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Abstract This paper explains the fat-tail distribution of asset transaction volumes
and prices by a model of rational herd behavior of traders. Each trader decides whe-
ther to buy an asset by observing private information and other traders’ actions. A
trader’s buying action reveals his positive private information and affects the other
traders’ beliefs in favor of buying, leading to strategic complementarity. A power-law
distribution emerges for the number of buying actions in a static Nash equilibrium.
This model provides an economic reason as to why the stock market has to exhibit a
criticality in the connectivity of the traders’ actions.

Keywords Power law · Trading volume · Stock return · Herd behavior ·
Self-organized criticality

JEL Classification G14

1 Introduction

Price of risky asset reflects collective belief of traders on the value of assets. The
efficiency of market obtains when the traders inadvertently reveal their private infor-
mation through their self-interested transactions. This Hayekian view of market as an
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90 M. Nirei

information processor inevitably involves a process of the price gradually converging
to the true value. During this process, traders’ actions and revealed beliefs influence
with each other. This kind of interdependence across traders does not warrant simple
aggregation of information which would be characterized by the central limit theorem.
The present paper considers the deviation from the normal distribution as a significant
source of fluctuations in financial markets.

Short-run stock returns show a fat-tailed distribution as first noted by Mandelbrot
(1963) and Fama (1965). The power-law tail index was estimated to be in the range of
3–5 by Jansen and de Vries (1991), which indicates a large deviation from the normal
distribution in the kurtosis. The estimate is consistent with more recent reports from
statistical physicists who attempt to characterize the distribution in more precision and
broader dimensions. Bouchaud and Potters (2000) and Mantegna and Stanley (2000)
provide a review of this literature. Aoki and Yoshikawa (2006) argue that the power-
law distribution of the stock returns is the key to understand the risk premium puzzle
in the consumption-based asset pricing models.

The empirical regularities of the fat tail and the leptokurtosis of the stock returns
have been successfully accounted for by an array of statistical models such as a subor-
dinated process (Clark 1973), ARCH (Stein and Stein 1991), and a truncated Levy
process (Mantegna and Stanley 2000). However, it is relatively unknown what kind
of economic mechanism generates such regularities. The quest for such mechanism
has motivated the growing literature of agent-based simulations in finance (LeBaron
et al. 1999; Lux and Marchesi 1999). A recent paper by Gabaix et al. (2003, 2006)
pursued a different avenue in which the power-law tail of price fluctuations reflects
another power law of the trader size, and successfully matched a broad set of fat-tail
regularities in the price, volume, and trader size.

More traditional economic explanations rely on the imitative behavior of traders.
The models of herd behavior laid out theoretical foundation of the rational imitative
behavior (Scharfstein and Stein 1990; Banerjee 1992; Bikhchandani et al. 1992). The
herd behavior model has inspired attempts to reproduce the power law in price fluc-
tuations by employing the methodology used for critical phenomena (Bak et al. 1997;
Cont and Bouchaud 2000; Stauffer and Sornette 1999). These models provide stimulus
to the existing studies of financial fluctuations by showing how a generic model of
critical phenomena can robustly produce a sharp structure such as the power law.

The new models, however, lack the rich structure of traders’ purposeful behavior
and rational learning which the original herding models had. The lack of purposeful
behavior per se may not be a drawback: at the expense of hindering the integration with
the existing body of financial studies, the new models illuminate the role of interaction
rather than individual behavior behind the market fluctuations. The more important
question on the critical phenomena models is as to why at all the market has to exhibit
criticality. The power-law fluctuation occurs typically only at the critical point of a
parameter which governs the connectivity of the networked traders. In this paper, we
propose that the market necessarily converges to this critical point as a result of the
purposeful behavior of individual traders who learn information from each other.

To translate the aggregate action of traders to stock returns, we use an empirical
volume–price impact function estimated by Lillo et al. (2003). We show that our model
can account for the fat-tail distribution of the stock returns. The fat-tail distribution
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Self-organized criticality in a herd behavior model 91

of returns implies that the process of asset price toward its true value can deviate
greatly from the path in which the private information is fully revealed. Consider a
situation where traders receive the private information repeatedly over time. The price
will reflect the true value in the long run, since the private information accumulates
indefinitely. During the process however, the path of actions of the informed traders
experiences large volatility. With the fat-tail distribution, a sizable portion of the price
adjustment to the true value is accounted for by events of synchronized actions of a
large number of traders.

2 Model

The model draws on Nirei (2007). Let us consider a game with N traders of an asset
which is worth 1 in the state of economy H (High) and worth 0 in L (Low). Trader i
receives a private information xi on the value of the asset. xi is an i.i.d. random variable
drawn from distribution F in state H and from G in state L . Trader i can choose to
buy the asset (ai = 1) for a constant cost b̄ or not to buy (ai = 0). The action profile
is denoted as a = (a1, a2, . . . , aN ).

Traders can observe the action profile a but do not observe the other traders’ private
information.1 Trader i rationally updates their belief according to the Bayes’ rule upon
the observation of (xi , a) and obtains the posterior belief bi,1, where the belief bi,t ,
t = 0, 1, is defined as the subjective probability for state H to realize. Traders are
risk-neutral and maximize their subjective expected payoff. Hence, trader i buys the
asset if bi,1 ≥ b̄ and does not buy otherwise.

We assume that the prior belief is common across traders: bi,0 = b0. We also
assume the monotone likelihood ratio property (MLRP): the odds function δ(xi ) =
g(xi )/ f (xi ) is strictly decreasing where f and g are density functions of F and G
respectively. The decreasing δ implies that a higher xi results in a lower posterior
probability for state L (see Milgrom 1981). We study a static Nash equilibrium a upon
the arrival of x = (x1, x2, . . . , xN ).

The Bayes’ rule is equivalently expressed by the update of a likelihood ratio as
follows:

θi,1 = Pr(xi , a−i | L)

Pr(xi , a−i | H)
θi,0. (1)

Here, a−i is the action profile other than ai . Since xi delivers a finer information than
ai , the information revealed by ai is omitted by trader i . Note that the belief of i can be
dependent on ai indirectly, because the information revealed by a j , j �= i , depends on
j’s observation on i’s action. However, the only relevant belief for the decision is the
one when i is buying, because trader i’s expected payoff of buying is bi,1 − b̄ where
the belief is evaluated at ai = 1 while the payoff of not buying is 0 regardless of the
belief. Thus, we define bi,1 to be the belief evaluated when the other traders observe
ai = 1.

Let m denote the number of traders who buy, m ≡ ∑N
i=1 ai . Let m−i denote

the number of traders who buy other than i . In our model of ex-ante homogeneous

1 Nirei (2007) considers the case where the traders observe
∑

i ai instead.
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92 M. Nirei

traders, m−i is the sufficient statistic for the public information a−i . Suppose that the
best response of trader i obeys a threshold rule:

ai =
{

1 if xi ≥ x̄(m−i )

0 otherwise.
(2)

Then we can define the likelihood ratio revealed by a “bear” action (ai = 0) and by a
“bull” action (a j = 1) under the threshold rule respectively as:

A(x̄(m)) ≡ Pr(xi < x̄(m−i ) | L)

Pr(xi < x̄(m−i ) | H)
= Pr(xi < x̄(m) | L)

Pr(xi < x̄(m) | H)
= G(x̄(m))

F(x̄(m))
, (3)

B(x̄(m − 1)) ≡ Pr(x j ≥ x̄(m− j ) | L)

Pr(x j ≥ x̄(m− j ) | H)

= Pr(x j ≥ x̄(m − 1) | L)

Pr(x j ≥ x̄(m − 1) | H)
= 1 − G(x̄(m − 1))

1 − F(x̄(m − 1))
. (4)

Using the notation A and B as before, we express the posterior likelihood ratio θi,1
when trader i plays ai = 1 and observes m−i = m −1 number of other buying traders
as:

θi,1 = A(x̄(m))N−m B(x̄(m − 1))m−1δ(xi )θ0. (5)

Note that the bear traders observe m buying actions and the bull traders observe m −1.
A trader chooses to buy if and only if bi,1 ≥ b̄, and this condition is equivalently

written as θi,1 ≤ 1/b̄ − 1. Define ε ≡ 1/b̄ − 1 as the threshold for the likelihood ratio.
The threshold for the private information x̄(m−i ) is defined as the value of private
information at which a bull trader i is indifferent between buying and not buying,
given that the trader observes m−i = m − 1 buying actions. The threshold function is
thus implicitly determined by the following key equations:

ε = A(x̄(m))N−m B(x̄(m − 1))m−1δ(x̄(m − 1))θ0, m = 1, 2, . . . , N − 1, (6)

ε = B(x̄(N − 1))N−1δ(x̄(N − 1))θ0. (7)

Note that (7) determines x̄(N −1), and the rest of x̄(m) are sequentially determined by
(6). Also note that x̄(m) defined by (6,7) is equivalent to the threshold of a bear trader
who observes m−i = m for m = 0, 1, . . . , N − 1, which must satisfy the following
equations:

ε = A(x̄(m + 1))N−m−1 B(x̄(m))mδ(x̄(m))θ0, (8)

where the likelihood ratios A and B are evaluated at the hypothetical move ai = 1.
We obtain the optimal threshold rule (2) from Eqs. (6,7), since δ is decreasing.

Define M = {0, 1, 2, . . . , N } as a set of possible equilibrium outcome m. We define
a reaction function � : M �→ M for each realization of x such that m′ = �(m) is the
number of traders who received private information above the threshold: xi ≥ x̄(m).
Define α ≡ m/N as a fraction of traders who choose to buy. Define an equivalent
threshold for α as x̂N (α) = x̂N (m/N ) ≡ x̄(m). Also define �̂ as the reaction function
in the domain of α. Then we obtain the existence of equilibrium at the limit of N .
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Self-organized criticality in a herd behavior model 93

Proposition 1 At the limit N → ∞, for each realization of x the reaction function
�̂ is non-decreasing, and there exists an equilibrium outcome α in which the action
profile satisfies the optimal threshold rule based on x̂∞.

Proof Equation (6) is rewritten as:

log(ε/θ0)

N
=

(

1 − α − 1

N

)

log A

(

x̂N

(

α + 1

N

))

+α log B
(
x̂N (α)

) + log δ
(
x̂N (α)

)

N
. (9)

Taking the limit N → ∞, we obtain:

(1 − α) log A(x̂∞) + α log B(x̂∞) = 0. (10)

A is strictly decreasing from δ(−∞) to 1 and B is strictly decreasing from 1 to δ(∞)

in the support of the random variable xi . Hence the left hand side of (10) travels from a
positive value to a negative value for any fixed α ∈ [0, 1]. Thus the solution x̂∞ exists.
Since F and G are continuous, A and B are continuous and thus the solution x̂∞ is
also continuous. Then �̂ is a continuous function that maps [0, 1] onto itself. Thus
a fixed point of �̂ exists. From (10), we establish that an increase in buying actions
always reduces the threshold in the limit of N → ∞:

dx̂∞
dα

= log A(x̂∞) − log B(x̂∞)

(1 − α)A′(x̂∞)/A(x̂∞) + αB ′(x̂∞)/B(x̂∞)
< 0, (11)

where we used the properties A > B, A′ < 0, and B ′ < 0 (see Nirei 2007). 
�
It follows from the proof that α = 0, 1 are always equilibria regardless of the

realization of x when N → ∞. Hence, the minimum equilibrium is always 0. The
intuition is that there is no good enough draw of private information that can overturn
the revealed information when infinitely many traders are not buying.

In this paper, we focus on the equilibrium with a minimum number of buying traders,
m∗, in order to demonstrate that even the minimum shift in equilibrium exhibits large
fluctuations. As shown above, however, interesting fluctuations of m∗ occur only when
N is large but finite. Therefore, in the rest of the paper, we concentrate on the case
when N is finite and � is non-decreasing. We can establish the non-decreasing � for a
finite N under a different equilibrium notion.2 When � is a non-decreasing mapping
of a finite discrete set M onto itself, there exists a non-empty closed set of fixed
points by Tarski’s fixed point theorem (Vives 1990). We can show that there exists an
equilibrium when � is non-decreasing and N is finite as follows. Pick a minimum fixed
point m∗. We verify the incentive compatibility of traders at m∗. Note that N −m∗ bear
traders satisfy the incentive compatibility, xi < x̄(m∗), by the construction of �(m∗).

2 Nirei (2007) shows the existence of a rational expectations equilibrium and a non-decreasing � for any
finite N . We maintain the Nash formulation in the present paper, however, for its merit in intuitiveness.
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Fig. 1 Left cumulative distribution of m∗/N (cumulated from above). Right probability density function
of S&P500 daily stock returns and the model prediction at the criticality. The price-impact function is
specified as ∆ = 0.025m0.38 and µ = 0.3 to fit the empirical density

When m∗ = 0, all the traders are bear and thus the incentive compatibility is satisfied
for all of them. When m∗ > 0, the incentive of bull traders, xi ≥ x̄(m∗ − 1), need be
examined. We obtain �(m∗−1) > m∗−1 from the facts that m∗ is the minimum fixed
point, that m∗ > 0, and that � is non-decreasing. Also �(m∗ − 1) ≤ �(m∗) = m∗
obtains, since � is non-decreasing. Hence �(m∗ − 1) = m∗. Namely, the traders who
satisfy xi ≥ x̄(m∗) must also satisfy xi ≥ x̄(m∗ − 1). But the latter is exactly the
incentive compatibility condition for the bull trader i .

The minimum equilibrium m∗ can be reached by a sequence of the best response
which requires the traders to know only the “aggregate” information, m in our case.
Following Vives (1995), we call this best response dynamics as informational taton-
nement. It is shown that the informational tatonnement converges to the minimum
equilibrium (see Vives 1990; Nirei 2007).

Proposition 2 Suppose that � is non-decreasing. Consider an informational taton-
nement process mu, where m0 = 0 and mu = �(mu−1) for u = 1, 2, . . . , T , where
the stopping time T is the smallest u such that mu−1 = mu. Then, mu converges to
the minimum equilibrium m∗ for each realization of x. Also, the threshold decreases
over the informational tatonnement process: x̄(mu+1) < x̄(mu) for each realization
of x.

The minimum Nash equilibrium outcome m∗ depends on the realization of x . Thus,
the probability measure for x determines the fluctuation of m∗. The left panel of Fig. 1
shows a simulated cumulative distribution of m∗ when F and G are specified as
exponential distributions with mean 1.1 and 1, respectively and the threshold belief
is set at b̄ = 0.9. We observe that m∗ follows a power-law distribution with exponent
about 0.5 with an exponential truncation at the tail.

We can provide an analytical foundation for this distributional shape of m∗ as
in Nirei (2007). The informational tatonnement process mu can be regarded as a
binomial process unconditional to x . The binomial process allows an approximation as
a Poisson branching process when N is large. By the theorem by Otter, we know that the
cumulative sum of a branching process follows a power-law distribution with exponent
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Self-organized criticality in a herd behavior model 95

0.5 with exponential truncation. The distribution of the total sum of a branching process
with a Poisson distribution with mean φ and with m1 following a Poisson distribution
with mean µ is given as follows (Harris 1989):

Pr(m∗ = m) = µe−(φm+µ)

m! (φm + µ)m−1 (12)

∝ (φe1−φ)mm−1.5. (13)

The distribution converges to a pure power law if φ = 1, i.e., when the branching pro-
cess is a martingale. Numerical computations in Nirei (2007) show that our Poisson
branching process has the martingale property around the equilibrium when the dif-
ference between F and G is vanishingly small. The F and G are close to each other
if the informativeness of the private information is small. This is the case for a short
time horizon, since not much information should arrive in a short time period. This
observation is consistent with the fact that the stock returns exhibit fat tails for a shorter
time horizon.

What is the intuition for the criticality result in our informational tatonnement?
Suppose that a good news induced a trader to buy, whereas the other traders did not
buy despite their observation of the action. Then their inactions reveal their private
information partially. The total impact of the action on the revealed information is
discounted by N − 1, if the private information is equally informative across the
traders. When this is the case, the chance for the initial action to induce another
action is of order 1/N . Then the tatonnement triggered by the initial action becomes
a martingale, in which the distribution of the total number of buying actions during
the tatonnement exhibits a power law.

We can further show that, when the static game is repeated over time, the triggering
action almost surely occurs and the mean impact of the action in the chain reaction
evolves toward the critical level. This implies that the rational learning of traders self-
organizes their beliefs to the critical state at which a power-law clustering of actions
emerges. Note that in the left panel of Fig. 1 the probability of non-zero propagation
is decreasing in the gap between the belief and the threshold belief. Numerical studies
also show that the informational tatonnement tends to be subcritical when the gap
is large (Nirei 2007). Thus, the market travels from a subcritical regime to a critical
regime as the traders learn the true state of the economy. If so, the “sweeping of
an instability” by Sornette (2004) applies: the unconditional distribution of trading
volume becomes an integral of (12) over φ, which leads to the power-law exponent
1.5 rather than 0.5. Indeed, Gopikrishnan et al. (2000) estimated the exponent for the
power law of trading volume to be around 1.5 in the stock market data.

3 Stock prices

Lillo et al. (2003) found a stable relationship between trading volume m and stock
returns � in wide variety of high-frequency stock data in the form |�| ∝ mγ . This
approach implicitly assumes that uninformed traders absorb any demand (or supply)
placed by informed traders with a constant supply (or demand) elasticity 1/γ .
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96 M. Nirei

The impact function in the form of Lillo et al. can yield a power law in the stock
returns when combined with a power law in the volume size m. Suppose that the
volume follows a power law with exponent ξ : fm(x) ∝ x−ξ−1. Then the density of
the returns follows: f�(y) ∝ fm(y1/γ )y1/γ−1 ∝ y−ξ/γ−1. Hence the exponent of the
power law for the returns is determined by ξ/γ .

Gabaix et al. (2006) reports that the exponent of the returns is about three for
various stock returns data when fitted by a pure power law. Bouchaud and Potters
(2000) estimates the exponent at about 1.5 when the returns data are fitted by a power
law with an exponential truncation. Our model of branching process predicts that the
volume has an exponent ξ = 0.5 at the criticality, and with an exponential truncation off
the criticality. Thus, our model is consistent with the returns exponent 1.5 if γ = 1/3 in
the case of criticality, and it is consistent with the exponent 3 if γ = 1/6 in the case of
off-criticality. Lillo et al. estimates that the elasticity of the impact function varies from
0.1 to 0.4. Thus our model is consistent with the existing estimate range of ξ and γ .

The right panel of Fig. 1 shows a density function estimated from an empirical
histogram of daily returns of S&P500 stocks. The data covers a year starting from
1 July 2004. The empirical distribution is fitted by a combination of a price-impact
function � = 0.025m0.38 and Eq. (12) evaluated at criticality φ = 1 and µ = 0.3.
Parameter µ affects the density around m = 0. In the model, µ is determined by
the gap between the prior and threshold belief. The location parameter of the impact
function is set at 0.025, which implies that the initial action by an informed trader
causes 2.5% impact on the price. The most important parameter is the elasticity of
price with respect to volume, ξ = 0.38. This parameter determines the curvature of
the distribution. The value 0.38 falls within the range of ξ estimated by Lillo et al.
Although the parameter values are chosen from a reasonable range, the choice is still
quite tentative. Nonetheless, the fitting shows that our simple model is capable of
generating a fat-tail distribution that could match in magnitude with the empirical
stock returns distribution. The simplicity of our model merits in possible extensions
in order to obtain a more accurate exponent of the power law.

4 Conclusion

This paper presents a static game of traders with private information. The minimum
Nash equilibrium outcome exhibits fluctuations depending on the realization of the
private information profile. An action of a trader reveals the trader’s private information
partially and induces another trader to choose a similar action. Namely, the traders’
actions are strategic complement. The correlation of the traders’ actions renders the
aggregate fluctuations to follow a non-normal distribution.

We characterize the distribution of the equilibrium number of buying traders. It
turns out that the distribution exhibits a power-law with exponential truncation. The
power-law behavior emerges from a rational herding of the traders. When traders are
symmetric with respect to the information contents of their actions, the inaction of
traders upon an action of a trader reveal their private information. Thus the impact of a
trader’s action on subjective belief is discounted by other traders’ inaction to the level
of order 1/N . This leads to the critical propagation of a buying action. The mechanism
is analogous to the Keynes’ beauty contest.

123



Self-organized criticality in a herd behavior model 97

The empirical exponent of the power-law for the trading volume can be matched
with a dynamic extension of our model in which traders eventually learn the true state
of the economy. Moreover, an empirical distribution of daily stock returns can be
fitted well by a combination of the power-law of the traders’ aggregate action in our
model and an empirically admissible price-impact function. The microfoundation of
the price-impact function is left as an open question.
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