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Abstract In this paper, the author proves that the spacelike self-shrinker which is closed
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1 Introduction

The mean curvature flow (MCF for short) in Euclidean space is a one-parameter family of

immersions Xt = X(·, t) : Mm → R
m+n with corresponding images Mt = Xt(M) such that





d

dt
X(x, t) = H(x, t), x ∈ M,

X(x, 0) = X(x)

(1.1)

is satisfied, where H(x, t) is the mean curvature vector of Mt at X(x, t) in R
m+n.

Self-similar shrinkers to the above MCF play an important role in understanding the be-

havior of the flow since they often occur as singularities. Mm is said to be a self-shrinker if it

satisfies a system of quasilinear elliptic PDE of the second order

H = −1

2
XN , (1.2)

where XN is the normal part of X .

The corresponding MCF could also be studied for the ambient pseudo-Euclidean space Rm+n
n

(see e.g. [8–12, 16]). In this setting, Mm is also called as a self-shrinker if it satisfies (1.2).

Ding-Wang [6] investigated self-shrinking graphs with high codimensions in pseudo-Euclidean

space and obtained rigidity results under subexponential decay condition. Chau-Chen-Yuan

[2] and Huang-Wang [13] showed that any spacelike entire graphic Lagrangian self-shrinkers

must be flat under the decay condition on the Hessian of the potential function respectively.

Ding-Xin [7] proved that such Lagrangian self-shrinkers must be affine plane which removed the
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additional condition in [2, 13]. Later, Liu-Xin [15] derived the rigidity of spacelike self-shrinkers

under two different conditions, more specifically, if the spacelike self-shrinker is complete (or a

closed subset with respect to the Euclidean topology of the pseudo-Euclidean space, see [5, 14]),

then it is an affine plane under a growth condition on the w-function (or mean curvature).

Some rigidity and classification results were also obtained in [1, 3] for spacelike self-shrinkers

under various conditions. Recently, Chen-Qiu [4] proved that any complete m-dimensional

spacelike self-shrinkers in R
m+n
n must be flat by using the Omori-Yau maximum principle,

which implies that under the completeness condition, the growth conditions in the previous

mentioned results on the spacelike self-shrinkers can be removed. It is natural to ask that how

about the corresponding rigidity results when the spacelike self-shrinker is a closed subset (with

respect to the Euclidean topology) of Rm+n
n .

Along this direction, in the present paper, by establishing a new Omori-Yau maximum

principle (see Theorem 2.1), we demonstrate that the spacelike self-shrinker which is closed

with respect to the Euclidean topology must be flat under a growth condition on the mean

curvature (see Theorem 3.1).

2 An Omori-Yau Maximum Principle for Spacelike Self-shrinkers

The pseudo-Euclidean space R
m+n
n is the linear space R

m+n endowed with the metric

ds2 =

m∑

i=1

(dxi)2 −
m+n∑

α=m+1

(dxα)2.

Let X : M → R
m+n
n be a spacelike m-submanifold in R

m+n
n with the second fundamental form

B defined by

BUW := (∇UW )N

for U,W ∈ Γ(TM). We use the notation (·)T and (·)N for the orthogonal projections into the

tangent bundle TM and the normal bundle NM , respectively. For ν ∈ Γ(NM), we define the

shape operator Aν : TM → TM by

Aν(U) := −(∇Uν)
T .

Taking the trace of B gives the mean curvature vector H of M in R
m+n
n , i.e.

H := trace(B) =

m∑

i=1

Beiei ,

where {ei} is a local orthonormal frame field of M .

We denote the absolute value of |H |2 by ‖H‖2, which is nonnegative. Let V := − 1
2X

T and

∆V := ∆ + 〈V,∇·〉.

In the following, we show that the Omori-Yau maximum principle concerning the operator

∆V is applicable in the situation of the spacelike self-shrinker which is closed with respect to

the Euclidean topology under certain condition.

Theorem 2.1 Let X : Mm → R
m+n
n be a spacelike self-shrinker, which is closed with

respect to the Euclidean topology. Assume that the origin o ∈ M . If there exists a constant
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C > 0, such that ‖H‖ ≤ C(z + 1), where z = 〈X,X〉 is the pseudo-distance function. Then for

any f ∈ C2(M) with lim
x→∞

f(x)
log(z(x)+1) = 0, there exists {xj} ⊂ M , such that

lim
j→∞

f(xj) = sup f, lim
j→∞

|∇f |(xj) = 0, lim
j→∞

∆V f(xj) ≤ 0. (2.1)

Proof Let {ǫj} be a sequence of positive real numbers such that ǫj → 0 as j → ∞. Define

fj(x) = f(x)− ǫj log(z(x) + 1), ∀ j.

By [14, Proposition 3.1] (see also in [17]), the pseudo-distance function z is proper, together

with the condition on f , we know fj → −∞ as x → ∞, and the set {x ∈ M | z(x) ≤ C1} is

compact for any constant C1 > 0, so fj has a lower bound, say A, on it. Then there is a constant

C2 ≥ C1 such that fj(x) < A for x ∈ {x ∈ M | z(x) ≥ C2}, thus fj attains its maximum at

some point xj ∈ {x ∈ M | z(x) ≤ C2}. If {z(xj)} is bounded, then there is a subsequence

of {xj} converging to some point x ∈ M , at which f attains its maximum, in this case, the

conclusions follow easily. Now we assume that z(xj) → +∞ as j → +∞. Consequently, we

have

∇fj(xj) = 0, ∆V fj(xj) ≤ 0. (2.2)

Direct computation gives

∆V z = 2m− z, |∇z|2 = 4(z + 4‖H‖2). (2.3)

By using (2.2)–(2.3) and ‖H‖ ≤ C(z + 1), we obtain

lim
j→∞

|∇f |(xj) = lim
j→∞

ǫj
|∇z|(xj)

z(xj) + 1
= lim

j→∞
ǫj
2
√
z(xj) + 4‖H‖2(xj)

z(xj) + 1
= 0

and

lim
j→∞

∆V f(xj) = lim
j→∞

(
∆V fj(xj) + ǫj

∆V z(xj)

z(xj) + 1
− ǫj

|∇z|2(xj)

(z(xj) + 1)2

)

≤ lim
j→∞

(
ǫj

∆V z(xj)

z(xj) + 1
− ǫj

|∇z|2(xj)

(z(xj) + 1)2

)

= lim
j→∞

(
ǫj
2m− z(xj)

z(xj) + 1
− 4ǫj

z(xj) + 4‖H‖2(xj)

(z(xj) + 1)2

)
= 0

It remains to prove lim
j→+∞

f(xj) = sup f . If there exists a subsequence {xjk} 6= {xj}, such that

lim
k→+∞

f(xjk ) = sup f , then by still denoting {xjk} as xj , our proof is completed. Otherwise,

we claim that lim
j→+∞

f(xj) = sup f (If sup f = ∞, then we claim that lim
j→+∞

sup f(xj) = ∞).

Indeed, if this was not true, there would exist x̂ ∈ M and δ > 0, such that

f(x̂) > f(xj) + δ (2.4)

for each j ≥ j0 sufficiently large.

Since

f(xj)− ǫj log(z(xj) + 1) = fj(xj) ≥ fj(x̂) = f(x̂)− ǫj log(z(x̂) + 1), (2.5)
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we have

f(xj) ≥ f(x̂) + ǫj(log(z(xj) + 1)− log(z(x̂) + 1)).

If z(xj) → +∞ as j → +∞, then for j large enough, we have log(z(xj)+1) > log(z(x̂)+1),

that is f(xj) > f(x̂), which contradicts with (2.4).

If {z(xj)} is bounded, then for some subsequence of j, xj converges to a point x, so that

f(x̂) ≥ f(x) + δ. On the other hand, we can deduce from (2.5) that

f(x) ≥ f(x̂).

This is also a contradiction. This proves (2.1).

3 Rigidity Results

We will consider the corresponding rigidity of the spacelike self-shrinker which is closed with

respect to the Euclidean topology by using the Omori-Yau maximum principle as follows.

Theorem 3.1 Let X:Mm → R
m+n
n be a spacelike self-shrinker, which is closed with respect

to the Euclidean topology. Assume that the origin o ∈ M . If there exists a constant C > 0,

such that ‖H‖ ≤ C(z + 1), then Mm is a linear subspace.

Proof By [16, Proposition 2.1],

∆|B|2 = 2|∇B|2 + 2〈∇i∇jH,Bij〉+ 2〈Bij , H〉〈Bik, Bjk〉+ 2|R⊥|2 − 2
∑

αβ

S2
αβ, (3.1)

where R⊥ denotes the curvature of the normal bundle, Sαβ = hαijhβij and Bij = (∇eiej)
N =

−hαijeα, here {eα} is a local orthonormal normal frame field near the considered point.

From the self-shrinker equation (1.2), we get

∇ejH = −1

2
(∇ej (X − 〈X, ek〉ek))N =

1

2
〈X, ek〉Bjk

and

∇ei∇ejH =
1

2
Bij − 〈H,Bik〉Bjk +

1

2
〈X, ek〉∇eiBjk. (3.2)

Combining (3.1) and (3.2), by using the Codazzi equation, it follows

∆V |B|2 = ∆|B|2 + 〈V,∇|B|2〉 = 2|∇B|2 + |B|2 + 2|R⊥|2 − 2
∑

α,β

S2
αβ .

Let ‖B‖2 be the square of the norm of the second fundamental form of M in R
m+n
n , which is

nonnegative. We use the same notation for other timelike quantities. Then the above equality

implies that

∆V ‖B‖2 = −∆V |B|2 = −2|∇B|2 − |B|2 − 2|R⊥|2 + 2
∑

α,β

S2
αβ

= 2‖∇B‖2 + ‖B‖2 + 2‖R⊥‖2 + 2
∑

α,β

S2
αβ . (3.3)
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The formula (3.3) and
∑

α,β

S2
αβ ≥ 1

n

(∑

α

Sαα

)2

=
1

n
‖B‖4

give us

∆V ‖B‖2 ≥ 2
∑

α,β

S2
αβ ≥ 2

n
‖B‖4. (3.4)

It follows that

∆V

(
− 1√

1 + ‖B‖2
)
=

∆V ‖B‖2
2(1 + ‖B‖2) 3

2

− 3|∇‖B‖2|2
4(1 + ‖B‖2) 5

2

≥ ‖B‖4
n(1 + ‖B‖2) 3

2

− 3|∇‖B‖2|2
4(1 + ‖B‖2) 5

2

. (3.5)

Dividing both sides of (3.5) by
√
1 + ‖B‖2, we have

‖B‖4
n(1 + ‖B‖2)2 ≤ 1√

1 + ‖B‖2
∆V

(
− 1√

1 + ‖B‖2
)
+

3|∇‖B‖2|2
4(1 + ‖B‖2)3 . (3.6)

Applying Theorem 2.1 to − 1√
1+‖B‖2

, we can conclude that for j sufficiently large, there exist

points {xj} ⊂ M , such that

1√
1 + ‖B‖2

(xj) < inf
( 1√

1 + ‖B‖2
)
+

1

j
,

|∇‖B‖2|2
4(1 + ‖B‖2)3 (xj) <

1

j
,

∆V

(
− 1√

1 + ‖B‖2
)
(xj) <

1

j
.

Combining with (3.6), it follows that

‖B‖4
n(1 + ‖B‖2)2 (xj) <

1

j

(
inf

( 1√
1 + ‖B‖2

)
+

1

j

)
+

3

j
.

When j → ∞, 1√
1+‖B‖2

(xj) goes to its infimum and ‖B‖2(xj) goes to its supremum. Therefore,

(
sup
M

‖B‖2
)2

(
1 + sup

M

‖B‖2
)2 ≤ 0.

If sup
M

‖B‖2 = ∞, then we have

(
sup
M

‖B‖2
)2

(
1 + sup

M

‖B‖2
)2 =

1
(
1 + 1

sup
M

‖B‖2

)2 = 1.

This yields the contradiction. Thus sup
M

‖B‖2 < ∞, it follows that B ≡ 0. Hence Mm is a linear

subspace.
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Remark 3.1 In [15], the authors show that if ‖H‖2 ≤ eαz
(
α < 1

8

)
, then M is a linear

subspace. Note that the two curves y = (x−1)2 and y = eαx
(
α < 1

8

)
shall meet at two distinct

points, the one is (0, 1) and the other one is far away from the origin in the first quadrant. Over

the interval between these two points, the function graph of y = (x − 1)2 stays above that of

y = eαx
(
α < 1

8

)
. Hence in this interval, the above condition on the mean curvature is weaker

than the one in [15].
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