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(Dedicated to Philippe G. Ciarlet on the occasion of his 80th birthday)

Abstract The author proves the Poincaré lemma on some (n + 1)-dimensional corank

1 sub-Riemannian structures, formulating the (n−1)n(n2+3n−2)
8

necessarily and sufficient-
ly “curl-vanishing” compatibility conditions. In particular, this result solves partially an
open problem formulated by Calin and Chang. The proof in this paper is based on a
Poincaré lemma stated on Riemannian manifolds and a suitable Cesàro-Volterra path in-
tegral formula established in local coordinates. As a byproduct, a Saint-Venant lemma
is also provided on generic Riemannian manifolds. Some examples are presented on the
hyperbolic space and Carnot/Heisenberg groups.
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1 Introduction and Main Result

Let Ω ⊆ Rn be an open, simply connected set, and a = (ai) ∈ C
1(Ω;Rn), n ≥ 2. The

classical Poincaré lemma says that there exists u ∈ C2(Ω) with

∇u = a in Ω,

if and only if curl a = 0 in C(Ω;Rn), i.e.,

∂xi
aj = ∂xj

ai in C(Ω) for every i, j = 1, · · · , n.

Here, as usual, ∇u = (∂xi
u) ∈ C

1(Ω;Rn). For a weak version of the Poincaré lemma (e.g. in

L2(Ω)) and its equivalent formulation in terms of fundamental results in the theory of PDEs, we

refer the reader to Amrouche, Ciarlet and Mardare [3–4] and to the comprehensive monograph

by Ciarlet [12, Chapter 6].

Very recently, Poincaré’s lemma has been extended to some specific low-dimensional sub-

Riemannian structures with rank 2 distributions; e.g., the first Heisenberg group H1, Engel-type

manifolds, Grushin and Martinet type distributions, and the sub-Riemannian 3-dimensional

sphere S3 (see Calin, Chang and Eastwood [6–7] and Calin, Chang and Hu [8–10]). In the sub-

Riemannian setting, the number of equations in the system which is going to be solved is strictly
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less than the space dimension. Accordingly, the solvability of such gradient-type systems deeply

depends on the Lie bracket generating properties of the sub-Riemannian distributions, and it

turns out that the “curl-vanishing” characterization of the solvability of the sub-Riemannian

system becomes a system of PDEs containing higher-order derivatives. In order to visualize

this phenomenon, we consider the first Heisenberg group H1 = C × R endowed with its usual

group operation and left-invariant vector fields X1 = ∂x1
− 2x2∂x3

and X2 = ∂x2
+2x1∂x3

. The

sub-Riemannian system

X1u = a1, X2u = a2 (1.1)

is solvable in F(H1)(= the space of smooth functions on H
1) for a = (a1, a2) ∈ C

1(H1;R2) if

and only if

X2
1a2 = (X1X2 + [X1, X2])a1, X2

2a1 = (X2X1 + [X2, X1])a2 (1.2)

(see, e.g. Calin and Chang [5, Theorem 2.9.8]). In addition, the solution u of (1.1) can be given

the work done by the force vector field X = a1X1 + a2X2 along any horizontal curve starting

from 0 ∈ H1, called also as the Cesàro-Volterra horizontal path integral.

The purpose of our paper is to prove Poincaré lemmas on some sub-Riemannian structures

of arbitrary dimension with corank 1 distribution, including for instance step-two Carnot groups

with not necessarily trivial kernel. In the sequel, we present our main result (see Section 3 for

the notions used below).

Let (M,D, g) be an (n+1)-dimensional sub-Riemannian manifold (n ≥ 2), and consider the

distribution D in a given local coordinate system (xi)i=1,··· ,n+1 containing vector fields of the

form

Xi = ∂xi
+Ai∂xn+1

, i = 1, · · · , n, (1.3)

where Ai : M → R are smooth functions depending only on the first n variables, i.e., Ai =

Ai(x1, · · · , xn). We assume that

∂xi
Aj − ∂xj

Ai = cij ∈ R for every i, j = 1, · · · , n (1.4)

and

I0 = {(i, j) : cij 6= 0} 6= ∅.

Due to the latter assumptions, the rank n distribution D is nonholonomic on M , since

[Xi, Xj] = cij∂xn+1
for every i, j = 1, · · · , n. (1.5)

Given a ∈ Γ(D)(= the set of horizontal vector fields on M), we are going to study the solvability

of the system

∇Hu = a in M, (1.6)

where u ∈ F(M) and ∇H denotes the horizontal gradient. Our main result, the Poincaré lemma

on sub-Riemannian manifolds, reads as follows.
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Theorem 1.1 Let (M,D, g) be an (n + 1)-dimensional simply connected sub-Riemannian

manifold (n ≥ 2), where the distribution D is given by the vector fields in (1.3) with functions

Ai depending only on the first n variables, verifying (1.4) and I0 6= ∅.

Given a ∈ Γ(D), the sub-Riemannian system (1.6) has a solution u ∈ F(M) if and only if

{
ckl(Xiãj −Xj ãi) = cij(Xkãl −Xlãk) for every i, j, k, l = 1, · · · , n,

XkXiãj −XkXj ãi = [Xi, Xj ]ãk for every i, j, k = 1, · · · , n,

(1.7)

(1.8)

where a = aiXi and ãj = gijai (the summations being from 1 to n), and (gij) are the components

of g with respect to the distribution D. Moreover, if x0 ∈ M, the solution u : M → R for the

system (1.6) can be obtained by

u(x) = c0 +

∫ 1

0

g(a(γ(t)), γ̇(t))dt, x ∈ M, (1.9)

where c0 = u(x0) ∈ R and γ : [0, 1] → M is any horizontal curve joining x0 with x.

Some remarks are in order.

Remark 1.1 (a) Although (1.7) and (1.8) contain n4 and n3 conditions, a simple combi-

natorial reasoning shows that it is enough to verify at most

sn =
(n− 2)(n− 1)n(n+ 1)

8

and

s′n =
(n− 1)n2

2

conditions, respectively. Thus, the number of compatibility conditions is

sn + s′n =
(n− 1)n(n2 + 3n− 2)

8
.

(b) Theorem 1.1 provides an answer to the open question of Calin and Chang [5, p. 55]

whenever the sub-Riemannian manifold with arbitrarily dimension has corank 1 distribution.

We note that the existing results in the literature solve the system (1.6) only for two components,

i.e., the distributions contain two vector fields. In particular, if M = H
1 is the first Heisenberg

group, the solvability of the system (1.1) can be recovered by Theorem 1.1; indeed, in this

particular case, n = 2, D = {X1, X2} and gij = δij . Moreover, A1 = −2x2, A2 = 2x1; thus

c12 = −c21 = 4 and c11 = c22 = 0 in (1.4). Notice that the first-ordered relations in (1.7) are

trivially satisfied (supported also by the fact that s2 = 0, thus nothing should be checked), while

the second-ordered ones (1.8) reduce precisely to (1.2), containing s′2 = 2 conditions. In higher-

dimensional Heisenberg groups Hd, d ≥ 2, the first-ordered assumptions are indispensable as

well.

(c) There are more involved, non-Heisenberg-type vector fields which verify also the assump-

tions of Theorem 1.1. Indeed, let (R5,D, g) be the sub-Riemannian manifold with the vector

fields Xi, i = 1, · · · , 4 from (1.3) with A1 = −2x2+x1x
2
4, A2 = 2x1, A3 = −x4, A4 = x3+x2

1x4.
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In this case we have that the elements from (1.4) are c12 = 4 = −c21, c34 = 2 = −c43, while

the rest of cij ’s are zero.

(d) Note that Theorem 1.1 can be formulated on any simply connected open domain instead

of the whole M .

Organization of the paper In Section 2 we prove the Poincaré lemma on generic Rie-

mannian manifolds. As a direct byproduct, we also state a Saint-Venant lemma on Riemannian

manifolds whose proof is presented in the Appendix (Section 6). The Poincaré lemma on generic

Riemannian manifolds turns to be indispensable in the proof of our main theorem, which will

be provided in Section 3. Here, we shall explore basic properties of the Riemannian manifolds

as the metric compatibility and torsion-freeness (or symmetry) of the Levi-Civita connection

with respect to the Riemannian metric. In fact, we shall reduce our original sub-Riemannian

system (defined on the distribution) to a differential system on a Riemannian manifold where we

can apply the Riemannian Poincaré lemma and Cesàro-Volterra integral formula. An elegant

computation connects the force vector fields in these two settings, proving in this way relation

(1.9). In Section 4 we give some examples, the first on the hyperbolic spaces, the second one on

Carnot/Heisenberg groups. In Section 5 we formulate some problems for further investigations.

2 Poincaré Lemma on Riemannian Manifolds: A Local Version

Let (M, g) be an m-dimensional Riemannian manifold; here (gij) are the components of the

Riemannian metric g in a given local coordinate system (xi)i=1,··· ,m.

Let u : M → R be a C1-functional on M ; the differential of u at x, denoted by du(x),

belongs to the cotangent space T ∗

xM and is defined by

du(x)(v) = 〈∇gu(x), v〉g for all v ∈ TxM ; (2.1)

in the sequel, we prefer to use 〈·, ·〉g instead of g. If the local components of du are denoted by

uk = ∂xk
u, then the local components of ∇gu are ui = gikuk; here, g

ij are the local components

of g−1 = (gij)
−1.

Let Ω ⊆ M be an open set and V ∈ TΩ =
⋃

x∈Ω

TxM be an arbitrary vector field in Ω which

is represented in local coordinates as

V = Vk∂xk
.

The main result of the present section is the Poincaré lemma on Riemannian manifolds.

Theorem 2.1 Let (M, g) be an m-dimensional Riemannian manifold and Ω ⊆ M be a

simply connected open set. Given a vector field V ∈ C
1(Ω, TΩ), the system

∇gu = V in Ω (2.2)

is solvable in C2(Ω) if and only if we have

∂xi
Ṽj = ∂xj

Ṽi in Ω for every i, j = 1, · · · ,m, (2.3)

where Ṽj = gjkVk.



Poincaré’s Lemma on Some Non-Euclidean Structures 301

Moreover, if x0 ∈ Ω is fixed and (2.3) holds, the solution u : Ω → R for (2.2) can be obtained

by

u(x) = c0 +

∫ 1

0

〈V(γ(t)), γ̇(t))〉gdt, x ∈ Ω, (2.4)

where c0 = u(x0) ∈ R and γ : [0, 1] → Ω is any curve joining x0 with x.

Proof (2.2)⇒(2.3). First of all, (2.2) is equivalent to

gik∂xk
u = Vi, i = 1, · · · ,m.

Multiplying both sides by gji, we have

∂xj
u = gjiVi = Ṽj , j = 1, · · · ,m.

Deriving these relations, (2.3) yields at once by the symmetry of second-order derivatives.

(2.3)⇒(2.2). We closely follow the proof from Ciarlet [12, Theorem 6.17-2]. Let x0 ∈ Ω

be given and fix x ∈ Ω. Since Ω is simply connected, there exists a path γ : [0, 1] → Ω such

that γ(0) = x0 and γ(1) = x. If there exists u ∈ C2(Ω) which satisfies (2.2), then the function

P : [0, 1] → R defined by P (t) = u(γ(t)) verifies

dP

dt
(t) = du(γ(t))(γ̇(t)) = 〈∇gu(γ(t)), γ̇(t)〉g, t ∈ [0, 1].

The latter equation together with the Cauchy data P (0) = P0 ∈ R provides a unique solution

P : [0, 1] → R which depends on the path γ.

We are going to show that the value P (1) does not depend on the choice of the path γ

whenever (2.3) holds. To see this, let γ0, γ1 : [0, 1] → Ω be two smooth paths such that

γi(0) = x0 and γi(1) = x, i ∈ {0, 1}. Since Ω is simply connected, we can find a smooth

homotopy H : [0, 1]× [0, 1] → Ω between γ0 and γ1, i.e.,

H(·, 0) = γ0, H(·, 1) = γ1,

H(0, λ) = x0, H(1, λ) = x, ∀λ ∈ [0, 1].

For every λ ∈ [0, 1], let P (·, λ) : [0, 1] → R be the unique solution of the Cauchy problem





∂P

∂t
(t, λ) =

〈
V(H(t, λ)),

∂H

∂t
(t, λ)

〉

g
for t ∈ [0, 1],

P (0, λ) = P0 ∈ R.

(Cλ)

We claim that

∂P

∂λ
(1, λ) = 0 for every λ ∈ [0, 1]. (2.5)

To see this, let us consider the function σ : [0, 1]× [0, 1] → R defined by

σ(t, λ) =
∂P

∂λ
(t, λ)−

〈
V(H(t, λ)),

∂H

∂λ
(t, λ)

〉

g
.
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Since the Levi-Civita connection is compatible with the Riemannian metric, it follows from [16,

Proposition 3.2] that

∂σ

∂t
(t, λ) =

∂

∂t

(∂P
∂λ

)
(t, λ)−

〈DV

∂t
(H(t, λ)),

∂H

∂λ
(t, λ)

〉

g
−
〈
V(H(t, λ)),

D

∂t

∂H

∂λ
(t, λ)

〉

g
,

where D denotes the covariant derivation on (M, g). Concerning the latter term, we know from

the torsion-freeness of the Levi-Civita connection on (M, g) that

D

∂t

∂H

∂λ
(t, λ) =

D

∂λ

∂H

∂t
(t, λ), (2.6)

(see [16, Lemma 3.4]). The sophisticated part is to show that

〈DV

∂t
(H(t, λ)),

∂H

∂λ
(t, λ)

〉

g
=

〈DV

∂λ
(H(t, λ)),

∂H

∂t
(t, λ)

〉

g
. (2.7)

To prove (2.7) we recall the following well-known facts: If W = (w1, · · · , wm) is a vector field

along a path (x), its covariant derivative can be expressed by

DW

dt
=

(dwk

dt
+ Γk

ijwj

dxi

dt

)
∂xk

,

where Γk
ij are the Christofel symbols for which we have

gksΓ
k
ij =

1

2
(∂xi

gjs + ∂xj
gis − ∂xs

gij). (2.8)

Coming back to (2.7), we have

LHS :=
〈DV

∂t
(H(t, λ)),

∂H

∂λ
(t, λ)

〉

g
= gkj

(
∂xi

Vk

∂Hi

∂t
+ Γk

ilVl

∂Hi

∂t

)∂Hj

∂λ

= gkj(∂xi
Vk + Γk

ilVl)
∂Hi

∂t

∂Hj

∂λ
.

In a similar way,

RHS :=
〈DV

∂λ
(H(t, λ)),

∂H

∂t
(t, λ)

〉

g

= gki

(
∂xj

Vk

∂Hj

∂λ
+ Γk

jlVl

∂Hj

∂λ

)∂Hi

∂t

= gki(∂xj
Vk + Γk

jlVl)
∂Hi

∂t

∂Hj

∂λ
.

Therefore, we have that

(2.7) holds ⇔ LHS −RHS = 0

⇔ [gkj(∂xi
Vk + Γk

ilVl)− gki(∂xj
Vk + Γk

jlVl)]
∂Hi

∂t

∂Hj

∂λ
= 0

⇔ [gkj∂xi
Vk − gki∂xj

Vk + (gkjΓ
k
il − gkiΓ

k
jl)Vl]

∂Hi

∂t

∂Hj

∂λ
= 0

(2.8)
⇔ [gkj∂xi

Vk − gki∂xj
Vk + (∂xi

glj − ∂xj
gli)Vl]

∂Hi

∂t

∂Hj

∂λ
= 0

⇔ [gkj∂xi
Vk − gki∂xj

Vk + (∂xi
gkj − ∂xijgki)Vk]

∂Hi

∂t

∂Hj

∂λ
= 0

⇔ [∂xi
(gjkVk)− ∂xj

(gikVk)]
∂Hi

∂t

∂Hj

∂λ
= 0,
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where the latter relation holds true due to (2.3). Consequently, by relations (2.6)–(2.7) and the

Cauchy problem (Cλ) we have

∂σ

∂t
(t, λ) =

∂

∂λ

(∂P
∂t

)
(t, λ)−

〈DV

∂λ
(H(t, λ)),

∂H

∂t
(t, λ)

〉

g
−
〈
V(H(t, λ)),

D

∂λ

∂H

∂t
(t, λ)

〉

g

=
∂

∂λ

(∂P
∂t

(t, λ)−
〈
V(H(t, λ)),

∂H

∂t
(t, λ)

〉

g

)
,

= 0,

i.e., t 7→ σ(t, λ) is constant. Since P (0, λ) = P0 ∈ R and H(0, λ) = x0, it turns out that

σ(0, λ) =
∂P

∂λ
(0, λ)−

〈
V(H(0, λ)),

∂H

∂λ
(0, λ)

〉

g
= 0 for every λ ∈ [0, 1].

In particular,

0 = σ(1, λ) =
∂P

∂λ
(1, λ)−

〈
V(H(1, λ)),

∂H

∂λ
(1, λ)

〉

g
.

Since H(1, λ) = x0 for every λ ∈ [0, 1], it follows the claim (2.5), showing that the value P (1)

is not depending on the particular choice of the path.

For every x ∈ Ω, let u : Ω → R be defined by

u(x) = P (1),

where P is the unique solution to the Cauchy problem (Cλ) having the initial data P (0) = P0

and using any path joining x0 and x; thus, the function u is well-defined.

To conclude the proof, we show the validity of (2.2). Let x ∈ Ω and v ∈ TxM be arbitrarily

fixed elements. Let γ : [0, 1] → Ω be a path such that γ(0) = x0, γ(1) = x and γ̇(1) = v ∈ TxM,

and let P be the solution of the Cauchy problem associated to this path, thus, P (t) = u(γ(t)).

Therefore, the latter relation yields that

dP

dt
(t) = 〈∇gu(γ(t)), γ̇(t)〉g, t ∈ [0, 1].

On the other hand, by the Cauchy problem we have

dP

dt
(t) = 〈V(γ(t)), γ̇(t)〉g, t ∈ [0, 1].

Accordingly, for the moment t = 1, it follows that

〈∇gu(x), v〉g = 〈V(x), v〉g

and the arbitrariness of v ∈ TxM concludes the proof of (2.2).

If γ : [0, 1] → Ω is any path joining the points x0 and x, the Cesàro-Volterra path integral

formula easily follows as

u(x)− u(x0) =

∫ 1

0

d

dt
u(γ(t))dt =

∫ 1

0

〈∇gu(γ(t)), γ̇(t)〉gdt =

∫ 1

0

〈V(γ(t)), γ̇(t)〉gdt,

which is precisely (2.4).
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Remark 2.1 Poincaré’s lemma can be also proved by using 1-forms, see, e.g. Abraham,

Marsden and Ratiu [1]. However, we preferred here a direct proof based on local coordinates

for two reasons: (a) It highlights the importance of the Riemannian structure, i.e., the metric

compatibility and torsion-freeness of the Levi-Civita connection, which is not valid anymore on

non-Riemannian Finsler settings (see Section 5 for details); (b) The proof provides directly a

Cesàro-Volterra path integral formula.

As a byproduct of the Poincaré lemma (Theorem 2.1), we state a Saint-Venant lemma on

generic Riemannian manifolds; its proof is sketched in the Appendix. To present it, fix ei ∈ TΩ,

i = 1, · · · ,m, and assume that they can be represented as

ei = eik∂xk
.

The m-vector field e = (e1, · · · , em) ∈ C
2(Ω, TΩm) is called symmetric if eij = eji ∈ C2(Ω) for

every i, j = 1, · · · ,m.

Proposition 2.1 Let (M, g) be an m-dimensional Riemannian manifold and Ω ⊆ M be a

simply connected open set. Given e = (e1, · · · , em) ∈ C
2(Ω, TΩm) a symmetric m-vector field

on Ω, the system

∇s,gV = e in Ω, (2.9)

has a vector field solution V = (V1, · · · , Vm) ∈ C
3(Ω,Rm), where the components of the sym-

metric gradient ∇s,gV are given by

1

2
(∂xi

(gjkVk) + ∂xj
(gikVk)), i, j = 1, · · · ,m,

if and only if the Saint-Venant compatibility relations hold (in local coordinate system) in Ω,

i.e.,

∂2
xlxj

eik + ∂2
xkxi

ejl − ∂2
xlxi

ejk − ∂2
xjxk

eil = 0, i, j, k, l = 1, · · · ,m. (2.10)

Moreover, if x0 ∈ M is fixed and (2.10) holds, then the solution of (2.9) is obtained by

Vk = gksus, k = 1, · · · ,m,

where

ui(x) = ci0 +

∫ 1

0

〈Ui(γ(t)), γ̇(t)〉gdt, x ∈ Ω

with Ui = gls(pis + eis)∂xl
,

pij(x) = c
ij
0 +

∫ 1

0

〈Wij(γ(t)), γ̇(t)〉gdt, x ∈ Ω

and Wij = gls(∂xj
eis − ∂xi

ejs)∂xl
for some numbers cs0, c

ij
0 , and the curve γ : [0, 1] → Ω is

arbitrary fixed joining x0 with x ∈ Ω.
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Remark 2.2 (a) Note that ∇s,gV is a kind of symmetric Lie derivative of the vector field

V with respect to the Riemannian metric g; indeed, the latter notion appears in [11, p. 518],

where ∇s,gV is an L−type tensor of the form

∇s,gV =
1

2
(gjk∂xi

Vk + gik∂xj
Vk + CijkVk)dxi ⊗ dxj .

In our setting, the elements Cijk are expressed by means of the Christoffel symbols as

Cijk = ∂xi
gjk + ∂xj

gik = gljΓ
l
ki + gliΓ

l
kj + 2glkΓ

l
ij .

(b) Proposition 2.1 provides a curved version of the Saint-Venant lemma; further curvilinear

versions of the Saint-Venant lemma can be found in the papers by Ciarlet, Gratie, Mardare and

Shen [13], Ciarlet and Mardare [14], and Ciarlet, Mardare and Shen [15].

3 Proof of Theorem 1.1

In order to prove Theorem 1.1, we first recall some basic notions from the theory of sub-

Riemannian manifolds; for further details, see Agrachev, Barilari and Boscain [2], Calin and

Chang [5] and Figalli and Rifford [17].

Let M be a smooth connected (n + 1)-dimensional manifold (n ≥ 2), D be a smooth

nonholonomic distribution of rank m ≤ n on M (i.e., a rank m subbundle of the tangent

bundle TM) and g be a Riemannian metric on D. Without loss of generality, we may assume

that g is defined on the whole tangent bundle TM (not necessarily in a unique way); we shall

keep the same notation of g on TM . The triplet (M,D, g) is a sub-Riemannian manifold.

As usual, the distribution D is said to be nonholonomic if for every x ∈ M there exists an

m-tuple Xx
1 , · · · , X

x
m of smooth vector fields on a neighborhood Nx of x such that all the Lie

brackets generated by these vectors at y generate TyM for every y ∈ Nx. A curve γ : [0, 1] → M

is horizontal with respect to D if it belongs to W 1,2([0, 1];M) and γ̇(t) ∈ D(γ(t)) for a.e.

t ∈ [0, 1]. If D is nonholonomic on M, by the Chow-Rashewsky theorem, every two points of M

can be joined by a horizontal path. Let Γ(D) be the set of horizontal vector fields on M, and

F(M) be the set of smooth functions on M. If u ∈ F(M), the horizontal gradient ∇Hu ∈ Γ(D)

of u is defined by g(∇Hu,X) = X(u) for every X ∈ Γ(D).

Now, let us put ourselves into the context of Theorem 1.1. Accordingly, let (M,D, g) be an

(n+1)-dimensional sub-Riemannian manifold (n ≥ 2), and the rank n distribution D in a local

coordinate system (xi)i=1,··· ,n+1 formed by the vector fields given in (1.3) and verifying (1.4).

Since

XiXj = (∂xi
+Ai∂xn+1

)(∂xj
+Aj∂xn+1

)

= ∂2
xixj

+ ∂xi
Aj∂xn+1

+Aj∂
2
xixn+1

+Ai∂
2
xjxn+1

+AiAj∂
2
xn+1

,

by (1.4) we obtain (1.5), i.e.,

[Xi, Xj] = XiXj −XjXi = (∂xi
Aj − ∂xi

Aj)∂xn+1
= cij∂xn+1

for every i, j = 1, · · · , n.

Therefore, since I0 = {(i, j) : cij 6= 0} 6= ∅, the distribution D is nonholonomic on M .
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Let a ∈ Γ(D) be fixed. The system (1.6), i.e.,

∇Hu = a,

in local coordinates reads as

Xj(u) = gijai =: ãj, j = 1, · · · , n, (3.1)

where gij = g(Xi, Xj) and a = aiXi. With this preparatory part in our mind, we now present

the proof of our main result.

Proof of Theorem 1.1 (1.6)⇒(1.7)–(1.8). Assume that the sub-Riemannian system (1.6)

has a solution u ∈ F(M). First, by (1.5) applied to u, we have

[Xi, Xj ]u = cij∂xn+1
u, i, j = 1, · · · , n.

This relation and (3.1) give that

Xiãj −Xj ãi = cij∂xn+1
u, i, j = 1, · · · , n. (3.2)

If ∂xn+1
u(x) = 0 for some x ∈ M , then Xiãj(x) − Xj ãi(x) = 0 for every i, j = 1, · · · , n,

thus (1.7) clearly holds. If ∂xn+1
u(x) 6= 0 for some x ∈ M , then by writing the relation (3.2)

for (k, l) instead of (i, j), and eliminating ∂xn+1
u(x) 6= 0, we obtain (1.7).

Deriving (3.2) with respect to the vector field Xk, k = 1, · · · , n, and taking into account

that [Xk, ∂xn+1
] = Xk∂xn+1

− ∂xn+1
Xk = 0, it turns out by (3.1) and (1.5) that

XkXiãj −XkXj ãi = cijXk∂xn+1
u = cij∂xn+1

Xku = [Xi, Xj ]ãk,

which is precisely relation (1.8).

(1.7)–(1.8)⇒(1.6). Since I0 6= ∅, let (i0, j0) ∈ I0 and introduce the function

ã =
Xi0 ãj0 −Xj0 ãi0

ci0j0
,

where ãj = gijai. With these notations, we consider the system

{
∂xj

u = ãj − Aj ã for j = 1, · · · , n,
∂xn+1

u = ã.
(3.3)

Let

Ṽj = ãj −Aj ã, j = 1, · · · , n and Ṽn+1 = ã.

We are going to prove that

∂xi
Ṽj = ∂xj

Ṽi, i, j = 1, · · · , n+ 1. (3.4)

To do this, we distinguish three cases:

Case 1 i = j = n+ 1. (3.4) trivially holds.
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Case 2 i ∈ {1, · · · , n} and j = n+1. On one hand, (3.4) is equivalent to ∂xi
ã = ∂xn+1

(ãi−

Aiã), which can be written as Xiã = ∂xn+1
ãi. On the other hand, by the definition of ã, (1.8)

and (1.5) we have that

Xiã =
XiXi0 ãj0 −XiXj0 ãi0

ci0j0
=

[Xi0 , Xj0 ]ãi
ci0j0

= ∂xn+1
ãi,

which is the required relation.

Case 3 i, j ∈ {1, · · · , n}. We have the following chain of equivalences:

(3.4) holds ⇔ ∂xi
ãj − ã∂xi

Aj −Aj∂xi
ã = ∂xj

ãi − ã∂xj
Ai −Ai∂xj

ã

⇔ ∂xi
ãj − ã∂xi

Aj −AjXiã = ∂xj
ãi − ã∂xj

Ai −AiXj ã

⇔ ∂xi
ãj −AjXiã = ∂xj

ãi + cij ã−AiXj ã

⇔ ∂xi
ãj −Aj

[Xi0 , Xj0 ]ãi
ci0j0

= ∂xj
ãi + cij ã−Ai

[Xi0 , Xj0 ]ãj
ci0j0

(by (1.8))

⇔ ∂xi
ãj −Aj∂xn+1

ãi = ∂xj
ãi + cij ã−Ai∂xn+1

ãj (by (1.5))

⇔ Xiãj −Xjãi = cij ã.

By the definition of ã, let us observe that the latter relation is nothing but (1.7) with the choice

(k, l) = (i0, j0), which concludes the proof of (3.4).

According to Theorem 2.1 (applied for (M, g̃) with g̃ij = g(∂xi
, ∂xj

), i, j = 1, · · · , n + 1)

and relation (3.4), it turns out that the system (3.3) has a solution in C2(M), which can be

obtained by

u(x) = c0 +

∫ 1

0

〈V(γ(t)), γ̇(t))〉g̃dt, x ∈ M, (3.5)

where V =
n+1∑
i=1

Vi∂xi
with Vi =

n+1∑
j=1

g̃ij Ṽj and g̃ij = (g̃ij)
−1; here, γ : [0, 1] → M is any curve

joining an x0 ∈ M with x ∈ M with c0 = u(x0).

By (3.3) we clearly have for every j = 1, · · · , n that

Xj(u) = ∂xj
u+Aj∂xn+1

u = (ãj −Aj ã) +Aj ã = ãj,

which is equivalent to ∇Hu = a, see (3.1), i.e., u ∈ C2(M) is a solution to (1.6).

It remains to prove the sub-Riemannian Cesàro-Volterra path integral formula (1.9). To do

this, let us fix an arbitrary horizontal path γ : [0, 1] → M , joining x0 with x ∈ M . If γ has the

local representation γ = (γ1, · · · , γn+1), its horizontality means that

γ̇n+1 =

n∑

k=1

Akγ̇k.
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Considering every term at the moment t ∈ [0, 1] in the following computations, we have

〈V(γ(t)), γ̇(t))〉g̃ =

n+1∑

i,k=1

g̃ikViγ̇k =

n+1∑

i,k,j=1

g̃ikg̃
ij Ṽj γ̇k =

n+1∑

k=1

( n+1∑

j=1

( n+1∑

i=1

g̃ikg̃
ij
)
Ṽj

)
γ̇k

=

n+1∑

k=1

( n+1∑

j=1

δkj Ṽj

)
γ̇k =

n+1∑

k=1

Ṽkγ̇k =

n∑

k=1

Ṽkγ̇k + Ṽn+1γ̇n+1

=

n∑

k=1

(Ṽk +AkṼn+1)γ̇k

=

n∑

k=1

(ãk −Akã+Ak ã)γ̇k =

n∑

k=1

ãkγ̇k =

n∑

k=1

gikaiγ̇k

= g(a(γ(t)), γ̇(t)).

Thus, by (3.5) and the latter computation we obtain (1.9), which concludes our proof.

4 Examples

In this section we provide some computational examples as applications to Theorems 1.1

and 2.1 and Proposition 2.1, respectively.

4.1 Hyperbolic space

Let Bm = {x ∈ Rm : |x| < 1} be the set endowed with the Riemannian metric

ghyp(x) = (gij(x))i,j=1,··· ,m = p(x)2δij ,

where

p(x) =
2

1− |x|2
.

The pair (Bm, ghyp) is a model of the m-dimensional hyperbolic space with constant sectional

curvature −1.

Example 4.1 We solve the problem

∇ghypu =
x

p
in B

m, (4.1)

where ∇ghyp denotes the hyperbolic gradient.

A direct computation shows that ∂xi
(pxj) = ∂xj

(pxi) for every i, j = 1, · · · ,m, thus we

may apply Theorem 2.1 on (Bm, ghyp), which implies the solvability of (4.1). Moreover, if

γ : [0, 1] → Bm is γ(t) = tx with an arbitrarily fixed x ∈ Bm, the solution u can be obtained as

u(x) = c0 +

∫ 1

0

〈 γ(t)

p(γ(t))
, γ̇(t)

〉

ghyp

dt = c0 +

∫ 1

0

p(γ(t))〈γ(t), γ̇(t)〉dt

= c0 + 2

∫ 1

0

|x|2t

1− |x|2t2
dt = c0 − ln(1− |x|2)

= c0 + ln
(p(x)

2

)
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for any c0 ∈ R.

For simplicity, in the next example we consider only the hyperbolic plane (B2, ghyp).

Example 4.2 We solve the problem

∇s,ghypV = e on B
2, (4.2)

where ∇s,ghyp denotes the symmetric hyperbolic gradient and e = (e1, e2) ∈ C
∞(B2, (TB2)2)

has the components e1 = −x1

p
∂x2

and e2 = − 1
p
(x1∂x1

+ 2x2∂x2
).

First, we have e11 = 0, e12 = e21 = −x1

p
and e22 = − 2x2

p
. It is easily seen that the

Saint-Venant relations (2.10) are verified; for instance, if i = k = 1 and j = l = 2 then the

components in (2.10) are ∂2
x2x2

e11 = 0, ∂2
x1x1

e22 = 2x2 and ∂2
x1x2

e12 = x2. Therefore, we may

apply Proposition 2.1, guaranteeing the solvability of (4.2). By keeping the same notations as

in Proposition 2.1, since g−1
hyp = p(x)−2δij , after some computation it turns out that

W11 = W22 = 0, W12 = −W21 =
1

2p2
(1− |x2| − 2x2

1)∂x1
−

x1x2

p2
∂x2

.

Accordingly, for every x ∈ B2 one has that p11(x) = c110 , p22(x) = c220 for some c110 , c220 ∈ R and

if we fix γ : [0, 1] → B
2 with γ(t) = tx = (tx1, tx2), then

p12(x) = −p21(x) = c120 +

∫ 1

0

〈W12(γ(t)), γ̇(t)〉ghypdt = c120 +
1

2
(x1 − x3

1 − x1x
2
2)

for some c120 ∈ R. Thus

U1 =
1

p2
(c110 ∂x1

+ c120 ∂x2
)

and

U2 =
1

p2
((−c120 − x1 + x3

1 + x1x
2
2)∂x1

+ (c220 − x2 + x2
1x2 + x3

2)∂x2
).

Therefore, for every x ∈ B2, if γ : [0, 1] → B2 is again the curve given by γ(t) = tx = (tx1, tx2),

then the latter vector fields provide the functions

u1(x) = c10 +

∫ 1

0

〈U1(γ(t)), γ̇(t)〉ghypdt = c10 + c110 x1 + c120 x2

and

u2(x) = c20 +

∫ 1

0

〈U2(γ(t)), γ̇(t)〉ghypdt = c20 −
1

4
− c120 x1 + c220 x2 +

1

p2(x)
.

Consequently, V = (V1, V2) is a solution of (4.2), where Vi =
ui

p2 , i = 1, 2, with c110 = c220 = 0

and c10, c
2
0 and c120 arbitrarily fixed.

4.2 Carnot and Heisenberg groups

Let G be an (n + 1)-dimensional corank 1 Carnot group with the Lie algebra g = g1 ⊕ g2,

where dimg1 = n and dimg2 = 1. Usually, the operation on g (in exponential coordinates on

R
n × R) is given by

x ◦ y =
(
x1 + y1, · · · , xn + yn, xn+1 + yn+1 −

1

2

n∑

i,j=1

Aijxjyi

)
,
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where x = (x1, · · · , xn+1), y = (y1, · · · , yn+1), and without loss of generality, A is represented

by

A =




0n−2d 0
α1J

0
. . .

αdJ


 , J =

[
0 1
−1 0

]
(4.3)

(see, e.g. [19]). Here 0 < α1 ≤ · · · ≤ αd, and 0n−2d is the (n−2d)× (n−2d) square null-matrix.

The layers g1 and g2 are generated by the left-invariant vector fields

Xi = ∂xi
−

1

2

k∑

j=1

Aijxj∂xn+1
, i = 1, · · · , n. (4.4)

Note that [Xi, Xj] = Aij∂xn+1
, i, j = 1, · · · , n.

If n = 2d (thus the kernel of A is trivial) and α1 = · · · = αd = 4, the Carnot group G

reduces to the usual Heisenberg group Hd = R2d × R.

For our example, we shall consider a 6-dimensional corank 1 Carnot group with the left-

invariant vector fields given by (4.4), by choosing d = 2, n = 5, α1 = 4 and α2 = 2. To be more

explicit, the distribution D on (G, ◦) is formed by the vector fields given by






X1 = ∂x1
,

X2 = ∂x2
− 2x3∂x6

,

X3 = ∂x3
+ 2x2∂x6

,

X4 = ∂x4
− x5∂x6

,

X5 = ∂x5
+ x4∂x6

.

(4.5)

Let a = (a1, a2, a3, a4, a5) ∈ Γ(D) be given by the functions





a1 = x2
3x5,

a2 = 2x2x4x6(x6 − 2x2x3),
a3 = 3x1x3x5 + 4x3

2x4x6,

a4 = x2
2x6(x6 − 2x4x5),

a5 = x1x
2
3 + 2x2

2x
2
4x6.

(4.6)

Example 4.3 We solve the problem

Xiu = ai in G, i = 1, · · · , 5. (4.7)

To do this, we are going to fully explore Theorem 1.1; by using the same notations, we

identify A1 = 0, A2 = −2x3, A3 = 2x2, A4 = −x5, A5 = x4. Moreover, c23 = 4 = −c32,

c45 = 2 = −c54, and the rest of the elements of the matrix C = (cij) are zero, i, j = 1, · · · , 5.

In order to solve (4.7), we have to check relations (1.7) and (1.8), respectively. It is easy to

observe that (1.7) is relevant only for (i, j) = (2, 3) and (k, l) = (4, 5) (the other choices giving

always zero), where simple computations give that X2a3−X3a2 = 8x2
2x4x6 and X4a5−X5a4 =

4x2
2x4x6; thus, (1.7) holds. Another simple reasoning shows that relation (1.8) is also verified;

for instance, X3X2a3 − X3X3a2 = 16x3
2x4 = [X2, X3]a3, the other relations following in the

same way.
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Thus, Theorem 1.1 implies that the system (4.7) is solvable in F(G); let x0 = 0 ∈ G and

any horizontal curve γ = (γ1, γ2, γ3, γ4, γ5, γ6) : [0, 1] → G with γ(0) = 0 and γ(1) = x =

(x1, x2, x3, x4, x5, x6) ∈ G. Note that the horizontality of γ means that

γ̇6 = −2γ3γ̇2 + 2γ2γ̇3 − γ5γ̇4 + γ4γ̇5.

Due to the latter relation and (1.9), some suitable rearrangements and γ(0) = 0 give that

u(x)− c0 =

∫ 1

0

5∑

i=1

ai(γ(t))γ̇i(t)dt

=

∫ 1

0

d

dt
(γ1(t)γ

2
3(t)γ5(t))dt+

∫ 1

0

d

dt
(γ2(t)γ4(t)γ

2
6(t))dt

= γ1(1)γ
2
3(1)γ5(1) + γ2(1)γ4(1)γ

2
6(1)

= x1x
2
3x5 + x2

2x4x
2
6

for some c0 ∈ R, which provides the solution of system (4.7).

5 Final Remarks

We conclude the paper with two remarks which can be considered as starting points of

further investigations.

(I) Poincaré lemma on Finsler manifolds Let (M,F ) be an m-dimensional, not nec-

essarily reversible Finsler manifold and Ω ⊆ M be a simply connected domain. Given a vector

field V ∈ C
1(Ω, TΩ), we are asking about the solvability of the equation

∇Fu = V in Ω, (5.1)

where ∇F denotes the Finslerian gradient. Here, as usual ∇Fu(x) = J∗(x,Du(x)), where

J∗ : T ∗M → TM is the Legendre transform associating to each element α ∈ T ∗

xM the unique

maximizer on TxM of the map y 7→ α(y) − 1
2F

2(x, y) and Du(x) ∈ T ∗

xM is the derivative of u

at x ∈ M (see [18]). Note that in general, u 7→ ∇Fu is not linear. In order to solve (5.1), a

necessarily curl-vanishing condition can be formulated by using the inverse Legendre transform

J = (J∗)−1 and fundamental form of the Finsler metric F . However, we cannot adapt the

proof of Theorem 2.1 into the Finsler setting. Indeed, we recall that in the proof of Theorem

2.1 we explored the metric compatibility and torsion-freeness of the Levi-Civita connection with

respect to the given Riemannian metric; as we know, such properties are not simultaneously

valid on a generic Finsler manifold unless it is Riemannian.

(II) Saint-Venant lemma on sub-Riemannian structures For simplicity, we shall

consider only the usual Heisenberg group (Hd,D, g), where D = {X1, · · · , X2d} with

X2i−1 = ∂x2i−1
− 2x2i∂x2d+1

, X2i = ∂x2i
+ 2x2i−1∂x2d+1

, i = 1, · · · , d,

and g is the natural Riemannian metric on D (see (4.4)). Given a symmetric vector field e =

(e1, · · · , e2d) ∈ Γ(D)2d on Ω ⊆ Hd, i.e., eij = eji for every i, j = 1, · · · , 2d where ei =
2d∑
j=1

eijXj ,
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the question concerns the solvability of the sub-Riemannian system

∇s,HV = e in Ω (5.2)

for the unknown vector field V = (V1, · · · , V2d) ∈ C
∞(Ω,R2d), where the components of the

symmertric horizontal gradient ∇s,H are given by

1

2
(XiVk +XkVi), i, k = 1, · · · , 2d.

The first challenging problem is to establish the necessary Saint-Venant compatibility relations

associated to problem (5.2) and then to apply Proposition 2.1; note that Schwartz type prop-

erties are not valid in this setting since usually XiXj 6= XjXi for i 6= j. Moreover, weaker

versions of the Saint-Venant lemma on H
d would provide a sub-Riemannian Korn-type inequal-

ity as well. Clearly, more general sub-Riemannian structures can also be considered instead of

Heisenberg groups verifying the assumptions of Theorem 1.1.

6 Appendix: Proof of the Saint-Venant Lemma (Proposition 2.1)

A direct computation shows that if (2.9) has a solution, then the Saint-Venant compatibility

relations (2.10) trivially hold.

Conversely, the Saint-Venant compatibility relations (2.10) can be written into the form

∂xl
(∂xj

eik − ∂xi
ejk) = ∂xk

(∂xj
eil − ∂xi

ejl),

which is equivalent to

∂xl
(gktg

ts(∂xj
eis − ∂xi

ejs)) = ∂xk
(gltg

ts(∂xj
eis − ∂xi

ejs)). (6.1)

If Wij is a vector field on Ω with the representation

Wij = Wijt∂xt
= gts(∂xj

eis − ∂xi
ejs)∂xt

,

relation (6.1) can be written equivalently into the form

∂xl
(gktWijt) = ∂xk

(gltWijt).

Thus, we may apply Theorem 2.1, i.e., there exists pij ∈ C2(Ω) such that

∇gpij = Wij on Ω, ∀i, j = 1, · · · ,m.

By components, the latter relation means that

gts∂xs
pij = Wijt = gts(∂xj

eis − ∂xi
ejs).

Multiplying from left by gtl and adding them, we have

∂xl
pij = ∂xj

eil − ∂xi
ejl, ∀i, j, l = 1, · · · , n. (6.2)
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Since ∂xl
pij + ∂xl

pji = 0, we can assume without loss of generality that pij + pji = 0.

If qij = pij + eij , then by (6.2) we have

∂xk
qij = ∂xk

pij + ∂xk
eij = ∂xj

eik − ∂xi
ejk + ∂xk

eij = ∂xj
eik + ∂xj

pik = ∂xj
qik.

Again, the latter relation can be transformed into

∂xk
(gtjg

tsqis) = ∂xj
(gtkg

tsqis).

Therefore, if

Ui = Uil∂xl
= glsqis∂xl

,

Theorem 2.1 implies the existence of ui ∈ C2(Ω) such that

∇gui = Ui, ∀i = 1, · · · ,m.

If we write the components of the latter relation, it yields that

∂xl
ui = qil, , ∀i, l = 1, · · · ,m. (6.3)

Let V = (V1, · · · , Vm) with Vk = gksus, k = 1, · · · ,m. Consequently, by (6.3), we have

1

2
(∂xi

(gjkVk) + ∂xj
(gikVk)) =

1

2
(∂xi

(gjkg
ksus) + ∂xj

(gikg
ksus))

=
1

2
(∂xi

uj + ∂xi
ui) =

1

2
(qij + qji)

= eij ,

which is nothing but ∇s,gV = e, i.e., relation (2.9). The Cesàro-Volterra integral formula

follows at once by combining the above steps.
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