colonial ties, regional trade agreements, com-
monalities in language, colonial history, religion, and currency. Together, these factors
have been shown to successfully explain, in a way or in the other, international-trade
flows in gravity-equation econometric exercises (van Bergeijk and Brakman 2010).

The most general GM specification that we employ in what follows then reads:

wi j (t) = α0Yi (t)
α1 Y j (t)

α2 dα3
i j

[
K∏

k=1

Xik(t)
β1k X jk(t)

β2k

]

× exp

(
H∑

h=1

θh Di jh(t)+
L∑

l=1

(δ1l Zil + δ2l Z jl)

)
ηi j (t), (1)

where t is the year (t = 1950, 1955, . . . , 2000); wi j (t) are export flows from the
observed weighted ITN; i, j = 1, . . . , N (t), i �= j; Yh(t) is year-t GDP of country

5 This has led Deardorff (1998) to argue that “just about any plausible model of trade would yield something
very like the gravity equation”. See also Evenett and Keller (2002).
6 See Ward and Ahlquist (2012) for an attempt to account for network dependencies in the GM specification.
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Table 2 Variables employed in the gravity-model estimation

Label Related to Description Source

W Link Imports in US dollars Subramanian and Wei (2003)

Y Country Gross-domestic product Subramanian and Wei (2003)

area Country Country area in km2 Subramanian and Wei (2003)

pop Country Country population Subramanian and Wei (2003)

d Link Distance between two countries, based on
bilateral distances between the largest
cities of those two countries, weighted by
the share of the city in the overall country’s
population

CEPII (http://www.cepii.fr/)

landl Country Dummy variable equal to 1 for landlocked
Countries

CEPII (http://www.cepii.fr/)

continent Country Categorical variable indicating the continent
of the country

CEPII (http://www.cepii.fr/)

contig Link Contiguity dummy equal to 1 if two
countries share a common border

CEPII (http://www.cepii.fr/)

comlang_off Link Dummy equal to 1 if both countries share a
common official language

CEPII (http://www.cepii.fr/)

comcol Link Dummy equal to 1 if both countries have had
a common colonizer

CEPII (http://www.cepii.fr/)

colony Link Dummy equal to 1 if both countries have
ever had a colonial link

CEPII (http://www.cepii.fr/)

curcol Link Dummy equal to 1 if both countries are
currently in a colonial relationship

CEPII (http://www.cepii.fr/)

comrelig Link Percentage in which both countries share
religions

CEPII (http://www.cepii.fr/)

comcur Link Dummy equal to 1 if both countries have a
currency unions

CEPII (http://www.cepii.fr/)

gsp Link Dummy equal to 1 if both countries share a
generalized system of preferences

CEPII (http://www.cepii.fr/)

rta Link Dummy variable equal to 1 if both countries
involved in regional, bilateral or
preferential trade agreements

WTO (http://www.wto.org/)

h = i, j (i = exporter; j = importer); di j is geographical distance; Xh(t), h = i, j ,
are additional country-size effects (area and population); Di j is a vector of bilateral-
relationship variables (contiguity, common language, past and current colonial ties,
common religion, common currency, a dummy to control if both countries share a gen-
eralized system of preferences, and a regional trade agreement flag); Zi and Z j are
country-specific dummies (controlling for land-locking effects and continent member-
ship); finally, ηi j (t) are the errors (whose mean conditional to explanatory variables
obeys E[ηi j (t)|·] = 1).

Two remarks are in order. First, note that expected trade flows in standard GM spec-
ifications are always positive, i.e. one assumes that any pair of countries does trade
on average. Note that, in reality, zero trade flows are quite frequent in the data, either
because of missing values or because any two countries are not trade partners (see
Table 1). On the contrary, such zero entries cannot be recovered from the determin-
istic, non-linear functional form employed to define the conditional mean of bilateral
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trade flows, and must therefore be accounted for using an appropriate probabilistic
model. Indeed, log-linearizing Eq. (1) and applying a standard OLS fit means de facto
excluding observed zero-trade flows, which may lead to strong estimation biases. We
shall get back to this point in the next section.

Second, and more importantly, we employ a GM specification that slightly differs
from Anderson and van Wincoop (2003) one, which is one of the most commonly used
in GM exercises. Anderson and van Wincoop (2003) introduce multilateral resistance
terms and importer-exporter fixed effects. Formally, that approach considers that the
constant term of the Eq. (1) must be generalized to a set of importer and exporter dum-
mies. One important implication is that country-size effects are captured by country
dummies. This means that characteristics of exporters and importers cannot be gen-
eralized (Santos Silva and Tenreyro 2006). In any case, all our results are robust to
Anderson and van Wincoop’s specification. We have therefore chosen to retain the
traditional specification because of its more immediate empirical interpretation.

2.3 Estimation

Estimation of Eq. (1) is not easy. A straightforward approach consists in log-linearizing
the GM specification and apply standard OLS techniques to estimate parameters and
obtain predicted values. The existing empirical literature on GM has largely employed
this approach (cf. for example Glick and Rose 2001; Rose and Spiegel 2002).

However, a series of more recent contributions highlighted the risk of biases in
estimation induced by OLS applied to log-linear specifications. The main sources of
bias come from the treatment of zero-valued flows (Santos Silva and Tenreyro 2006;
Linders and de Groot 2006; Burger et al. 2009), non-linearity and heteroscedastic-
ity (Santos Silva and Tenreyro 2006), endogeneity and omitted-term (Baldwin and
Taglioni 2006). In particular, the issue of zero-flow treatment is particularly relevant
to our analysis. Indeed, log-linearizing the GM equation and applying OLS estimation
implies using only non-zero trade flows in the estimation.

From a network perspective, log-linearizing Eq. (1) means that we are keeping
fixed the observed binary structure (i.e. we are conditioning on adjacency matrices
A(t)). This is a strong assumption if one wants to employ the GM to estimate the
weighted ITN structure, as we are asking the model simply to estimate flows and not
the presence/absence of links, i.e. the binary structure. More generally, one would like
a model that is able simultaneously to predict both the presence of a link and its weight.

Given these well-known limitations of OLS, in this work we shall resort to count-
data analysis (Long 1997) and fit to the data Poisson pseudo-maximum likelihood
models (PMML), either in their standard formulation (Santos Silva and Tenreyro
2006) or in zero-inflated specifications (Linders and de Groot 2006).

In a nutshell, PPML models allow to estimate Eq. (1) in its original non-linear form,
thus avoiding possible correlation between errors and regressors. In what follows,
we will employ two estimations strategies as far as standard PPML estimation is
concerned. In the first one, we will conservatively assume that the binary structure
is given, i.e. we shall fit a GM using a PPML estimation using positive trade flows
only (we shall refer to this case as the “restricted PPML”). This allows us to overcome
the issues typically arising with log-linearized OLS estimation, while still being able
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to evaluate the performance of the GM when the binary structure is not estimated
but is taken to be equal to the observed one. The second strategy performs a PPML
estimation on both positive and zero flows (the plain or “unrestricted PPML” case).

PPML estimations use a Poisson distribution to model simultaneously the proba-
bility of a zero flow and of a positive (integer) flow. However, it has been noticed that,
in the case of international trade, zero flows occur much more frequently than a plain
Poisson model would predict (Burger et al. 2009), cf. also Table 1. This has led to
the family of zero-inflated (ZI) models (Winkelmann 2008). The underlying idea is
to model the presence of zeros and positive values as a two-stage process. In this way
one treats differently the process of presence-absence of trade partnerships from link-
weight determination. In the first stage, one estimates zero-flow probabilities using a
standard logit model, and employing a series of regressors that often coincide with
those used in the standard GM formulation. In the second stage, conditionally to having
non-zero flows, one fits the magnitude of trade-flow values using either a Poisson (ZIP)
or a negative-binomial (ZINB) distribution. Notice that in the second stage there is a
non-zero probability of having a zero flow, as the process governing link-weight value
determination may attach a zero flow independently on what the first process has done.

For robustness purposes, we have therefore compared results of the following esti-
mation procedures: (i) restricted PPML (rPPML); (ii) plain or unrestricted PPML
(uPPML); (iii) ZIP; and (iv) ZINB. Furthermore, in order to control for dynamic
effects, we have estimated Eq. 1 using both a cross-section perspective (i.e., fitting a
separate model for each of the 7 waves we end up with in our database) and an unbal-
anced panel-data approach (i.e., adding time dummies and estimating once and for
all the entire data set). We have also controlled for country fixed effects as suggested
in Baldwin and Taglioni (2006). Our results turn out to be very robust to all these
alternatives. Consequently, in order to avoid redundancy, we report only results from
three sets of models (rPPML, uPPML and ZIP), where a sequence of independent
cross sections is estimated without country fixed effects. It must also be noticed that
the second stage of the ZIP process coincides with the rPPML estimation, as one fits a
Poisson model to non-zero flows only using a pseudo-maximum likelihood method.7

By doing so, we are able to compare a setup where the binary structure of the ITN is
kept fixed (rPPML) with two alternative setups (uPPML and ZIP) where instead one
estimates the probability that a link is in place or not, together with the probability
that the weight of a link attains any given value.

Table 3 presents estimation results for year 2000 (similar results hold also for the
remaining years) using uPPML and the two stages of the ZIP model (the second one
being equivalent to rPPML). Note that, by and large, both signs and orders of magnitude
of estimated coefficients do not change with the estimation technique employed and
have the expected signs. GDP elasticities tend to be larger than in other studies as
we explicitly consider population and area as additional size effects (entering with a

7 ZINB estimates turn out to be very similar to ZIP ones. No dramatic differences are detected between
cross-section and panel-data analyses. Similarly, the introduction of country fixed effects do not alter our
results below in any crucial ways. Note also that we employ the same set of regressors in both stages of
ZIP and ZINB estimates, as listed in Table 2. Reducing the set of regressors in the first stage does not
dramatically change our main results. The whole set of estimation results is available from the authors upon
request.
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Table 3 GM estimation. Year: 2000

Regressor uPPML (w > 0) rPPML (ZIP, 2nd stage) Logit (ZIP, 1st stage)

ln_gdp_i (α1) 1.302***(0.049) 1.278***(0.048) −0.954***(0.025)

ln_gdp_j (α2) 1.697***(0.047) 1.65***(0.047) −0.961***(0.023)

ln_dist_ij (α3) −0.725***(0.033) −0.721***(0.033) 0.533***(0.033)

ln_area_i (β11) −0.097***(0.022) −0.09***(0.022) 0.107***(0.013)

ln_area_j (β21) −0.14***(0.035) −0.135***(0.034) 0.15***(0.013)

ln_pop_i (β12) −0.401***(0.07) −0.393***(0.068) 0.206***(0.026)

ln_pop_j (β22) −0.773***(0.057) −0.744***(0.056) 0.25***(0.026)

landl_ci (δ11) −0.509***(0.092) −0.48***(0.091) 0.517***(0.047)

landl_cj (δ21) −0.451***(0.124) −0.426***(0.123) 0.579***(0.047)

continent_i (δ12) −0.16***(0.038) −0.153***(0.038) 0.043*(0.019)

continent_j (δ22) −0.257***(0.042) −0.259***(0.041) −0.086***(0.018)

contig (θ1) 0.572***(0.113) 0.622***(0.114) 0.996***(0.216)

comlang_off (θ2) 0.407***(0.084) 0.376***(0.083) −0.728***(0.061)

comcol (θ3) 0.399 (0.276) 0.41 (0.274) −0.26**(0.077)

colony (θ4) −0.252**(0.093) −0.226**(0.092) 0.476*(0.239)

curcol (θ5) 0.156 (0.737) 0.345 (0.718) 2.081 (1.291)

comrelig (θ6) −0.094 (0.109) −0.148 (0.109) −0.676***(0.081)

comcur (θ7) −0.139 (0.107) −0.136 (0.107) −1.493***(0.18)

gsp (θ8) 0.349***(0.107) 0.303***(0.106) −2.015***(0.116)

rta (θ9) 0.204**(0.078) 0.181**(0.078) −0.672***(0.078)

_cons (γ ) −21.693***(0.852) −20.8***(0.868) 21.636***(0.487)

No. Obs 23562 11828 23562

Wald Chi2 15029 14083 5691.15

Prob > Chi2 0 0 0

Pseudo R2 0.93 0.92 0.43

Vuong Z – 82.76

Prob > Z – 0

uPPML: unrestricted PPML. rPPML (ZIP, 2nd stage): second stage of the ZIP estimation process, restricted
to non-zero flows only. Logit (ZIP, 1st stage): logit model, first stage of the ZIP estimation process.
i exporter, j importer
*p < 0.05; ** p < 0.01; *** p < 0.001

negative sign). This hints to a relevant effect played by per-capita GDP. Furthermore,
variables as contiguity, common language, and regional trade agreements enhance
trade. In contrast, colony-related variables, common religion and common currency
are less statistically significant.8

Note also that in (first-stage) logit estimation of the ZIP method, GDP (resp. dis-
tance) negatively (resp. positively) affect the probability of having unlinked countries,
as expected. Conversely, distance or land-locking effects enhance the probability of

8 Whenever a variable resulted not significant we decided to keep it among the regressors anyway to
preserve comparison between estimation techniques.
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Table 4 Goodness of fit of the
GM under different estimation
techniques in four selected years

uPPML: unrestricted PPML.
rPPML (ZIP, 2nd stage): second
stage of the ZIP estimation
process, restricted to non-zero
flows only. Logit (ZIP, 1st
stage): logit model, first stage of
the ZIP estimation process

1970 1980 1990 2000

uPPML (w ≥ 0)

No. obs 16,512 20,022 20,880 23,562

Wald Chi2 7,431 9,677 22,165 15,029

Prob > Chi2 0 0 0 0

Pseudo R2 0.8958 0.8714 0.9278 0.9301

rPPML (ZIP, 2nd stage) (w > 0)

No. obs 6,583 8,162 10,289 11,828

Wald Chi2 6,365 8,278 22,630 14,083

Prob > Chi2 0 0 0 0

Pseudo R2 0.89 0.85 0.92 0.92

Logit (ZIP, 1st stage)

No. Obs 16,512 20,022 20,880 23,562

Wald Chi2 3,584 4,522 4,878 5,691

Prob > Chi2 0 0 0 0

Pseudo R2 0.34 0.38 0.42 0.43

missing links. Contiguity coefficient is instead positive: after controlling for geograph-
ical distance, sharing a border does not influence the emergence of bilateral trade. This
is however a result that does not hold robustly over all cross-sections, where contiguity
does not affect significantly the estimated probability.

Finally, all diagnostic statistics indicate that the estimated models are well-specified
(Wooldridge 2001) and achieve a quite good (pseudo) R2. This is true over all the years,
as Table 4 shows.

2.4 The predicted weighted ITN

As long as Yi (t), di j and Xik(t) are strictly positive for all (i, j) and t , one can rewrite
Eq. (1)9 as:

wi j = exp{xi j · γ }ηi j , (2)

where xi j are logged country-specific and bilateral explanatory variables, and γ is the
vector of all coefficient to estimate.

Given estimated coefficients, we use the probability distributions implied by the
estimation procedure to compute GM-based predictions for the binary and weighted
ITN. More formally:

Definition 3 (Predicted Weighted ITN) The predicted weighted International Trade
Network, for each given cross-section t , is represented by the asymmetric matrix

9 From now on, we suppress time labels for the sake of notational convenience and we refer to a cross-section
sequence of estimations.
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Ŵ M , whose generic entries ŵM
i j are independent random variables with a probability

distribution implied by the correspondent estimation technique M employed, where
M ∈ {r P P M L , u P P M L , Z I P}.

Note that the random variables ŵM
i j are independent but not identically distributed,

as their parameters typically vary across pairs of countries because they are computed
using the same set of estimated coefficients but controls that are country and pair
specific. Furthermore, since the predicted weighted ITN is a matrix of independent
random entries, we sampled a sufficiently large number of times from the correct
distributions in order to have a satisfying approximation of our predictions.10

For example, in the case of the rPPML, we use second-stage ZIP coefficient esti-
mates to compute, for each non-zero link (i, j) in the observed ITN, the mean of
the associated Poisson distribution. We then sample from such Poisson distributions,
independently across the existing links, the associated trade flow in levels. This allows
us to build a large sample of predicted weighted ITN networks, all having in common
the same binary network architecture (equal to the observed one).

We then repeat the exercise in the case of uPPML. Here we fit all positive and zero
flows using a PPML estimation procedure and we end up with estimated parameters
for Poisson distributions describing (independently across the links) the probability
that a given link may have a weightw ≥ 0. This generates a large sample of predicted
weighted ITN, each one having an underlying binary matrix that is possibly different
from the observed one.

Finally, we build a sample of predicted weighted ITNs using a ZIP estimation
technique. Here, we exploit the first-stage Logit estimation to first simulate the binary
structure. This is done by independently drawing a link from a Bernoulli distribution,
where the probability of a non-zero flow equals the predicted probability of the Logit
first-stage model. In the second stage, conditionally on having drawn a link (i, j), we
employ PPML coefficient estimates and the related Poisson probability distributions
to draw a trade flow.

As already mentioned, the implied “predicted binary ITN” changes with the method
employed. If we use a rPPML estimation technique, it will coincide with the observed
binary ITN in all simulated instances. Otherwise, it will be in general different from
the observed one across different samples, being an instance of a set of independent
Bernoulli random variables.

Note also that, as far as PPML specifications are concerned, the expected value of
trade flows is defined as the exponential of the linear prediction:

ŵP P M L
i j = exp

{
xi j · γ̂ P P M L

}
, (3)

where γ̂ P P M L is the estimated value of γ in the Poisson model. In this case, the
variance of predictions is equal to their expected value (either restricted or not). In the
ZIP case, the expected bilateral flow (in levels) is instead defined as:

ŵZ I P
i j = (1 − ψ̂i j ) exp

{
xi j · γ̂ Z I P

}
= (1 − ψ̂i j )μ̂i j , (4)

10 In our simulations, we typically employ samples of 10,000 independent matrix realizations. Our results
are robust to different sample sizes.
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where ψi j is the probability that a link (i, j) is zero. The variance of the prediction is
given by:

V ar(ŵZ I P
i j |xi j ) = ψ̂i j (1 − ψ̂i j )[1 + ψ̂i j · μ̂i j ]. (5)

In what follows, we will ask whether the predicted weighted ITN is characterized
by topological properties that are similar to those of its observed weighted counter-
part.11 Section 3.2 discusses instead whether Logit estimations can well reproduce the
topological properties of the binary observed ITN.

2.5 Network statistics and confidence intervals

We study the extent to which the architecture of the observed ITN over time can
be explained by the GM employing a set of standard topological properties (i.e.,
network statistics), see Fagiolo et al. (2009) for a discussion. As Table 5 shows, we
focus on three families of properties. First, total node-degree and total node-strength
measure, for binary and weighted networks respectively, the number of node partners
and total trade intensity. In a directed network, one can also distinguish between
node in-degree/in-strength (i.e., number of markets a country imports from, and total
imports) and node out-degree/out-strength (i.e., number of markets a country exports
to, and total exports).

Second, total average nearest-neighbor degree (ANND) and strength (ANNS) com-
pute, respectively, the average number of trade partners and total trade value of trade
partners of a given node. This gives us an idea of how much a country is connected with
other very well-connected countries. ANND and ANNS statistics can be disaggregated
so as to account for both import/export partnerships of a country, and import/export
partnerships of its partners. More precisely, one can compute four different measures
of average nearest-neighbor degree/strength, obtained by coupling the two ways in
which a node A can be a partner of a given target country B (importer or exporter)
and the two ways in which the partners of A may be related to it (as exporters or
importers). Finally, we consider clustering coefficients (CCs), see Fagiolo (2007) for
a discussion. In the binary case, a node overall CC returns the likelihood that any
two trade partners of that node are themselves partners. In the weighted case, these
likelihoods are computed taking into account link weights to proxy how strong are
the edges of the triangles that are formed in the neighborhood of a node. Again, in
the directed case one can disaggregate total node CC according to the four different
shapes that directed triangular motifs can exhibit.12

11 Notice that, in principle, one could have used directly the expected values implied by the fitted model
(either PPML or ZIP, see Eqs. 3 and 4) to build a single instance of the predicted ITN and compare its
properties with the observed ITN. However, by correctly sampling from the implied distributions, one can
have a better idea of the variability of predictions around their expected values.
12 These are labelled cycle (if i exports to j , who exports to h, who exports to i), in (if both j and h, who
are trade partners, exports to i), out (if both j and h, who are trade partners, imports from i) and mid (if i
imports from h and exports to j , and j and h are trade partners).
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Table 5 Binary and weighted topological properties of the ITN

Topological
properties

Binary Weighted

Degrees/
strengths

N Din
i = kin

i = ∑
j a ji N Sin

i = sin
i = ∑

j w j i

N Dout
i = kout

i = ∑
j ai j N Sout

i = sout
i = ∑

j wi j

N Dout
i = ktot

i = kin
i + kout

i N Stot
i = stot

i = sin
i + sout

i

ANND/ANNS AN N Din,in
i =

∑
j a ji kin

j

kin
i

AN N Sin,in
i =

∑
j a ji sin

j

kin
i

AN N Din,out
i =

∑
j a ji kout

j

kin
i

AN N Sin,out
i =

∑
j a ji sout

j

kin
i

AN N Dout,in
i =

∑
j ai j kin

j

kout
i

AN N Sout,in
i =

∑
j ai j sin

j

kout
i

AN N Dout,out
i =

∑
j ai j kout

j

kout
i

AN N Sout,out
i =

∑
j ai j sout

j

kout
i

AN N Dtot
i =

∑
j (ai j +a ji )ktot

j

ktot
i

AN N Stot
i =

∑
j (ai j +a ji )stot

j

ktot
i

Clustering BCCcyc
i =

∑
j
∑

k ai j a jk aki

kin
i kout

i −k↔
i

WCCcyc
i =

∑
j
∑

k w
1/3
i j w

1/3
jk w

1/3
ki

kin
i kout

i −k↔
i

BCCmid
i =

∑
j
∑

k aik a ji a jk

kin
i kout

i −k↔
i

WCCmid
i =

∑
j
∑

k w
1/3
ik w

1/3
jk w

1/3
j i

kin
i kout

i −k↔
i

BCCin
i =

∑
j
∑

k aki a ji a jk

kin
i (k

in
i −1)

WCCin
i =

∑
j
∑

k w
1/3
jk w

1/3
j i w

1/3
ki

kin
i (k

in
i −1)

BCCout
i =

∑
j
∑

k aik a jk ai j

kout
i (kout

i −1)
WCCout

i =
∑

j
∑

k w
1/3
ik w

1/3
i j w

1/3
jk

kout
i (kout

i −1)

BCCtot
i

=
∑

j
∑

k (ai j +a ji )(a jk+ak j )(aki +aik )

2
[

ktot
i (ktot

i −1)−2k↔
i

]
WCCtot

i

=
∑

j
∑

k (w
1/3
i j +w1/3

j i )(w
1/3
jk +w1/3

k j )(w
1/3
ki +w1/3

ik )

2
[

ktot
i (ktot

i −1)−2k↔
i

]
Time labels are suppressed for notational convenience

In general, we are interested not only in how node average and standard deviation of
the foregoing statistics change over time, but also in the way node statistics correlate,
and how such correlation patterns evolve across the years. In particular, we focus on
correlation between node degrees (resp., strengths) and ANND (resp., ANNS). This
gives us information on the assortativity/disassortativity nature of the ITN. We are
also interested in the correlation between ND/NS and clustering, to understand the
extent to which more and better connected countries trade with partners that trade a
lot between them, i.e. heavy triadic relations get formed.

Given any statistic computed on the observed ITN, we aim at understanding whether
the predicted weighted ITNs display statistical properties that are similar to those of
their observed weighted counterparts. Therefore, for any given statistic σ (e.g., node
averages or correlations), year, and estimation method, we simulate a large num-
ber of times the associated predicted weighted ITN, computing σ on each simulated
instance.13 Finally, we calculate the sample average of σ across simulations, and 95 %

13 In our exercises, we are implicitly assuming that the expected value of any network statistics (given
the implied probability distributions of the estimation method employed) can be replaced by the statistic
computed on expected values of links and weights, and that expected values of ratios are equal to ratios
of expected values. In fact, Squartini et al. (2011a,b) show that such assumptions do not lead to dramatic
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Fig. 1 Observed versus GM-predicted average node total strength. uPPML: unrestricted PPML. rPPML
(ZIP, 2nd stage): second stage of the ZIP estimation process, restricted to non-zero flows only. Logit (ZIP,
1st stage): logit model, first stage of the ZIP estimation process. 95 % confidence bands are displayed as
error bars around predicted values

sample confidence intervals. If in a given year the value of σ for the observed ITN lies
within its confidence intervals for the predicted ITN, we can safely conclude that the
GM successfully replicates that particular feature of the topological structure of the
ITN.

3 Results

This section explores the question whether the statistical properties of the predicted
ITN are similar to those observed in the real-world ITN. We start with basic (non-
directed) weighted statistics (total NS, ANNS and clustering). Next, we discuss results
related to directed weighted measures (e.g., in and out strength, etc.). Finally, we focus
on the binary ITN.

3.1 Weighted statistics

We begin to study predicted population averages of total node strength:

N̂ S
M

tot = 1

N · H

H∑
h=1

∑
i

N̂ S
M
i,tot (h) = 1

N · H

H∑
h=1

∑
i

∑
j

ŵM
i j , (6)

where N is the number of countries in the target cross section and H is the simulation
sample size.

Note that N Stot
i measures total country trade. Therefore its population average

equals total world trade divided by the number of countries. Figure 1 reports predicted
values against observed ones over the years. It is easy to see that PPML-based methods
perfectly match observed values, with very narrow prediction errors. The ZIP proce-
dure instead slightly underestimates average NS, but still attains a quite satisfactory
result. Overall, the good performance of the GM in this task is not surprising, as its
very purpose is to predict bilateral trade flows, and NS are just linear combinations of

Footnote 13 continued
prediction biases, as long as distinct pairs of binary and weighted links are independent, which is indeed
the case if we use a well-specified GM.
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Fig. 2 Observed versus GM-predicted average total ANNS. uPPML: unrestricted PPML. rPPML (ZIP,
2nd stage): second stage of the ZIP estimation process, restricted to non-zero flows only. Logit (ZIP, 1st
stage): logit model, first stage of the ZIP estimation process. 95 % confidence bands are displayed as error
bars around predicted values
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Fig. 3 Observed versus GM-predicted average total WCC. uPPML: unrestricted PPML. rPPML (ZIP, 2nd
stage): second stage of the ZIP estimation process, restricted to non-zero flows only. Logit (ZIP, 1st stage):
logit model, first stage of the ZIP estimation process. 95 % confidence bands are displayed as error bars
around predicted values

them. Therefore one expects the GM to be well equipped to predict total world trade,
as the errors of linear predictions should compensate themselves in the aggregate.

The picture substantially changes when we turn to higher-order statistics like ANNS
and WCC,14 which involve evaluating link weights that are two steps away from
the origin node. Let us begin with average ANNS. As Fig. 2 indicates, rPPML is
quite successful in replicating average total ANNS, whereas both uPPML and ZIP
only get the time trend but fail to well predict the levels. In particular, uPPML seem
to completely miss a satisfactory prediction of the binary structure15 and therefore
strongly underestimates average ANNS levels. ZIP estimates of the binary structure,
instead, seem to be relatively more accurate, but this does not allow the method to
perfectly replicate observed average values.

GM predictive ability worsens when we look at average WCCs, see Fig. 3. In this
case, even the rPPML method persistently overestimates average weighted clustering,

14 Clustering coefficients are computed without rescaling link weights in the unit interval in order not to
bias the analysis with network-dependent rescaling factors (Fagiolo 2007; Saramäki et al. 2007). Therefore,
the range of WCC is not within [0, 1].
15 Our exercises show that predicted uPPML probabilities for the event that a link is present are all very
high and close to unity. Therefore, in the majority of all simulations, the predicted binary structure is close
to that of a full graph. Conversely, ITN density ranges from 0.40 to 0.50 (see Table 1), meaning that slightly
less than a half of possible trade relationships are present.
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Table 6 Rejection frequencies
at the 5 % level for the
two-sample
Kolmogorov–Smirnov test
statistics

Null hypothesis: predicted and
observed node-statistics
sequences come from the same
distribution

1970 1980 1990 2000

rPPML

NStot 0.00 0.00 0.00 0.00

ANNStot 0.00 0.00 0.00 0.00

WCCtot 1.00 1.00 1.00 1.00

uPPML

NStot 0.00 0.00 0.00 0.00

ANNStot 1.00 1.00 1.00 1.00

WCCtot 1.00 1.00 1.00 1.00

ZIP

NStot 0.00 0.00 0.00 0.00

ANNStot 1.00 0.32 0.10 0.06

WCCtot 1.00 0.33 0.68 1.00

while both unrestricted PPML and ZIP still behave very badly. The reason why one
observes a different behavior of the GM in predicting average ANNS and WCC lies
in the way these statistics combine information about binary and weighted network
structure. Recall from Table 5 that weighted-network statistics as ANNS and WCC are
in fact a mix of link weights and node degrees. Moreover, ANNS averages out neigh-
bors’ strengths, and thus requires knowledge of dyadic relations only. Conversely,
WCC coefficients employ information on triadic relationships, involving the knowl-
edge of link-weight triplets. Therefore, small deviations coming from a bad estimation
performance of dyadic link weights are amplified when entering the computation of
clustering coefficients. Hence, even if the rPPML procedure keeps the binary structure
as given, it cannot reproduce average WCC, as prediction errors tend to be magnified.

More generally, our results on average statistics indicate that the GM performs well
only if one fixes the binary structure, and tries to estimate statistics that are linear
in link weights. When either the binary structure must be estimated together with
link weights or the statistics of interest involve higher-order interaction motifs—like
triadic structures in the WCC—the ability of the model to replicate the ITN weighted
structure decreases substantially.

To further explore GM performance in replicating ITN weighted topology, we
perform two-sample Kolmogorov–Smirnov (K–S) tests to compare predicted versus
observed node-statistic distributions. More precisely, given any of the three statistics
of interest (total node strength, average nearest-neighbor strength and weighted clus-
tering), we test the null hypothesis that predicted and observed statistics come from
the same distribution, by computing test rejection frequencies at 5 % across all simu-
lated instances. The results in Table 6 confirm the message coming from the figures
above on population averages. When one fixes the binary structure, the GM is able to
reproduce NS and ANNS distributions, while it misses the distribution of WCC. In the
case the binary structure must be estimated (uPPML and ZIP), only NS distributions
can be satisfactorily replicated.
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Fig. 4 Observed versus GM-predicted correlation between total node strenght and total ANNS. uPPML:
unrestricted PPML. rPPML (ZIP, 2nd stage): second stage of the ZIP estimation process, restricted to non-
zero flows only. Logit (ZIP, 1st stage): logit model, first stage of the ZIP estimation process. 95 % confidence
bands are displayed as error bars around predicted values
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Fig. 5 Observed versus GM-predicted correlation between total node strength and total weighted clustering
coefficient (WCC). uPPML: unrestricted PPML. rPPML (ZIP, 2nd stage): second stage of the ZIP estimation
process, restricted to non-zero flows only. Logit (ZIP, 1st stage): logit model, first stage of the ZIP estimation
process. 95 % confidence bands are displayed as error bars around predicted values

Another fundamental set of stylized facts characterizing the evolution of the ITN
concerns the way in which different network statistics correlate (Fagiolo et al. 2009).
Figures 4 and 5 show observed versus predicted correlation patterns between, respec-
tively, total ANNS and NS, and total WCC and NS. Note that rPPML are able to
correctly predict the existing disassortativity emerging between total country trade
and average trade of the partners of a node, but underestimates clustering-strength
correlations. Conversely, uPPML strongly overestimates the magnitude of both cor-
relation coefficients, because the severe mismatch between observed and predicted
binary structures impairs its ability to capture also the correlation structure. Again, a
ZIP procedure seems to perform quite better than uPPML, even if expected disassor-
tativity and WCC-NS levels are statistically different from observed ones.

Correlation results are in line with recent findings by Squartini et al. (2011a,b),
who show that higher-order weighted properties in the ITN cannot be reproduced by
any random model that takes as given the observed strength sequence (but does not
control for the underlying binary structure). Here we show that a satisfactory repli-
cation of ITN properties can be achieved only if one fixes the binary structure and
attributes link weights using a PPML-based GM estimation. As soon as the binary
structure is badly reproduced, one also looses the possibility to correctly recover
weighted-network patterns, primarily because most of weighted-network statistics are
inherently dependent on the binary representation. At the very least, some more satis-
factory prediction outcomes can be achieved if one focuses on linear transformations
of link weights. As a result, weighted topological properties involving third-order
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statistics as the WCC become very difficult to predict even if one fixes the binary
structure.

So far, we have been studying the performance of GM predictions for weighted
undirected statistics. In fact, total strength, ANNS and clustering all neglect the directed
nature of trade flows and ensuing asymmetries, as they do not discriminate between
in and out links (i.e., import and export flows). To check if the foregoing results also
apply in the case of weighted-network directed statistics, which instead take fully into
account trade-flow directionality, we have studied predicted versus observed values
of population averages of such statistics and their correlation. We have focused on in-
and out-strength, and the breakdown in four directed statistics of ANNS and WCC
(see Table 5). In general, all results obtained above still hold. In particular, rPPML
can easily reproduce all versions of average disaggregated ANNS, while it badly
estimates the average of all directed clustering coefficients. Both uPPML and ZIP fail
to capture average ANNS and WCC. All correlations related to disassortativity16 are
correctly predicted by rPPML, whereas both uPPML and ZIP always fail. All directed
clustering-strength correlation is instead badly reproduced by either procedures, no
matter one fixes the binary structure or not. Once again, the ability to predict the binary
(directed) structure of the ITN becomes necessary, although not sufficient.

3.2 Binary statistics

Our weighted-network exercises show that a necessary condition for the GM to provide
a satisfactorily picture of ITN properties is that one restricts the estimation to strictly-
positive trade flows, i.e. if the observed binary structure is taken as given. The fact that
binary trade links play a crucial role in explaining ITN weighted topology indicates
that any GM model aiming at endogenously estimating binary links must somewhat
take into account the discrete nature of the binary ITN and try to obtain a more accurate
estimation of the exact location of the zeros in trade matrices.

But is the GM able to correctly predict the binary structure of the ITN? Our ZIP
exercises seem to indicate that, to some extent, a logit model seems to better capture the
underlying binary structure than a Poisson one. Therefore, in this section we shall ask
whether one can employ the independent variables traditionally used in GM equations
to predict whether a trade link exists or not using a logit specification (i.e., using the
first stage of a ZIP estimation process).

More precisely, for any cross-section t , we estimate:

Prob{ai j = 1|xi j } = exp{xi j · θ}
1 + exp{xi j · θ} = 
(xi j ; θ). (7)

Since Eq. (7) coincides with the functional form that we fit in the first stage of
the ZIP estimation, we can employ first-stage estimates for a zero flow (ψ̂i j ) from

16 Among all possible correlations of directed statistics with node in- and out-strength we have selected
only those economically more relevant. For example, we have focused on the correlation coefficient between
AN N Sout,in and N Sout (and not that between AN N Sout,in and N Sin ) because one is much more inter-
ested in understanding whether a country that exports more, in turn exports to countries that imports more,
rather than knowing whether a country that imports more, in turn exports to countries that imports more.
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Fig. 6 Observed versus GM-predicted average statistics in the binary ITN. Logit estimation. Bernoulli:
average statistics in the Bernoulli Predicted Binary ITN (see Definition 4). 95 % confidence bands are
displayed as error bars around predicted Bernoulli values
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Fig. 7 Observed versus GM-predicted correlation between statistics in the binary ITN. Logit estimation.
Bernoulli: average statistics in the Bernoulli Predicted Binary ITN (see Definition 4). 95 % confidence bands
are displayed as error bars around predicted Bernoulli values

the ZIP model and build the predicted probability matrices �̂, whose generic entry
ξ̂i j = 1 − ψ̂i j represents the estimated probability of observing a directed link from
country i to country j in that year.

As we did when building predicted weighted ITNs, we generate a sample of H
independent adjacency matrices Âh = {âh

i j }, for h = 1, . . . , H where in each sample

âm
i j is drawn from a Bernoulli distribution with parameter ξ̂i j , independently across all

pairs (i, j). More formally:

Definition 4 (Predicted Binary ITN) The predicted binary International Trade Net-
work, for each given cross-section t , is represented by the asymmetric binary matrix Â,
whose generic entries âi j are independent Bernoulli random variables with parameter
ξ̂i j .

In our exercises, we set as before H = 10, 000. Our main results are reported in
Figs. 6 and 7, where we plot observed binary statistics versus Bernoulli-Logit predicted
ones (see Definition 4).17

To begin with, note that Bernoulli-Logit predictions can exactly replicate average
total node degrees. This is not surprising: the predicted binary ITN preserves on

17 We focus here only on undirected measures. All main results hold also for directed network statistics.
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average the observed density by construction and average total node degree is simply
proportional (by a factor N −1) to network density. The fact that a Logit estimation is
on average able to predict observed density explains why a ZIP model, which employs
the very same Logit specification in its first stage, predicts very well average total NS.
For that statistic is an average over all existing links and it is not so much affected by
where these links are actually located. This is not true of ANNS and WCC, which in
fact are not perfectly reproduced by a ZIP model because they require a more precise
knowledge of where links are placed.

A similar problem arises in the binary ITN with Bernoulli-Logit predictions: they
persistently underestimate observed average ANND and BCC. Again, this hints to an
inherent inability of the GM to well predict the presence of a link (see middle panel
of Fig. 6).

Things seem to improve a bit when we move to correlation structure. Bernoulli-
Logit predictions are able to well capture binary disassortativity and clustering-degree
correlation, especially in the last part of the sample. Although on average observed
point-correlations are rarely replicated, the inherent variability of this procedure allows
one to conclude that there exists a sufficiently large number of simulations where
predicted correlations are very similar to observed ones.

However, the relative success of the GM in replicating the correlation structure
of binary structure should not be necessarily taken as a virtue of this model. Indeed,
as Squartini et al. (2011a,b) have shown, both binary disassortativity and clustering-
degree correlation can be easily replicated even by a null random model that preserves
the observed (in/out) degree distribution and is otherwise fully random in the way
links are created. Note that our exercises (not shown) indicate that the GM attains a
relative poor performance also in predicting the observed (total, in and out) degree
distributions.18 Therefore, from a purely predictive perspective, the GM can hardly
be considered any better than other random null models that require much less infor-
mation and attain a similar explanatory performance (albeit an almost void economic
interpretation).

4 Concluding remarks

In this paper, we have studied whether a gravity model (GM), the work-horse the-
oretical reference in international trade, can explain the statistical properties of the
International-Trade Network.

Our exercises show that the GM does a decent job in replicating the weighted-
network structure of the ITN only if one fixes its binary architecture equal to the
observed one. More generally, the GM performs very badly when asked to predict the
presence of a link, or the level of the trade flow it carries whenever the binary structure
must be simultaneously estimated. Furthermore, even when the binary structure per-
fectly replicates the observed one, the GM is not able to explain higher-order statistics
that, like clustering, require the knowledge of triadic link-weight topological patterns.

18 KS-tests almost always rejects the null hypothesis that observed and Bernoulli-Logit simulated (total,
in and out) degree distributions are the same.
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Our binary analysis also shows that the GM turns out to be a good model for
estimating trade flows, but not one that can explain why a link in the ITN gets formed
and persists over time. In other words, knowing country-specific variables (country
GDP, etc.) and country bilateral interactions (bordering conditions, belonging to the
same RTA, etc.) is not enough to predict the presence of a link. However, conditional on
the information that a link exists, such variables can well predict how much trade that
link actually carries. From a binary perspective, the GM can well reproduce the overall
density of the ITN (i.e. the number of trade relationships) and therefore the number
of zeros in trade matrices, but not where the ones are expected to be located exactly
(Eaton et al. 2012). Furthermore, the GM ability in replicating binary disassortativity
and clustering-degree correlation is comparable to null network models that perfectly
match such statistics by relying only on the knowledge of the degree distribution
(Squartini et al. 2012).

Notice that these results are largely independent on which variables are actually
entering the gravity equation we fit to the data. In the foregoing exercises, we have
used a standard specification where many of the most-employed GM variables enter
the regression. We have also tried and augment the equation with other explanatory
variables that resulted statistically not significant, but can nevertheless improve the
percentage of explained trade-flow variance, without observing any dramatic increase
in the goodness of fit of ITN network statistics.

In order to better explain the topological properties of the ITN many alternative
strategies may be pursued. First, one may consider to augment a GM specification
with network-related variables (Ward and Ahlquist 2012). It may be indeed argued
that if standard economic variables entering in the GM are not enough to explain link
formation, perhaps this is because the presence of a link between any two countries
might be actually explained by the very local structure of the network (e.g., degrees of
the two countries, etc.). Of course this introduces some endogeneity to the problem,
because the presence of a link in turn affects local network properties. By properly
dealing with endogeneity issues in estimation, one can hope to better explain the binary
structure of the ITN.

Second, one might borrow social-network statistical methodologies currently
employed to model the evolution of directed graphs over time as continuous-time
Markov processes (Snijders 2005). For example, one may envisage setups where each
single node chooses its outgoing link (i.e. whether to export to another country or not)
based on a myopic optimization of some objective function, where the latter may be
the result of many firm-level decisions within the origin country.

Finally, one may think to explore international-trade models where the decision
of a firm located in country A to export goods to country B, which possibly never
imported products from A before, is rooted in a more detailed micro-foundation. This
may require to blend together two strands of literature, one on the role of heterogeneous
firms in international trade (Melitz 2003; Bernard et al. 2007) and the other on models
of trade network formation based on simple aggregate dynamics (Garlaschelli and
Loffredo 2004; Bhattacharya et al. 2008; Riccaboni and Schiavo 2010).
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