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Abstract The assessment of models of financial market behaviour requires evalua-
tion tools. When complexity hinders a direct estimation approach, e.g., for agent based
microsimulation models, simulation based estimators might provide an alternative. In
order to apply such techniques, an objective function is required, which should be
based on robust statistics of the time series under consideration. Based on the identifi-
cation of robust statistics of foreign exchange rate time series in previous research, an
objective function is derived. This function takes into account stylized facts about the
unconditional distribution of exchange rate returns and properties of the conditional
distribution, in particular, autoregressive conditional heteroscedasticity and long mem-
ory. A bootstrap procedure is used to obtain an estimate of the variance-covariance
matrix of the different moments included in the objective function, which is used as
a base for the weighting matrix. Finally, the properties of the objective function are
analyzed for two different agent based models of the foreign exchange market, a sim-
ple GARCH-model and a stochastic volatility model using the DM/US-$ exchange
rate as a benchmark. It is also discussed how the results might be used for inference
purposes.
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1 Introduction

Exchange rate time series are found to exhibit complex structures which cannot be
easily explained by standard economic models or modelled by simple time series
models. As an alternative modelling approach, agent based models have been devel-
oped starting with the model proposed by Frankel and Froot (1986) with fixed dealer
characteristics and Kirman (1991) allowing for endogenous adjustment of behaviour.
Since then, a growing number of models has been presented and analyzed with increas-
ing complexity of agents’ behaviour and market structures. For recent contributions
see the overviews in LeBaron (2006) and Tesfatsion (2006), the references given in
Hommes et al. (2005), and Leigh Tesfatsion’s website on agent based economics:
http://www.econ.iastate.edu/tesfatsi/ace.htm.

The contribution of this paper will not consist in modifying an existing or proposing
a new agent based model of foreign exchange rates, but in providing a tool for the eval-
uation of such models based on simulated indirect inference along the lines proposed
by Gilli and Winker (2003).1 The application of this approach is demonstrated using
the models introduced by Kirman (1991, 1993), Lux (1998), and Lux and Marchesi
(2000).

Given the variety of agent based models proposed for modelling foreign exchange
rates, evaluation becomes increasingly important for assessing their explanatory power,
discrimination between models and selection of optimal parameter values (estimation).
Evaluation of agent based models can start from different perspectives, in particular
from an input or output point of view.2 This paper concentrates on model output, i.e.
the simulated time series. Figure 1 provides an overview on the steps involved in the
analysis. The upper part of the figure shows the steps of a typical statistical analysis
applied to the foreign exchange market, while the lower part exhibits the proceeding
with agent based models. The link from the box for foreign exchange market to the
one for the agent based simulation model represents the microfoundation of agents’
based simulation models, i.e. the attempt to use reasonable assumptions about agent
behaviour and interaction. On the right hand side of the figure, the box marked “com-
parison” represents the core component of the approach of indirect inference, i.e. the
comparison of real time series with those generated from the agent based model for
given parameter values. Eventually, this comparison leads to a feedback on the agent
based model, e.g. on its parameters. This optimization step will be subject to future
research.

It appears to be a standard approach in the literature on agent based models of
foreign exchange rates to concentrate the analysis on some statistical properties of
simulated time series, e.g. fat tails or conditional heteroscedasticity. However, often

1 For alternative approaches for models allowing for a closed form solution see Alfarano et al. (2005) and
Ahrens and Reitz (2005).
2 An interesting approach for combining both approaches is presented by Izumi and Ueda (2001). For
a more detailed discussion, see again Leigh Tesfatsion’s webpage: http://www.econ.iastate.edu/tesfatsi/
empvalid.htm.
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Fig. 1 Indirect inference for agent based models

this analysis is based on a single or a small number of simulated time series and for
a given set of model parameters. Furthermore, the statistical properties are analyzed
separately. In the following, a systematic approach is proposed taking into account
a larger set of time series characteristics and the joint distribution of outcomes from
repeated runs of the simulation models.

The selection of time series characteristics used for the evaluation approach is
based on previous research on stylized facts of foreign exchange time series (Winker
and Jeleskovic 2007, 2006). A single objective function is constructed based on the
joint distribution of characteristics obtained from a bootstrap analysis.3 From repeated
simulations of the agent based model, the distribution of this objective function is
obtained for different parameter settings. A comparison of this distribution with the
distribution obtained from the empirical data using resampling techniques, simulation
based inference on the agent based model for given parameter sets becomes feasible.

Finally, the objective function might be used in an optimization approach for indirect
estimation of the parameters as proposed in Gilli and Winker (2003). However, this
last step of the analysis is not subject of the present contribution. Nevertheless, the
descriptive evidence gained on the features of the objective function will be helpful
for developing adequate heuristic optimization methods for this purpose.

The paper is organized as follows. Section 2 describes the validation approach and
the method of simulated moments in more detail. The construction of the objective
function based on a selection of empirical moments and a weighting function resulting
from the bootstrap procedure is explained in Sect. 3. Section 4 reports the results of
applications of the method to two agent based models of the foreign exchange market,
a simple GARCH-time series model, and a stochastic volatility model as a benchmark.
A summary of the findings, conclusions and an outlook to future research is provided
in Sect. 5.

3 Alternatively, a multicriteria objective function could be considered (Kalaba and Tesfatsion 1996). Given
the resulting increase in computational cost, it is left for future research to follow this approach.
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2 Validation and estimation

One potential goal of the use of agent based models of foreign exchange markets is
to “explain” typical characteristics of exchange rate movements. Thus, the following
components might be assumed to be given:

1. A realisation of the exchange rate process X = {xt } for t = 1, . . . , T .
2. An agent based model A, which can be interpreted as a stochastic mapping from the

parameter space Θ to the space Υ of exchange rate series of length T : For a given
parameter vector θθθ ∈ Θ , the model A generates stochastic realizations A(θθθ) ∈ Υ .

The mapping A is stochastic whenever the agent based model involves some sto-
chastic component such as random mutation of agent type or exogenous shocks to the
price series. Such components are present in most if not all agent based models of
foreign exchange rates including the examples considered in this contribution.

For the foreign exchange market, it is not claimed that agent based models might
“explain” the actual level of the exchange rate. They are rather used as a model for
describing typical statistical features of foreign exchange rate movements, which are
difficult to explain by more traditional time series approaches, e.g. fat tails and long
memory of exchange rate returns. Thus, when considering the validity of an agent
based model or when searching for good parameters θ ∈ Θ , the benchmark is not
given by the exchange rate process X, but rather by some specific statistics/moments.
The choice of moments for the present application will be discussed in the following
Sect. 3. For the moment being, it is assumed that m = (m1, . . . , mk) are k moments
of the exchange rate process to be matched by the agent based model.

Unfortunately, the true vector of moments m is not known, but has to be estimated
based on the available observations X. Let me = (me

1, . . . , me
k) denote consistent

estimates of m. The variance-covariance matrix of these estimates, Var(me), might
be estimated from X, e.g. by means of bootstrap techniques. Given that some of
the moments in the application are conditional moments of exchange rate returns, a
block bootstrap method appears adequate. The implementation details are described in
Subsect. 3.2. As an example, Fig. 2 shows the distribution of the sum of the ARCH- (α)
and GARCH-parameters (β) in a GARCH(1,1)-model fitted to the US-$/DM-exchange
rate for the period 11.11.1991 to 9.11.2000.4 The plot shows a kernel estimate of the
density function based on 10,000 block bootstrap samples.5

Given the stochastic nature of A, the variance of some moment mi might also be
used as a moment. Then, a double-bootstrap approach has to be used to obtain the
variance estimates for this moment. For the present application, this feature is not
considered.

4 For a low fraction of bootstrap samples, the standard algorithms for the ML-estimation of the GARCH-
parameters exhibit numerical problems. For these instances, a local search heuristic has been used to obtain
reliable estimates (Winker and Maringer 2007).
5 All kernel estimates used for graphical presentations in this paper employ the normal kernel with a
bandwidth selected to obtain smooth densities.
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Fig. 2 Block bootstrap distribution of α + β in GARCH(1,1)-model
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Fig. 3 Distribution of α + β in GARCH(1,1)-model for simulated time series from Kirman’s model

2.1 Validation approach

From the model point of view, for a given parameter vector θθθ , each simulation run
of A results in a single simulated time series xs

t , t = 1, . . . , T . For this simulated
time series, it is also possible to estimate the vector of moments mmm. Let mmms

i (θθθ) denote
this estimate for simulation i , i = 1, . . . , I . Figure 3 shows the distribution of the
sum of the ARCH- (α) and GARCH-parameters (β) in a GARCH(1,1)-model fitted to
the simulated time series of an implementation of Kirman’s (1991) model for a fixed
parameter setting θθθ .6 The plot shows a kernel estimate of the density function based
on 10,000 simulation runs.

The mean of α + β over the bootstrap replications amounts to 0.9804, while the
mean for the simulated data in Fig. 3 is slightly lower with 0.9622. However, both
distributions exhibit large variance. Thus, the difference in the mean estimators might
not be considered as statistically significant at any conventional level. A different result
is obtained when considering time series generated from a GARCH(1,1)-model with
parameter values set to α = 0.2 and β = 0.5. Figure 4 exhibits the kernel estimate
of the density function based on 10,000 simulation runs. In this case, the estimated
mean of 0.6923 is obviously significantly smaller than both for the real data and the
data obtained from a simulation of Kirman’s model.

6 For this simulation, we used the parameters provided in Table 2 in Subsect. 4.1 below with ε = 0.01 and
δ = 0.6.
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Fig. 4 Distribution of α + β in GARCH(1,1)-model for simulated time series for a GARCH(1,1)-process

Generally, for a statistical comparison of the results for the real data based on their
bootstrap distribution and the simulated data, two approaches might be taken into
account:

1. If the overlap of both density functions is smaller than a marginal level of 1, 5 or
10%, respectively, one might conclude that both distributions result from different
data generating processes. This test can be easily evaluated based on the empirical
distribution functions for a large enough number of replications/simulations.

2. One might ignore the variance in the simulation model and be interested solely in
the means (medians) of simulated moments. Then, it should be checked whether the
mean falls in a 90, 95 or 99% confidence interval based on the bootstrap estimates.

Of course, ignoring the (often huge) variance from the simulation model and con-
centrating on the mean (median) over a large number of replications might not be
considered as a preferable approach. However, two arguments can be mentioned in
favor of this idea. First, given that the simulated models generate quite different time
series for different random number seeds, it might be of only limited interest to learn
that almost every outcome might turn up some times, but rather one might be interested
in the “typical” behavior as measured by means or medians. Second, when switching
from the consideration of a single moment as in the example to k > 1 moments, the
first approach leads to comparing the overlap of high dimensional density functions.
Therefore, for this paper, we follow the second approach, but keep a more detailed
analysis of the first method for future research.

If mean or median of simulated moments exist theoretically, increasing the number
of simulation runs allows to control for the approximation error of using the mean
of some simulation runs instead of their true values. A quantitative estimate of this
dependence will provide useful for indirect estimation approaches as it allows to
control the required number of model simulations at each evaluation step.

The validation approach has to be refined when more than a single moment is con-
sidered. Although some parameters of the agent based models might be set based on a
priori reasoning or empirical evidence (Izumi and Ueda 2001), typically a considerable
set of parameters will be subject to calibration/estimation. Consequently, validation
and simulation based estimation has also to take into account a large enough number k
of moments m = (m1, . . . , mk). Typically, it cannot be assumed that these moments
are distributed independently from each other neither for the empirical nor for the
simulated data. Thus, performing the validation analysis moment by moment along
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the lines described above, is not feasible. Instead, validation has to be based either
on the joint distribution of all moments with regard to some multicriteria approach
(Kalaba and Tesfatsion 1996) or on a scalar valued objective function depending on
all moments. The latter will be the approach discussed in the next subsection in the
context of estimation by the method of simulated moments.

2.2 Method of simulated moments

The method of simulated moments puts a slightly different focus on the problem. Now,
the parameters of the simulation model θθθ are not considered as given, but are subject
to estimation. A standard method of moment condition requires that E(mmms | θθθ) = m.7

Consequently, if m was given, the parameter vector θθθ could be estimated replacing the
expected value by the mean over the simulated moments. In this case, the simulated
moments estimator θ̂ is the solution to

1

I

I∑

i=1

[
(mmms

i | θθθ) − m
] = 0 . (1)

If the number of moment conditions k exceeds the number of parameters in θ , a
generalized method of moments is indicated. Let the k × 1 vector of deviations from
the above moment condition be defined as

GGG I (θθθ) =
I∑

i=1

[
(mmms

i | θθθ) − m
]

. (2)

Then, minimization of the weighted sum of squares

1

I
GGG ′

I WGGG I , (3)

where W is a k × k positive definite matrix, results in the generalized method of
simulated moments estimator θ̂θθ . The intuitive idea for setting the values of the weight-
ing matrix W is to allow larger errors for parameters estimated with a higher degree
of uncertainty and vice versa. Choosing W as the inverse of the variance-covariance
matrix ofGGG I (θθθ)would be an optimal choice (Heij et al. 2004, p. 257). Obviously,GGG I (θθθ)

is not available as θθθ is not known. Furthermore, estimation of an optimal weighting
matrix W is complicated by the fact that GGG I (θθθ) is subject to two types of uncer-
tainty resulting from estimation of empirical moments to be matched m and simulated
moments for a given parameter vector E(mmms | θθθ). While the uncertainty regarding the
simulated moments can be reduced by increasing the number of simulation runs, the
uncertainty in the estimation of m has to be taken into account. Therefore, we propose
to use W = Var−1(me) in (3).

7 For an introduction to the method of simulated moments see Stern (2000).
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The operationalization of the objective function introduced in (3) requires a se-
lection of moments m = (m1, . . . , mk). These moments have to be chosen to match
relevant characteristics of the time series under study and to contribute to the identi-
fication of parameters of agent based models. This choice and the resulting objective
function is described in the next section.

3 The objective function

3.1 Selection of moments

The selection of moments has to take into account the eventual goal of the analy-
sis, i.e. evaluation of models, discrimination between models and parameter settings,
and indirect estimation of parameters. Consequently, moments have to be chosen in
dependence of their ability to contribute to these goals.

We use two criteria for the selection of adequate moments. First, the statistics should
be robust. Second, they should exhibit the potential to discriminate between alternative
models and/or parameter constellations. The first aim of robustness is assessed by
evaluating the statistics for different subsamples of the actual data and by conducting
a rolling window analysis.8

To what extent the second goal can be achieved depends on three factors. First,
the uncertainty of the estimates for the actual data sample is used as a benchmark.
This factor is measured by means of the bootstrap variance of the moment under
consideration for the real data sample. Obviously, the smaller this variance, the more
reliable the estimate. Furthermore, a smaller variance of the estimates increases the
probability to reject the null hypothesis that a moment generated by simulation comes
from the same distribution as the actual data. Second, the variance of the expectation
of the moment estimated from the simulated data should be small in order to be able
to discriminate different parameter constellations for the same model. However, this
variance can be controlled by repeating the simulation. Thus, this criterion is less
relevant for the selection of the moments than the first factor, but it has to be taken
into account in the implementation of the simulation model. Thirdly, the power to
discriminate amongst modelling alternative depends on the identification of the model
given the considered moments. Unfortunately, this aspect can hardly be assessed on
a priori grounds due to the highly nonlinear structure of the agent based models
considered. Thus, it is advisable to include a large number of moments taking into
account all relevant characteristics of the actual data in order to increase the probability
of identification of model parameters.

Keeping these criteria in mind, statistics describing the unconditional and the con-
ditional distribution of exchange rate returns are selected. In future applications, this
selection might be extended by also taking into account estimates of the sampling
variance of these statistics. Furthermore, it is of interest to consider the properties of
the different statistics under time aggregation both in the real and the simulated data.

8 See Winker and Jeleskovic (2006, 2007) for details.
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However, this extension is beyond the scope of the present paper and is left for future
analysis.

The selection of moments describing the unconditional distribution of exchange
rate returns is based on Winker and Jeleskovic (2007). The mean and standard devi-
ation of returns provide standard measures of the overall shape of the unconditional
distribution. Higher order moments, in particular the empirical kurtosis appeared to
be less robust. This might be a result of rather heavy tails of the return distribution
challenging the existence of theoretical higher order moments. Thus, instead of using
standard higher order moments,9 an estimate of the tail index of Pareto-type distribu-
tions is used. We consider the Hill estimator of the right tail.10 The statistic entering our
objective function is the mean of this Hill estimator over the 5–10% upper quantiles
of the return distribution. Finally, besides considering specific features of empirical
and simulated data, the overall shape of the return distributions can be compared. For
this purpose, we use the classical Kolmogorov–Smirnov statistic measuring the max-
imum absolute difference between the cumulated empirical distribution functions of
the actual exchange rate returns and the simulated returns, respectively. In particular,
this measure provides an upper bound for the deviation at any particular quantile of
the distributions.

The choice of statistics regarding the conditional distribution relies on the results
in Winker and Jeleskovic (2006). As in Gilli and Winker (2003), the parameters of a
standard GARCH(1,1) specification appear to be a useful summary statistic for short
range dependence in higher moments of the returns. Obviously, the GARCH(1,1)
specification is not a perfect model of the data generating process as it neglects long
range dependence and dependence at different powers of absolute returns. Neverthe-
less, it is a robust and easy to calculate measure. The sensitivity analysis in Winker
and Jeleskovic (2007) indicates that the sum of the ARCH- and GARCH-parameters,
i.e. α +β in the usual notation, is a more robust statistic as compared to the individual
parameters. Consequently, this sum is used as a base ingredient to our objective func-
tion. It might be augmented in future research by more refined measures of conditional
heteroscedasticity. As a standard measure of long range dependence, we include the
GPH-estimator of the degree of fractional integration.11 Finally, the (close to) random
walk property of exchange rates is taken into account by the ADF-statistic.12

Table 1 provides a summary of the statistics used in the objective function includ-
ing specification details and the values for the benchmark exchange rate time series
DM/US-$ for the period 11.11.1991 to 9.11.2000.

9 Gilli and Winker (2003) included the empirical kurtosis in their first implementation of an indirect
estimation procedure. However, this statistic contributed a large amount of Monte Carlo variance to the
objective function without being very discriminating between different parameter constellations.
10 The estimates of the tail index for the right tail appear to be slightly more robust than for the left tail.
However, the tail behaviour is quite similar for both tails.
11 The parameter m of the estimator is fixed at 0.5, i.e. only the first

√
T frequencies are taken into account

for the estimator. For more details, see Winker and Jeleskovic (2007).
12 The test regression includes a constant, but no lags for the DM/US-$ exchange rate.
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Table 1 Moments considered for the objective function

Label Statistic Implementation details Benchmark Mean over
value (me) bootstrap

replications

m1 Mean 0.00015 0.00015

m2 Standard deviation 0.00649 0.00648

m3 Tail index Right tail, average α̂ (5–10%) 1.68033 1.70010

m4 Kolmogorov–Smirnov Empirical distribution as benchmark NA 0.02461

m5 GARCH(1,1): α + β 0.98877 0.98043

m6 Fractional integration GPH estimator for | rt | (m = 0.5) 0.43823 0.36287

m7 ADF-test With drift, no lags 0.01034 −1.28639

Obviously, this list could be easily extended to include further statistics, e.g. the
behaviour of moments under temporal aggregation, or estimates of the sampling vari-
ance of some statistics.

3.2 Weighting

An estimate Σ̂B B of the variance-covariance matrix Var(me) is obtained from the
bootstrap distribution of m using a window length of 250.13

Σ̂B B =

⎛

⎜⎜⎜⎜⎝

1.6×10−8 −7.4×10−9 3.7×10−8 2.9×10−6 5.4×10−7 2.2×10−6 4.9×10−5

−7.4×10−9 1.5×10−7 2.1×10−8 −1.6×10−5 −1.2×10−6 8.4×10−7 −4.6×10−5

3.7×10−8 2.1×10−8 1.0×10−4 −2.2×10−7 −1.1×10−5 −3.3×10−5 6.1×10−4

2.9×10−6 −1.6×10−5 −2.2×10−7 0.00649 2.8×10−5 −0.00239 0.01045
5.4×10−7 −1.2×10−6 −1.1×10−5 2.8×10−5 9.6×10−5 3.0×10−4 0.00149
2.2×10−6 8.4×10−7 −3.3×10−5 −0.00239 3.0×10−4 0.00626 0.00615
4.9×10−5 −4.6×10−5 6.1×10−4 0.01045 0.00149 0.00615 0.74257

⎞

⎟⎟⎟⎟⎠

For the reasons discussed in Subsect. 2.2, we use the estimator

Ŵ(me) = Σ̂−1
B B

of W = Var−1(me) as the weighting matrix in our simulated method of moments
approach. Alternative approaches for defining W will be considered in future work.
Thus, our objective function for the evaluation of a parameter vector θθθ based on
simulated data is given by

f (θθθ) = 1

I
ĜGG

′
I Ŵ(me)ĜGG I

=
[

1

I

I∑

i=1

[(ms
i | θθθ) − me]

]′
Ŵ(me)

[
1

I

I∑

i=1

[(ms
i | θθθ) − me]

]
. (4)

13 A large window size is required to take into account the long memory properties of the data (Winker
and Jeleskovic 2007). The results are quite robust to different window lengths.
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Fig. 5 Distribution of f for block bootstrap samples

For some models, a few simulation runs result in extreme values of ms
i . These

outliers might be due to either the nonstationary characteristics of the data generating
process for particular values of θθθ or due to numerical problems of calculating the
empirical moments. Therefore, we also consider replacing the means over replications
in (4) by 95%-trimmed means and medians, respectively.

As a benchmark, Fig. 5 shows a kernal estimate of the distribution of the objective
function f obtained for the 10,000 block bootstrap samples which have also been
used for calculating Σ̂B B . Obviously, the quantiles of f obtained from the block
bootstrap of the empirical data tend to exceed the quantiles of the χ2-distribution with
seven degrees of freedom. Thus, we will resort to these simulated values for testing
specific parameter settings θθθ for the simulation models in the following. The empirical
95%-quantile amounts to 35.54 and the 99%-quantile to 49.06.

4 Applications

In order to assess the properties of the objective function f (θθθ) introduced in the
previous section we consider the application to two agent based models of the foreign
exchange market. We are interested in three aspects of the objective function. First, for
a given model and a given parameter set θθθ , we are interested in the dependence of the
objective function values on the number of replications I of the model, i.e. at which
computational cost the Monte Carlo variance can be controlled. Second, for a given
model, it is analyzed whether the objective function can discriminate amongst different
parameter settings, i.e. whether it can be assumed that the model parameters can be
identified based on the objective function. This condition is central for a successful
application of optimization techniques for the estimation of the model parameters as
proposed by Gilli and Winker (2003). Third, the objective function might be used to
compare different models. Thus, our interest is to see to what extent the two models
analyzed differ with regard to our objective function.

4.1 Kirman

The first test case uses a model originally introduced by Kirman (1991, 1993) and
considered by Gilli and Winker (2003) in an indirect estimation approach. The central
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ingredients of the model are the interaction between heterogenous, not fully rational
individuals, and the endogenous evolution of the shares of agent types in the population
over time. Individuals acting on the foreign exchange market are characterized as
fundamentalists and chartists, respectively. Fundamentalists expect an adjustment of
prices towards the fundamental value of the asset which is assumed to be known to
all market participants. Chartists follow a momentum strategy, i.e., they expect the
price change to be the same as in the previous period. The type of any individual can
change for two reasons: random mutation with probability ε and conviction by direct
interaction with a second individual of different type with probability δ.14

An implementation of Kirman’s model can be fully described by a parameter vector
θθθ summarizing all model parameters (including ε and δ), a time path for the funda-
mental value and initial values for the price and the shares of agent types. Then, for
a given random number vector r, the model will provide a realization of a price time
series, which can be used to calculate simulated moments ms(θθθ, r).

Since we are not interested in the value of the objective function for a specific
realization, but solely as a function of the models’ parameters θθθ , the analysis has to
be repeated for a large number of Monte–Carlo replications with differing random
number vectors ri , i = 1, . . . , I , each resulting in at least T simulated prices.15 From
the resulting Monte–Carlo distribution of simulated moments, we obtain an estimate
of f (θθθ) based on the mean, trimmed mean or median, respectively. Of course, this
estimate will be subject to some remaining Monte–Carlo sampling variance depending
on the number of replications performed.

Algorithm 1 summarizes the approximation of the objective function over a grid
of relevant values of the two central parameters δ and ε. Kirman (1991) shows that
for his model the equilibrium distribution of the process for opinion formation and
transmission of agents depends only on the conviction rate δ and the mutation rate ε.

Algorithm 1 Calculating the objective function.
1: for j = 0 : n j do
2: Set δ = δl + (δu − δl ) × j/n j
3: for l = 0 : nl do
4: Set ε = εl + (εu − εl ) × l/nl
5: Set θθθ = (δ, ε, θθθ1)

6: for i = 1 : I do
7: Generate random vector ri
8: Simulate the model
9: Calculate ms

i (θθθ, ri))
10: end for
11: Calculate estimate of f (θθθ)

12: end for
13: end for
14: Plot f (θθθ) against δ and ε

14 For further details on the model specification and model parameters see Kirman (1991) and Gilli and
Winker (2003).
15 If the model simulates several interactions per trading day, this fact has to be taken into account when
determining the length of ri .
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Table 2 Parameter settings for Kirman’s model

Label Interpretation Value

n A Number of agents 100

nI Number of interactions 2350 × 50

nT Number of interactions per trading day 50

ν Adjustment speed in fundamentalists expectations 0.08

σs Standard deviation of price shocks me
2/50

σq Standard deviation of noise in majority assessment 0.070

c Price adjustment 0.5

δ Probability for direct interaction [0.25, . . . , 0.40]

ε Probability for random mutation [0.005, . . . , 0.060]

In particular, the relation between both parameters defines whether the process will
exhibit bubble-like dynamics or not. Finally, θθθ1 denotes all other relevant parameters
of the model, i.e., θθθ = (δ, ε, θθθ1).

Table 2 provides an overview on the other relevant parameters of the model and their
numerical values for the present implementation. The fundamental price is assumed
to be constant and equal to the mean of the empirical data.16

The results of the simulation with regard to the two parameters ε and δ are shown in
Fig. 6. For these results, the number of replications I has been set to 100. From the left
plot it becomes obvious that both parameters exhibit a pronounced influence on the
objective function f . In particular, too large values of the mutation rate and too small
values of the conviction rate result in simulated time series which differ considerably
from the real exchange rate series with regard to the moments considered in this
application.

Based on the findings in the left plot, a second simulation has been run on a smaller
subset of the parameter space comprising those values which appeared most favourable
in the first run. From the results in the right subplot it becomes obvious that although
small values of ε result in better properties of the simulated time series, the optimal
value is strictly positive, while for δ optimal values might be close to 0.35. Finally,
one should note that given the fixed values of all other parameters of the model,
the lowest values of the objective function f are of the order of magnitude of 200.
Thus, compared to the bootstrap distribution of f for the real data, the model with the
parameter vectors considered and the assumption about a constant fundamental price
has to be rejected. However, other parameter vectors and/or a different assumption
about the fundamental price might lead to different conclusions.

16 We also experimented with alternative assumptions about the fundamental price. Assuming a random
walk model does not improve the overall fit of the model, but results in “best” values of ε and δ close to
zero. However, assuming a moving average over the last 200 observations reduces the value of the objective
function although not below the critical value at the 99%-level (49.06).
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Fig. 6 Simulated response surface f (θθθ) for Kirman’s model as a function of ε and δ

4.2 Lux

The models introduced by Lux (1998), Lux and Marchesi (1999) and Lux and Marchesi
(2000) also build on the work by Frankel and Froot (1986). A fixed number of traders
N is endogenously divided in three groups, fundamentalists (N f ) trading on mean
reversion with regard to the fundamental price (p f ), optimistic chartist traders (N+)
and pessimistic chartist traders (N−). Switching between these groups depends on
passed success with the respective strategies. Lux and Marchesi (2000) argue that the
main stylized facts of financial markets can be mimicked by this micro-simulation
model.

The endogenous switching within the group of chartists is modelled as depending
on the market sentiment and the current price trend. Market sentiment is measured
through a so called opinion index x which is defined as

x = N+ − N−
Nc

, x ∈ [−1, 1] . (5)

The direction of the price change (in continuous time) ṗ = dp/dt is the second
component which determines the transition probabilities to switch from the pessimistic
group to the optimistic one (π−+) and vice versa (π+−):

π−+ = v1

(
Nc

N
eU1

)
; π+− = v1

(
Nc

N
e−U1

)
where U1 = α1x + α2

ṗ

v1
. (6)

The model parameters α1 and α2 describe the sensitivity with regard to both influ-
ence factors, while v1 represents a measure for the frequency of revaluation of opinion.
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It is assumed that chartists buy or sell always a fixed number of units depending on
the expected price change. The strategy of fundamentalists is to buy (sell) when the
price at time t is below (above) the fundamental price p f . The probability of switching
between the group of fundamentalists and chartists depends on realized excess profits.
The excess profit per unit for an optimistic chartist is given by (r + dp/dt)/p − R,
where r is nominal dividends of the asset and R is average real returns from other
investment. The motive of a pessimistic chartists, on the other hand, is to avoid losses
by searching for other investment opportunities. Hence, his excess profit is given
by R − (r + dp/dt)/p. Excess profit of fundamentalists is driven from the deviation
between p f and p at time t : s | (p − p f )/p |, where s is a discount factor for expected
excess profits which are realized only when the price has returned to its fundamen-
tal value (0 < s < 1).17 The transition probabilities between fundamentalists and
chartists are defined as follows:

π+ f = v2

(
N+
N

eU2,1

)
; π f + = v2

(
N f

N
e−U2,1

)
(7)

π− f = v2

(
N−
N

eU2,2

)
; π f − = v2

(
N f

N
e−U2,2

)
(8)

where

U2,1 = α3

[(
r + ṗ

v2

)
/p − R − s

∣∣∣∣
p f − p

p

∣∣∣∣

]
(9)

U2,2 = α3

[
R −

(
r + ṗ

v2

)
/p − s

∣∣∣∣
p f − p

p

∣∣∣∣

]
. (10)

Lux (1998) assumes that prices react sluggishly to the presence of non-zero net
demand. The actual prices are set by an auctioneer. Lux and Marchesi (2000) take
over this hypothesis and adjusted the model for the case of discrete time. Excess
demand of chartists (E Dc) and fundamentalists (E D f ), respectively, is given by:

E Dc = (N+ − N−)tc ; E D f = N f γ (p f − p). (11)

Thereby, tc denotes the fixed number of units that chartists either buy or sell. γ > 0 is
the reaction speed of fundamentalists to price deviation from the fundamental value.
Total excess demand is given by E D = E Dc + E D f .

It is assumed that the reaction of the market maker is a stochastic process itself
which is driven by the reaction speed β and some imprecision [modelled by a small
noise term µ ∼ N (0, σ 2

µ)].18 Furthermore, Lux and Marchesi (2000) assume that the
market price increases or decreases by a fixed tick size of one cent (∆p = ±0.01)

17 In contrast, chartists’ excess profits are immediately realized.
18 The imprecision might stem from additional liquidity traders in the market with stochastic excess demand
or an imprecise perception of the excess demand by the market maker.
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according to the following probabilities of price changes:

π↑p = max[0, β(E D + µ)] (12)

π↓p = − min[0, β(E D + µ)] . (13)

This tick by tick movements of the price happen in micro-intervals during a trading
period. The recorded price at the end of the trading period is given by the accumulated
price changes. Lux and Marchesi (2000) found that a micro-time interval of length
∆t = 0.01 works well for phases of “normal” market dynamics, while the phenom-
enon of volatility bursts requires a finer grid. Consequently, they propose to increase
the number of micro-intervals per trading day by a factor of 5 (∆t = 0.002) when-
ever the frequency of price changes becomes higher than on average. For the present
implementation, we used a version of the model without this endogenous changing of
the frequency of price changes.19

In the simulation, Lux and Marchesi (2000) exclude absorbing states by enforcing
that the number of agents of each type does not fall below four. The present implemen-
tation also enforces this lower bounds as the model exhibits quite unwelcome features
when allowing to move into the absorbing states.

Table 3 summarizes the parameter settings used for the simulations presented in
the following. The settings follow closely parameter set I in Lux and Marchesi (2000,
p. 689). However, the implementation does not allow for a switch in the time incre-
ment, i.e. the number of microintervals per trading day n∆t .20 As for Kirman’s model,
the fundamental price is assumed to be constant and equal to the mean of the empirical
data.21

The simulation of the objective function over a grid of values of two parameters
keeping all other parameters fixed follows the same procedure as described in Algo-
rithm 1 for Kirman’s model. Given the higher complexity of the Lux model, a selection
of only two key parameters for the simulations is less obvious. We are mainly inter-
ested in two aspects, namely the transition of agents’ type and the pricing mechanism.
With regard to the transition probabilities, the parameters ν1 and ν2 determining the
frequency of revalution of opinion appear to have the strongest influence.22 Given that
the expected gains of the fundamentalist trading rules are realized only after achiev-

19 The described method for determining price movements as a slow adjustment process results in the
possibly unwelcome feature that the market will never be exactly in an equilibrium. In principle, the model
could be modified to allow for market clearing in each period by solving E D(p) = 0 for the actual price p.
See Alfarano et al. (2005) for a similar approach. However, this modification of the model is left for future
research.
20 This more general formulation of the model will be subject to further analysis.
21 As for Kirman’s model, we also tested the model using a random walk model for the fundamental price,
which did not improve the overall fit of the model. In contrast to Kirman’s model, the “best” values of the
parameters (ν1,ν2) and (ν2,γ ) were not very much affected. Assuming a moving average over the last 200
observations as fundamental price, again reduces the value of the objective function although not below the
critical value at the 99%-level (49.06).
22 However, a final decision has to be based on the simultaneous optimization with regard to all parameters
which has to be left for future research.
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Table 3 Parameter settings for Lux’s model

Label Interpretation Value

N Number of agents 500

T Number of trading days 2 350

n∆t Number of microintervals per trading day 100

ν1 Frequency of revaluation [eq. (6)] 3

ν2 Frequency of revaluation [Eqs. (7)–(10)] 2

α1 Weight factor in transition equations [eq. (6)] 0.6

α2 Weight factor in transition equations [eq. (6)] 0.2

α3 Weight factor in transition equations [eqs. (9)–(10)] 0.5

β Auctioneer’s reaction speed 6

R Average real return per trading day 0.0004

s Discount factor for expected gains of fundamentalists 0.75

γ Reaction strength of fundamentalist’s excess demand 0.01

tc Trading volume of chartists 0.02

σµ Standard deviation of excess demand noise 0.05

∆pmin Tick size 0.003

ing the fundamental price, the parameter of the reaction strength γ with regard to
fundamentalist’s excess demand should also exert a strong influence.23

The results of two simulations are presented in Fig. 7. While the left hand plot
shows the results over a grid of values for ν1 and ν2, the right hand plot exhibits values
of the objective function over a grid of values of γ and ν2.

The left hand plot exhibits only a small part of the results obtained with regard to
ν1 and based on 50 simulations of the model at each grid point. Nevertheless, it might
help to realize that the parameter ν1 appears to be not well identified at least for the
fixed values of all other parameters, while for ν2 a clear minimum can be spotted.
The question of identification of ν1 will have to be considered again for optimized
parameter values.

The plot on the right hand side is based on only 20 model simulations at each
grid point. Nevertheless, a minimum of the objective function might be spotted for
some inner values of the parameter set. However, at least based on only 20 model
simulations per grid point, it appears that the objective function exhibits several local
optima in this area. This feature of the objective function together with the Monte Carlo
variance introduced by the indirect estimation approach will have to be considered in
the estimation step following the proposal made by Gilli and Winker (2003). However,
this part of the analysis is left for future research.

For both parameter settings considered, the minimum value of f is above 150 and
400, respectively. Consequently, as for Kirman’s model, the model together with the

23 An alternative would consist in varying the auctioneer’s reaction speed β.
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Fig. 7 Simulated response surface f (θθθ) for Lux’s model as a function of (ν1, ν2) and (γ, ν2)

parameter settings analyzed and the assumptions about the fundamental price has to
be rejected.

4.3 Time series models

The simulation based approach introduced in Sect. 2 is not restricted to applications
of agent based models. In fact, in recent years, financial market data have been subject
to the analysis with an increasing number of time series models. Often, it has been
claimed that these models can mimic some of the pertinent properties of financial
market time series. When using time series models for the analysis of financial market
data, two aspects deserve attention. First, being pure statistical instruments, this type
of model might help to characterize or even forecast financial market time series, but
it is not well suited to provide an economic rational for specific properties as is the
case for agent based models. Obviously, this potential drawback of pure time series
models cannot be resolved by the present approach. Second, it has to be checked to
what extent the time series models exhibit all characteristics observed for real financial
time series. The approach presented in this paper is well suited to answer this question.

GARCH(1,1) As a first simple example, Fig. 8 presents in the left panel the outcome
of simulating a simple GARCH(1,1)-model for different values of the parameters α

and β, while the initial variance has been set to the unconditional empirical variance
of returns.
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Fig. 8 Simulated response surface f (θθθ) for GARCH(1,1) and SV models

For values of α and β corresponding to nonstationarity, the objective function has
been cut off at a value of 600 for the graph. The plot demonstrates that a GARCH(1,1)-
model is best suited to reproduce the characteristics of empirical exchange rate data
for values of α and β which in sum are close to unity. However, the parameters appear
to be not well identified although a GARCH(1,1)-model is included as a component in
the objective function f . This result deserves further attention. Finally, the best value
of f obtained in this simulation exercise amounts to 33.24 which is below the 95%
level of the bootstrap distribution. Thus, we are not able to reject the null hypothesis
that the empirical data are generated by a GARCH(1,1)-model with the parameters
corresponding to this minimum value of f . This is in contrast to our findings for
the agent based models. However, two aspects deserve observation in this context.
First, the agent based models contain many more parameters than the ones used in
our first simulation analysis. Thus, it cannot be excluded that there exist parameter
settings for the agent based models which also result in a non rejection of the null
hypothesis. Second, as pointed out before, given that a time series model does not
provide a deep economic intuition about the process we study, agent based models
might be still interesting even if—in their current version—they are less well suited
to mimic empirical data.

Stochastic volatility model As a second example of a time series model, we consider
the stochastic volatility model for the time series of returns rt given by van der Sluis
(1997, p. 79):

rt = σtεt

ln σ 2
t = ω + γ ln σ 2

t−1 + σηηt

εt , ηt
i id∼ N (0, 1), t = 1, . . . , T . (14)

The estimation of (14) for our empirical data provided estimates ω̂ = −0.968,
γ̂ = 0.903 and σ̂η = 0.159. For the simulations, we set γ to its estimated value
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and fixed ln σ 2
0 to its expected value ω/(1 − γ ) for given values of ω and γ . The

right hand plot in Fig. 8 exhibits the response surface of f with regard to ω and
ση. While ω appears to be well identified by the indirect estimation approach, the
variation of f with regard to ση is less well pronounced. Nevertheless, we can spot a
minimum of f with function value of 62.13. Consequently, for this parameter setting,
the null hypothesis that the empirical data have been generated by model (14) has to
be rejected.24 However, it is of interest to note that the minimum of f is obtained
for parameter settings close to the estimated ones. The indirect estimation approach
appears to work well for this model.

5 Conclusion

Statistics used for the description of the properties of exchange rate return data are
selected based on their robustness. Weighting the selected statistics according to their
estimated sampling variance results in an objective function of a generalized method
of moments type. This objective function is evaluated for two different agent based
models and two time series models of the foreign exchange market to demonstrate its
ability to differentiate between different parameter settings and models.

The simulation results indicate that the proposed objective function is well suited
to exclude large parts of the parameter space for all models considered. For the time
series models, the optimal values are obtained for parameter values close to those
resulting from a direct estimation approach even for the stochastic volatility model
which is not considered explicitly in the objective function. Nevertheless, the consid-
erable sampling variability of some components of the objective function preclude the
identification of a very narrow region of “optimal” parameter values. In fact, for some
parameters of the agent based models, individual identifiability is not obvious from our
results. Nevertheless, it is possible to reject the null hypothesis that the observed data
have been generated with any of the agent based models for some of the considered
parameter settings.

Obviously, these results have to be considered as a first step of the analysis. First,
the selection of adequate statistics/moments has to be continued. In particular, the
aspect of behaviour under temporal aggregation will be taken into account in future
research.25 Second, further agent based models and alternative parameter settings will
be analyzed. Third, given the high dimensionality of the parameter space of agent
based models, the type of grid search presented in the present contribution is not
well suited to search for globally optimal parameter values. Thus, the eventual goal
consists in using the methodology introduced in this paper for an indirect estimation
procedure of the models’ parameters along the lines suggested by Gilli and Winker
(2003), i.e. using heuristic optimization methods. Besides the modified Nelder-Mead

24 The stochastic volatility (SV) model is not considered in the objective function. However, both GARCH
and SV model allow for an ARMA-presentation resulting in quite similar patterns of the autocorrelation
function (Carnero et al. 2004). Therefore, one might conclude that the SV model is not unduly put at
disadvantage in the present framework.
25 For some results see Winker and Jeleskovic (2006, 2007).
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simplex method proposed in their contribution, alternative optimization routines might
also be considered.
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