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price.
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1 Introduction

In theoretical financial economics it is now widely acknowledged that a paradigm
shift has taken place from the representative agent with his or her rational expectations
towards a behavioural approach, in which markets are populated by heterogeneous and
boundedly rational agents who use rule-of-thumb strategies.1 If we limit our interest
to agent-based asset pricing models with in general non-zero excess demand, then in
the vast majority of these cases the strategies of the speculative traders are (explicitly
or implicitly) expressed in terms of their orders on the market. This, however, is a
dubious feature since it is well-known that the agents’ implied inventories are not
anchored and so will be indeterminate. In a stochastic setting they may even easily
diverge, which is certainly not compatible with the risk constraints of real traders.2

There are a few models in the recent literature that account for this problem by
letting the traders’ strategies directly focus on the desired positions. This alternative
approach has been basically initiated by Farmer (2001) and Farmer and Joshi (2002).3

Nonetheless, given the experience that in the meantime has been gained in all the
models working with order-based strategies, it would not be expedient to discard
them altogether in order to ensure consistency. It is instead a straightforward idea to
explicitly introduce the agents’ positions as an additional variable and put forward a
simple rule that prevents them from diverging. Specifically it may be supposed that the
speculative agents revise their original demand downward (upward) in proportion to
the current positive (negative) deviations of their positions from some long-run target
level. The proportionality factor can then be interpreted as a risk aversion parameter
for these agents.

Regarding a market maker who changes the market price in response to the excess
demand for the asset, one can conveniently resort to an idea by Farmer (2001). It is
here proposed that if the market maker has accumulated a negative (positive) position,
he seeks to encourage selling (buying) by proportionately raising (lowering) the price
more than usual. Likewise, this proportionality factor can be said to measure the market
maker’s risk aversion.

The two concepts can be easily incorporated into any of the models with order-based
strategies. An analytical treatment could still be possible if such a model is sufficiently
simple. We employ the (deterministic) Beja–Goldman model with its market maker
and the two archetypal groups of fundamentalists and chartists for this purpose. The
elementary setup and the intuitive outcome that fundamentalists tend to stabilize and
chartists tend to destabilize the market had a great influence on the agent-based model-
ling that has begun in the 1990s. The Beja–Goldman model is therefore a most suitable

1 Recent surveys on the by now voluminous literature are Hommes (2006), LeBaron (2006), Chen et al.
(2008), Lux (2008) and Westerhoff (2009).
2 Disequilibrium models with a market maker that refer to mean–variance optimization or, what amounts
to the same, to the maximization of expected wealth under a CARA utility function, are not exempt from
the indeterminacy problem—unless they reinterpret their price adjustment equation and replace the agents’
excess demand with the market maker’s excess inventory in it. See the conceptual discussion in Franke
(2008a) for a clarification of this statement.
3 Subsequent developments in this framework are Carvalho (2001) and Pape (2007). Franke (2007) takes
a step back and sets up a prototype model with position-based strategies.
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framework to test the validity of the new concepts, and a study of the thus enhanced
model will be the main concern of this paper.

Assuming a conservative law for the market, the introduction of the positions of the
agents and their feedback on the formulation of demand adds two other dimensions to
the original (continuous-time) model. Our augmented Beja–Goldman model is thus
four-dimensional. Fortunately the entries in the Jacobian matrix are so favourable that
a number of meaningful stability conditions can be derived, in which the structural
parameters of the Beja–Goldman model largely maintain their stabilizing or destabi-
lizing role. Regarding the two new parameters, it will turn out that a high risk aversion
of the speculative agents can always stabilize the market, whereas the market maker’s
risk aversion can, but need not, be destabilizing.

These qualitative insights are to be complemented by a study of a stochastic ver-
sion of the model (in discrete time), where following a usual practice the price is
randomly shocked every period and the fundamental value follows a random walk.
The main result, in short, will be that for a moderate misalignment of the market price
and moderate fluctuations of the positions of the agents, both risk aversion parameters
must neither be too high nor too low. This finding underlines the significance of the
simple correction mechanisms here proposed with which the agents seek to keep their
positions within bounds.

The remainder of the paper is organized as follows. Section 2 deals with the deter-
ministic continuous-time model. After a brief recapitulation of the Beja–Goldman
model it introduces positions and the corresponding correction mechanisms. It then
presents the results of the mathematical stability analysis. A grid search over the
parameter space reveals that upon a ceteris paribus increase in some of the parameters
also a reswitching of stability (but not instability) may occur. The stochastic dynamics
are investigated in Sect. 3. For a detailed study of the time series characteristics of the
variables in the model, two benchmark scenarios are set up; one where convergence in
the deterministic counterpart is cyclical and one where it is monotonic. Subsequently
we examine the effects of variations in the two risk aversion parameters on price mis-
alignment, the inventory of the market maker, and also the profits of fundamentalists
and chartists. Section 4 concludes, and the proofs of the mathematical propositions
are collected in an appendix.

2 The deterministic model

2.1 A recapitulation of the Beja–Goldman model

Beja and Goldman (1980) distinguish three groups of participants in an asset mar-
ket: two groups of speculators—fundamentalists and chartists—and a market maker.
Fundamentalists have long time horizons and base their demand on the differences
between the current price and the fundamental value. Even though they might expect
the gap between the two prices to widen in the immediate future, they do not trade
on these short-run expectations, choosing instead to place their bets on an eventual
rapprochement. Chartists, on the other hand, neglect deviations of the price from the
fundamental value and concentrate on short-run changes. They use past movements of
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prices as indicators of market sentiments and extrapolate these into the next periods.
In general, demand and supply of fundamentalists and chartists will not match the
(fixed) supply of the asset. It is the primary function of the market maker to mediate
transactions out of equilibrium. He executes all orders at the present price and accord-
ingly decumulates (or accumulates) inventories of the financial asset. His expectations
and possible feedback effects from undesired inventories are ignored. So the demand
of the market maker is treated as a residual and the only reaction considered here is
the setting of a new price for the next trading round.

Let p be the log price and v the log of the fundamental value, on which the agents
unanimously agree. As long as we are in a deterministic setting, here and in the follow-
ing models, v is supposed to remain constant. The fundamentalists specified by Beja
and Goldman buy (sell) when p is below (above) v. Chartist demand is characterized
by a term π that represents their perceptions of the current trend of prices. Both types
of demand, denoted by d f and dc, are specified in a linear manner. Introducing two
positive coefficients φ and χ , which may be taken as indicative of the aggressive-
ness of fundamentalists and chartists, respectively, or of their share of wealth in total
speculative capital, we have

d f = φ (v − p) (1)

dc = χ π (2)

To save an extra symbol for the supply of the asset, d f and dc may be interpreted as
excess demand (in the verbal discussion we may also economize on the expression
‘excess’). The dynamic relationships in the Beja–Goldman model are formulated in
continuous time. Let δ denote the price impact of demand, i.e. δ is the coefficient
that measures the extent to which the market maker changes the price in response to
the current excess demand.4 Accordingly, the evolution of prices is governed by the
differential equation

ṗ = δ (d f + dc) (3)

The perception π of the trend by the chartists is a predetermined variable, for which a
simple adaptive updating rule is postulated. As the current ‘trend’ towards which the
chartists seek to adjust their expectations is given by the instantaneous price changes,
the rule is specified as

π̇ = α ( ṗ − π) (4)

where α represents the speed at which these adjustments are carried out. This equa-
tion completes the description of the Beja–Goldman model. Certainly, each of the four
coefficients φ, χ , α and δ will vary over time, but in order to study the fundamental
dynamic laws of the market they are treated as constants.

4 It may be noted that δ has no time dimension and is thus not a speed of adjustment, as Beja and Goldman
(1980, p. 237), themselves seem to imply; see the derivation of the market impact function in Farmer and
Joshi (2002, p. 152f).
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Substituting (1), (2) into (3) and the latter into (4), the four equations are reduced
to two linear differential equations in the price p and the perceived trend π ,

ṗ = δ [ φ (v − p) + χ π ]
π̇ = α [ δφ (v − p) + (δχ − 1) π ] (BG)

They possess a unique equilibrium point p =v and π =0, which (apart from a fluke)
is either attractive or repelling. Which of the two cases prevails depends on just one
stability condition, which can be formulated as follows.

Proposition 1 The equilibrium point of system (BG) is globally asymptotically stable
if, and only if,

χ < φ/α + 1/δ

and it is repelling if the inequality is reversed. A loss of stability under ceteris paribus
variations of a parameter occurs by way of a Hopf bifurcation.

Proof The determinant of the Jacobian matrix of (BG) is unambiguously positive,
det J = αδφ > 0, which rules out saddle point instability and zero eigen-values.
The trace is negative if and only if the inequality stated in the proposition is satisfied.
Certainly, the stability thus ensured is global by virtue of the linearity of (BG). ��
The simple condition in the proposition allows us to characterize the parameters of the
model as either stabilizing or destabilizing, meaning that sufficiently high values ren-
der a possibly unstable equilibrium stable or, respectively, they turn a possibly stable
equilibrium into an unstable one. In this sense, the aggressiveness of fundamentalists
φ, or their weight in the market, is a stabilizing parameter. Conversely, low values
of φ lead to instability if χ > 1/δ. The weight χ of chartists plays an opposite role.
Sufficiently high vales of χ are always destabilizing, while sufficiently low values
give rise to stability.

Presupposing χ > 1/δ, chartists can furthermore destabilize the equilibrium by
a high adjustment speed α in the updating of their expectations about future price
changes. Effectively, α is the rate at which old price changes are discounted, so that
the instability feature may complementarily be also summarized by the statement that
a short memory of chartists is destabilizing. A long memory (low α), on the other hand,
can always ensure stability. Finally, a sufficiently sluggish price impact of demand δ

is stabilizing, and a high responsiveness is destabilizing if αχ > φ.
It may also be noted that since each of the four parameters enters the critical con-

dition in Proposition 1 in a monotonic way, a reswitching of stability or instability as
a parameter rises from zero to infinity cannot possibly occur.

Because of the linearity of system (BG), the Hopf bifurcation in Proposition 1
is, of course, degenerate; periodic orbits only come into existence at the bifurcation
value itself. We mention the Hopf bifurcation, here and in other propositions to fol-
low, as a convenient short-cut which indicates that the positive and negative feedback
mechanisms in the model provide considerable scope for cyclical behaviour. There
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are thus phases in the dynamics where the destabilizing forces (stemming from the
chartists) dominate and drive the price away from the fundamental value, and other
phases where the stabilizing forces (of the fundamentalists) gain momentum again and
reverse this tendency. This interplay, whether explicitly referred to or not, has made the
Beja–Goldman model an attractive basis for stochastic and deterministic extensions
that give rise to richer dynamic phenomena.

2.2 Introducing asset positions and risk aversion

Buying and selling of the asset means that the agents build up positions.5 Generally
the positions may be positive or negative, according to whether the agents go long or
short. For each group of traders we are here concerned with their deviations a f , ac,
am from some fixed long-run target levels, where the superscripts refer to the fun-
damentalists, chartists and the market maker, respectively. For a parsimonious model
design, we employ four assumptions.

First, the market orders of the speculative agents are always fulfilled by the market
maker, so that

ȧ f = d f , ȧc = dc (5)

Second, receipts from an alternative riskless asset as well as dividends from shares
or interest from foreign bonds (in case of a foreign exchange market) are neglected
as a source of reinvestment and accumulation of wealth. In other words, the market
is supposed to be closed and the total number of assets is conserved: every time an
agent buys an asset, another agent loses it.6 With the interpretation as deviations from
a target, the agents’ positions thus satisfy the following identity in every point in time,

a f + ac + am = 0 (6)

Generally, the target levels of the agents’ positions need not be fixed but might be
thought of as adjusting one-to-one and immediately to variations in the total number
of the assets issued, such that (6) is preserved. Practically, of course, the adjustments
will be in both directions, depend on many exogenous factors, and involve longer
delays. This is here short-circuited to obtain a convenient equilibrium notion where
all positions are on target and can remain there in the absence of shocks.7

5 Within a simple model that, in particular, maintains the (discrete-time counterpart of) the price impact
equation (3), Day (1997) discusses the conditions under which the market maker can avoid outages and
withdraw a positive dividend indefinitely. Closer to our paper is Sethi (1996), who incorporates the traders’
inventory accumulation and cash flow into a Beja–Goldman framework. His assumptions, however, include
a rationing device, from which we abstain.
6 In Farmer (2001) this seems to be tacitly understood; in Farmer and Joshi (2002) it is explicitly stated
on p. 154.
7 Most other agent-based models cannot even discuss these conceptual issues but rest on similar—and
implicit—assumptions.
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A third point deals with the risk aversion of the market maker concerning his inven-
tory, which takes up the empirical fact that market maker positions on stock markets
have (or had) a half-life ranging from a few days to a week (Hansch et al. 1998);
and the half-life seems to be even shorter on foreign exchange markets (Lyons 1998).
A stylized way to incorporate this feature into the market maker’s price quotes has
been proposed by Farmer (2001, p. 66). His supposition basically maintains the price
impact equation (3) from above but additionally states that if the market maker has
accumulated a negative (positive) position, then this prompts him to encourage selling
(buying) by raising (lowering) the price more than usual. The risk that in this way
feeds back on the market is measured by a correction coefficient µ > 0. Accordingly,
our assumption on the price changes reads,8

ṗ = δ (d f + dc − µ am) (7)

Apparently, this rule primarily relies on the behaviour of the fundamentalists, whereas
the market maker does not systematically try to trigger the orders of the chartists into
the desired direction (for which there are probably good reasons, at least in models
with further types of technical traders or contrarians). In addition it is worth mention-
ing that a term like −µ (am − xm), where xm is the target level of the market maker’s
inventory, can be part of an optimal policy in a rigourous dynamic setting which, in par-
ticular, takes his uncertainty about the future arrival of tenders into account (Bradfield
1979).9

In the fourth assumption the basic idea of risk aversion is carried over to the spec-
ulative agents. They do not lose track of their accumulated positions, either, and take
account of them by a similar correction term. So their market orders are now made up
of two components: the original speculative one of Eqs. (1) and (2), respectively, and
a second component that seeks to bring their current position in line with their target
position. The latter adjustments take place in a gradual manner, and their intensity is
measured by a positive coefficient η, which for simplicity is supposed to be the same
for fundamentalists and chartists.10 In this way, the demand equations (1) and (2) are
modified as

d f = φ (v − p) − η a f (8)

dc = χ π − η ac (9)

8 Westerhoff (2003, p. 366) has a similar idea but specifies it as a mechanism that, conditionally on the
market maker’s current inventory, switches between (in our notation) two coefficients δ1 and δ2 in Eq. (3).
While being straightforward, the discontinuity in this approach prohibits an analytical treatment of stability
conditions.
9 The market structure in Bradfield’s model is, however, more detailed than is usual in the present kind of
modelling. A special result of his analysis is that, due to overnight costs, the coefficient µ depends on the
time of the trading day: the later the time of the day, the less willing is the market maker to permit am to
diverge from xm , so that transaction prices tend to be more variable at that time of the day.
10 Differentiated risk aversions η f and ηc for fundamentalists and chartists would leave the results essen-
tially unaltered; only the analytical expressions would become a bit more cumbersome. Conditions con-
cerned with the stabilizing effects of the risk aversion mechanism could then be treated by postulating a
constant ratio η f /ηc (which typically may be larger than one).
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Table 1 Parameters in the BGA
model

φ Weight of fundamentalists in the market

χ Weight of chartists in the market

α Adjustment speed of chartist trend revisions

δ (risk adjusted) price impact of demand

µ Risk aversion of the market maker

η Risk aversion of fundamentalists and chartists

Equations (5)–(9) together with (4) constitute our augmented Beja–Goldman model;
augmented, that is, by two straightforward mechanisms by which the market maker
and the speculative agents seek to prevent their positions from drifting away.

Evidently, the positions feed back on the price and so we have now two of the three
position variables as additional state variables; the third one can be expressed in terms
of the two other by virtue of the closed market assumption (5). Linearity is preserved
and one easily obtains the following four-dimensional set of differential equations in
p, π , a f , ac:

ṗ = δ [ φ (v − p) + χ π + (µ−η) (a f + ac) ]
π̇ = α [ δφ (v − p) + (δχ − 1) π + δ(µ−η) (a f + ac) ]

ȧ f = φ (v − p) − η a f

ȧc = χ π − η ac

(BGA)

The acronym BGA stands for Beja–Goldman augmented. Before going on, it may be
convenient to list the six parameters of the model with their specific meanings. This
is done in Table 1.

An obvious equilibrium point of (BGA) is given by p = v, π = 0, a f = ac =
am = 0; the price coincides with the fundamental value and all three groups of agents
have their positions on target. If both risk aversion coefficients µ and η are strictly
positive, this is also the only equilibrium.11 If µ = 0 and η > 0, there is a continuum
of equilibria where a f can attain any value. π and ac are zero then and a f determines
how much the price will deviate from the fundamental value, as p = v − η a f/φ in
such a state. On the other hand, if η = 0 and µ ≥ 0, both positions a f and ac can
attain arbitrary values and give rise to the equilibrium price p = v + µ(a f + ac)/φ.
Trivially, with µ = η = 0 we are back in the original Beja–Goldman model with
its indeterminate positions. Nevertheless, in the following the ordinary equilibrium
notion ensured by µ > 0 and η > 0 will be presupposed.

2.3 Temporal structure through the market maker

In assessing the role of the market maker it is interesting to observe that his or her risk
reducing behaviour introduces a certain persistence into the model. To quote Farmer

11 Without going into any details, the uniqueness of the equilibrium is an immediate consequence of the
fact that, as made explicit shortly below, the Jacobian matrix of (BGA) has full rank.
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(2001, p. 67): “Once the market maker acquires a position, because of her risk aver-
sion, she has to get rid of it. By selling a fraction β [our coefficient µ] at each time step,
she will unload the position a bit at a time. This behaviour causes a trend in prices.
Any risk-averse behaviour on the part of the market maker will result in a temporal
structure of some sort in prices.”

Generally, it may be concluded that sufficiently high values of the market maker’s
risk aversion µ reinforce a monotonic tendency toward the equilibrium, or they may
even cause the price to overshoot its equilibrium value. If the latter does not lead to
instability, cyclical trajectories would result. The market maker’s potential for gener-
ating oscillatory behaviour would, however, be hard to identify in a model where pro-
nounced cyclical tendencies are already present—because of the speculative demand
of the chartists.

Therefore, in order to disentangle the two possible sources of cyclical behaviour
and study the consequences of a higher risk aversion of the market maker in a pure
form, let us in this subsection temporarily discard the chartists from the model. Sys-
tem (BGA) is then reduced to two dimensions, the price and the positions of the
fundamentalists,

ṗ = δ [ φ (v − p) + (µ−η) a f ]
ȧ f = φ (v − p) − η a f

The determinant of the Jacobian of this system is computed as det J = δφ µ and the
trace as −δφ − η, which ensures that this fundamentalist market is unambiguously
stable. It is furthermore well-known that the eigen-values of the Jacobian are complex
if the discriminant (trace J )2 − 4 det J is negative. Checking this condition and defin-
ing the critical value µc := [δφ + (2 +η/δφ) η] / 4, it is easily seen that convergence
is monotonic if µ < µc, and cyclical if µ > µc. On this basis it may be said that
the risk aversion of the market maker can indeed be an additional cycle generating
mechanism.

2.4 Mathematical stability analysis

Investigating the stability of a four-dimensional dynamic system is usually a formi-
dable task. The mixed terms in the Routh–Hurwitz stability conditions easily get so
complicated that economically meaningful and incisive results are no longer obtain-
able. In the present case, however, the Jacobian matrix J is relatively benign. Equa-
tion (10) gives a first impression that it is not so much the number of zero entries,
since there are only three of them, but the structure of the entries that will facilitate
the computations:

J =

⎡
⎢⎢⎣

−δφ δχ δ(µ−η) δ(µ−η)

−αδφ α(δχ − 1) αδ(µ−η) αδ(µ−η)

−φ 0 −η 0
0 χ 0 −η

⎤
⎥⎥⎦ (10)
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Indeed, a first ray of hope for the mathematical analysis is the determinant of this
matrix, which is always positive and as simple as det J = α δ φ µη > 0. Hence
stability is not ruled out a priori, as it would be with a negative determinant.

It will, of course, be expected that the stability conditions for (BGA) are not too
different from those for (BG) if the risk aversion coefficients µ and η are small. As
a matter of fact, without much effort we even get the stronger result that equality of
the two coefficients, at what level so ever, is the relevant benchmark case (regarding
the effort in establishing this feature, see the proof in the appendix). It goes without
saying in the following that because of the linearity of (BGA), ‘stability’ means global
stability.

Proposition 2 If µ = η, the equilibrium of (BGA) is asymptotically stable if and only
if the equilibrium of (BG) is asymptotically stable.

Let us then turn to the general case. Clear-cut instability statements, though they will
not be the sharpest possible, are readily obtained by checking that the trace of the
Jacobian is positive. As the upper 2×2 submatrix of J is identical to the Jacobian of
(BG), instability of (BGA) prevails under quite similar conditions (regardless of the
level of µ). A negative trace of J , on the other hand, is only one out of four conditions
that have to be satisfied to ensure stability. As a consequence, the stability frontier can
no longer be described in an equally simple way to the equation of a zero trace. It is,
however, still possible to derive a number of qualitative stability conditions. The next
proposition collects the statements for the four parameters that both models (BG) and
(BGA) have in common. Again, the proof is given in the appendix.

Proposition 3 (a) The equilibrium is asymptotically stable if the weight of funda-
mentalists φ is sufficiently large; given that δχ > 1 + 2η/α, the equilibrium is
unstable if φ is sufficiently small.

(b) The equilibrium is asymptotically stable if both the weight of chartists χ and
the price impact of demand δ are sufficiently small; instability prevails if χ is
sufficiently large or, given that αχ > φ, if δ is sufficiently large.

(c) The equilibrium is asymptotically stable if the speed of chartist trend adjust-
ments α is sufficiently low; given that χ > 1/δ, the equilibrium is unstable if α

is sufficiently large.
(d) A loss of stability under ceteris paribus variations of a parameter occurs by way

of a Hopf bifurcation.

The conditions for stability and instability are the same as in the verbal characterization
of the critical condition in Proposition 1 for (BG). The only exception is that in order
for low values of φ to be destabilizing, Proposition 3(b) presupposes δχ > 1+2η/α

rather than δχ > 1. Any extension of the Beja–Goldman model that builds on the
stabilizing or destabilizing properties of the parameters φ, χ , α, δ should, therefore,
produce very similar effects when it is carried over to the BGA framework.

To complete the mathematical stability analysis, Proposition 4 summarizes what
can be derived for the two risk aversion coefficients µ and η, which are the constituent
parameters of the augmented part of Beja–Goldman.
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Proposition 4 (a) The equilibrium is asymptotically stable if the speculative agents’
risk aversion η is sufficiently large.

(b) If the equilibrium is asymptotically stable for all sufficiently large value of the
maker’s risk aversion µ, then it is also asymptotically stable if µ gets sufficiently
small.

(c) If αχ ≥ φ, the equilibrium is unstable for all large values of µ.
(d) Admit αχ ≥ φ but suppose the price impact of demand δ is so small that

δ(αχ − φ) < min{2η, 2α+η} and δ(ηχ − φ) < 2η. Then the equilibrium is
asymptotically stable if µ is sufficiently small.

(e) If the equilibrium is stable for all µ sufficiently small and unstable for all µ

sufficiently large, then there is a unique bifurcation value µH such that the
equilibrium is asymptotically stable if 0 < µ < µH and unstable if µ > µH .

In the last part of Proposition 4 we are able to establish that if a loss of stability occurs
as µ is rising, then this bifurcation is uniquely determined. Multiple bifurcations were
also generally ruled out in the original Beja–Goldman model, that is, a reswitching
of stability or instability upon ceteris paribus variations of one of the parameters. For
the five coefficients φ, χ , α, δ, η in (BGA), however, an analytical treatment of the
reswitching issue is no longer possible. In fact, to this end the sign of the composite
term b in the Routh–Hurwitz conditions has to be evaluated, which changes from
positive to negative as the equilibrium changes from stable to unstable.12 It turns out
that b is a quadratic function of µ, but at least a cubic function of the other coefficients.
In addition, a bifurcation at a parameter value bringing about b = 0 requires that the
other four Routh–Hurwitz terms are all still positive (a1, a2, a3, a4 in Eq. (12) in the
Appendix). Hence the polynomial character of the functions b = b(parameter) sug-
gests that reswitching may now become possible, but the conditions one has to check
are too complicated to be analytically tractable.

2.5 Additional numerical findings

It is sufficiently informative to address the reswitching issue by a straightforward
numerical investigation. To this end we set up a five-dimensional grid of five of the
coefficients (the ‘exogenous’ parameters) and, for each grid point, consider b as a
function of the remaining sixth coefficient (the ‘inner’ parameter). Computing this
function over a certain interval, where b is set to some negative value if one of the ak

terms just mentioned is negative, we only have to record the number of sign changes.
The grid of the exogenous parameters is made up of 215 = 4, 084, 101 points (equally
spaced), and the function b(·) is evaluated at 101 values of the inner parameter (like-
wise equally spaced). The intervals within which the six parameters vary are given in
Table 2. As the intervals are fairly wide, we can have some reasonable confidence in
the uniqueness of the bifurcation of an inner parameter if no reswitching was found
for it. That is, if still some reswitching events were missed, they may be regarded as
rather special since only the density of the grid was not sufficient to detect them.

12 See Eq. (12) in the Appendix and the remark near the end of the proof of Proposition 4.
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Table 2 Changes in stability upon ceteris paribus increases of parameters

Parameter Switching Reswitching Interval
in grid search

φ U–S S–U–S (80) 0.05–2.00

χ S–U None 0.05–6.00

α S–U S–U–S (19) 0.01–1.00

δ S–U S–U–S (5,712) 0.05–2.00

µ S–U None 0.01–2.00

η U–S None 0.01–2.00

U–S (S–U) means the equilibrium changes from being unstable to stable (from stable to unstable) as the
parameter increases, if the bifurcation is unique over the interval considered. Figures in parentheses are the
number of reswitching cases (across more than 4 million grid points of the remaining five parameters; see
description in the text)

The second column in Table 2 shows for each parameter the normal cases of how
stability changes (if a regime change occurs at all at a given set of exogenous param-
eters). Thus, as the inner parameter rises from the lower to the upper bound of its
interval, the equilibrium may change from unstable (U) to stable (S) or vice versa,
where it should be pointed out that for all unique bifurcations of a parameter, the
change in stability is always in the same direction. In this sense we can succinctly
summarize that stabilizing are: the weight of fundamentalists φ and the risk aversion
of the speculative agents η ; the other four parameters are destabilizing: the weight of
chartists χ , their trend adjustment speed α, the price impact of demand δ, and the risk
aversion of the market maker µ.

Cases of ambiguity have been observed for φ, α and δ, though they are rare excep-
tions if the number of the reswitching events in the fourth column of the table is related
to the roughly four million points of the wide and unconstrained grid of the exogenous
parameter constellations. In any case, the price impact δ happens to be the param-
eter with the by far highest likeliness of reswitching. It may also be noted that the
reswitching is always of the order stable–unstable–stable, regardless of whether the
normal changes are from stable to unstable (the parameters α and δ) or from unstable
to stable (the parameter φ). In sum, Table 2 provides a compact characterization of
the stability properties of the augmented Beja–Goldman model.

To carry the reswitching issue a little bit further, two parameters may be varied
simultaneously, though in an economically meaningful way. Let us thus assume that
a higher risk aversion µ of the market maker goes along with a higher risk aversion η

of the speculative agents. More specifically, consider distinct risk attitudes (to avoid
the conclusion from Proposition 2) and let η be linked to µ as η = µ minus a positive
constant c. If αχ ≥ φ, Proposition 4(c) tells us that the equilibrium would be unstable
if µ gets large and if η remained fixed. If, however, η increases in step with µ then,
according to Proposition 4(a), there should nevertheless be some scope for stability,
at least if c is large enough. On the other hand, if δ (αχ − φ) < 2α, also small values
of µ entail stability according to Proposition 4(d). For a suitable choice of φ, χ , α, δ

this should still hold when µ is slightly larger than c (so that η > 0). Figure 1, which
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Fig. 1 Real part of the leading eigen-value under variations of µ and η = µ − 0.10. Note: The values of
the real part are multiplied by 103. Underlying are the parameters φ = 1.00, α = 0.75, δ = 0.50, and χ as
indicated

plots the real part of the leading eigen-value (the one with maximum real part) as a
function of µ, gives an example of a scenario where all these condition can indeed be
met. Again, the reswitching is of the type stable–unstable–stable; see the middle line.
The two other functions in the diagram, for χ slightly below and above its scenario
value 3.00, illustrate that the reswitching phenomenon is quite sensitive to variations
of the other parameters.

3 Fluctuations in a stochastic setting

3.1 Distinguishing a cyclical and a monotonic scenario

With regard to the financial market models with order-based strategies, this paper has
started out from the general weakness that, in their present formulation, the positions of
the agents are only residually determined from their flow demands. Hence the positions
cannot be guaranteed to remain within reasonable bounds if the asset price undergoes
persistent oscillatory behaviour. By contrast, the agents in our model are supposed
to be fully aware of the boundedness problem and cope with it by counteracting any
divergent tendencies in their positions. The speculative agents correspondingly correct
their market orders, while the market maker corrects the price he quotes to encourage
additional sales and purchases that would reduce his excess inventory.

In order to test whether these mechanisms are really able to fulfill their purpose for
the agents, the model must be modified in such a way that it can generate incessant
price fluctuations. A straightforward idea to achieve this is to transform the model into
discrete time and introduce stochastic shocks in the structural equations. A particu-
larly challenging test for the boundedness of the positions is given by the assumption
that the fundamental value is no longer constant but evolves like a random walk. This
feature will carry over to the market price, unless it does not disconnect from the fun-
damental value (which would be another aspect that we will have to have an eye on).
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Table 3 Common parameters
to both scenarios

χ α δ µ σp × 100 σv × 100

3.00 0.20 1.00 0.50 0.30 0.50

A second type of shocks often employed in the literature are (uncorrelated) random
events that induce the market maker to somewhat deviate from the strict price impact
rule. In this way the following stochastic version of the BGA model is obtained, which
we write down in recursive form and to which we may refer as (BGA–S):

am
t = −a f

t − ac
t

d f
t = φ (vt − pt ) − η a f

t

dc
t = χ πt − η ac

t

pt+1 = pt + δ (d f
t + dc

t − µ am
t ) + σp εp,t εp,t ∼ N (0, 1)

vt+1 = vt + σv εv,t , εv,t ∼ N (0, 1)

a f
t+1 = a f

t + d f
t

ac
t+1 = ac

t + dc
t

πt+1 = πt + α (pt − pt−1 − πt )

(BGA–S)

The random shocks εp,t and εv,t are drawn from two independent unit normal distribu-
tions (with mean zero and variance one); they are scaled by the two standard deviations
σp and σv in the corresponding adjustment equations. Regarding the perceived trend
it is supposed that the agents do not yet know the new price when updating πt . For
concreteness, the time unit underlying (BGA–S) will be conceived of as one day.

For the numerical investigation of the stochastic market a base scenario has to be set
up. Of course, the model’s linearity requires the deterministic skeleton to be asymp-
totically stable. It should, however, be taken into account that the type of convergence
might matter, that is, whether the equilibrium price would be approached in a mono-
tonic or cyclical manner. To check this possibility two such benchmark scenarios will
be put forward. They only differ in two coefficients, the risk aversion parameter η and
the weight of the fundamentalists φ. The values of the other parameters, which are
common to both scenarios, are given in Table 3. While the order of magnitude of σp

for the additive price shocks is obvious, it may be noted that the standard deviation σv

in the random walk of the fundamental value amounts to an annual volatility of 7.9%
(since with 250 market days, 0.079/

√
250 = 0.005).

Apart from the type of convergence, the two scenarios should be as similar as
possible. For simplicity, we use the eigen-values of the deterministic continuous-time
system to assess their comparability, positing that the first two distinct eigen-values
have identical real parts of −0.20 and −0.30, respectively. This choice entails that
convergence takes place at a medium speed.13 In the scenario with cyclical conver-
gence, or the cyclical scenario (CS) for short, the first two eigen-values are conjugate
complex and the third one is real. Conversely, the first eigen-value is real and the next

13 According to the real part of the leading eigen-value in the continuous-time framework, 90 per cent of
an initial gap would be closed after 11.5 days.
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Table 4 The cyclical and monotonic scenario (CS and MS, respectively)

φ η Eigen-values Log returns

First/second Second/third SD AC 1

CS 0.892 0.300 −0.2000 ± 0.433i −0.3000 + 0i 0.764 0.106

MS 1.142 0.200 −0.2000 + 0i −0.3002 ± 0.494i 0.864 −0.121

‘SD’ and ‘AC 1’ are the standard deviation and first-order autocorrelation of the daily log returns rt =
pt − pt−1 (25,000 observations, SD in percent)

two are conjugate complex in the scenario with monotonic convergence, which we
call the monotonic scenario (MS). The values of φ and η bringing this about are given
in Table 4, where it can be observed that the real eigen-value coincides with the value
assigned to η.

On the basis of a sufficiently long sample run of 25,001 days for each of the two
scenarios, Table 4 also shows that the scaling of the parameters is quite acceptable in
the sense that the standard deviation of the daily log returns rt is within a reasonable
range, at least as far as the period before the 1987 stock market crash is concerned
(afterwards this standard deviation is somewhat higher).14 A low positive first-order
autocorrelation of rt is also compatible with that period, whereas after the crash it
tends to become insignificant.15 As might have been expected, the cyclical scenario
gives rise to a positive autocorrelation of the returns and the monotonic scenario to a
negative autocorrelation. If desired, these coefficients could be driven down to zero
by sufficiently increasing the noise in prices relative to the noise in the random walk
of the fundamental value.

Nevertheless, the numerical parameters presented in Tables 3 and 4 cannot be taken
as an attempt to fit the stylized facts of the daily returns. The model is still much too
simple to match the empirical higher order autocorrelations, let alone the slow decay
in the autocorrelation function of the absolute or squared returns.16

3.2 Prices, positions and profits in the two scenarios

In this subsection we concentrate on the two scenarios just set up and study their
dynamic properties in greater detail. To this end, as already mentioned, CS and MS

14 For example, over the periods January 1970 until March 1987 and January 1960 until December 1980,
respectively, the S&P 500 stock market index yields standard deviations of 0.878 and 0.773 for the returns rt .
15 Over the sample periods of the previous footnote, the first-order autocorrelation of rt for the S&P 500
is still 0.181 and 0.207, respectively. For the period 1988–1999 it is almost zero.
16 In this respect one might think of the model by He and Li (2007), which could be viewed as a Beja–Gold-
man model with a more flexible formulation of demand and which does generate autocorrelation patterns
with the desired features. In Franke (2008b) it is, however, shown that this goes at the price of a questionable
specification of the model’s random shocks. It is furthermore argued that a matching of the stylized facts is
still a severe challenge to this (and the Brock–Hommes) type of structural models. We conjecture that if in
these purely order-based models some progress is made, this will also carry over if they are augmented by
our mechanisms in Eqs. (5)–(9).
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Fig. 2 Fundamental value vt and price pt in the cyclical (CS) and monotonic scenario (MS)

were simulated over 100 years = 25,001 days, where the prices and fundamental values
were subjected to identical random shocks. Let us first consider the model’s central
variable, the (log) market price pt and its relationship to the (log) fundamental value vt .

Despite the differences in the two summary statistics of the log returns in Table 4, the
evolution of the price appears to be quite similar in the two scenarios. This is illustrated
in Fig. 2 for a time span of 201 days. The price series for both the cyclical scenario: the
bold (red) line, and the monotonic scenario: the solid (blue) line, remain fairly close to
the fundamental value, which is depicted as the thin (green) line. Common to the two
series is also that both of them overshoot the fundamental value when it takes a turn
after a temporary rise or decline; or already when such a motion slows down a little
(at around t = 880 or t = 900, for example). It cannot even be said that CS produces
a systematically stronger overshooting: sometimes it is the turning point of CS and
sometimes the turning point of MS that deviates more from the fundamental value.

Only a numerical calculation discloses that, on average and in accordance with
what one will have been expected, the cyclical scenario leads to a stronger misalign-
ment. That is, writing σ(xt ) for the standard deviation of a time series xt , we get
σ(pt −vt ) = 1.341% for the cyclical scenario in Fig. 2, and σ(pt −vt ) = 1.184%
for the monotonic scenario. In the complete simulation runs the differences are some-
what more pronounced, though they are still quite moderate; see the second column
in Table 5.

Figure 3 illustrates the answer to the boundedness problem of the agents’ positions.
It shows that the present choice of the risk aversion parameters η is for all three groups
of the agents sufficient to keep their positions within a limited range. This basic feature
holds for the monotonic and the cyclical scenario alike, the time series of the positions
are indeed quite congruent. The bandwith obtained in Fig. 3 is fairly representative
for the entire simulation runs.

The positions of the market maker are moreover distinctly centred, already in the
short run. On the other hand, besides their larger amplitude, the positions of the funda-
mentalists and chartists fluctuate at a lower frequency, with an average period between
15 and 20 days. So, over the 200 days shown in Fig. 3, especially the positions of
chartists do not exhibit a similarly clear pattern of centring. There is nevertheless an
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Table 5 Summary statistics of the two scenarios

RMSD of positions Profits

misal. F C MM F C MM

CS 1.368 2.56 2.29 1.01 6.24 −2.13 −4.11

(14.62) (11.90) (6.69)

MS 1.173 2.87 2.53 1.02 7.30 −2.61 −4.69

(18.35) (14.91) (7.67)

‘misal.’ stands for misalignment, specified as 100 · σ(pt −vt ). RMSD are the root mean square deviations
from zero (times 100). The last three columns show the average profits (times 105) per day with their
standard deviations in parentheses; see Eq. (11) below. F, C, M M denote fundamentalists, chartists, and
the market maker, respectively

Fig. 3 Positions in CS (bold line) and MS (thin line)

obvious tendency for the positions to return to their target levels within a rather short
period of time, even after a strong decline of the fundamental value (between t =895
and t =920 in Fig. 2, for example). At least over a longer time horizon of 2 or 4 years
we would not hesitate to characterize the positions a f

t and ac
t as being well centred, too.

The ‘amplitude’ of the fluctuations of the agents’ positions is conveniently mea-
sured by their root mean square deviation from the target (RMSD). Table 5 reports
these statistics for the full sample period (the values for the period covered by Fig. 3
are not very different). While it confirms the considerably lower fluctuations of the
market maker, there are only minor differences in the RMSD of a f

t and ac
t . Note,

however, that these are the positions of all members of the group of fundamentalists
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and chartists. So without a more detailed specification of the individual trading cap-
ital invested, nothing can be said about the relative variability that originates with a
fundamentalist versus a chartist strategy as such.

What can be directly compared is only the RMSD across different parameter sets.
In this respect the market maker’s RMSD is practically the same in both scenarios,
whereas, perhaps somewhat surprisingly and in contrast to the misalignment, the var-
iability of the fundamentalist as well as of the chartist positions is slightly higher in
the monotonic scenario rather than in the cyclical scenario. This is also true for the
time series shown in Fig. 3.

We may also have a look at the profits to be earned with trading. For group h of
the agents (h = f, c, m) we consider the daily capital gains gh

t , which under the sim-
plifying assumptions on dividend and interest rates are exactly given by the change in
the value of the current positions,17

gh
t = [exp(pt ) − exp(pt−1)] ah

t (11)

As an immediate consequence of the conservation law (6) for positions, the positive
gains of one group always go at the expense of at least one of the other groups:
g f

t + gc
t + gm

t = 0 in each period t .
The long-run time averages of the daily profits (scaled by 105) are reported in the

last three columns of Table 5. Quite in line with general (academic) wisdom, funda-
mentalists win and chartists lose in the long-run. Nevertheless, as the large standard
deviations in parentheses show, the fundamentalists do not earn their profits without
risk, which would be especially true for individual traders with limited capital. On the
other hand, even for the straightforward chartist strategy specified by Beja–Goldman
there are still some prospects for temporary capital gains. Fundamentalists fare a bit
better and chartists fare a bit worse in the monotonic scenario relative to the cyclical
scenario, but note that the standard deviations of the daily profits increase, too (even
more than proportionately for the fundamentalists).

Insofar as he passively absorbs the excess demand and supply on the market, the
market maker is systematically losing money. In principle, he could make good for this
by specific active trading on his own account or by charging transaction fees (directly
or indirectly through bid-ask spreads), which in turn would reduce the net profits
of the speculative traders. However, the many small-scale models in the literature
with only a few groups of agents usually do not go into these details but discuss them
at most informally.

3.3 Variations of the risk aversion parameters

After getting some basic insights into the properties of the stochastic dynamics
(BGA–S), we can now turn to the behavioural parameters and study their effects

17 To see this, let Pt = exp(pt ) be the price of the asset, ct the cash holdings of a group and Wt their
wealth. Then with ct = ct−1 − Pt−1dt−1 = ct−1 − Pt−1(at − at−1) one has gt = Wt − Wt−1 =
Pt at + ct − Pt−1at−1 − ct−1 = Pt at − Pt−1at−1 − Pt−1(at − at−1) = (Pt − Pt−1)at .
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Fig. 4 Positions in the cyclical scenario with η = 0.60

on the misalignment of prices and the other summary statistics discussed above. We
limit ourselves to the ceteris paribus variations of the model’s innovative parameters,
the risk aversion coefficients η and µ. Let us begin with the risk aversion of fun-
damentalists and chartists, which was identified as a stabilizing parameter. While in
the continuous-time model η can be arbitrarily large, it has a natural upper bound of
unity in the discrete-time setting. Already values η < 1 may give rise to unreasonable
behaviour in the evolution of the agents’ positions, which would induce them to change
their η or another parameter. Figure 4, where in the cyclical scenario η is increased
from 0.30 to η = 0.60, is an example of the problems that may typically arise.

If Fig. 4 is compared to the time series over the same sample period in Fig. 3, first
the lower scale of the three panels may be noticed. Hence higher values of the risk
aversion η fulfill their purpose of narrowing down the range within which the posi-
tions of the speculative agents are fluctuating. On the other hand, the main cyclical
pattern of a f

t and ac
t from the base scenario in Fig. 3 is still clearly visible; there is

only more noise in the very short term. This weak trembling in a f
t and ac

t , however,
adds up and leads to a more pronounced raggedness in the positions of the market
maker. In Fig. 4 these features are still in their infancy, but they become stronger as
η is further increased. Eventually they carry over to the price itself. It then exhibits
extreme fickleness and alternates in moving up and down from one day to another. As
a result, along with the RMSD of am

t also the standard deviation of of returns and the
price misalignment σ(pt −vt ) will rise. We also note that the same phenomenon is
observed if η is increased in the monotonic scenario.

The two top panels in Fig. 5 show that the misalignment and the fluctuations in
am

t begin to worsen at around η = 0.80. From then on small increments in η have
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Fig. 5 Variations of the speculative agents’ risk aversion η Note: Bold (thin) lines refer to the parameter
values from CS (MS). Misalignment σ(pt −vt ) and RMSD multiplied by 100. The dotted lines indicate
a one standard deviation band around the mean profits in CS (×105). Underlying is a sample period of
25,000 days. The crosses mark CS with η = 0.30

dramatic effects on the summary statistics (see the bold lines). At the upper end of
the parameter interval, η = 0.83, misalignment rises to 4.40% and the RMSD of the
market maker’s positions (multiplied by 100) to 5.79. Increasing η only slightly above
0.83 causes the amplitude of the fluctuations to explode. The thin lines in the diagrams
indicate that in the monotonic scenario the upper limit of the risk aversion coefficient
for bounded price dynamics is even lower (around η = 0.65).

If conversely in the cyclical scenario η decreases from η = 0.30, the real part of
the leading eigen-value of (BGA) declines, too, and so weakens the stabilizing forces
in the system. At η = 0.140 the dynamics become monotonic, in the sense that from
then on the leading eigen-value is real and equal to −η. It follows that the decrease
in η increases the misalignment as well as the RMSD of the market maker’s posi-
tions, though these statistics tend to finite and quite moderate values as η approaches
zero.

It should be added that as η gets (very) small, the positions of the speculative
agents begin to wander around (while the positions of the market maker remain
centered around zero). As the bottom panels of Fig. 5 show, this indeterminacy is
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associated with a strong increase in the profits of fundamentalists and the losses
of chartists; with an even larger increase in the corresponding standard deviations.
Hence at least the chartists would not maintain their behaviour. Besides their tech-
nical rule they will certainly design a rule that intents to prevent their positions
from deviating so persistently from target. Most straightforwardly, they will con-
siderably increase η in the original formulation of chartist demand, Eq. (9). The
observation that the implications of the indeterminacy of the positions a f

t and ac
t

at η ≈ 0 can indeed be quantitatively significant underlines the general and qualita-
tive criticism that the purely order-based strategies provide no anchor for the agents’
positions.

Regarding rising values of η it is interesting to note that they mildly increase the
average profits of the chartists relative to the fundamentalists. This holds in the cycli-
cal as well as in the monotonic scenario. Because of the thus increasing short-term
noise in positions and prices that was pointed out above, these higher values of η

cannot be sold as “more plausible”. However, they can call attention to additional
aspects that more ambitious models may take into account. The agents may not only
try alternative mechanisms to predict the market price, they may also vary the inten-
sity of the control mechanism with which they seek to keep the positions within
bounds.

If for the sake of the argument we imagine a situation where an increase of η affects
the market maker’s inventory in undesired ways, he may react by a suitable change in
his control parameter. This brings us to the effects of ceteris paribus variations in the
second risk aversion coefficient, µ, which are studied in Fig. 6.

Although generally µ was found to be destabilizing, in the present two scenar-
ios, the cyclical and the monotonic one, the continuous-time equilibrium is stable
for all values of this parameter. However, similarly to what was obtained for the
speculative agents in the stochastic setting when their risk aversion η increases, a
moderately higher risk aversion µ of the market maker diminishes the RMSD of his
positions, whereas a strong risk aversion introduces too much short-term noise. At
the upper bound of the interval considered in Fig. 6, µ = 2.23, the market maker’s
inventory as well as the price he quotes typically go up for two consecutive days,
and then again decrease for the next 2 days. The price does not disconnect from
the fundamental value vt , but its short-term fluctuations around vt become exces-
sively large. The quantitative evidence for these features is given in the top panels of
Fig. 6.

At the other end of the parameter interval, as µ tends to zero, the marker maker’s
inventory loses contact with its target level. Note that owing to the conservation law
(6) this would not happen if the positions of the speculative agents remained largely on
target. In fact, the positions of chartists do; their RMSD is even lower than in CS and
MS with their positive value of µ. Responsible for the persistent one-sided deviations
of am

t from zero are the opposite and equally persistent deviations of a f
t from zero.

This phenomenon corresponds to the observation made at the end of Sect. 2.2 that
µ = 0 and η > 0 give rise to a continuum of equilibrium points, where am = −a f

can attain any value and induce price deviations at the order of −ηa f /φ from the
fundamental value. Accordingly, the random forces in (BGA–S) cause the price to
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Fig. 6 Variations of the market maker’s risk aversion µ

disconnect from the fundamental value after a while, and it then shows no tendency
to return to it. The reference to the deterministic equilibrium concept makes it also
clear that a higher risk aversion on the part of the fundamentalists would not be suf-
ficient to eliminate this systematic misalignment. It follows that in the deterministic
and stochastic framework both risk aversion coefficients µ and η are needed to pre-
vent any indeterminacy in the agents’ positions and its implication for the market
price.

It is also interesting to note that the value of the market maker’s risk aversion that
minimizes the RMSD for his position is quite distinct from the one that entails a min-
imal misalignment. This observation seems to be of more general importance since
a similar result holds in the model by Westerhoff (2003, p. 367), despite its different
specification of the market maker’s price quotes.

Lastly, we briefly mention the two bottom panels in Fig. 6, which show the impact
of the variations of the market maker’s risk aversion on the profits of the other trad-
ers. The positive effects of an increase in µ for the fundamentalists and the nega-
tive effects for the chartists are, however, quite limited—as long as µ is sufficiently
bounded away from the end-points of the parameter interval with their unreasonable
behaviour.
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4 Conclusion

The paper has advanced two elementary mechanisms for speculative agents and the
market maker which, jointly, can overcome the fundamental inconsistency in the
many asset pricing models with order-based strategies, according to which the agents’
implied positions are indeterminate and so may easily diverge. To begin with, the
modelling device keeps track of the positions. For the speculative agents it is then sup-
posed that they change their original demand from the order-based strategies inversely
to the deviations of their positions from a long-run target level. Concerning the market
maker it is supposed that he quotes a lower (higher) price than usual in proportion
to the current positive (negative) deviations of his inventory from normal. The two
proportionality factors measure the agents’ risk aversion in this respect.

Incorporating these concepts into the (deterministic and continuous-time) Beja–
Goldman model increased its dimension from two to four but still allowed an analyti-
cal treatment of stability. As expected, the formal stability conditions for the structural
parameters of the Beja–Goldman model were not dramatically affected. A grid search
over the parameter space, however, revealed that now some of these parameters can be
ambiguous; in the sense that the equilibrium is stable at low values of such a parame-
ter, then turns to unstable as the parameter rises, and eventually becomes stable again
as it rises further (though occurrence of this reswitching phenomenon appeared to be
quite rare). Regarding the new risk aversion coefficients the mathematical analysis
established that the one characterizing the speculative agents is stabilizing, and the
one characterizing the market maker is, if anything, destabilizing.

In the (discrete-time) stochastic version of the model where a random walk of the
fundamental value brings in a considerable degree of exogenous price variability, it
was demonstrated that the two correction mechanisms are indeed able to keep the
agents’ positions within bounds, and also to check the misalignment of the market
price. In order for the corresponding summary statistics to be limited, we observed
that the risk aversion of the market maker as well as of the speculative agents should
neither be too low nor too high.

The mechanisms proposed in this paper can be easily employed in other models
with order-based strategies. Since in many of these models the original properties of
the Beja–Goldman model are still shining through, even under endogenous population
shares of fundamentalists and technical traders, it can be expected that the two risk
aversion coefficients of the speculative agents and the market maker (if he is pres-
ent) will produce similar effects in other applications. In any case, our risk aversion
mechanisms are a comfortable option to ensure consistency in the evolution of the
agents’ positions, especially since the basic structure of the original model will be left
intact.

Whether in the Beja–Goldman model or another framework, we may finally men-
tion a specific issue that has already been touched upon in the discussion of the
profits to be earned on the market. It has there been indicated that the agents may
not only change their forecasting strategies for the market price but also their risk
aversion parameters, i.e. the intensity of their revision mechanism. This also applies
to the market maker. As it has been found that excessively low or large parameter
values will not be in the agents’ interest, one could think of designing evolutionary

123



224 R. Franke, T. Asada

rules that also include alternative choices for these coefficients. In sum, the two risk
aversion concepts put forward in this paper in general, and the last idea in particu-
lar, may somewhat widen the perspective of the agent-based modelling of financial
markets.

Appendix

Proof of Proposition 2 We first point out that two eigen-values of the Jacobian J are
given by λ1 = λ2 = −η < 0. In fact, it is immediately seen that x1 = (0, 0, 1, 0)′ and
x2 = (0, 0, 0, 1)′ bring about the eigen-value equations J xk = −ηxk for k = 1, 2.

The other two eigen-values of J coincide with the eigen-values of its upper-left
2×2 submatrix, which we denote by J (2). We verify this by indicating an eigen-vec-
tor x ∈ R

4 that, with respect to an eigen-value λ of J (2), satisfies J x = λx . Two
cases have here to be distinguished. Suppose first that λ equals −η. Then, by virtue of
j13 = j14 = j23 = j24 = 0, a corresponding eigen-vector is given by x = (0, 0, 1, 1)′.
For the second case λ 	= −η let (v1, v2)

′ be an eigen-vector of the submatrix J (2), and
let x3 and x4 solve the equations −φv1−ηx3 = λx3 and χv2−ηx4 = λx4, respectively.
The eigen-vector of J associated with λ is then x = (v1, v2, x3, x4)

′. (Incidentally, the
present Jacobian is an example that the eigen-vectors need not change continuously
with the entries of the matrix.) ��
Proof of Proposition 3 The Hopf bifurcation part (d) of the proposition is an immedi-
ate consequence of the fact that the determinant of the Jacobian J is always different
from zero, so that zero eigen-values are ruled out and eigen-values can cross the imag-
inary axis in the complex plane only in (non-degenerate) conjugate complex pairs.

All of the instability statements of the proposition derive from the condition of
a positive trace of J . Stability is proved by checking the Routh–Hurwitz conditions
for a 4×4 matrix or, more precisely, the equivalent Liénart–Chipart conditions; see
(Gandolfo, 1997, p. 223, Eqs. (16.37a) and (16.37c)). Entering them are the following
terms:

a1 = −trace J = δφ + α(1−δχ) + 2η

a2 = sum of the principal second-order minors of J

=
∣∣∣∣

−δφ δχ

−αδφ α(δχ−1)

∣∣∣∣ +
∣∣∣∣
−δφ δ(µ−η)

−φ −η

∣∣∣∣ +
∣∣∣∣
−δφ δ(µ−η)

0 −η

∣∣∣∣

+
∣∣∣∣
α(δχ−1) αδ(µ−η)

0 −η

∣∣∣∣ +
∣∣∣∣
α(δχ−1) αδ(µ−η)

χ −η

∣∣∣∣ +
∣∣∣∣
−η 0
0 −η

∣∣∣∣

= αδφ + δφµ + δφη + α(1−δχ)η + α(1−δχ)η + αδχ(η−µ) + η2

a3 = − (sum of the principal third-order minors of J )

= −
∣∣∣∣∣∣

−δφ δχ δ(µ−η)

−αδφ α(δχ−1) αδ(µ−η)

−φ 0 −η

∣∣∣∣∣∣
−

∣∣∣∣∣∣
−δφ δχ δ(µ−η)

−αδφ α(δχ−1) αδ(µ−η)

0 χ −η

∣∣∣∣∣∣
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−
∣∣∣∣∣∣
−δφ δ(µ−η) δ(µ−η)

−φ −η 0
0 0 −η

∣∣∣∣∣∣
−

∣∣∣∣∣∣
−α(δχ−1) αδ(µ−η) αδ(µ−η)

0 −η 0
χ 0 −η

∣∣∣∣∣∣

= αδφµ + αδφη + δφµη + αη(η − δχµ)

a4 = det J = αδφµη

The eigen-values of J have negative real parts if, and only if,

ak > 0 for k = 1, 2, 3, 4 , b = a1 a2 a3 − a2
1 a4 − a2

3 > 0 (12)

(a2 > 0, or alternatively a3 > 0, is implied by the other inequalities.)
To demonstrate the stability part of Proposition 3(a), note first that a1, a2, a3,

a4 are all positive for large values of φ. Write these terms as linear functions of φ,
ak = ck + dkφ (k = 1, 2, 3, 4), with c4 = 0 and d1 = δ, d2 = δ(α + µ + η),
d3 = δ(αµ + αη + µη), d4 = αδµη. The composite term b is a cubic function of φ,
where the coefficient on φ3 is given by

d1 d2 d3 − (d1)
2d4 = δ3 [(α + µ + η)(µη + αµ + αη) − αµη)] > 0

Thus b > 0 if φ is chosen sufficiently large.
Regarding the stability part of part (b), consider the limiting case χ = δ = 0. This

gives a1 = α + 2η > 0, a2 = η2 + 2αη > 0, α3 = αη2, a4 = 0. Furthermore,

b = (a1 a2 − a3) a3 = [(α + 2η)(η2 + 2αη) − αη2] a3 > 0

The inequalities are preserved if χ and δ are slightly increased, while a4 turns positive
in this case.

The proof of the stability part of Proposition 3(c) proceeds in a similar way. Putting
α = 0 gives a1 = δφ + 2η > 0, a2 = δφ(µ+η) + η2 > 0, a3 = δφµη > 0, a4 = 0.
The term b is positive if

a1 a2 − a3 = (2η + δφ)(δφµ + δφη + η2) − ηδφµ > 0

which clearly is the case. Sufficiently small values of α > 0 maintain these inequalities
and achieve a4 > 0. ��
Proof of Proposition 4 To begin with part (a), write the ak in the Routh–Hurwitz
conditions as functions of the parameter η : a1 = 2η + c1, a2 = η2 + d2η + c2,
a3 = αη2 + d3η + c3, a4 = αδφµη, where c1, c2, c3, d2, d3 are some constants. Cer-
tainly, all ak are positive if η is large enough. Furthermore, the term b is a fifth-order
polynomial of η, with a positive coefficient on η5 (from the product a1a2a3). Hence
b, too, is positive for large values of η.

Regarding the other parts of the proposition, write the ak as functions of µ, ak =
ck+dk µ, where d1 = c4 = 0. The nonzero slope coefficients are d2 = δ(φ−αχ), d3 =
αδφ+ηd2, d4 = αδφη, and the intercepts c1 = α+2η+d2, c2 = αδφ + (2α+η+d2)η,
c3 = α(η + δφ)η.
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To prove part (c) note that its assumption means d2 ≤ 0. If the strict inequality
prevails, a2 will eventually become negative for large µ. If d2 = 0, consider the coef-
ficient on µ2 in the composite term b, which is given by (c1d2 −d3) d3 = −(d3)

2 < 0.
Hence eventually b becomes negative if µ is large enough.

Regarding part (d) it suffices to check the stability conditions for µ = 0. The first
inequality in the additional assumption is tantamount to d2 + 2η > 0 and 2α + η +
d2 > 0. Hence ak = ck > 0 for k = 1, 2, 3. As the composite term reduces to
b = (c1c2 − c3)c3 − 0, we only need to verify c1c2 − c3 > 0. The first product is
given by c1c2 = (α + 2η + d2) (η2 + δφη + δφα − δχηα + 2ηα) = αη2 + αδφη +
α[δ(φ−χη)+2η] α + (2η+d2) c2. The first two terms cancel against −c3, the square
bracket is positive by the second inequality assumption, and the rest is already known
to be positive. Hence b > 0, too.

In the proof of part (e), existence of at least one (Hopf) bifurcation value µH is
obvious, as well as that there must be an odd number of such bifurcations. Then, note
that any loss of stability is tantamount to a switching of the composite term b from
positive to negative. This follows from the fact that at any such bifurcation we have
a1 > 0, a3 > 0, a4 > 0 and b = 0 (see Theorem 2(ii) in Asada and Yoshida (2003,
p. 527)), while b > 0 under these circumstances would imply a2 > 0 and thus stability.
So it remains to recall that b is a quadratic function of µ, which implies that it has at
most two roots. Hence µH is uniquely determined.

To prove part (b) it again suffices to establish the stability conditions for µ = 0.
The stability assumption for large µ implies d2 > 0 (see part (c)) and, thus, c1 > 0,
c2 > 0, c3 > 0. So, as before, it remains to show c1c2 > c3 . Putting η = 0 we
have c1c2 = (α + d2) αδφ > 0 = c3. Differentiation with respect to η gives us
∂(c1c2)/∂η = 2 (αδφ + η2 + 2αη + d2η) + (α + d2 + 2η) 2η + positive terms
> 2αδφ + 2αη > 2αη + αδφ = ∂(c3)/∂η. Hence c1c2 > c3 for all values of η > 0,
which completes the proof of the proposition. ��
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