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Abstract The ferry problem may be viewed as generalizations of the classical wolf-goat-

cabbage puzzle. The ferry cover problem is to determine the minimum required boat

capacity to safely transport n items represented by a conflict graph. The Alcuin number

of a conflict graph is the smallest capacity of a boat for which the graph possesses a feasible

ferry schedule. In this paper the authors determine the Alcuin number of regular graphs

and graphs with maximum degree at most five.
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1 Introduction

A reachability question in discrete applied mathematics is to decide whether a given goal

state is reachable from a given initial state (see [1–2]). An example of the oldest reachability

problem is the well-known Alcuin’s river crossing problem in the book Propositiones ad acuendos

iuvenes, which was proposed by Alcuin of York more than 1000 years ago. The river crossing

problem is described as follows.

A man has to take a wolf, a goat and a bunch of cabbages across a river. The only boat

he could find was one which would carry only himself and one of them. How can he safely

transport everything to the other side, without the wolf eating the goat or the goat eating the

cabbages?

In Alcuin’s river crossing problem, a safe transportation plan must satisfy that neither wolf

and goat nor goat and cabbage can be left alone together.

Prisner [3] extend Alcuin’s river crossing problem to an arbitrary conflict graph G = (V,E),

where V is a set of items and two items are connected by an edge in E if they are conflicting

and thus cannot be left together without human supervision. Now the man has to ferry a set

V of items across a river, while making sure that items that remain unattended on the same

bank are safe from each other. The available boat has capacity b ≥ 1, and thus can carry the
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man together with any subset of at most b items. In above graph-theoretic model, Alcuin’s

river crossing problem corresponds to the path P3 with three vertices.

The Alcuin number of a (conflict) graph G is denoted by Alcuin(G) and is defined as the

smallest capacity of a boat, for which G possesses a feasible ferry schedule. The ferry cover

problem is to determine the Alcuin number of a conflict graph.

There is a close relationship between the Alcuin number and the (vertex) cover number of a

graph (see Lemma 2.1). This naturally divides graphs into so-called small-boat and large-boat

graphs: A graph is small-boat if its Alcuin number and vertex cover number are equal, and

otherwise it is large-boat.

The problem of determining the Alcuin number of an arbitrary graph is NP-hard (see [4]).

Lampis and Mitsou [4] further showed that the Alcuin number is hard to approximate. A

complete analysis of the Alcuin number of trees can be found in [4].

Recently, Csorba et al. [1] found a quite surprising structural characterization of the Al-

cuin number. This characterization yields an NP-certificate for the Alcuin number and tells us

that every feasible schedule (possibly of exponential length) can be transformed into a feasible

schedule of (linear) length at most 2|V |+1, and that this bound 2|V |+1 is the strongest possi-

ble bound. Furthermore, they established that approximating the Alcuin number is exactly as

hard as approximating the vertex cover number. On the positive side, it was proved that the

Alcuin number of a bipartite graph can be determined in polynomial time. By the structural

characterization theorem, the authors presented several combinatorial lemmas so as to deter-

mine whether a given graph is a small-boat graph. For chordal graphs, they gave a concise

description of the division line between small-boat and large-boat graphs, and they also proved

that every planar graph G with the vertex cover number at least five is a small-boat graph.

In [5], Shan et al. gave the Alcuin number of a graph with maximum degree four and cover

number at most two or maximum degree five and cover number at most four. Shan and Kong

[6] further studied the Alcuin number of a hypergraph and its connections to the transversal

number of the hypergraph. More information on this subject can be found in [7–11].

In this paper we study the Alcuin’s numbers of graphs with maximum degree at most

five and regular graphs. For these graphs, we present concise descriptions of the division line

between small-boat and large-boat graphs. In Section 2, we first introduce some basic definitions

and preliminaries. In Section 3, we give the sufficient conditions for a connected graph with

maximum degree at most five to be a small-boat graph. In Section 4, we show that all k-regular

graphs are small-boat graphs for 1 ≤ k ≤ 7, this answers an open question posed by Seify and

Shahmohamad [7]. Finally, conclusions and directions of further work are given in Section 5.

2 Definitions and Preliminaries

Let us first introduce some basic definitions. Two vertices u, v of G = (V,E) are adjacent,

or neighbours, if uv is an edge of G. The set of neighbours of a vertex v in G is denoted by

ΓG(v), or briefly by Γ(v). More generally for U ⊆ V , the neighbours in V − U of vertices in U

are called neighbours of U ; their set is denoted by ΓG(U). For X,Y ⊆ V and X ∩ Y = ∅, we
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simply write ΓX(Y ) for ΓG(Y ) ∩X . In particular, if Y = {v}, we write ΓX(v) for ΓG(v) ∩X .

The subgraph induced by X is denoted by G[X ]. The degree of a vertex v in G is the number

of edges of G incident with v, denoted by degG(v), or briefly by deg(v). A vertex of degree zero

is called an isolated vertex. We denote by ∆(G) the maximum degree of the vertices of G. If

degG(v) = k for all v ∈ V , then we call G k-regular. The complement G of G is the graph with

the same vertex set but whose edge set consists of the edges not present in G. As usual, Kn,

Pn and Cn denote the complete graph, path and cycle on n vertices, respectively.

A stable set in G is a set of vertices no two of which are adjacent. A stable set in G is

maximum if the graph G contains no larger stable set. The cardinality of a maximum stable

set in G is called the stability number of G, denoted α(G). A set W ⊆ V is a vertex cover of

G if every edge of G is incident with a vertex in W . The vertex cover number τ(G) of G is the

size of a smallest vertex cover of G.

The Alcuin number of a graph is closely related to its vertex cover number. The following

basic lemma follows almost immediately from the definitions.

Lemma 2.1 (see [3–4]) For every graph G, τ(G) ≤ Alcuin(G) ≤ τ(G) + 1.

Lemma 2.1 implies that the Alcuin number of a graph G is equal to either τ(G) or τ(G)+1,

which naturally divides graphs into so-called small-boat and large-boat graphs: A graph G is

called a small-boat graph if Alcuin(G) = τ(G), and otherwise it is called a large-boat graph.

The problem of deciding whether or not a given graph is small-boat is clearly of great impor-

tance. A major step towards this goal is provided by the following structural characterization

of the Alcuin number in graphs, due to Csorba, Hurkens and Woeginger [1].

Theorem 2.1 (see [1]) Let G = (V,E) be a graph. G possesses a feasible schedule for a

boat of capacity b ≥ 1 if and only if there exist five subsets X1, X2, X3, Y1, Y2 of V that satisfy

the following four conditions:

(i) Xi ∩Xj = ∅ for 1 ≤ i 6= j ≤ 3 and X =
3
⋃

i=1

Xi is a stable set of G.

(ii) The (not necessarily disjoint) sets Y1, Y2 ⊆ Y are two nonempty subsets, where Y =

V −X and |Y | ≤ b.

(iii) X1 ∪ Y1 and X2 ∪ Y2 are stable sets of G.

(iv) |Y1|+ |Y2| ≥ |X3|.

If these four conditions are satisfied, then there exists a feasible schedule of length at most

2|V |+ 1.

Note that for a small-boat graph G with b = τ(G), the stable set X in Theorem 2.1 is a

maximum-size stable set of G, and set Y is a minimum-size vertex cover of G.

The following lemmas provide tools for recognizing small-boat graphs.

Lemma 2.2 (see [1]) Let G = (V,E) be a graph and Y be a minimum vertex cover of G.

If Y contains two (not necessarily distinct) vertices u and v that have at most two common

neighbors in V − Y , then G is a small-boat graph.

Lemma 2.3 (see [1]) If G = (V,E) is a graph that contains two distinct stable sets of
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maximum size (or, equivalently, two distinct vertex covers of minimum size), then G is a small-

boat graph.

3 Graphs with Maximum Degree Five

In this section we shall investigate the Alcuin’s number for a graph G = (V,E) with max-

imum degree at most five. For S, T ⊆ V , we denote e(S, T ) the set of edges between S and

T .

Lemma 3.1 Let G = (V,E) be a non-trivial connected graph. If τ(G) ≥
⌊

∆(G)(∆(G)−1)
3

⌋

+1,

then G is a small-boat graph.

Proof Suppose, by way of contradiction, that G is a large-boat graph with τ(G) ≥

⌊∆(G)(∆(G)−1)
3 ⌋+1. By Lemma 2.3, G has a unique maximum stable set X , and so Y = V −X is

the unique minimum vertex cover of G. Furthermore, by Lemma 2.2, we have |ΓX(u)∩ΓX(v)| ≥

3 for any vertices u, v (not necessarily distinct) in Y . This implies that ∆(G) ≥ 3.

Let ∆(G) = k. We claim that |ΓX(u)| = k for each u ∈ Y . If not, let |ΓX(u)| = k1 < k.

Since |ΓX(u) ∩ ΓX(v)| ≥ 3 for any v ∈ Y − {u}, we have

3(|Y − {u}|) ≤ e(ΓX(u), Y − {u}) ≤
∑

x∈ΓX(u)

(degG(x)− 1) ≤ k1(k − 1).

So

τ(G) = |Y | ≤
⌊k1(k − 1)

3

⌋

+ 1 <
⌊k(k − 1)

3

⌋

+ 1,

a contradiction. Thus Y is a stable set of G and each vertex of Y has maximum degree k. This

implies that there exits at least a vertex of X that has degree < k, for otherwise X and Y

would be two distinct maximum stable sets of G. Without loss of generality, let x1 ∈ ΓX(u)

and deg(x1) ≤ k − 1.

Next we show that k ≡ 2 (mod 3) and deg(x) ≥ k − 2 for x ∈ ΓX(u). If k ≡ 0, 1 (mod 3),

then

3(|Y − {u}|) ≤ e(ΓX(u), Y − {u})

≤
∑

x∈ΓX(u)−{x1}

(degG(x) − 1) + (degG(x1)− 1)

≤ (k − 1)2 + (k − 2)

= k(k − 1)− 1.

Hence

τ(G) = |Y | ≤
⌊k(k − 1)− 1

3

⌋

+ 1 <
⌊k(k − 1)

3

⌋

+ 1,

a contradiction. If k ≡ 2 (mod 3) and deg(x) ≤ k − 3 for some x ∈ ΓX(u), then

3(|Y − {u}|) ≤ e(ΓX(u), Y − {u}) ≤
∑

x∈ΓX(u)

(deg(x)− 1) ≤ k(k − 1)− 3.
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Hence

τ(G) = |Y | ≤
⌊k(k − 1)− 3

3

⌋

+ 1 <
⌊k(k − 1)

3

⌋

+ 1,

a contradiction. Thus

(k − 2)α(G) = (k − 2)|X | ≤ k|Y | = kτ(G),

or equivalently,

|X | = α(G) ≤
( k

k − 2

)

τ(G) ≤ 2τ(G) = 2|Y |.

We set X1 = X2 = ∅, X3 = X , and Y1 = Y2 = Y . This clearly satisfies all conditions of the

structure theorem, Theorem 2.1, and so G is a small-boat graph. This contradiction establishes

the assertion.

Theorem 3.1 Let G = (V,E) be a nontrivial connected graph with ∆(G) ≤ 4. If τ(G) ≥

∆(G)− 1, then G is a small-boat graph.

Proof If ∆(G) ≤ 2, the assertion follows directly from Lemma 2.2. If ∆(G) = 3, then,

by Lemma 3.1, G is a small-boat graph in the case when τ(G) ≥ 3. If τ(G) = 2, then either

G = K2,3 or there exist two vertices u, v ∈ Y such that |ΓX(u)∩ ΓX(v)| ≤ 2. In both cases, by

Lemma 2.2, we see that G is a small-boat graph. Thus we may assume that ∆(G) = 4.

We can prove it by contradiction. Suppose that G is a large-boat graph. By Lemma 3.1,

we have τ(G) ≤
⌊

∆(G)(∆(G)−1)
3

⌋

=4. By Lemma 2.3, G has a unique maximum stable set X ,

and so Y = V −X is the unique minimum vertex cover of G. Furthermore, by Lemma 2.2, we

have |ΓX(u) ∩ ΓX(v)| ≥ 3 for any u, v ∈ Y . This implies that deg(u) ≥ 3 for each u ∈ Y , and

∆(G[Y ]) ≤ 1 as ∆(G) = 4.

If ∆(G[Y ]) = 0, i.e., Y is a stable set of G. Then, since |Y | = τ(G) ≥ ∆(G) − 1 = 3, we

have

α(G) = |X |

≤ |ΓX(u)|+
∑

v∈Y−{u}

|ΓX(v)− (ΓX(v) ∩ ΓX(u))|

≤ 4 + |Y − {u}|

≤ 2|Y | = 2τ(G).

We set X1 = X2 = ∅, X3 = X , and Y1 = Y2 = Y . It can be verified easily that the sets satisfy

all conditions in Theorem 2.1, so G is a small-boat graph, a contradiction.

If ∆(G[Y ]) = 1, let u ∈ Y be a vertex of degree one in G[Y ] and uv ∈ E(G[Y ]). Clearly,

there exists a maximum stable set of G[Y ] containing u. Let Y ∗ be such a stable set of G[Y ].

Then |Y ∗| ≥ 2 as τ(G) ≥ ∆(G) − 1 = 3. Hence

α(G) = |X |

≤ |ΓX(u)|+
∑

v∈Y ∗−{u}

|ΓX(v)− (ΓX(v) ∩ ΓX(u))|

≤ 3 + |Y ∗ − {u}|

≤ 2|Y ∗|.
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We set X1 = X2 = ∅, X3 = X , and Y1 = Y2 = Y ∗. Clearly, |Y1| + |Y2| = 2|Y ∗| ≥ |X | = |X3|

and all other conditions in Theorem 2.1 are satisfied. So G is a small-boat graph, and derive a

contradiction.

Remark 3.1 The constraint τ(G) ≥ ∆(G) − 1 in Theorem 3.1 cannot be dropped. Let

F = {K1,3,K1,4,K2◦K3,K
∗
2,3}, whereK

∗
2,3 is the bipartite graph obtained from K2,3 by adding

one pendant edge to each vertex in the small partition class of K2,3. Clearly, every graph G in

F satisfies τ(G) = ∆(G) − 2. It is easy to see that every graph G in F is a large-boat graph.

Theorem 3.2 Let G = (V,E) a connected graph with ∆(G) = 5. If τ(G) ≥ ∆(G), then G

is a small-boat graph.

Proof By Lemmas 2.2–2.3, we may assume that G has a unique maximum stable set, say

X , and |ΓX(u)∩ΓX(v)| ≥ 3 for any u, v ∈ Y , where Y = V −X . We proceed by contradiction.

Let Y ∗ be a maximum stable set of G[Y ], and let Y ∗
0 be the set of isolated vertices in G[Y ].

Obviously, Y ∗
0 ⊆ Y ∗.

First, we have the following claim.

Claim 1 For each u ∈ Y , there exists a vertex v ∈ Y such that |ΓX(u) ∩ ΓX(v)| = 3.

If not, let |ΓX(u) ∩ ΓX(v)| ≥ 4 for all v ∈ Y − {u}. Then deg(v) ≥ 4 for each v ∈ Y − {u}

and so ∆(G[Y ]) ≤ 1. Hence |Y ∗| = |Y ∗
0 | +

|Y−Y ∗

0
|

2 =
|Y ∗

0
|+|Y |
2 . Since |Y | = τ(G) ≥ ∆(G) = 5,

we have

α(G) = |X |

≤ |ΓX(u)|+
∑

v∈Y −{u}

|ΓX(v)− (ΓX(u) ∩ ΓX(v))|

= |ΓX(u)|+
∑

v∈Y ∗

0
−{u}

|ΓX(v)− (ΓX(u) ∩ ΓX(v))|

≤ |ΓX(u)|+ |Y ∗
0 − {u}|.

We show that |X | ≤ 2|Y ∗| by the above inequality. If u ∈ Y ∗
0 , then

|X | ≤ |ΓX(u)|+ |Y ∗
0 − {u}| ≤ 5 + |Y ∗

0 | − 1 < |Y |+ |Y ∗
0 | = 2|Y ∗|.

If u 6∈ Y ∗
0 , then

|X | ≤ |ΓX(u)|+ |Y ∗
0 − {u}| ≤ 4 + |Y ∗

0 | < |Y |+ |Y ∗
0 | = 2|Y ∗|.

Now we set X1 = X2 = ∅, X3 = X , and Y1 = Y2 = Y ∗. It is easy to check that the sets satisfy

all conditions in Theorem 2.1, so G is a small-boat graph, a contradiction.

Claim 2 Let u, v, w ∈ Y , and |ΓX(u)∩ΓX(v)| = 3, If |ΓX(w)∩ (ΓX (u)∩ΓX(v))| ≤ 2, then

|ΓX(y) ∩ (ΓX({u, v, w})| ≥ 4 for all y ∈ Y − {u, v, w}.

If not, let y ∈ Y and |ΓX(y) ∩ ΓX({u, v, w})| < 4. Then |ΓX(y) ∩ ΓX({u, v, w})| = 3. Since

|ΓX(y)∩ΓX(w)| ≥ 3 and |ΓX(w)∩(ΓX (u)∩ΓX(v))| ≤ 2, we have |ΓX(y)∩(ΓX(u)∩ΓX(v))| ≤ 2.

This implies that |ΓX(y) ∩ ΓX(u)| ≤ 2 or |ΓX(y) ∩ ΓX(v)| ≤ 2, a contradiction.

By Lmma 3.1, we see that 5 ≤ τ(G) ≤
⌊

k(k−1)
3

⌋

= 6. Next we consider two cases depending

on the value of τ(G).
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Case 1 τ(G) = 6. In this case, we first claim that |ΓX(u)| ≥ 4 for each u ∈ Y . Indeed, if not,

let u ∈ Y and |ΓX(u)| ≤ 3, then |ΓX(u)| = 3 (as |ΓX(u)| ≥ 3). Note that |ΓX(u) ∩ ΓX(v)| ≥ 3

for any v ∈ Y − {u} and τ(G) = 6. Hence deg(x) ≥ 6 for each x ∈ ΓX(u), contradicting our

assumption ∆(G) = 5. Thus |ΓX(u)| ≥ 4 for all u ∈ Y . This also implies that ∆(G[Y ]) ≤ 1 as

∆(G) = 5. Thus |Y ∗| = |Y ∗
0 |+

|Y |−|Y ∗

0
|

2 =
|Y ∗

0
|+|Y |
2 .

Claim 3 Let u, v ∈ Y and |ΓX(u)∩ΓX(v)| = 3. Then there exists a vertex w ∈ Y −{u, v}

such that |ΓX(w) ∩ (ΓX(u) ∩ ΓX(v))| ≤ 2.

Suppose not, let |ΓX(w) ∩ (ΓX(u) ∩ ΓX(v))| = 3 for all w ∈ Y − {u, v}. Then deg(x) ≥ 6

for any x ∈ ΓX(u) ∩ ΓX(v), a contradiction.

By Claim 1, there exist u, v ∈ Y such that |ΓX(u) ∩ ΓX(v)| = 3. By Claim 3, let w ∈

Y − {u, v} satisfying |ΓX(w) ∩ (ΓX(u) ∩ ΓX(v))| ≤ 2. Note that |ΓX(w) ∩ ΓX(u)| ≥ 3 and

|ΓX(w) ∩ ΓX(v)| ≥ 3. Then

|ΓX(w) ∩ (ΓX({u, v}))| ≥ 4.

Hence, by Claim 2, we obtain

α(G) = |X |

≤ |ΓX(u, v, w)|+
∑

y∈Y−{u,v,w}

|ΓX(y)− ΓX({u, v, w})|

= |ΓX(u, v, w)|+
∑

y∈Y ∗

0
−{u,v,w}

|ΓX(y)− (ΓX(y) ∩ ΓX({u, v, w}))|

≤ (|ΓX({u, v})|+ |ΓX(w)| − |ΓX(w) ∩ ΓX({u, v})|) + |Y ∗
0 − {u, v, w}|

≤ |ΓX(u)|+ |ΓX(v)| − |ΓX(u) ∩ ΓX(v)|+ |ΓX(w)| − 4 + |Y ∗
0 − {u, v, w}|

≤ |ΓX(u)|+ |ΓX(v)|+ |ΓX(w)| − 7 + |Y ∗
0 − {u, v, w}|. (3.1)

We show that |X | ≤ 2|Y ∗| by the above inequality. If {u, v, w} ⊆ Y ∗
0 , then, by (3.1),

|X | ≤ 15− 7 + |Y ∗
0 | − 3 = 5 + |Y ∗

0 | = |Y |+ |Y ∗
0 | ≤ 2|Y ∗|.

If u, v, w 6∈ Y ∗
0 , then, by (3.1), we have

|X | ≤ 12− 7 + |Y ∗
0 | = 5 + |Y ∗

0 | ≤ 2|Y ∗|.

If exactly both of {u, v, w} belong to Y ∗
0 , then

|X | ≤ 14− 7 + |Y ∗
0 | − 2 = 5 + |Y ∗

0 | ≤ 2|Y ∗|.

If exactly one of {u, v, w} belongs to Y ∗
0 , then

|X | ≤ 13− 7 + |Y ∗
0 | − 1 = 5 + |Y ∗

0 | ≤ 2|Y ∗|.

Thus |X | ≤ 2|Y ∗|. Now let X1 = X2 = ∅, X3 = X , and let Y1 = Y2 = Y ∗. It is easy to see that

all conditions in Theorem 2.1 are satisfied, which is a contradiction.

Case 2 τ(G) = 5. In this case, since |ΓX(u)| ≥ 3 for each u ∈ Y , we have ∆(G[Y ]) ≤ 2.

Let Y 1 = {y ∈ Y | y has degree one in G[Y ]} and Y 2 = {y ∈ Y | y has degree two in G[Y ]}.
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By Claim 1, Y contains two vertices u, v such that |ΓX(u) ∩ ΓX(v)| = 3. Let Y ∗
2 = {y ∈ Y ∗ |

y has degree two in G[Y ]}.

Case 2.1 ∆(G[Y ]) = 2. Then G[Y ] is isomorphic to one of {C5, P5, C4 ∪ P1, C3 ∪ P2, C3 ∪

P 2, P4∪P1, P3∪P2, P3∪P 2}. In this subcase, we can take u ∈ Y 2 that satisfies |ΓX(u)∩ΓX(v)| =

3 for each v ∈ Y − {u}. Obviously, |ΓX(y)| = 3 for any y ∈ Y 2 and ΓX(Y 2) = ΓX(u) =

ΓX(u) ∩ ΓX(v).

If G[Y ] ∼= C5, then |X | = 3, while if G ∼= P5 or C4 ∪ P1, then |X | ≤ 5. In these cases, we

let X1 = X2 = ∅, X3 = X , and let Y1 = Y2 = Y ∗. Then clearly |X3| = |X | ≤ |Y1| + |Y2| and

all other conditions in Theorem 2.1 are satisfied, so G is a small-boat graph, a contradiction.

If G[Y ] is isomorphic to one of {C3 ∪P2, C3 ∪P 2, P4 ∪ P1, P3 ∪P2, P3 ∪P 2}, then it is easy

to see that |Y ∗| = |Y ∗
0 |+

|Y 1|
2 + 1. Hence, we have

|X | ≤ |ΓX({u, v})|+
∑

w∈Y−{u,v}

|ΓX(w) − ΓX({u, v})|

≤ |ΓX(Y 2)|+
∑

w∈Y ∗

0

|ΓX(w) − ΓX(Y 2)|+
∑

w∈Y 1

|ΓX(w)− ΓX(Y 2)|

≤ 3 + 2|Y ∗
0 |+ |Y 1|. (3.2)

If |X | ≤ 2 + 2|Y ∗
0 |+ |Y 1|, then |X | ≤ 2|Y ∗|. As before, we can deduce that G is a small-boat

graph, a contradiction. Thus |X | = 3 + 2|Y ∗
0 | + |Y 1|. From (3.2), it follows that each vertex

of
⋃

y∈Y ∗

0
∪Y 1

ΓX(y) − ΓX(Y 2) has degree one in G. If G[Y ] contains paths as its components,

then we choose one end, say y1, in such a path. We set X1 = ΓX(Y ∗
0 ∪ (Y 1 −{y1}))−ΓX(Y 2),

X2 = ΓX(y1)−ΓX(Y 2), X3 = ΓX(Y 2), and let Y1 = {y1}, Y2 = Y ∗
0 ∪ (Y 1 −{y1})∪ {y2} where

y2 lies in the component C3 of G[Y ] (if C3 is a component of G[Y ]). If G[Y ] contains no paths

as its components, then G[Y ] ∼= C3 ∪ P 2 and thus Y ∗
0 = V (P 2). We set Y1 = {y1}, Y2 = {y2},

and X1 = ΓX(y2) − ΓX(Y 2), X2 = ΓX(y1) − ΓX(Y 2), X3 = ΓX(Y 2), where y1, y2 ∈ Y ∗
0 and

y1 6= y2. In both cases, clearly X1, X2, X3 form a partition of X , and Y1 6= ∅, Y2 6= ∅. Obviously,

|X3| = 3 ≤ |Y1|+ |Y2| and all other conditions in Theorem 2.1 are satisfied. So G is a small-boat

graph, a contradiction.

Case 2.2 ∆(G[Y ]) ≤ 1. In this subcase, |Y | = 5 implies that Y ∗
0 6= ∅ andG[Y ] is isomorphic

to one of {2P2 ∪ P1, P2 ∪ C3,K5}. Clearly, |Y ∗| = |Y ∗
0 |+

|Y−Y ∗

0
|

2 =
|Y |+|Y ∗

0
|

2 .

Suppose that there exists a vertex w ∈ Y − {u, v} such that |ΓX(w) ∩ (ΓX(u) ∩ ΓX(v))| ≤

2. Note that |ΓX(u) ∩ ΓX(v)| = 3, |ΓX(w) ∩ ΓX(u))| ≥ 3 and |ΓX(w) ∩ ΓX(v))| ≥ 3, so

|ΓX(w) ∩ ΓX({u, v})| ≥ 4. Hence, by Claim 2, we have

|X | ≤ |ΓX({u, v, w})|+
∑

y∈Y−{u,v,w}

|ΓX(y)− (ΓX(y) ∩ ΓX({u, v, w}))|

≤ (|ΓX({u, v})|+ |ΓX(w)| − |ΓX(w) ∩ ΓX({u, v})|) + |Y ∗
0 − {u, v, w}|

≤ |ΓX(u)|+ |ΓX(v)| − |ΓX(u) ∩ ΓX(v)|+ |ΓX(w)| − 4 + |Y ∗
0 − {u, v, w}|

≤ |ΓX(u)|+ |ΓX(v)|+ |ΓX(w)| − 7 + |Y ∗
0 − {u, v, w}|. (3.3)

To obtain a contradiction, it suffices to show that |X | ≤ 2|Y ∗|. If {u, v, w} ⊆ Y ∗
0 , then, by (3.3),
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|X | ≤ 8+|Y ∗
0 |−3 = 5+|Y ∗

0 | = |Y |+|Y ∗
0 | ≤ 2|Y ∗|. If u, v, w 6∈ Y ∗

0 , then, by (3.3), |X | ≤ 5+|Y ∗
0 | ≤

2|Y ∗|. If exactly both of {u, v, w} belong to Y ∗
0 , then |X | ≤ 7 + |Y ∗

0 | − 2 = 5 + |Y ∗
0 | ≤ 2|Y ∗|.

If exactly one of {u, v, w} belongs to Y ∗
0 , then |X | ≤ 6 + |Y ∗

0 | − 1 = 5 + |Y ∗
0 | ≤ 2|Y ∗|. Thus

|X | ≤ 2|Y ∗|. We set X1 = X2 = ∅, X3 = X , and Y1 = Y2 = Y ∗. Clearly, the sets satisfy all

conditions in Theorem 2.1, a contradiction.

Suppose that |ΓX(w)∩ (ΓX(u)∩ ΓX(v))| ≥ 3 for any w ∈ Y −{u, v}, i.e., ΓX(u)∩ΓX(v) ⊆

ΓX(w). Then,

|X | ≤ |ΓX({u, v})|+
∑

y∈Y−{u,v}

|ΓX(y)− ΓX({u, v})|

≤ |ΓX({u, v})|+ 2|Y ∗
0 − {u, v}|+ |Y 1 − {u, v}|

≤ |ΓX({u, v})|+ 2|Y ∗
0 − {u, v}|+ |Y − (Y ∗

0 ∪ {u, v})|. (3.4)

We first claim that |X | ≤ 3 + |Y ∗
0 | + |Y |. Indeed, if u, v ∈ Y ∗

0 , then |X | ≤ 7 + 2|Y ∗
0 −

{u, v}|+ |Y − (Y ∗
0 ∪ {u, v})| = 7 + 2(|Y ∗

0 | − 2) + |Y | − |Y ∗
0 | ≤ 3 + |Y ∗

0 |+ |Y |; if u, v 6∈ Y ∗
0 , then

|X | ≤ 5 + 2|Y ∗
0 − {u, v}|+ |Y − (Y ∗

0 ∪ {u, v})| = 5 + 2|Y ∗
0 | + |Y | − |Y ∗| − 2 ≤ 3 + |Y ∗

0 | + |Y |;

if exactly one of {u, v} belongs to Y ∗
0 , then |X | ≤ 6 + 2|Y ∗

0 − {u, v}| + |Y − (Y ∗
0 ∪ {u, v})| =

6 + 2(|Y ∗
0 | − 1) + |Y | − (|Y ∗

0 |+ 1) ≤ 3 + |Y ∗
0 |+ |Y |, as claimed.

If |X | ≤ |Y ∗
0 | + |Y |, then |X | ≤ 2|Y ∗|. As before, we would deduce that G is a small-boat

graph. Thus we may assume that 1+ |Y ∗
0 |+ |Y | ≤ |X | ≤ 3+ |Y ∗

0 |+ |Y |. If |X | = 3+ |Y ∗
0 |+ |Y |,

then deg(x) = 1 for each x ∈ X − (ΓX(u) ∩ ΓX(v)) by (3.4). We take y0 ∈ Y ∗
0 , and let

X1 = ΓX(y0)− (ΓX(u) ∩ ΓX(v)),

X2 = X − (ΓX(y0) ∪ (ΓX(u) ∩ ΓX(v))),

X3 = ΓX(u) ∩ ΓX(v),

and Y2 = {y0}, Y1 = Y ∗ − {y0}. If |X | = 2+ |Y ∗
0 |+ |Y |, then X − (ΓX(u)∩ ΓX(v)) contains at

most one vertex, say x, of degree two in G, while all other vertices in X− (ΓX(u)∩ΓX(v)) have

degree one in G. If such a vertex x exists, we choose y1, y2 ∈ Y such that yix ∈ E(G) for i = 1, 2,

otherwise, we can choose both vertices y1, y2 ∈ Y such that ΓX({y1, y2})−(ΓX(u)∩ΓX(v)) 6= ∅.

Set

X1 = ΓX({y1, y2})− (ΓX(u) ∩ ΓX(v)),

X2 =
⋃

y∈Y−{y1,y2}

ΓX(y)− (ΓX(u) ∩ ΓX(v)),

X3 = ΓX(u) ∩ ΓX(v),

and let Y1 and Y2 be maximum stable sets of Y − {y1, y2} and {y1, y2}, respectively. If |X | =

1 + |Y ∗
0 | + |Y |, then X − (ΓX(u) ∩ ΓX(v)) contains either at most two vertices of degree two

in G and all other vertices in X − (ΓX(u) ∩ ΓX(v)) have degree one in G or at most one of

degree three in G and all other vertices in X − (ΓX(u) ∩ ΓX(v)) have degree one in G. Denote

by W the set of vertices of Y that are adjacent to the vertices of degree two or degree three

of X − (ΓX(u) ∩ ΓX(v)) in G. Then clearly 0 ≤ |W | ≤ 4. If W 6= ∅, let X1 =
⋃

y∈W

ΓX(y) −
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(ΓX(u)∩ΓX(v)), X2 =
⋃

y∈Y−W

ΓX(y)− (ΓX(u)∩ΓX(v)), X3 = ΓX(u)∩ΓX(v), and let Y1 and

Y2 be maximum stable sets of W and Y − W , respectively. Otherwise, we choose one vertex

y1 ∈ Y such that ΓX({y1})− (ΓX(u) ∩ ΓX(v)) 6= ∅ and set

X1 = ΓX({y1})− (ΓX(u) ∩ ΓX(v)),

X2 =
⋃

y∈Y−{y1}

ΓX(y)− (ΓX(u) ∩ ΓX(v)),

X3 = ΓX(u) ∩ ΓX(v),

and let Y2 = {y1} and Y1 be maximum stable set of Y − {y1}. In either case, one see that

X1, X2, X3 form a partition of X and Y1 6= ∅, Y2 6= ∅. Clearly, Xi ∪ Yi (i = 1, 2) is stable and

|Y1| + |Y2| ≥ 3 = |X3|. Thus all conditions in Theorem 2.1 are satisfied. So G is a small-boat

graph, a contradiction.
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Figure 1 The graphs F1 and F2.

Remark 3.2 The constraint τ(G) ≥ ∆(G) in Theorem 3.2 cannot be dropped. Let F1, F2

be the graphs depicted in Figure 1. Clearly, ∆(Fi) = 5, τ(Fi) = 4 and the set of vertices

indicated by solid dots is the unique minimum vertex cover of Fi for i = 1, 2. It is easy to verify

that Fi is a large-boat graph.

4 Regular Graphs

In this section we turn our attention to regular graphs. In [7] Seify and Shahmohamad

proved that every k-regular graph with 2 ≤ r ≤ 5 is a small-boat graph, and asked the question:

Whether all regular graphs are small-boat graphs? We shall give a concise description of the

division line between small-boat and large-boat graphs for regular graphs.

To obtain our main result in this section, we need the following lemmas.

Lemma 4.1 (see [8]) For a graph G on n vertices and average degree d(G), α(G) ≥
⌈

n
d(G)+1

⌉

.

Lemma 4.2 Let G be a large-boat graph and Y be a minimum vertex cover of G. Then

τ(G) ≤
⌊ (∆(G)−∆(G[Y ]))(∆(G)−1)

3

⌋

+ 1.
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Proof Since G is a large-boat graph, by Lemma 2.3, one see that Y is the unique vertex

cover of minimum size. Furthermore, by Lemma 2.2, we have |ΓX(u) ∩ ΓX(v)| ≥ 3 for any

u, v ∈ Y . Let u ∈ Y and degG[Y ](u) = ∆(G[Y ]). Then

3(|Y − {u}|) ≤ e(ΓX(u), Y − {u})

≤
∑

x∈ΓX(u)

(degG(x)− 1)

≤ |ΓX(u)|(∆(G) − 1)

≤ (∆(G)−∆(G[Y ]))(∆(G) − 1).

Hence, τ(G) = |Y | ≤
⌊ (∆(G)−∆(G[Y ]))(∆(G)−1)

3

⌋

+ 1, as desired.

Theorem 4.1 Let G = (V,E) be a k-regular graph. If 1 ≤ k ≤ 7, then G is a small-boat

graph.

Proof We may assume that G is connected as otherwise we look at each (connected)

component separately. Let X be a maximum stable set of G and let Y = V −X . Then Y is

a minimum vertex cover of G. Since G is regular, |Y | ≥ k. If 1 ≤ k ≤ 2, the assertion follows

directly from Lemma 2.2. If 3 ≤ k ≤ 5, then τ(G) = |Y | ≥ k. The assertion follows from

Theorems 3.1–3.2. So we may assume that 6 ≤ k ≤ 7.

We next proceed by contradiction. Suppose that G is a large-boat graph. Then, by Lemmas

2.2–2.3, X is the unique maximum stable set of G and |ΓX(u) ∩ ΓX(v)| ≥ 3 for any u, v ∈ Y .

Hence Y is not a stable set of G and we have |ΓX(u)| ≥ 3 for any u ∈ Y . Thus |X | ≥ 3 and

1 ≤ ∆(G[Y ]) ≤ k − 3. This implies that |Y | ≥ max{k, |X |+ 1}. By Lemma 4.2, we have

max{k, |X |+ 1} ≤ |Y | ≤
⌊ (k − 1)2

3

⌋

+ 1. (4.1)

Let Y ∗ be a maximum stable set of G[Y ]. If |X | = 3, then |ΓX(u)| = 3 for each u ∈ Y , so G[Y ]

is (k − 3)-regular. By (4.1) and Lemma 4.2, we have |Y | = k. Furthermore, by Lemma 4.1,

α(G[Y ]) ≥ k
k−2 , and so α(G[Y ]) ≥ 2. Set X1 = X2 = ∅, X3 = X , and Y1 = Y2 = Y ∗. Clearly,

|Y1|+ |Y2| = 2|Y ∗| ≥ |X3| and all other conditions in Theorem 2.1 are satisfied, a contradiction.

So we may assume that |X | ≥ 4. We claim that k|X | ≥ 4|Y |. Indeed, if k|X | < 4|Y |, then

we have 3|Y | ≤
∑

u∈Y

|ΓX(u)| = k|X | < 4|Y |. Thus there exists a vertex v ∈ Y such that

|ΓX(v)| ≤ 3, and so |ΓX(v)| = 3. Hence ∆(G[Y ]) ≥ k − |ΓX(v)| = k − 3. By |Y | ≥ k and

Lemma 4.2, we have |Y | = k. Then 3k ≤ k|X | < 4k, i.e., |X | = 3, this contradicting our

assumption that |X | ≥ 4. Consequently, we obtain

4k ≤ 4|Y | ≤
∑

u∈Y

|ΓX(u)| = e(Y,X) = k|X | < k|Y |. (4.2)

By (4.2), we obtain contradiction in the following three cases.

Case 1 4|Y | ≤ k|X | < 5|Y |. Then
∑

u∈Y

|ΓX(u)| = e(Y,X) = k|X | < 5|Y |. This implies

that Y contains a vertex v with |ΓX(v)| ≤ 4. Hence ∆(G[Y ]) ≥ k− 4. By Lemma 4.2, we have
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k ≤ |Y | ≤
⌊4(k−1)

3

⌋

+ 1. Then

4k ≤ 4|Y | ≤ k|X | < 5|Y | ≤ 5
(⌊4(k − 1)

3

⌋

+ 1
)

, (4.3)

or equivalently,

4 ≤ |X | <
5

k

(⌊4(k − 1)

3

⌋

+ 1
)

.

By the above inequality, we obtain 4 ≤ |X | ≤ 5 if k = 6, and 4 ≤ |X | ≤ 6 if k = 7.

We first consider the case when k = 6. In this case, |X | = 4 or 5, we obtain |Y | = 6 or

7, respectively, by (4.3). Furthermore, note that |Y | = |X | + 2, the average degree of G[Y ]

is d(G[Y ]) = 6|Y |−6|X|
|Y | = 12

|Y | . Then |Y ∗| = α(G[Y ]) ≥
⌈ |Y |2

12+|Y |

⌉

by Lemma 4.1. We set

X1 = X2 = ∅, X3 = X , and Y1 = Y2 = Y ∗. Then

|Y1|+ |Y2| = 2|Y ∗| ≥ 2
⌈(|X |+ 2)2

14 + |X |

⌉

≥
2(|X |+ 2)2

14 + |X |
≥ |X | = |X3|,

and also all other conditions in Theorem 2.1 are satisfied, a contradiction.

Secondly, we consider the case when k = 7. In this case, |X | = 4, 5 or 6, and we obtain |Y | =

7, 8 or 9, respectively, by (4.3). Note that |Y | = |X |+ 3. Then 2|E(G[Y ])| =
∑

y∈Y

degG[Y ](y) =

7|Y | − 7|X | = 21, this is a contradiction.

Case 2 5|Y | ≤ k|X | < 6|Y |. As in Case 1, one see that ∆(G[Y ]) ≥ k − 5. By Lemma 4.2,

we have k ≤ |Y | ≤
⌊5(k−1)

3

⌋

+ 1. Then

5k ≤ 5|Y | ≤ k|X | < 6|Y | ≤ 6
(⌊5(k − 1)

3

⌋

+ 1
)

, (4.4)

or equivalently,

5 ≤ |X | <
6

k

(⌊5(k − 1)

3

⌋

+ 1
)

.

By the above inequality, we obtain 5 ≤ |X | ≤ 8 if k = 6, and 5 ≤ |X | ≤ 9 if k = 7.

We first consider the case when k = 6. In this case, |X | = 5, 6, 7 or 8, and we obtain

|Y | = 6, 7, 8 or 9, respectively, by (4.4). This implies that |Y | = |X | + 1. Then the average

degree of G[Y ] is d(G[Y ]) = 6|Y |−6|X|
|Y | = 6

|Y | . Then |Y ∗| = α(G[Y ]) ≥
⌈ |Y |2

6+|Y |

⌉

by Lemma 4.1.

We set X1 = X2 = ∅, X3 = X , and Y1 = Y2 = Y ∗. Then

|Y1|+ |Y2| ≥ 2|Y ∗| ≥ 2
⌈(|X |+ 1)2

7 + |X |

⌉

≥
2(|X |+ 1)2

7 + |X |
≥ |X | = |X3|,

and also all other conditions in Theorem 2.1 are satisfied, a contradiction.

Secondly, we consider the case when k = 7. In this case, |X | = 5, 6, 7, 8 or 9, and we obtain

|Y | = 7, 8, 9, 10 or 11, respectively, by (4.4). This implies that |Y | = |X |+2. Then the average

degree of G[Y ] is d(G[Y ]) = 7|Y |−7|X|
|Y | = 14

|Y | . Then

|Y ∗| = α(G[Y ]) ≥
⌈ |Y |2

14 + |Y |

⌉
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by Lemma 4.1. We set X1 = X2 = ∅, X3 = X , and Y1 = Y2 = Y ∗. Then

|Y1|+ |Y2| ≥ 2|Y ∗| ≥ 2
⌈(|X |+ 2)2

16 + |X |

⌉

≥ |X | = |X3|,

and also all other conditions in Theorem 2.1 are satisfied, a contradiction.

Case 3 6|Y | ≤ k|X | < 7|Y |. In this case, we have k = 7 by (4.2). From (4.1), it follows

that |Y | ≤ 13. If |Y | ≥ |X |+ 2, then k|X | = 7|X | ≥ 6|Y | = 6(|X |+ 2), and so |X | ≥ 12. This

implies that |Y | ≥ 14, a contradiction. So |Y | = |X |+ 1. But then

2|E(G[Y ])| =
∑

y∈Y

degG[Y ](y) = 7|Y | − 7|X | = 7,

a contradiction again.

In either case, we always arrive at a contradiction, the assertion follows.

Remark 4.1 In general, the assertion in Theorem 4.1 is not true for k ≥ 8. For example,

let k ≥ 8 is not a prime, then k can be decompose into k = k1k2, where k1 (6= 1) is the smallest

divisor of k. Let X be a stable set with k1k2− (k2−1) vertices and Y be the disjoin union of k1

copies of complete graph Kk2
. Let Hk be the k-regular graph obtained from the disjoint union

X and Y be by joining each vertex of X to each vertex of Y . By our construction, clearly X

is the unique maximum stable set of Hk and Y is the unique minimum vertex cover of Hk. We

show that G is a large-boat graph. If not, then, by Theorem 2.1, there exist the sets X1, X2, X3,

and Y1, Y2 satisfying conditions (i)–(iv) in the structure theorem. Since every vertex of X is

adjacent to all the vertices of Y , we have X3 = X . Then X1 = X2 = ∅. This implies that

Y1 = Y2 = Y ∗, where Y ∗ is a maximum stable set of G[Y ]. Clearly, Y ∗ contains at most one

vertex of each copy of Kk2
. So |Y ∗| = k1. But then

|Y1|+ |Y2| = 2|Y ∗| = 2k1 < k1k2 − (k2 − 1) = |X3|,

which is a contradiction.

5 Conclusions

In this paper we investigated the Alcuin’s numbers of regular graphs and graphs with max-

imum degree at most five, we presented concise descriptions of the division line between small-

boat and large-boat graphs. Finally, we propose the following open problem.

Problem 5.1 For every connected graph G with ∆(G) ≥ 6, determine the sharp lower

bound ϕ(∆(G)) on τ(G) such that G is a small-boat graph when τ(G) ≥ ϕ(∆(G)).

For positive integers k ≥ 3 and 1 ≤ t ≤ k − 2, let I1 = {x1, x2, · · · , x2k+t} be a stable

set on 2k + t vertices and let I2 = {e1, e2, · · · , ek} be a set of pairwise nonadjacent k edges.

Now let Fk,t be the graph obtained from the disjoin union of I1 and I2 by joining each vertex

xi (1 ≤ i ≤ k) of I1 to precisely two ends of the edge ei of I2 and joining each vertex xj

(k + 1 ≤ j ≤ 2k + t) of I1 to each vertex of I2. By our construction, Fk,t has maximum degree
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2k. Clearly, I1 is the unique maximum stable set of Fk,t and the set of vertices in I2 is the

minimum vertex cover of Fk,t. It is easy to verify that Fk,t is a large-boat graph. This implies

that ϕ(∆(G)) ≥ ∆(G) + 1.
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