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Abstract The authors consider non-autonomous N-body-type problems with strong

force type potentials at the origin and sub-quadratic growth at infinity.Using Ljusternik-

Schnirelmann theory, the authors prove the existence of unbounded sequences of critical

values for the Lagrangian action corresponding to non-collision periodic solutions.
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1 Introduction and Main Results

The 1975 paper by Gordon [1] exhibits the first prominent use of variational methods in

the study of periodic solutions of the following Newtonian equations with singular potential

V (t, x) ∈ C1([0, T ]× (Rn\S),R),

{

ẍ+ V ′(t, x) = 0, x ∈ R
n\S,

x(t + T ) = x(t),
(1.1)

where the potential V (t, x) satisfies V (t + T, x) = V (t, x) and Gordon’s strong-force (SF for

short) condition which stipulates that there exists a neighbourhood N of the compact set S

and a function U ∈ C2(N \S,R) such that

(i) U(x) → −∞ as x → S;

(ii) −V (t, x) ≥ |∇U(x)|2, ∀x ∈ N\S.

Remark 1.1 For a simple example, let V (t, x) = −a
|x|α (a > 0, α ≥ 2), and take U(x) =

√
a ln |x|. Then ∇U(x) =

√
ax

|x|2 and −V (t, x) = a
|x|α ≥ a

|x|2 = |∇U(x)|2 when |x| ≤ 1.

The function U(x) is introduced to control the potential V (t, x) and force the Lagrange

functional of the system (1.1) to satisfy the Palais-Smale condition. This is a significant step

in utilizing the calculus of variations to obtain the following result.

Theorem 1.1 (Gordon) Under the above conditions and the following condition

(G1) : V (t, x) < 0, x 6= 0,
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there exist periodic solutions of (1.1) which tie (wind around) S and have arbitrary given topo-

logical (homotopy) type and given period.

Ambrosetti-Coti Zelati [2–3] used Morse theory to generalize Gordon’s result and obtained

the following theorem.

Theorem 1.2 Assume V ∈ C2([0, T ] × R
n,R) satisfies V (t + T, x) = V (t, x), Gordon’s

strong force condition and the following condition:

(A) : |V (t, x)|, |Vx(t, x)| → 0 uniformly for all t as ‖x‖ → ∞,

and ∃R1 > 0 such that V (t, x) < 0, ∀‖x‖ ≥ R1,

then (1.1) has infinitely many T -periodic solutions.

Motivated by Gordon [1] and Ambrosetti-Coti Zelati [2–3], Jiang [4] applied Morse theory

and proved the existence of infinitely many periodic solutions using a weaker condition than

above condition (A), proving the following result.

Theorem 1.3 Let Ω be an open subset in R
n with compact complement C = R

n\Ω, n ≥ 2.

Assume V ∈ C2([0, 2π]× Ω,R), V (t+ 2π, x) = V (t, x), and

(A1) there exists R0 such that sup{|V (t, x)|+ |V ′
x(t, x)| | (t,x) ∈ [0, 2π]× (Rn\BR0

)} < +∞;

(A2) V satisfies Gordon’s strong force condition (i) and (ii).

Then (1.1) has infinitely many 2π-periodic solutions.

As an application of Ljusternik-Schnirelman theory, the following result of Majer [5] can be

seen as an improvement of the above condition (A1).

Theorem 1.4 Assume W ∈ C1([0, T ]× (RN\{0}),R) satisfies

(i) W (t+ T, x) = W (t, x);

(ii) ∃c ∈ R, θ < 2, r > 0, such that

W (t, x) ≤ c|x|θ, W ′(t, x)x − 2W (t, x) ≤ c|x|θ, ∀|x| > r, ∀t > 0;

(iii) a <
(

π
T

)2
.

Then the equation ü+ au+W ′(t, u) = 0 has infinitely many T -periodic solutions.

For a 3-body type problem, Bahri-Rabinowitz [6] used Morse theory to prove the following

result.

Theorem 1.5 (Bahri-Rabinowitz) Let V (q) = 1
2

∑

1≤i6=j≤3

Vij(qi−qj). Assume Vij satisfies

(B1) Vij ∈ C2(Rl\{0},R);

(B2) Vij < 0;

(B3) Vij(q), V
′
ij(q) → 0 as |q| → ∞;

(B4) Vij(q) → −∞ as q → 0;

(B5) for ∀M > 0, ∃R > 0, s.t. V ′
ij(q) · q > M |Vij(q)|, |q| > R;

(B6) ∃Uij ∈ C1(Rl\{0},R), s.t. Uij(q) → ∞ as q → 0, and −Vij ≥ |U′
ij|2.

Then for any given T > 0, the equation

q̈i +
∂V (q)

∂qi
= 0 (1.2)
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has infinitely many T-periodic noncollision solutions.

We say that a function X(t) = (x1(t), · · · , xN (t)) ∈ C2(R, (Rk)N ) is a non-collision T -

periodic solution of (1.2) if X(t) satisfies xi(t) 6= xj(t) for all i 6= j and t ∈ R, satisfies equation

(1.2) and is T -periodic.

Majer-Terracini [7] generalized the result of Bahri-Rabinowitz to the following n-body type

problems:

ẍi(t) +∇xi
V (t, x1(t), · · · , xN (t)) = 0, xi(t) ∈ Rk, i = 1, · · · , N. (1.3)

Their principal theorem is the following.

Theorem 1.6 Assume k ≥ 3, and Vij ∈ C1((Rk\{0})× R,R) are T -periodic in t, and V

satisfies

(M1) Vij(t, x) = Vji(t,−x), ∀x ∈ Rk\{0};
(M2) Vij(t, x) ≤ 0, ∀x ∈ Rk\{0};
(M3) Vij(t, ξ) → −∞ uniformly in t as |ξ| → 0, for all 1 ≤ i 6= j ≤ N, and Vij satisfies

Gordon’s strong force condition with S = {0};
(M4) ∃ρ > 0, ∃θ ∈

[

0, π
2

)

, s.t. any (∇Vij(t, x), x) ≤ θ, ∀x, |x| > ρ.

Then (1.3) has at least one T -periodic non-collision solution.

In the case of symmetric potentials, Fadell-Husseini [8] proved the following result.

Theorem 1.7 Assume that Vij satisfies the following conditions:

(V1) V (t, x) = 1
2

∑

1≤i6=j≤N

Vij(t, xi − xj);

(V2) Vij ∈ C1(R× (Rk − {0});R) for all 1 ≤ i 6= j ≤ N ;

(V3) Vij(t, ξ) → −∞ uniformly in t as |ξ| → 0, for all 1 ≤ i 6= j ≤ N ;

(V4) Vij(t, ξ) ≤ 0, 1 ≤ i 6= j ≤ N, ξ 6= 0;

(V5) the strong force condition (see [13]) holds for Vij with S = {0};
(V6) Vij

(

t+ T
2
,−ξ

)

= Vij(t, ξ).

Then there exist unbounded sequences of critical values for the Lagrangian action corres-

ponding to non-collision periodic solutions for (1.3).

In this paper, we consider a relaxation of condition (V4) which requires the potentials to

be non-positive, but still maintain that the potentials have some growth so that the result in

Theorem 1.7 still holds. We will make use of Majer’s abstract critical point theorem to study

the N -body-type problem. The key difficulty is in proving the local Palais-Smale condition,

but we are able to obtain the following result.

Theorem 1.8 Assume Vij satisfies (V1)–(V3), (V5) with S = {0}, (V6) and

(V′
4) : ∃g > 0, θ < 2, r > 0 such that Vij(t, ξ) ≤ gmimj |ξ|θ, |ξ| > r.

Then there exist unbounded sequences of critical values for the Lagrangian action corresponding

to non-collision periodic solutions for (1.3).

Notice that the condition (V′
4) in our Theorem 1.8 is a kind of growth condition which

weakens the ordinary condition on potentials which requires them to be non-positive. We also

obtain the following corollary.
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Corollary 1.1 Let α ≥ 2, r1 > 0, r2 > r1, a, g > 0, θ < 2 and V (t, x) = 1
2

∑

1≤i6=j≤N

Vij(xi−

xj). Assume further that Vij(ξ) ∈ C1(Rk−{0}, R) satisfies Vij(ξ) = −amimj |ξ|−α, |ξ| < r1 and

Vij(ξ) = gmimj |ξ|θ, |ξ| ≥ r2 > r1. Then the assumptions and the result of Theorem 1.8 hold,

but Vij does not satisfy the assumption (V4) in Theorem 1.7.

We would like to remark that for Newtonian type potentials there is a rich literature which

includes (see [9–23]).

2 Some Lemmas

We introduce the spaces

E =
{

(x1, · · · , xN ) | xi ∈ H1(R/TZ;Rk), xi

(

t+
T

2

)

= −xi(t)
}

,

∆ = {(x1, · · · , xN ) | xi ∈ H1(R/TZ;Rk), xi(t) 6= xj(t), ∀t, i 6= j},

where H1(R/TZ;Rk) is the metric completion of smooth T -periodic functions for the norm

‖x‖H1 =
( ∫ T

0
(|x(t)|2 + |ẋ(t)|2)dt

)
1

2 , and the functional f : ∆ → R is defined by

f(x1, · · · , xN ) =
N
∑

i=1

mi

2

∫ T

0

|ẋi(t)|2dt−
∫ T

0

V (t, x1(t), · · · , xN (t))dt.

Clearly, E is a closed subspace of H1(R/TZ; (Rk)N ), and so a Hilbert space, while ∆ is an

open subset of E.

Using a standard argument (for instance, see [3]), it is easy to prove the following lemma.

Lemma 2.1 Suppose (V1)–(V2) and (V6) hold, then a critical point of f in ∆ is a non-

collision solution of (1.3).

The closed subset Γ = E −∆ of E will be called the collision set, and a standard argument

can be applied to show that the strong force assumption (V3) implies that f(X) → +∞ when

X approaches the collision set Γ. More precisely, we have the following lemma.

Lemma 2.2 (see [1, 24]) Assume V satisfies (V1)–(V3) and (V5). If {Xn} is a sequence in

∆ such that Xn → X ∈ Γ in both the C0 topology and weak topology of E, then f(Xn) → +∞.

Lemma 2.3 Assume V satisfies (V1)–(V3), (V
′
4) and (V5)–(V6), then there is a constant

λ0 depending on g,mi, r, θ, such that f satisfies the (PS)c condition for c ≥ λ0; that is, any

sequence {xk} ⊂ ∆ satisfying f(xk) → c and f ′(xk) → 0 is pre-compact in H1.

Proof We notice that the arguments for one-body problem with center-forces in Jiang [4]

and Majer [5] cannot be directly generalized to the N -body (N ≥ 3) case because the kinetic

energy and potential energy are translational invariance for positions in N -body problems, and

the Lagrangian action for the N -body (N ≥ 3) case is also translational invariance for positions,

but for one-body problem with center-forces, the potential is not translational invariance for

positions, the arguments Jiang [4] and Majer [5] used this.
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Here we must consider the differences and use different arguments. By Holder’s inequality,

we have

∑

i<j

mimj|xi − xj |θ ≤
(

∑

i<j

mimj

)
2−θ

2

(

∑

i<j

mimj|xi − xj |2
)

θ

2

.

We then obtain that

∑

i<j

mimj |xi − xj |2 =
1

2

∑

1≤i,j≤N

mimj |xi − xj |2

=

N
∑

i=1

mi

N
∑

i=1

mi|xi|2 −
(

N
∑

i=1

mixi

)2

≤
N
∑

i=1

mi

N
∑

i=1

mi|xi|2

and

f(xk) = f(xk
1 , · · · , xk

N ) =

N
∑

i=1

mi

2

∫ T

0

|ẋk
i (t)|2dt−

∫ T

0

V (t, xk
1(t), · · · , xk

N (t))dt.

Let us use the notation

ξkij(t) = xk
i (t)− xk

j (t).

We have three possibilities:

(i) For all 1 ≤ i, j ≤ N and for all t ∈ [0, T ], |ξkij(t)| > r when k is large, then by (V′
4) and

the above inequality we have

N
∑

i=1

mi

2

∫ T

0

|ẋk
i (t)|2dt−

∫ T

0

V (t, xk
1(t), · · · , xk

N (t))dt

≥
N
∑

i=1

mi

2

∫ T

0

|ẋk
i (t)|2dt− g

(

∑

i<j

mimj

)

2−θ

2

[

N
∑

i=1

mi

]
θ

2

∫ T

0

[

N
∑

i=1

mi|xk
i |2

]
θ

2

dt.

Since xk
(

t+ T
2

)

= −xk(t) implies
∫ T

0
xk(t)dt = 0, by Wirtinger’s inequality and f(xk) → c ≤ d

we get

d ≥
N
∑

i=1

mi

2

∫ T

0

|ẋk
i (t)|2dt− g

[

∑

i<j

mimj

]

2−θ

2

[

N
∑

i=1

mi

]
θ

2

[ T

2π

]θ
∫ T

0

[

N
∑

i=1

mi|ẋk
i |2

]
θ

2

dt.

By the assumption (V′
4), we know that θ < 2, hence we have e > 0 such that

N
∑

i=1

mi

2

∫ T

0

|ẋk
i (t)|2dt ≤ e.

(ii) There are 1 ≤ i0, j0 ≤ N such that for all t ∈ [0, T ] there holds |ξki0j0(t)| ≤ r when k

is large. Then by Lemma 2.2 and (V2), we have a > −∞ and 0 < b < +∞ such that for all

t ∈ [0, T ],

a ≤ Vi0j0(t, ξ
k
i0j0

(t)) ≤ cmi0mj0 |ξki0j0(t)|
θ ≤ b.
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For the remaining index pairs (i, j) and the corresponding potentials, we can use the above

arguments of (i) and notice that we can add some negative terms to estimate the lower bound

for the sum of all the potentials satisfying |ξkij(t)| > r :

−g
(

∑

i<j

mimj

)

2−θ

2

[

N
∑

i=1

mi

]
θ

2

[

N
∑

i=1

mi|xk
i |2

]
θ

2

.

Now we can consider all cases for the index pairs. We have

− V (t, xk
1(t), · · · , xk

N (t))

≥ N2 −N

2
(−b)− g

(

∑

i<j

mimj

)
2−θ

2

[

N
∑

i=1

mi

]
θ

2

[

N
∑

i=1

mi|xk
i |2

]
θ

2

.

Then taking the integral and using a similar argument as in (i), we can also find e1 > 0

such that

N
∑

i=1

mi

2

∫ T

0

|ẋk
i (t)|2dt ≤ e1.

(iii) There are 1 ≤ i0, j0 ≤ N, t1 ∈ [0, T ] and t2 ∈ [0, T ] such that |ξki0j0(t1)| > r, |ξki0j0(t2)| ≤
r when k is large. Then

−V (t1, x
k
1(t1), · · · , xk

N (t1)) ≥ −g
(

∑

i<j

mimj

)
2−θ

2

[

N
∑

i=1

mi

]
θ

2

[

N
∑

i=1

mi|xk
i (t1)|2

]
θ

2

,

− V (t2, x
k
1(t2), · · · , xk

N (t2)) ≥ −b.

Hence for all t ∈ [0, T ], we have

−V (t, xk
1(t), · · · , xk

N (t)) ≥ −b− g
(

∑

i<j

mimj

)

2−θ

2

[

N
∑

i=1

mi

]
θ

2

[

N
∑

i=1

mi|xk
i (t)|2

]
θ

2

.

Again, after taking the integral, we can find e2 > 0 such that

N
∑

i=1

mi

2

∫ T

0

|ẋk
i (t)|2dt ≤ e2.

In all cases we get the bounded property for

N
∑

i=1

mi

2

∫ T

0

|ẋk
i (t)|2dt.

This implies {xk} has a weakly convergent subsequence. The proof of the strongly convergent

property is more or less standard.

The following is an abstract critical point theorem which we will use in the proof of our

main result. A proof of this theorem can be found in Majer [5].
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Lemma 2.4 Let ∆ be an open subset in a Banach space and let Cat(∆) denote the category

of ∆. Suppose f is a functional on ∆. Assume that

(i) Cat(∆) = +∞;

(ii) for any sequence {qn} ⊂ ∆ and qn → q ∈ ∂∆, we will have f(qn) → +∞;

(iii) for any K ∈ R,Cat∆({q ∈ ∆ | f(q) ≤ K}) < +∞, and

(iv) there exists a λ0 ∈ R such that the Palais-Smale condition holds on the set {q ∈ ∆ |
f(q) ≥ λ0}.

Then f possesses an unbounded sequence of critical values.

Fadell-Husseini [8] proved the following result.

Lemma 2.5 If ∆ refers to the open subset defined in our proof of Theorem 1.8, then

Cat(∆) = +∞.

We notice that we can use similar methods as in Lemma 2.3 to prove the following lemma.

Lemma 2.6 For any K ∈ R such that f(q) ≤ K, there is A ≥ 0 such that

N
∑

i=1

mi

2

∫ T

0

|ẋi(t)|2dt ≤ A.

Zhang-Zhou [24] gave the following lemma.

Lemma 2.7 For any constant K ≥ 0, the set DK = {X ∈ ∆ | ‖Ẋ‖L2 ≤ K} is of finite

category in ∆; that is, Cat∆(Dk) < +∞.

By the monotone property of category and using Lemmas 2.6–2.7, we have the following

lemma.

Lemma 2.8 For any K ∈ R, Cat∆({q ∈ ∆ | f(q) ≤ K}) < +∞.

The proof of Theorem 1.8 now follows by Lemmas 2.1–2.5 and Lemma 2.8.
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