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Abstract Statistical properties of order-driven double-auction markets with
Bid–Ask spread are investigated through the dynamical quantities such as response
function. We first attempt to utilize the so-called Madhavan–Richardson–Roomans
model (MRR for short) to simulate the stochastic process of the price-change
in empirical data sets (say, EUR/JPY or USD/JPY exchange rates) in which the
Bid–Ask spread fluctuates in time. We find that the MRR theory apparently fails
to simulate so much as the qualitative behaviour (‘non-monotonic’ behaviour) of
the response function R(l) (l denotes the difference of times at which the response
function is evaluated) calculated from the data. Especially, we confirm that the sto-
chastic nature of the Bid–Ask spread causes apparent deviations from a linear rela-
tionship between the R(l) and the auto-correlation function C(l), namely, R(l) ∝
−C(l). To make the microscopic model of double-auction markets having stochastic
Bid–Ask spread, we use the minority game with a finite market history length and
find numerically that appropriate extension of the game shows quite similar behaviour
of the response function to the empirical evidence. We also reveal that the minor-
ity game modeling with the adaptive (‘annealed’) look-up table reproduces the non-
linear relationship R(l) ∝ − f (C(l)) ( f (x) stands for a non-linear function leading to
‘λ-shapes’) more effectively than the fixed (‘quenched’) look-up table does.
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1 Introduction

How a specific trading mechanism effects on the price formation is one of the essential
queries to understand the process and outcomes of exchanging assets under a given
concrete rule. To investigate the issue, a lot of studies concerning the micro-structure
of markets have been done in various research fields (O’hara 1995).

Recently, lots of on-line trading services on the internet were constructed by sev-
eral major banks such as the Sony Bank (http://www.moneykit.net/). As the result,
one can gather a lot of trading data sets to investigate the statistical properties exten-
sively. As such studies, several authors focused on the fact that the Sony Bank uses
a trading system in which foreign currency exchange rates change according to a
first-passage process (FPP) (Redner 2001; van Kappen 1992; Montero and Masoliver
2007). Automatic FOREX trading systems such as the Sony Bank are now popular in
Japan where many investors use a scheme called carry trade by borrowing money in
a currency with low interest rate and lending it in a currency offering higher interest
rates. With these demands in mind, several studies have been done to investigate the
stochastic process and made a model of it to reproduce the FPP in order to provide
useful information for customers (Sazuka 2007; Sazuka and Inoue 2007a,b; Inoue and
Sazuka 2007; Sazuka et al. 2009; Inoue and Sazuka 2010; Inoue et al. 2010; Inoue
et al. in preparation).

The data sets of the Sony Bank rate (http://www.moneykit.net/) are composed of
time index and trading rate at that time. As we explained, a huge number of market
data are reduced to a small amount of it, namely, the number of the Sony bank rate
is reduced by the first-passage process and unfortunately, the market rates behind the
Sony Bank rate are not available for us.

As well-known, there are several data sets whose price are determined by the
so-called double-auction system. In the double-auction market, each trader (investor)
posts his (or her) selling price or buying price in market order of a specific commodity
with its volume to the market. Then, the market maker determines the minimum price
of buying orders, what we call Ask, and the maximum price of selling orders, the
so-called Bid at each trading time and discloses these prices to the public. Then, the
difference between the Bid and the Ask is referred to as spread or Bid–Ask spread.
In market rates available for traders (on the web for instance), there are two types
of Bid–Ask spread, that is, ‘constant’ or ‘distributed’, and which type of spread is
disclosed depends on the market makers (securities companies).

Results of market making, especially, statistical properties of the Bid–Ask spread
might have an impact on the market and several studies have been done to reveal
the relationship between the properties of Bid–Ask spread and behaviour of the mar-
ket (O’hara 1995; Elliott and Ekkehard 2004; Madhavan et al. 1997; Wyart et al.
2008; Bouchaud et al. 2006; Ponzi et al. 2009). For instance, Madhavan et al. (1997)
proposed a phenomenological model to explain the price dynamics of double-auction
market in market order, however, their model is apparently limited to the case in which
the Bid–Ask spread remains constant during the price dynamics. Therefore, much
more extensive studies including empirical data analysis seem to be needed to investi-
gate to what extent the model proposed by Madhavan, Richardson and Roomans can
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explain the behaviour of market with stochastic Bid–Ask spread through some relevant
quantity.

In this paper, we investigate statistical properties of double-auction markets with
Bid–Ask spread through the dynamical quantities such as response function. We first
attempt to examine the so-called Madhavan–Richardson–Roomans model (MRR for
short) to simulate the stochastic process of the price-change in empirical data sets
(say, EUR/JPY or USD/JPY exchange rates) in which the Bid–Ask spread fluctuates
in time. We find that the MRR theory apparently does not simulate so much as the
qualitative behaviour (‘non-monotonic’ behaviour) of the response function calculated
from the data sets. It is possible for us to show that a linear relationship R(l) ∝ −C(l)
between auto-correlation function C(l) and response function R(l) holds for the MRR
model. Namely, these two macroscopic quantities are related each other and the rela-
tionship should be explained from the microscopic view point as statistical physics
provides the microscopic foundation of thermodynamics. Moreover, we find that the
linear relationship R(l) ∝ −C(l) is apparently broken down in order-driven dou-
ble-auction markets with fluctuating Bid–Ask spread. This fact tells us that on the
analogy of physics, the phenomenological MRR model for the constant spread might
be regarded as ‘thermodynamics’ which usually deals with the macroscopic quantities
such as price, auto-correlation, response functions and the relationship between them.
It does not need to consider the detail behaviour of microscopic ingredients such as
traders. In this paper, we show that the phenomenological model is apparently limited
and fails to reproduce the dynamical quantities C(l), R(l) efficiently.

Hence, here we attempt to construct a kind of ‘statistical mechanics’ in finance,
which provides a microscopic foundation of phenomenological theory such as the
MRR model. For this end, we utilize the minority game with a finite market his-
tory length having the distributed Bid–Ask spread to reproduce similar behaviour of
macroscopic dynamical quantities as the empirical evidence shows.

In our minority game modeling, we first fix each decision component (buying: +1,
selling: −1) in their look-up tables before playing the game [in this sense, the decision
components are ‘quenched variables’ in the literature of disordered spin systems such
as spin glasses (Mezard et al. 1987)]. We also consider the case in which a certain
amount of traders update their decision components according to the macroscopic
market history (they ‘learn’ from the behaviour of markets) so as to be categorized
into two groups with a finite probability (in this sense, the components are now re-
garded as ‘annealed variables’). Namely, at each round of the game, if the number of
sellers is smaller/greater than that of buyers, a fraction of traders, what we call optimis-
tic group/pessimistic group, is more likely to rewrite their own decision components
from −1/+1 to +1/−1. We find that the minority game modeling with the adaptive
look-up table reproduces the non-linear relationship R(l) ∝ − f (C(l)) ( f (x) stands
for a non-linear function leading to ‘λ -shapes’) more effectively than fixed (frozen)
look-up table does.

This paper is organized as follows. In the next Sect. 2, we explain our data sets
and their format. We investigate their statistical properties. In the next Sect. 3, we
evaluate two relevant quantities, namely, the auto-correlation function C(l) and the
response function R(l), which are our key quantities to discuss the double-auction
markets, for our data sets. We find that a linear relationship R(l) ∝ −C(l) holds for
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the data sets having a constant Bid–Ask spread, however, the relation is broken for the
data with a stochastic spread. In Sect. 4, we introduce the so-called MRR model as a
phenomenological model and derive the C(l) and R(l). The difference between the
MRR theory and the empirical evidence, the origin of the difference is discussed. In
Sect. 5, we introduce and modify the minority game with a finite market history length
and apply to explain the typical behaviour of the response function for the data with
stochastic Bid–Ask spread. In Sect. 6, we reveal that the minority game modeling
with the adaptive (‘annealed’) look-up table reproduces the non-linear relationship
R(l) ∝ − f (C(l)) ( f (x) stands for a non-linear function leading to ‘λ-shapes’) more
effectively than fixed (‘quenched’) look-up table does. In Sect. 7, we comment on the
possible extensions of our approach. The last section is summary.

2 Statistical properties of data sets

In order to check the validity of our modeling of markets, we gathered data sets of
double-auction markets from the web site (http://www.metaquotes.net/) by using the
free software MetaTrader4. We shall explain the data format of the MataTrader4. We
used the script which is available on the web (http://www.metaquotes.net/). By using
the script, the data sets are stored as the following format:

2009/12/24,17:17:40,131.053,131.092
2009/12/24,17:17:41,131.053,131.088
2009/12/24,17:17:41,131.052,131.088
2009/12/24,17:17:43,131.048,131.071
2009/12/24,17:17:44,131.043,131.076
..................................
..................................

From the far left column to the far right, transaction time (Year/Month/Day,
hour: min:sec), Bid, Ask are shown. For instance, the first line denotes the Bid is
131.053 and Ask is 131.092 on 24th December 2009 at 17:17:40. In this paper, we
treat the data set written by the above format. Among data sets concerning various
different financial assets, we shall use here specific four data sets, namely, USD/JPY
exchange rates (23–28 October 2009), EUR/JPY exchange rates (22–28 November
2009), Nasdaq100 (22–31 October 2009) and price of gold (28–30 October 2009).
Each data set contains 105-data points.

In the conventional (standard) data for continuous-time double-auction markets, we
usually use the data having transactions (buying or selling price and the transaction
time) including the quote (Bid and Ask prices posted to the market with the time).
However, unfortunately, the data set provided by the MetaTrader4 does not contain
any information about the transaction. Namely, the ‘Bid and Ask values’ we mentioned
above are the best selling price and the best buying price, and the time at which the
transaction takes place. Therefore, the price itself is not available for these data sets.

Hence, here we assume that the mid point mt of the Bid bt and Ask at at time t , that
is, mt = (at +bt )/2 is a sort of buying or selling price when the transaction is approved.
Then, we shall define the sign of the ‘return’ of the mid points (the difference between
successive mid points) as a Selling–Buying signal εt , namely, εt = sgn(mt+1 − mt ).
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Fig. 1 Empirical distributions of ‘return’ (the difference between successive mid points) �mt ≡
mt+1 − mt for our four kinds of data sets. From the upper left to the lower right, P(�mt )

for EUR/JPY exchange rates, USD/JPY exchange rates, Nasdaq100 and price of gold are plot-
ted. To compare the results with normal Gaussians, we calculate the empirical mean �m ≡
(1/T )

∑T −1
t=0 �mt and the empirical variance σ 2

�m ≡ (1/T )
∑T −1

t=0 (�mt − �m)2 for each data and

plot the Gaussian N (�m, σ�m ) in the same panel. From the upper left to the lower right, these
normal Gaussians are N (0.000012, 0.000018),N (−0.000007, 0.000013),N (−0.000726, 0.017722) and
N (0.000080, 0.000922), respectively

Of course, these definitions of ‘prices’ and the ‘Selling–Buying signals’ are different
from the conventional one, however, we shall try to investigate the behaviour of the
system having such a slightly different definition of the prices and signals in limited
data sets.

In this section, we first calculate the histogram of the return of the mid point
�mt ≡ mt+1 − mt . The results are shown in Fig. 1. From these panels, we clearly
find that the return of the mid point is distributed with ‘heavy tails’ as the conven-
tional return of the price has Bouchaud and Potters (2000). To compare the results
with Gaussians, we calculate the empirical mean �m ≡ (1/T )

∑T −1
t=0 �mt and the

empirical variance σ 2
�m ≡ (1/T )

∑T −1
t=0 (�mt − �m)2 for each data and plot the

corresponding Gaussian N (�m, σ�m) in the same panel.
We next focus on the Bid–Ask spread St = at −bt which is one of the key values in

this study. We are confirmed that the above four data sets are classified into two types
according to each statistical property of the spread. Namely, the spread of USD/JPY
or EUR/JPY exchange rates is time-dependent and fluctuates, whereas, the spread of
Nasdaq100 or price of gold is a time-independent constant. In Fig. 2 for EUR/JPY
and USD/JPY exchange rates, and in Fig. 3 for Nasdaq100 and price of gold, we plot
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Fig. 2 Statistical properties of the data set in which the spread fluctuates in time, EUR/JPY exchange rates
(the upper panels) and USD/JPY exchange rates (the lower panels) are shown. From left to right, the mid
point mt , the return of the mid point�mt ≡ mt+1 −mt as a function of t , and the distribution of the spread
P(S) are plotted
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Fig. 3 Statistical properties of the data set in which the spread is a time-independent constant, Nasdaq100
(the upper panels) and price of gold (the lower panels) are shown. From left to right, the mid point mt , the
return of the mid point �mt ≡ mt+1 − mt as a function of t , and the distribution of the spread P(S) are
plotted

the mid point mt , the return of the mid point�mt ≡ mt+1−mt as a function of t and the
distribution of the Bid–Ask spread P(S). From these figures, we clearly find that
the Bid–Ask spread for the exchange rates apparently fluctuates, whereas the spread
for Nasdaq100 or price of gold is a constant leading up to a single delta peak in the
empirical distribution. From now on, the data in which the spread fluctuates is refereed
to as data with stochastic Bid–Ask spread, whereas, the data in which the spread is con-
stant is called as data with constant Bid–Ask spread. One of the main goals of this paper
is to reveal the relationship between the statistical properties of Bid–Ask spread and
the behaviour of auto-correlation and response functions for double-auction markets.
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3 Empirical data analysis

In this section, we evaluate two macroscopic dynamical quantities, namely, auto-
correlation and response functions by making use of empirical data analysis. These
two relevant quantities are explicitly defined by

C(l) = lim
T →∞

1

T

T −1∑

t=0

εtεt+l (1)

R(l) = lim
T →∞

1

T

T −1∑

t=0

εt (mt+l − mt ). (2)

In order to evaluate these functions, we need the information about Selling–Buying
signal εt . However, as we mentioned in the previous section, the data gathered through
the MetaTrader4 [20] does not contain any information about it explicitly. To over-
come this problem, we here assume that εt is given in terms of ‘return’ of the mid
point:

εt = sgn(mt+1 − mt ). (3)

Namely, we assume when the mid point increases at the instant mt+1 > mt , the num-
ber of traders who posted their own buying signal to the market also increases. As the
result, the Selling–Buying signal ε is more likely to take buying +1 at that instant t .

Under the above assumption, for our four data sets, namely, EUR/JPY, USD/JPY
exchange rates, Nasdaq100 and price of gold, we calculate the auto-correlation func-
tion C(l) and the response function R(l) via (1) and (2), respectively.

3.1 Auto-correlation function

We first plot the auto-correlation function for the above four data sets in Fig. 4. From
the upper left to the lower right, we plot EUR/JPY exchange rates (under the assump-
tion on the asymptotic form: C(l) ∼ ρl , l � 1, the estimated ρ = 0.24), USD/JPY
exchange rates (the estimated ρ = 0.28), Nasdaq100 (the estimated ρ = 0.47 ), price
of gold (the estimated ρ = 0.51). From these panels, we find that the correlation in
the Selling–Buying signals decreases in the time difference l although the result for
USD/JPY exchange rate possesses the negative correlation in l = 1 and converges to
zero with a slight oscillation.

3.2 Response function

We next evaluate the response function for our four data sets. The results are shown
in Fig. 5. In this figure, we plot the response function for the data with stochastic
Bid–Ask spread (the lower panels) and for the data with a constant Bid–Ask spread
(the upper panels). From these panels, we find that some ‘non-monotonic’ behaviour
in R(l) appears for the data set with stochastic Bid–Ask spread.
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Fig. 4 Typical behaviour of the auto-correlation function C(l). From the upper left to the lower right, we
plot EUR/JPY exchange rates (the estimated ρ = 0.24), USD/JPY exchange rates (the estimated ρ = 0.28),
Nasdaq100 (the estimated ρ = 0.47), price of gold (the estimated ρ = 0.51)

3.3 Relationship between C(l) and R(l)

From the definitions, both auto-correlation and response functions are functions of
the time-difference l. In the previous subsections, we investigated their behaviour
independently. However, it might be assumed that these two quantities are related
each other. Therefore, it is useful for us to make ‘scatter plots’ to reveal the dynam-
ical relationship underlying these two quantities. In Fig. 6, we plot the relationship
between R(l) and C(l) by scatter plots. The upper two panels are results for the gold
and Nasdaq100 with constant spreads, whereas the lower panel denotes the result for
the EUR/JPY exchange rate having fluctuating spread. We find that the linear relation-
ship R(l) ∝ −C(l) is apparently broken down in the EUR/JPY exchange rate which
possesses a fluctuating Bid–Ask spread.

In the next section, we examine a phenomenological model to explain the non-linear
relationship R(l) ∝ − f (C(l)) ( f (x) denotes a non-linear function) theoretically.

4 A phenomenological approach

In order to explain the behaviour of the auto-correlation and response functions,
we examine a phenomenological approach based on the so-called Madhavan–
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Fig. 5 Typical behaviour of the response function for our empirical data: from the upper left to the lower
right, the results for Nasdaq100, price of gold, EUR/JPY exchange rate and USD/JPY exchange rate are
shown

Richardson–Roomans model (MRR for short) (Madhavan et al. 1997; Wyart et al.
2008) to simulate the stochastic process of price-change in empirical data sets. In the
MRR model, the price pt updates according to the following rule.

pt+1 = pt + θ(εt − ρεt−1)+ ξt (4)

where ξt denotes a noise in the market satisfying 〈ξt 〉 = 0 and 〈ξtξt ′ 〉 = δt,t ′
2. θ is a
constant value to control the slope of instantaneous price change. The label εt means
a Selling–Buying signal to represent εt = +1 for a buying signal and εt = −1 vice
versa.

Behaviour of the above update rule is dependent on the statistical properties of
Selling–Buying signals εt . ρ is a correlation factor and in the MRR theory, we assume
that εt follows a simple Markovian process, namely,

∑

εt =±1

εt P(εt |εt−1) = ρεt−1. (5)

The price value of pt+1 provided that the Selling–Buying signal in the previous
time step is εt = +1 should be the Ask at and the price pt+1 provided that the signal
is εt = −1 should be the Bid bt . Hence, we naturally define the time-dependence of
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Fig. 6 The relationship between R(l) and C(l). The upper two panels are results for the gold and Nas-
daq100 with constant spreads, whereas the lower panel denotes the result for the EUR/JPY exchange rate
having fluctuating spreads. We find that the linear relationship R(l) ∝ −C(l) holds for the data having a
constant spread, whereas the linear relationship is apparently broken down in the EUR/JPY exchange rate
which possesses a fluctuating Bid–Ask spread

Ask and Bid as follows.

at = pt + θ(1 − ρεt−1)+ φ (6)

bt = pt + θ(−1 − ρεt−1)− φ (7)

where φ denotes a kind of transaction cost and the value itself is set to a constant in
the MRR model. From these rules, we easily find the Bid–Ask spread at time t as

St = at − bt = 2(θ + φ). (8)

Namely, in the MRR model, the spread is a time-independent constant during the
dynamics.

On the other hand, the mid point of the Bid and Ask is given by

mt = 1

2
(at + bt ) = pt − θρ εt−1. (9)

Therefore, for the parameter choice θ = 0 or ρ = 0, the mid point mt is identi-
cal to the price pt . For the above update rules of price, Bid, Ask, spread and mid
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point, we investigate the macroscopic properties of double-auction markets through
the auto-correlation function and the response function.

4.1 Auto-correlation function

From the definition of Markovian process (5), the auto-correlation function is given by

C(l) = 〈εtεt+l〉 ≡
∑

εt =±1

. . .
∑

εt+l=±1

P(εt , . . . , εt+l)εtεt+l = ρl . (10)

We should keep in mind that the auto-correlation function is originally defined by (1).
However, in the limit of T → ∞, one can replace the time-average by the average over
the joint probability of the stochastic variables εt , . . . , εt+l as (1/T )

∑T −1
t=0 (. . .) =∑

εt =±1 . . .
∑
εt+l=±1(· · · )P(εt , . . . , εt+l) according to the law of large number.

The correlation factor ρ should be |ρ| ≤ 1. For a positive ρ, the correlation function
decays exponentially as C(l) = e−l log(1/ρ).

4.2 Response function

We next consider the response function of the market, that is defined by

R(l) = 〈εt · (mt+l − mt )〉 (11)

where the bracket 〈· · · 〉 has the same meaning as that in (10) has.
From the above response function, one obtains some information about the response

of the market at time t + l to the Selling–Buying signal at arbitrary time t . Namely,
the response function measures to what extent the mid point increases (decreases) on
average for interval l when a buying (selling) signal is posted to the market l steps
before we observe the mid point. After simple algebra, we easily obtain the relation-
ship between the response function R(l) and the correlation function C(l) for the MRR
model as follows.

R(l) = θ(1 − C(l)) (12)

As we saw before, for a positive correlation factor ρ > 0, the C(l) monotonically
decreases as C(l) = e−l log(1/ρ). Hence, the response function also behaves monoton-
ically and converges to θ as R(l) = θ(1 − e−l log(1/ρ)) → θ (l → ∞). It should be
noticed that the linear relationship between C(l) and R(l) holds from (12).

From equation (12), we also find R(1) = θ(1 − ρ) and this fact tells us that
R(∞)/R(1) = (1 − ρ)−1 holds. The volatility defined by

σ 2(l) ≡ 1

l

〈
(mt+l − mt )

2
〉

(13)

also reads

σ 2(l) = 
2 + θ2(1 − ρ)2
{

1 + 2ρ(1 − ρl−1)

1 − ρ

}

(14)
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Fig. 7 Typical behaviour of the response function for the MRR model. From the upper left to the lower
right, we plot the response function for ρ = −0.9,−0.1, 0.1, 0.5. The solid lines are theoretical predictions
by R(l) = θ(1 − ρl ). The boxes are obtained by numerical simulations for a finite T = 105

and σ 2(1) = 
2 + θ2(1 − ρ)2, σ 2(∞) = 
2 + θ2(1 − ρ2). We may use the above
rigorous equations to check the validity of our computer simulations.

In Fig. 7, we show the typical behaviour of response function for several choices
of ρ. From these panels, we find that for a positive correlation factor, the response
function monotonically converges to the value θ . In this figure, we also show the
results obtained by simulating the update equation for the price (4) and the mid point
(9), and calculating the response function numerically by making use of (2). We find
that the both theoretical prediction (solid lines) and the simulation (boxes) are in good
agreement. Moreover, for the choice of positive correlation factors, say, ρ = 0.1 and
0.5, the response function increases monotonically and converges to θ(= 1.5) as the
MRR theory predicted.

In Fig. 8, we show the relationship between R(l) and C(l) for the MRR model. We
clearly find that the linear relationship R(l) = θ(1 − C(l)) ∝ −C(l) actually holds.
We should notice that this result is completely different from the relationship shown in
the lower panel of Fig. 6 which is result for the data having fluctuating Bid–Ask spread.
This failure of the MRR model to simulate the ‘λ-shape’ of the C(l)-R(l) scatter plot
for the data with stochastic Bid–Ask spread is obviously due to the assumption of con-
stant Bid–Ask spread, namely, St = at − bt = 2(θ + φ) on the MRR theory. We also
conclude that the breaking of the linear relationship R(l) ∝ −C(l) is macroscopically
due to the fact that the response function evaluated on the basis of the MRR theory
behaves ‘monotonically’ and converges to a finite value θ .
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Fig. 8 The relationship between R(l) and C(l) for the MRR model. We find that the linear relationship
R(l) = θ(1 − C(l)) ∝ −C(l) holds

This fact is one of the limitations of the MRR theory to explain the empirical data
for double-auction markets. To make the efficient model for the double-auction mar-
ket with stochastic Bid–Ask spread, we use a game theoretical approach based on the
so-called minority game.

5 A minority game modeling of double-auction markets

In order to make a model to simulate the ‘non-monotonic’ behaviour of the response
function for the financial data with stochastic Bid–Ask spread, we start our argument
from standard minority game (Arthur 1994; Challet and Zhang 1997; Challet et al.
2005; Coolen 2005) with a finite market history length.

5.1 General set-up

In our computer simulations for the minority game, at each round t (time step) of
the game, each trader i (i = 1, . . . , N : N should be an odd number to determine the
‘minority group’) decides his (or her) decision: Bi (t) = +1 (buy) or Bi (t) = −1 (sell)
to choose the minority group. Then, we evaluate the total decision of the traders:

A(t) = 1√
N

N∑

i=1

Bi (t) (15)

for each round t . It should be noted that the factor N−1/2 is needed to make the A(t)
of order 1 object (independent of the size N ). From the definition (15), the market
is seller’s market for A(t) > 0, whereas the market behaves as buyer’s market for
A(t) < 0. The A(t) follows complicated stochastic process and one might consider
that the price p is updated in terms of the A(t) as follows.

p(t + 1) = p(t)+ β{A(t)+ ψ sgn[A(t − 1)]} (16)
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where β and ψ are positive constants. The above update rule means that the price
increases if the ‘buying group’ is majority and decreases vice versa. This setting
of the game seems to be naturally accepted. A bias term ψ appearing in (16)
plays an important role to simulate the auto-correlation function as we will see
later on.

To decide ‘buy’ or ‘sell’, each trader uses the following information vector defined
by

λ(A, Z : t) =

⎛

⎜
⎜
⎝

sgn[(1 − ζ )A(t − 1)+ ζ Z(t, 1)]
sgn[(1 − ζ )A(t − 2)+ ζ Z(t, 2)]

· · ·
sgn[(1 − ζ )A(t − M)+ ζ Z(t,M)]

⎞

⎟
⎟
⎠ (17)

where sgn(x) denotes a sign function and Z(t, ξ), ξ = 1, . . . ,M is a white noise
defined by

〈Z(t, ξ)Z(t ′, ξ ′)〉 = δt,t ′δξ,ξ ′ . (18)

Therefore, each trader uses the information of market through the up-down configura-
tion of the return A (with some additive noise Z ) back to the previous M-steps. If the
ζ is close to 1, the ‘real’ market history through the A is hided by the ‘fake’ market
history through the noise Z .

For a given information vector λ(A, Z : t) = λ chosen from all possible 2M can-
didates, each trader i decides her (or his) action at round l by the following strategy
vector:

ri
Λ =

(
r i1
Λ , . . . , r

is
Λ

)
, Λ = 1, . . . , 2M (19)

where we defined Λ as the index (entry) of the selected information vector λ and s
stands for the number of the possible strategies for each trader. Each component of
the above strategy vector ri

Λ takes +1 (buy) or −1 (sell). Therefore, each trader has
her (his) own look-up table which is defined by a matrix with size s × 2M as

Ri ≡

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ri
1

ri
2

·
·
·

ri
2M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r i1
1 r i2

1 · · · r is
1

r i1
2 r i2

2 · · · r is
2

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
r i1

2M ri2
2M · · · r is

2M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (20)

Each component of the above look-up table r is
Λ = {+1,−1} is fixed (‘quenched’)

before playing the game. However, in the next section, we consider the case in which
the components of look-up tables are rewritten during the game. In this paper, we con-
centrate ourselves to the simplest case of two strategies s = 2 and ζ = 0 (‘real’ market
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history). Then, the trader i changes her/his own pay-off value Pic by the following
update rule:

Pic(t + 1) = Pic(t)− 1√
N

Bi (t)A(t) (21)

Bi (t) =
2M
∑

Λ=1

δ(Λ,λ(A, Z : t))r i c̃i (t)
Λ (22)

where δ(x, y) denotes the Kronecker’s delta and c̃i (t) means the optimal strategy in
the sense that c̃i (t) is given by

c̃i (t) = arg maxc[Pic(t)]. (23)

The meaning of the update rule (21) is given as follows. If A(t) > 0 and the major-
ity group consists of traders who post their decisions +1 to the market, the trader i
attempts to post her/his decision as an opposite sign of A(t), namely, Bi (t) = −1.
Thus, the trader i acts so as to satisfy the condition Bi (t)A(t) < 0 which leads to
increase of her/his pay-off value Pic(t + 1).

By taking into account the fact that we are dealing with the case of s = 2 (c = 1, 2),
we rewrite the equation (21) as

qi (t + 1) = qi (t)− 1√
N

2M
∑

Λ=1

δ(Λ,λ(A, Z : t))ηi
ΛA(t) (24)

by means of

qi (t) = 1

2
(Pi1(t)− Pi2(t)), ηi

Λ = 1

2

(
r i1
Λ − r i2

Λ

)
. (25)

Substituting (22) into the definition of the total bit A(t), we have

A(t) = 1√
N

N∑

i=1

Bi (t) = 1√
N

N∑

i=1

2M
∑

Λ=1

δ(Λ,λ(A, Z : t))r i c̃i (t)
Λ . (26)

We should notice that the above equation can be written by using the following relation

r i c̃i (t)
Λ = wi

Λ + sgn[qi (t)]ηi
Λ, wi

Λ = 1

2

(
r i1
Λ + r i2

Λ

)
. (27)

Then, we obtain the following coupled non-linear equations with respect to the total
decision A(t), the difference of pay-off values for two strategies qi (t) and the update
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equation of the price p(t):

A(t) = 1√
N

N∑

i=1

2M
∑

Λ=1

δ(Λ,λ(A, Z : t))
{
wi
Λ + sgn[qi (t)]ηi

Λ

}
(28)

qi (t + 1) = qi (t)− 1√
N

2M
∑

Λ=1

δ(Λ,λ(A, Z : t))ηi
ΛA(t) (29)

p(t + 1) = p(t)+ β{A(t)+ ψ sgn[A(t − 1)]}. (30)

The above rules (28)–(30) are our basic equations to discuss the response of double-
auction markets having stochastic Bid–Ask spread to instantaneous Selling–Buying
signals.

5.2 Making of the Bid–Ask spread in the minority game

To make the Bid–Ask spread in our minority game, we assume that the buying price
ait and the selling price bit which are posted to the market by each trader i at round
(time) t are updated according to the following rules.

ait = p(t)+ γa git + δ (31)

bit = p(t)+ γb git − δ (32)

where γa, γb and δ are constants to be set so as to satisfy ait −bit > 0. git is an uncorre-
lated Gaussian variable with mean 〈git 〉 = 0 and covariance 〈git gi ′t ′ 〉 = δt,t ′δi,i ′ (addi-
tive white Gaussian noise: AWGN). In our simulations, we set γa = γb = 0.01, δ =
0.049. Then, the Bid–Ask spread at round t is given by

St = min{ait |ait ∈ N+} − max{bit |bit ∈ N−} (33)

where the groups taking ‘buying’ and ‘selling’ decisions are refereed to as N+ and
N−, respectively (N ≡ N+ + N−).

In Fig. 9, we plot the resulting distribution of the spread S = St . From Fig. 9, we find
that the stochastic Bid–Ask spread generated from the above modeling based on the
minority game actually fluctuates and possesses a non-trivial shape of the distribution.

5.3 Results

For the above set-up of the minority game, we evaluate two relevant statistics, namely,
correlation function C(t) [by (1)] and the response function R(t) [by (2)] to compare
the results with the empirical evidence for the data with stochastic Bid–Ask spread.
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Fig. 10 Auto-correlation function C(l) in the minority game for ψ = 0 (left). We set N = 1025,M = 9,
β = 0.01 and iterated the game 100,010 rounds. The C(l) is zero for l ≥ 2. The right panel is auto-
correlation function of the MRR model with ρ = 0.1. The error-bars were calculated by 10-independent
trials

5.3.1 Auto-correlation function

We first examine the effect of the bias term ψ on the correlation function. The results
for ψ = 0 are shown in Fig. 10 (left). From this panel, we find that C(l) = 0 for l ≥ 2
and the result is apparently different from the result for the empirical data. Here we
set N = 1,025,M = 9, β = 0.01 and iterated the game t = 100,010 rounds. The
right panel of Fig. 10 shows the correlation function of the MRR model for ρ = 0.1.
The Selling–Buying signal

εt = sgn[A(t)] (34)

is actually correlated automatically through the market history with length M = 9,
however, the correlation strength is very weak. Therefore, we need some other explicit
correlation through the bias termψ which enhances the correlation by two-round back
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Fig. 11 Auto-correlation function C(l) in the minority game for ψ = 0.05 (left) and ψ = 0.1 (right).
We set N = 1, 025,M = 9, β = 0.01 and iterated the game for 100,010 rounds. The error-bars were
calculated by 10-independent trials

A(t − 1) from the present t + 1. Hence, we here choose the non-zero bias term ψ to
reproduce the auto-correlation function as observed in the empirical data.

We checked that the results are robust against the slight differences in the param-
eters appearing in the game such as β,M, δ etc. However, for only parameter ψ , we
should be careful to choose the value. This is because from the definition of update
rule of the price (30), the effect of the A(t) on the price change is relatively depressed
by the large value of the ψ . Therefore, we should choose ψ so as to make the value
smaller than the standard deviation of the A(t), namely, square root of the volatility as

ψ <

√
√
√
√ 1

T

T∑

t=1

{A(t)− A(t)}2 ≡ σA. (35)

In our simulation, the square root of the volatility is estimated as σA = 0.44295. In
Fig. 11, we plot the correlation function for the case of ψ = 0.05 (left panel) and
ψ = 0.1 (right). We should notice that these two choices of the bias term ψ satisfy
the condition (35).

From these panels, we find that the correlation function decreases as we observed
in the same function for the empirical data sets.

5.3.2 Response function

We next plot the response function in Fig. 12 for ψ = 0 (upper panel), ψ = 0.05
(lower left) and ψ = 0.1 (lower right). From these panels, we find that the behaviour
of the response function is not monotonically increasing function leading up to the
convergence to some constant value but ‘non-monotonic’ as the response function
of data sets having stochastic Bid–Ask spread (EUR/JPY, USD/JPY exchange rates)
shows (see the lower panels of Fig. 5).
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Fig. 12 Response function R(l) in the minority game for ψ = 0 (upper), ψ = 0.05 (lower left) and
ψ = 0.1 (lower right). We set N = 1, 025,M = 9, β = 0.01 and iterated the game for 100,010 rounds.
The error-bars were calculated by 10-independent trials

5.3.3 Relationship between the auto-correlation and response functions

In Fig. 13, we plot the relationship between the auto-correlation and response func-
tions. In the upper panel, we show the result for zero bias term ψ = 0. we find that
the curve is deviated from the linear relation R(l) ∝ −C(l). However, the shape is not
‘λ’ as observed in the empirical evidence but ‘T -shape’. In the lower two panels are
results for the non-zero bias term ψ �= 0. We clearly find that the ‘λ-shapes’ appears
and the results are qualitatively similar to those of the empirical data.

6 Adaptive look-up tables

In the previous section, we fixed each decision component (buying: +1, selling: −1)
in their look-up tables before playing the game (in this sense, the decision compo-
nents are ‘quenched variables’ in the literature of disordered spin systems such as
spin glasses). However, in this paper, a certain amount of traders update their deci-
sion components according to the macroscopic market history (they ‘learn’ from the
behaviour of markets) so as to be categorized into two-groups with a finite probability
(in this sense, the components are now regarded as ‘annealed variables’). Namely, at
each round of the game, if the number of sellers is smaller/greater than that of buyers,
a fraction of traders, what we call optimistic group/pessimistic group, is more likely
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to rewrite their own decision components from −1/+1 to +1/−1. In realistic trading,
we might change our mind and rewrite the components of the look-up table according
to the market history. Therefore, in this section we consider the case in which some
amount of traders can rewrite their own table adaptively.

6.1 Adaptation using the latest market information

We first consider the case in which each trader updates her/his own look-up table
according to the latest information of the market. Some of the traders make their deci-
sions as ‘buy’ when the market is seller’s market, namely, the signal of the latest market
is ‘buying’ (what we call optimistic group). On the other hand, they decide ‘sell’ vice
versa (they are referred to as pessimistic group). Namely, each trader rewrites the table
according to the following algorithm.

Adaptation algorithm using the latest market information

(i) Fix (‘quench’) each component of the look-up table at the beginning of the
game t = −M .

(ii) At each game round t for t > −M , each trader rewrites her/his component
r i1
Λ , r

i2
Λ , whereΛ denotes the entry of market history for the information vector
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λ(A, Z : t), with probability f1 as

r i1
Λ = sgn[(A(t − 1)], r i2

Λ = sgn[A(t − 1)].

(iii) Each trader recovers her/his original (at the beginning of the game) look-up
table with a probability f2 at the next game round t + 1.

(iv) Repeat (ii) and (iii) until the game is over.

Namely, a fraction ∼ N f1 of the traders is categorized into the ‘optimistic group’
if A(t − 1) > 0 (seller’s market) and into the ‘pessimistic group’ if A(t − 1) < 0
(buyer’s market).

6.1.1 Results

In Fig. 14, we show dynamical quantities C(l) (upper left, middle left) and R(l) (upper
right, middle right) evaluated for the minority game with adaptive look-up tables. We
set ψ = 0, f1 = 0.01 and f2 = 1 (upper panels), f2 = 0.9 (middle panels). The
lower two panels show the relationship between the auto-correlation and response
functions for ( f1, f2) = (0.01, 1) (left) and ( f1, f2) = (0.01, 0.9) (right). From this
figure, we find that the positive correlation C(l) > 0 for l = 1 appears even if we
set ψ = 0 and non-monotonic behaviour of the response function is reproduced. As
the result, ‘λ-shape’ in the C(l)-R(l) scatter plots is generated. From these results, we
conclude that the adaptive modification of the look-up table by using the latest market
information for each trader works well to explain the empirical evidence.

6.2 Adaptation by using the market history

In the previous subsection, we succeeded in generating a positive finite auto-correlation
by making use of the adaptive look-up table even if we set ψ = 0. However, in this
look-up table, each trader changes her / his decision from the latest information about
the market. As the result, the auto-correlation function decays to zero for l ≥ 2. To
modify the weak correlation, we construct the adaptive look-up table by using the
information about the market history with length M . As we mentioned, the informa-
tion vector λ(A, Z : t) contains the useful information on the market. Hence, we shall
assume that each trader rewrites the component of her / his table as

r i1
Λ = sgn[ΩΛ(A, Z : t)], r i2

Λ = sgn[ΩΛ(A, Z : t)] (36)

with probability

f3 = α|ΩΛ(A, Z : t)|
2M

(37)
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Fig. 14 Dynamical quantities C(l) (upper left, middle left) and R(l) (upper right, middle right) evaluated
for the minority game with adaptive look-up tables. We set ψ = 0, f1 = 0.01. f2 = 1 (upper panels),
f2 = 0.9 (middle panels). The lower two panels show the relationship between the auto-correlation and
response functions for ( f1, f2) = (0.01, 1) (left) and ( f1, f2) = (0.01, 0.9) (right)

where we defined

ΩΛ(A, Z : t) ≡ w · λ(A, Z : t) =
M∑

τ=1

2M−τ sgn[A(t − τ)] (38)

w ≡ (2M−1, 2M−2, . . . , 20) (39)

at each game round t . We should keep in mind that each trader recovers her/his original
look-up table with a probability f2 at the next game round. TheΩΛ(A, Z : t) denotes

123



Response of double-auction markets 115

cumulative weighted market status, namely, we assume that the importance of the
market information decays as 2−τ in the history length τ .

For instance, for the information vector (let us define the entry byΛ) having +1 for
all components: λ(A, Z : t) = (sgn[A(t −1)], . . . , sgn[A(t − M)]) = (+1, . . . ,+1),
that is, the market remains as seller’s market up to M-times back, we obtainΩΛ(A, Z :
t) = 2M − 1 > 0 and N f3 = Nα(1 − 2−M )-traders rewrite their components as
r i1
Λ , r

i2
Λ = sgn[ΩΛ(A, Z , t)] = 1. As another example, when seller’s market and

buyer’s market appears periodically as λ(A, Z : t) = (−1,+1,−1,+1, . . .), we have
ΩΛ(A, Z : t) = −{2M − (−1)M/2}/3 < 0 and N f3 = Nα{1 − (−1)M/2M+1}/3-
traders rewrite their component as r i1

Λ , r
i2
Λ = sgn[ΩΛ(A, Z : t)] = −1.

Let us summarize the above procedure as the following algorithm.

Adaptation algorithm using the market history

(i) Fix (‘quench’) each component of the look-up table at the beginning of the
game t = −M .

(ii) At each game round t for t > −M , each trader rewrites her/his component
r i1
Λ , r

i2
Λ , whereΛ denotes the entry of market history for the information vector

λ(A, Z : t), with probability as

r i1
Λ = sgn[ΩΛ(A, Z : t)], r i2

Λ = sgn[ΩΛ(A, Z , t)]

with probability

f3 = α|ΩΛ(A, Z : t)|
2M

with ΩΛ(A, Z : t) = ∑M
τ=1 2M−τ sgn[A(t − τ)].

(iii) Each trader recovers her/his original (at the beginning of the game) look-up
table with a probability f2 at the next game round t + 1.

(iv) Repeat (ii) and (iii) until the game is over.

We set α = 0.01 and select the same values as those of the previous section for the
other parameters.

6.2.1 Results

In Fig. 15, we first plot the generated distribution P(Ω) of ΩΛ(A, Z : t) = Ω (left)
and the typical time-evolution of the probability f3 for the first 200 steps (right). It
should be noted that Ω in the left panel is ranged from Ωmin = ∑M

τ=1 2M−τ (−1) =
1 − 29 = −511 toΩmax = ∑M

τ=1 2M−τ (+1) = 29 − 1 = 511 because we set the his-
tory length M = 9 in the definition of theΩΛ(A, Z : t). We find from the right panel
that the typical time-evolution of the probability f3 obeys complicated dynamics.

We next show the results for the macroscopic quantities in Fig. 16. From this fig-
ure, we confirm that the ‘λ-shape’ in R(l)-C(l) scatter plots are much similar to the
empirical evidence than the results in the previous subsection.
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Fig. 15 The generated distribution P(Ω) of ΩΛ(A, Z : t) = Ω (left) and the typical time-evolution of
the probability f3 for the first 200-steps (right)

7 Discussion

Our general set-up presented in this paper is applicable to the analysis for the other
quantities or for the other stochastic models. Here we shall mention them briefly.

7.1 Waiting time statistics

As we mentioned in Sect. 1, we can generate the duration between the price changes
within the framework of our minority game.

Let us introduce the maximum value of the spread S̄ which is determined by market
makers. Then, we might define a set of time points at which the price is updated as

{t} ≡ {tk |Stk = min{aitk |aitk ∈ N+} − max{bitk |bitk ∈ N−} < S̄} (40)

For these time points tk , the duration between successive price changes is given by

{τ } ≡ {τk |τk = tk+1 − tk} (41)

We can evaluate the distribution P(τ ) and compare the results with well-known distri-
butions, for instance, the Mittag–Leffler type (Scalas 2007; Scalas et al. 2004, 2006).

7.2 Mean-field models

Recently, Vikram and Sinha (2010) proposed a mean-field model to describe the col-
lective behaviour of financial markets. In their model, each trader i decides his (her)
decision: Si (t) = +1 (buy), −1 (sell) and Si (t) = 0 (no action) at time t according to
the following probability.

P[|Si (t)| = 1] = 1 − P[Si (t) = 0] = exp

(

−μ
∣
∣
∣
∣log

p(t)

〈p(t)〉τ
∣
∣
∣
∣

)

(42)
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Fig. 16 Dynamical quantities C(l) (upper left, middle left) and R(l) (upper right, middle right) evaluated for
the minority game with adaptive look-up tables for M market history length. We set ψ = 0, f2 = 1 (upper
panels), f2 = 0.9 (middle panels). The lower two panels show the relationship between the auto-correlation
and response functions for f2 = 1 (left) and f2 = 0.9 (right)

where p(t) stands for the price at time t and the bracket 〈· · · 〉τ means the moving
average over the past τ -time steps. The parameter μ is a parameter which controls
the sensitivity of an agent to the magnitude of deviation of the price from its moving
average 〈p(t)〉. Forμ = 0, the system reduces to a binary decision model where every
agent trades at all time instants. Namely, P[Si (t) = 0] = 0 for μ = 0 means that the
trader decides his (her) action, buy or sell, certainly. The traders who decide to trade
at t make his (her) action randomly, that is, P[Si (t) = 1] = P[Si = −1] = 1/2. The
price at time t + 1 is decided by the following recursion relation.

p(t + 1) =
(

1 + At

1 − At

)

p(t) (43)
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Fig. 18 Typical behaviour of the response function (upper panels) and the auto-correlation func-
tion (lower panels) for the Vikam–Sinha model. From the left to the right, we set (μ, τ) =
(100, 10,000), (10, 10,000), (100, 1,000). The error-bars were calculated by 10-independent trials

where At ≡ (1/
√

N )
∑N

i=1 Si (t). In Fig.17, we plot the typical time-evolution of the
price p(t) and the moving average 〈p(t)〉τ evaluated by (42) and (43).

To construct the double-auction market for the above price change, we shall use the
same definitions of buying bit and selling ait signals for each trader i at time t as (31)
(32) in our minority game modeling. Then, we calculate the response function and
the auto-correlation function by using the above set-up and plot them in Fig. 18. We
set the number of agents N = 20,000, the number of iterations for the price change
T = 100,000. We also choose δ = 0.02, γa = γb = 0.001. The initial condition on
the price p(t) is chosen from the Eur/JPY exchange rate in the empirical data. From
this figure, we find that the behaviour is different from the empirical evidence. Espe-
cially, the auto-correlation function fluctuates with very large amplitudes. This result
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might come from the fact that in the Vikam–Sinha model, the buying-selling signal
is chosen randomly. Therefore, we should modify the Vikram–Sinha model in order
to explain the non-monotonic behaviour of the response function in double-auction
markets with stochastic Bid–Ask spread.

8 Summary

In this paper, statistical properties of double-auction markets with Bid–Ask spread
were investigated through the response function. We first attempted to utilize the
so-called Madhavan–Richardson–Roomans model (MRR for short) to simulate the sto-
chastic process of the price-change in empirical data sets (say, EUR/JPY or USD/JPY
exchange rates) in which the Bid–Ask spread fluctuates in time. We found that the
MRR theory apparently does not simulate so much as the qualitative behaviour (‘non-
monotonic’ behaviour) of the response function calculated from the data. Especially,
we were confirmed that the stochastic nature of the Bid–Ask spread causes apparent
deviations from a linear relationship between the R(l) and the auto-correlation func-
tion C(l), namely, R(l) ∝ −C(l). To make the microscopic model of double-auction
markets having stochastic Bid–Ask spread, we utilized the minority game with a finite
market history length and found numerically that appropriate extension of the game
shows quite similar behaviour of the response function to the empirical evidence. We
also revealed that the minority game modeling with the adaptive (‘annealed’) look-
up table reproduces the non-linear relationship R(l) ∝ − f (C(l)) ( f (x) stands for
a non-linear function leading to ‘λ-shapes’) more effectively than fixed (‘quenched’)
look-up table does.

Of course, there are still gaps between the theoretical prediction and the empirical
evidence. We should modify our modeling of the double-auction market and figure
out the micro-macro relationship in the market much more quantitatively.
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