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Abstract The authors consider the critical exponent problem for the variable coefficients

wave equation with a space dependent potential and source term. For sufficiently small data

with compact support, if the power of nonlinearity is larger than the expected exponent, it

is proved that there exists a global solution. Furthermore, the precise decay estimates for

the energy, L2 and L
p+1 norms of solutions are also established. In addition, the blow-up

of the solutions is proved for arbitrary initial data with compact support when the power

of nonlinearity is less than some constant.
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1 Introduction

We consider the following Cauchy problem for the semilinear wave equation with variable

coefficients:

utt − div(b(x)∇u) + a(x)ut = |u|p−1u, x ∈ R
n, t > 0, (1.1)

u(0, x) = εu0(x), ut(0, x) = εu1(x), x ∈ R
n, (1.2)

where ε > 0, the coefficients a(x) ∈ C0(Rn), b(x) ∈ C1(Rn) are positive functions which will be

specified later and the initial data u0 ∈ H1(Rn), u1 ∈ L2(Rn) have compact support

u0(x) = u1(x) = 0 for |x| > R,

where the exponent p of nonlinearity satisfies

1 < p <
n+ 2

n− 2
for n ≥ 3, 1 < p <∞ for n = 1, 2.

Such a system is generally accepted as models for travelling waves in a nonhomogeneous gas

with damping changing with the position. The unknown u denotes the displacement, the
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coefficient b called the bulk modulus, accounts for changes of the temperature depending on

the location, while a is referred as the friction coefficient or potential (see [5]). This problem

has been studied intensively for the homogenous medium, but the result are scarce for the

variable coefficient case. In [11] there is the authors find decay estimates for wave equations

with variable coefficient, however, no nonlinearity is present. In addition, [1], looked at an

equation with nonlinear internal damping but for bounded domains. To our knowledge, the

results of this paper are the first to be obtained for semilinear wave equations which exhibit

space dependent hyperbolic operators and space dependent potential on the entire space R
n.

Our aim is to determine the critical exponent pc, which is a number defined by the following

property:

If pc < p, all the small data solutions of (1.1)–(1.2) are global; if 1 < p ≤ pc, the time-local

solution cannot be extended time-globally for some data. What is more, it is expected that

the critical exponent agrees with that of only the hyperbolic operators and constant coefficient

case.

It is of interest to compare the semilinear wave equations (1.1)–(1.2) for different coefficients.

When a(x) = 0 namely the damping term is missing and b(x) = 1, that is

utt −∆u = |u|p−1u, x ∈ R
n, t > 0, (1.3)

u(0, x) = εu0(x), ut(0, x) = εu1(x), x ∈ R
n, (1.4)

for small data with compact support, there exists a critical exponent pw(n) such that the

solutions of (1.3)–(1.4) are global if p > pw(n), and the solutions of (1.3)–(1.4) blow up if

1 < p ≤ pw(n). Actually, the critical exponent pw(n) is the positive root of the quadratic

equation (n − 1)p2 − (n + 1)p − 2 = 0 for n ≥ 2 (pw(1) = ∞). For the details, one can see

Takamura and Wakasa [15]. This is the famous Strauss conjecture and the proof was completed

by the effort of many mathematicians (see [3, 4, 8–9, 12–14, 16, 22]).

There are many results for the semilinear damped wave equation. Todorova and Yordanov

[17–18] studied the constant coefficients case of (1.1)–(1.2), that is

utt −∆u+ ut = |u|p−1u, x ∈ R
n, t > 0, (1.5)

u(0, x) = εu0(x), ut(0, x) = εu1(x), x ∈ R
n. (1.6)

They developed a weighted energy method and determined that the critical exponent is pc(n) =

1+ 2
n
; more precisely, they proved small data global existence in the case p > pc(n) and blow-up

for all solutions of (1.5)–(1.6) with positive on average data in the case 1 < p < pc(n). Later on

Zhang [21] showed that the critical case p = pc(n) belongs to the blow-up region. We mention

that Todorova and Yordanov [17–18] assumed that data have compact support and essentially

used this property. However, Ikehata and Tanizawa [6] extended the global existence in [17–18]

to certain non-compactly supported initial data. We remarked that the critical exponent pc(n)

of (1.5)–(1.6) is the same as the famous Fujita’s critical exponent (see [2]) for the heat equation

ut −△u = up.

On the other hand, Ikehata, Todorova and Yordanov [7] solved the critical exponent problem
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for the wave equation (1.1)–(1.2) when b(x) = 1,

utt −∆u+ a(x)ut = |u|p−1u, x ∈ R
n, t > 0,

u(0, x) = εu0(x), ut(0, x) = εu1(x), x ∈ R
n.

They determined that the critical exponent is pc(n, α) = 1 + 2
n−α by using a refined multiplier

method, where a(x) ∈ C1(Rn) is a radially symmetric function satisfying

a(x) ∼ a0(1 + |x|)−α, |x| → ∞

with a0 > 0 and α ∈ [0, 1). They derived the global existence of the sufficiently small data

for p > pc(n, α), also obtained precise decay estimates for the energy, L2 and Lp+1 norms of

solutions. Moreover, they proved that the solutions blow up for 1 < p ≤ pc(n, α) by applying

the method of Zhang [21]. Recently, Nishihara [10] considered the semilinear wave equation

with time-dependent damping

utt −∆u+ a(t)ut = |u|p−1u,

where a(t) = a0(1 + t)−β , β ∈ (−1, 1). He proved that the critical exponent is pc(n) = 1 + 2
n
.

Wakasugi [20] considered the Cauchy problem for the semilinear wave equation with space-time

dependent damping

utt −∆u+ a(x)b(t)ut = |u|p−1u, x ∈ R
n, t > 0,

where a(x) = a0(1 + |x|2)−α
2 , b(t) = (1 + t)−β , with a0 > 0, α, β ≥ 0, α + β < 1, and proved

that the expected exponent is given by

pc = 1 +
2

n− α
,

which is the critical exponent for the semilinear wave equations with space dependent poten-

tial. This shows that, roughly speaking, time-dependent coefficient of damping term does not

influence the critical exponent. This is also why we consider wave equation with only space

dependent potential.

The main innovation in this paper is that we find the exponent pcr(n, α, β) such that for

sufficiently small data and pcr(n, α, β) < p, the solutions of (1.1)–(1.2) are global. In addition,

we also determine the exponent p2(n, α, β) such that 1 < p ≤ p2(n, α, β), where p2(n, α, β) ≤
pcr(n, α, β), the solution of problem (1.1)–(1.2) does not exist globally for some data. However,

when p2(n, α, β) < p ≤ pcr(n, α, β), the solution of (1.1)–(1.2) exists globally or not, we have

no result. In the future paper, we aim to study it.

For the potential a(x) and the bulk modulus b(x), we assume that

a0

(1 + |x|)α ≤ a(x) ≤ a1

(1 + |x|)α (1.7)

and

b0(1 + |x|)β ≤ b(x) ≤ b1(1 + |x|)β , (1.8)
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where a0, a1, b0, b1 > 0 are constants, and α and β belong to the following range of exponents

0 ≤ α < 1, 0 ≤ β < 2, 2α+ β ≤ 2, (1.9)

the exponent of focusing nonlinearity is given explicitly by

pcr(n, α, β) :=
4(2− β)

4n− 4α− βn
+ 1, p2(n, α, β) :=

2− β

n− α
+ 1. (1.10)

In the case of variable coefficient wave equation we observe some new phenomena. The decay

rates pinpoint the interaction between the coefficients a and b. It is worthwhile to mention that

the energy decay rate goes to infinity (see Corollary 1.3) when β → 2− and α → 0+. This

shows that the range of the exponent β in (1.9) is natural. On the other hand, in the case of

β → 0+, α → 1−, the energy of global solutions decays polynomially like t−n as t → ∞ (see

Corollary 1.3).

Before stating the main results, we need some preparations concerning the space dependent

on factors a(x) and b(x).

Hypothesis A (see [11]) Under the above assumptions (1.7) and (1.8), there exists a

subsolution A(x) which satisfies

div(b(x)∇A(x)) = a(x), x ∈ R
n, (1.11)

and has the following properties:

(a1) A(x) ≥ 0 for all x, (1.12)

(a2) A(x) = O(|x|2−α−β) for large |x|, (1.13)

(a3) µ := lim inf
x→∞

a(x)A(x)

b(x)|∇A(x)|2 > 0. (1.14)

Here we announce our main results for the existence of the global solutions for sufficiently

small data.

Let us denote X1(0, T ) := C([0, T );H1(Rn)) ∩ C1([0, T );L2(Rn)).

Theorem 1.1 Let pcr(n, α, β) be defined in (1.10), a(x), b(x) satisfy (1.7), (1.8) respectively

and the exponents α, β belong to (1.9). If pcr(n, α, β) < p < n+2
n−2 for n ≥ 3 and pcr(n, α, β) <

p < ∞ for n = 1, 2. Then there exists a number ε0 > 0 such that for any 0 < ε < ε0, the

problems (1.1)–(1.2) has a solution u ∈ X1(0,∞) satisfying
∫

Rn

e(µ−δ)
A(x)

t u2dx ≤ Ct
α

2−α−β
+δ−µ,

∫

Rn

e(µ−δ)
A(x)

t (u2t + b|∇u|2)dx ≤ Ctδ−µ−1,

∫

Rn

e(µ−δ)
A(x)

t |u|p+1dx ≤ Ct−ρ+δ−µ−1

for large t≫ 1, where

ρ :=
(p− 1)(4n− 4α− βn)− 4(2− β)

4(2− α− β)
− (p− 1)δ,
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and δ > 0 is an arbitrarily small number.

Remark 1.1 In the case of constant coefficients a(x) = 1, b(x) = 1, we have α = 0, β = 0.

Thus pcr(n, α, β) becomes the Fujita’s critical exponent 1 + 2
n
. Furthermore, in the case of

constant bulk modulus b(x) = 1, namely, β = 0, then the exponent agrees with that of only the

space dependent coefficient case in the literature [7].

Proposition 1.1 (see [11]) Let a(x), b(x) satisfy (1.7), (1.8) respectively.

(i) (1.11) admits a solution A(x) such that

(A1) A0(1 + |x|)2−α−β ≤ A(x) ≤ A1(1 + |x|)2−α−β ,
(A2) µ > 0,

where A0 and A1 are positive constants.

(ii) In the special case,

a(x) ∼ a2|x|−α, b(x) ∼ b2|x|β for large x (1.15)

with a2 > 0, b2 > 0, (1.11) has a solution with the following properties:

(A3) A(x) ∼ a2

b2(n− α)(2 − α− β)
|x|2−α−β ,

(A4) µ =
n− α

2− α− β
.

Combining the above proposition with Theorem 1.1, we can give more explicit weighted

estimates.

Corollary 1.1 Under the assumptions in Theorem 1.1, the following estimates hold:

∫

Rn

eA0(µ−δ)
|x|2−α−β

t u2dx ≤ Ct
α

2−α−β
+δ−µ,

∫

Rn

eA0(µ−δ)
|x|2−α−β

t (u2t + b|∇u|2)dx ≤ Ctδ−µ−1,

∫

Rn

eA0(µ−δ)
|x|2−α−β

t |u|p+1dx ≤ Ct−ρ+δ−µ−1

for large t≫ 1, where ρ is defined as Theorem 1.1.

Corollary 1.2 Assume that a(x), b(x) satisfy the condition (1.15). Then for every δ > 0,

the solution of (1.1)–(1.2) satisfies

∫

Rn

e
a2
b2

(2−α−β+δ)−2 |x|2−α−β

t u2dx ≤ Ctδ−
n−2α

2−α−β ,

∫

Rn

e
a2
b2

(2−α−β+δ)−2 |x|2−α−β

t (u2t + b|∇u|2)dx ≤ Ctδ−
n−α

2−α−β
−1,

∫

Rn

e
a2
b2

(2−α−β+δ)−2 |x|2−α−β

t |u|p+1dx ≤ Ct−ρ+δ−
n−α

2−α−β
−1

for large t≫ 1, where ρ is defined as Theorem 1.1.
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Corollary 1.3 Assume that a(x), b(x) satisfy the condition (1.15). Then for every δ > 0,

the solution of (1.1)–(1.2) satisfies

∫

Rn

u2dx ≤ Ctδ−
n−2α

2−α−β ,

∫

Rn

(u2t + b|∇u|2)dx ≤ Ctδ−
n−α

2−α−β
−1,

∫

Rn

|u|p+1dx ≤ Ct−ρ+δ−
n−α

2−α−β
−1

for large t≫ 1, where ρ is defined as Theorem 1.1.

Another important consequence of main conclusions is that the energy estimate under con-

sideration, restricted to {x : A(x) ≥ t1+κ} with κ > 0, decays exponentially.

Corollary 1.4 Under the assumptions in Theorem 1.1, for arbitrary fixed κ > 0 and every

δ > 0, the solution of (1.1)–(1.2) satisfies

∫

A(x)≥t1+κ

(u2t + b|∇u|2)dx ≤ Ce−(µ−δ)tκ

for large t≫ 1, where A(x) and µ are given by Hypothesis A.

Thus, the local energy in {x : A(x) ≥ t1+κ} decays exponentially fast as t→ ∞. This obser-

vation confirms that for small data the global solutions of (1.1)–(1.2) have parabolic asymptotic

profiles.

The blow up result in the case when 1 < p ≤ p2(n, α, β) :=
2−β
n−α + 1 is as follows.

Theorem 1.2 Let a(x) and b(x) satisfy (1.7) and (1.8) respectively, and let the exponents

α, β belong to

0 ≤ α < 1, 0 ≤ β < 2, 2α+ β ≤ 2, α+ β > 1.

When 1 < p ≤ p2(n, α, β), if the initial data (u0, u1) satisfy

∫

Rn

(a(x)u0 + u1)dx > 0,

then the solution of problem (1.1)–(1.2) does not exist globally for any ε > 0.

Remark 1.2 In the case of constant a(x) = 1, b(x) = 1, we obtain α = 0, β = 0. Then the

exponent p2(n, 0, 0) = 1+ 2
n
becomes the Fujita’s critical exponent. In addition, when b(x) = 1,

namely, β = 0, the exponent p2(n, α, 0) = 1 + 2
n−α coincides with the blow up result in the

literature [7].

Remark 1.3 When p2(n, α, β) < p ≤ pcr(n, α, β), it is expected that the solution of (1.1)–

(1.2) either exists globally or blows up in the finite time. However, we have no result. In the

future paper, we aim to study it.
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2 Small Data Global Solutions

We first state a proposition about the support of the solutions for the wave equation with

variable coefficients. Fortunately, the argument has presented in [11].

Proposition 2.1 (Finite Speed of Propagation) Assume that b(x) satisfies (1.8). If u0, u1

are supported inside the ball |x| < R, then u(x, t) = 0 when

|x| > Rt := [(1 +R)
2−β
2 + t

√
b1]

2
2−β .

Moreover, one has that the radius Rt for a general b(x) satisfies the following estimates:

Rt ∼ R+ Ct
2−β
2 .

Proposition 2.2 (see [19]) Define γ := 2α
2−β , then γ ∈ [0, 1] and

g(t) := inf{a(x) : x ∈ supp u(·, t)}, (2.1)

G(t) := sup{A(x) : x ∈ supp u(·, t)}. (2.2)

Then

g(t) ≥ g0t
−γ , t ≥ T, (2.3)

G(t) ≤ G0t
2−γ , t ≥ T, (2.4)

where g0 and G0 are positive constants.

To show the global existence of solutions of problem (1.1)–(1.2) for sufficiently small data,

we rely on a modification of technique developed by Todorova and Yordanov [17–18]. Indeed,

for the solution u(x, t) of problem (1.1)–(1.2) we set v = uw−1, where w is an approximate

solution of linear part of (1.1)–(1.2) and can be defined by

w(t, x) := t−me−m1
A(x)

t ,

where the parameters m := µ−2δ, m1 := µ− δ and A(x) is determined in Hypothesis A, where

δ ∈ (0, 12µ) is a small number.

We also set

w1(t, x) :=
3

4

(6

t
+
σ(x)

t2

)−1

w(t, x),

where

σ(x) := (µ− δ)A(x).

We consider the semilinear wave equation of the form

utt − div(b(x)∇u) + a(x)ut = |u|p−1u, (2.5)

where the coefficients a(x) ∈ C0(Rn), b(x) ∈ C1(Rn).
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Our goal is to derive a weighted energy identity for u. Let v = w−1u and substitute u = wv

into (2.5), we have

vtt − b∇v − (∇b + 2bw−1∇w)∇v + (2w−1wt + a)vt +Q(t, x)v = wp−1|v|p, (2.6)

where

Q(t, x) = w−1(wtt − div(b∇w) + awt).

Multiplying both sides of (2.6) by wv + w1vt and integrating over Rn, we have the equality

d

dt
E(vt,∇v, v) + F (vt,∇v) +G(v) = H(t) +

d

dt

( 1

p+ 1

∫

Rn

w1w
p−1|v|p+1dx

)

, (2.7)

where the weighted energy

E(vt,∇v, v) =
1

2

∫

Rn

[w1(v
2
t + b|∇v|2) + 2wvtv + (Qw1 + wt + aw)v2]dx (2.8)

and

F (vt,∇v) =
1

2

∫

Rn

(−∂tw1 + 2(a+ 2w−1wt)w1 − 2w)v2t dx

+

∫

Rn

b(∇w1 − 2w1w
−1∇w)vt∇vdx +

1

2

∫

Rn

b(−∂tw1 + 2w)|∇v|2dx, (2.9)

G(v) =
1

2

∫

Rn

[Qw − (Qw1)t]v
2dx, (2.10)

H(t) =

∫

Rn

[

wp − 1

p+ 1
(w1w

p−1)t

]

︸ ︷︷ ︸

K(t,x)

|v|p+1dx. (2.11)

Different conditions are needed for the damping weights w1, w to ensure that F (vt,∇v) +
G(v) > 0, and hence the weighted energy E(vt,∇v, v) is bounded.

Lemma 2.1 Let a(x) and b(x) satisfy conditions (1.7) and (1.8). There exists a large

number t0 > 0 such that for t ≥ t0 the following conditions hold:

(i) Q ≥ 0, Qt ≤ 0,

(ii) −∂tw1 + w ≥ 0,

(iii) (−∂tw1 + 2(a+ 2w−1wt)w1 − 2w)(−∂tw1 + 2w) ≥ b(∇w1 − 2w1w
−1∇w)2.

If u is a solution of (1.1)–(1.2), where t ∈ (t0, Tm), we have

E(vt,∇v, v)(t) ≤ E(vt,∇v, v)(t0) +
1

p+ 1

∫

Rn

w1w
p−1|v|p+1dx

︸ ︷︷ ︸

(I)

+

∫ t

t0

H(s)ds

︸ ︷︷ ︸

(II)

. (2.12)

Proof The proof of conditions (i)–(iii) is similar to [19], so we omit it. Notice that conditions

(i) and (ii) imply

Qw − ∂t(Qw1) = Q(w − ∂tw1)−Qtw1 ≥ 0,



Global Existence and Blow-up for Semilinear Wave Equations with Variable Coefficients 651

hence G(v) ≥ 0. Condition (iii) and −∂tw1 + 2w ≥ 0, which follows from (ii), guarantee that

the quadratic form F (vt,∇v) ≥ 0. Therefore, after integrating (2.7) over [t0, t], we can obtain

the final inequality, where t0 < t < Tm.

We need estimates (I) and (II) in the right side of (2.12). Now we introduce a new function:

W (t) :=

∫

Rn

w1(t, x)(v
2
t + b|∇v|2)dx+

∫

Rn

a(x)w(t, x)v2(t, x)dx.

For (I) in the right side of (2.12), we have the following crucial estimate.

Lemma 2.2 Let a(x) and b(x) satisfy conditions (1.7)–(1.8). If p > pcr(n, α, β), then there

exists a number ρ > 0, which depends on p, n, α, β and δ such that

∫

Rn

(

1 +
σ(x)

t

)

w1w
p−1|v|p+1dx ≤ Ct−ρW (t)

p+1
2 , t ∈ [t0, Tm), (2.13)

where

ρ :=
(p− 1)(4n− 4α− βn)− 4(2− β)

4(2− α− β)
− (p− 1)δ.

Proof Using definitions of w(t, x) and w1(t, x), we have

w1w
p−1|v|p+1 =

3

4

(6

t
+
σ(x)

t2

)−1

wp|v|p+1 ≤ Ctwp|v|p+1

and

σ(x)

t
w1w

p−1|v|p+1 =
3

4
t
σ(x)

t

(

6 +
σ(x)

t

)−1

wp|v|p+1 ≤ Ctwp|v|p+1.

We add the above two estimates and integrate it over Rn, then get
∫

Rn

(

1 +
σ(x)

t

)

w1w
p−1|v|p+1dx ≤ Ct−(pm−1)

∫

Rn

e−
pσ(x)

t |v|p+1dx. (2.14)

By setting

ψ(t, x) =
σ(x)

2t
, η =

2p

p+ 1
,

we can rewrite (2.14) in the form

∫

Rn

(

1 +
σ(x)

t

)

w1w
p−1|v|p+1dx ≤ Ct−(pm−1)‖e−ηψ(t,·)v‖p+1

p+1. (2.15)

To estimate the weighted norm ‖e−ηψ(t,·)v‖p+1, we use the Gagliardo-Nirenberg inequality

‖e−ηψ(t,·)v‖p+1 ≤ ‖e−ηψ(t,·)v‖θ2
︸ ︷︷ ︸

(A)

‖∇(e−ηψ(t,·)v)‖1−θ2
︸ ︷︷ ︸

(B)

, (2.16)

where

θ = 1− n
(1

2
− 1

p+ 1

)

.
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We estimate the first term (A) in the right side of inequality (2.16), beginning with following

decomposition

e−2ηψv2(t, x) = e−
σ(x)

t t−mtme−
(p−1)σ(x)

(p+1)t t−
α

2−α−β t
α

2−α−β v2

= tmw(t, x)v2(t, x)(e−
(p−1)σ(x)

(p+1)t t−
α

2−α−β )t
α

2−α−β . (2.17)

Furthermore, there exists a constant C > 0, such that for any x > 0, it is true that

x
α

2−α−β ≤ Ce
x(p−1)
p+1 , 0 ≤ α < 1,

α

2− α− β
≤ 1.

Thus,

e−
(p−1)σ(x)

(p+1)t t−
α

2−α−β ≤ t−
α

2−α−β

(σ(x)

t

)− α
2−α−β

= σ(x)−
α

2−α−β = (µ− δ)−
α

2−α−βA(x)−
α

2−α−β

≤ Ca(x),

this inequality combined with (2.17) implies

‖e−ηψv‖22 ≤ Ctm+ α
2−α−β

∫

Rn

a(x)w(t, x)v2(t, x)dx. (2.18)

To estimate the second term (B) in the right of inequality (2.16), notice that

|∇(e−ηψv)|2 = η2e−2ηψ|∇ψ|2v2
︸ ︷︷ ︸

(B1)

− 2ηe−2ηψv∇ψ∇v
︸ ︷︷ ︸

(B2)

+e−2ηψ|∇v|2
︸ ︷︷ ︸

(B3)

.

Integrating (B2) by parts

2η

∫

Rn

e−2ηψv∇v∇ψdx = η

∫

Rn

(e−2ηψ∇ψ)∇v2dx

= −η
∫

Rn

v2(e−2ηψ∆ψ − 2ηe−2ηψ|∇ψ|2)dx

= 2η2
∫

Rn

e−2ηψv2|∇ψ|2dx− η

∫

Rn

v2e−2ηψ∆ψdx,

combining (B1)–(B3) and integrating over Rn, we obtain
∫

Rn

|∇(e−ηψv)|2dx =

∫

Rn

e−2ηψ|∇v|2dx+

∫

Rn

e−2ηψ(η∆ψ − η2|∇ψ|2)v2dx

≤ η

∫

Rn

e−2ηψ(∆ψ)v2dx

︸ ︷︷ ︸

(B4)

+

∫

Rn

e−2ηψ |∇v|2dx
︸ ︷︷ ︸

(B5)

. (2.19)

To estimate the first term (B4) in the right side of inequality (2.19), we use

∆ψ(t, x) =
1

2t
∆σ(x) =

µ− δ

2t
∆A(x) ≤ µ− δ

2a0t
a(x).

So, (B4) of inequality (2.19) will be
∫

Rn

e−2ηψ(∆ψ)v2dx ≤ Ct−1

∫

Rn

a(x)e−2ηψv2dx.
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Since the exponential term satisfies

e−2ηψ(t,x) = e−
2pσ(x)
(p+1)t = e−

σ(t)
t t−me−

(p−1)σ(x)
(p+1)t tm ≤ tmw(t, x), (2.20)

(B4) is estimated as follows

η

∫

Rn

e−2ηψ(∆ψ)v2dx ≤ Ctm−1

∫

Rn

a(x)w(t, x)v2(t, x)dx. (2.21)

To proceed, we estimate the second term (B5) in the right side of inequality (2.19). From the

definition of w1 and (2.20), we see that

e−2ηψ(t,x) = tmw(t, x)e−
(p−1)σ(x)

(p+1)t = tm
4

3

(6

t
+
σ(x)

t2

)

w1(t, x)e
− (p−1)σ(x)

(p+1)t

=
4

3
tm−1w1(t, x)

[(

6 +
σ(x)

t

)

e−
(p−1)σ(x)

(p+1)t

]

≤ C

b0
tm−1b0(1 + |x|)βw1(t, x)

≤ Ctm−1b(x)w1(t, x),

where 0 ≤ β < 2, C > 0, x 7→ (6 + x)e−kx(k > 0) is bounded above. Then the final estimate of

(B5) is
∫

Rn

e−2ηψ|∇v|2dx ≤ Ctm−1

∫

Rn

w1(t, x)b(x)|∇v|2dx. (2.22)

Therefore, by using (2.18) and (2.21)–(2.22), we rewrite inequality (2.16) as

‖e−ηψ(t,·)v‖p+1
p+1 ≤ C

(

tm+ α
2−α−β

∫

Rn

a(x)w(t, x)v2dx
) θ(p+1)

2

×
(

tm−1

∫

Rn

a(x)w(t, x)v2dx+ tm−1

∫

Rn

w1(t, x)b(x)|∇v|2dx
) (1−θ)(p+1)

2

≤ C(tm+ α
2−α−βW (t))

θ(p+1)
2 (tm−1W (t))

(1−θ)(p+1)
2

= Ct[(m+ α
2−α−β

) θ
2+(m−1) 1−θ

2 ](p+1)W (t)
p+1
2 .

This inequality together with (2.15) gives
∫

Rn

(

1 +
σ(x)

t

)

w1w
p−1|v|p+1dx ≤ Ct−ρW (t)

p+1
2 ,

where

ρ : =
1

2
(p− 1)(m+ 1)− 2− β

2− α− β

p+ 1

2
θ

=
(p− 1)(4n− 4α− βn)− 4(2− β)

4(2− α− β)
− (p− 1)δ.

Finally, from the assumption pcr(n, α, β) < p we find that ρ > 0, which implies the desired

estimate.

Now using the result of Lemma 2.2, we are able to estimate the second term (II) to the right

side of (2.12).
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Lemma 2.3 Under the assumptions in Lemma 2.2, we have

∫ t

t0

H(s)ds ≤ C

∫ t

t0

s−1−ρW (s)
p+1
2 ds, t ∈ [t0, Tm) (2.23)

with some constant C > 0, where ρ > 0 is the constant determined in Lemma 2.2.

Proof It follows from the definitions of w1 and w that

K(t, x) := wp − 1

p+ 1
(w1w

p−1)t =
1

p+ 1
w1w

p−1
[

(p+ 1)
w

w1
− ∂tw1

w1
− (p− 1)

wt

w

]

.

It is easy to see that

wt

w
= −m

t
+
σ(x)

t2
,

w

w1
=

4

3

(6

t
+
σ(x)

t2

)

,

moreover,

∂tw1

w1
=

(6

t
+

2σ(x)

t2

)(

6 +
σ(x)

t

)−1

+
wt

w
.

Hence, we obtain

K(t, x) = w1w
p−1

[4

3

(6

t
+
σ(x)

t2

)

− p

p+ 1

(σ(x)

t2
− m

t

)

− 1

p+ 1

(6

t
+
σ(x)

t2

)−1( 6

t2
+

2σ(x)

t3

)]

≤ w1w
p−1

[4

3

(6

t
+
σ(x)

t2

)

+
pm

(p+ 1)t

]

= t−1w1w
p−1

[(

8 +
pm

p+ 1

)

+
4σ(x)

3t

]

≤ Ct−1w1w
p−1

(

1 +
σ(x)

t

)

,

which implies

K(t, x) = wp − 1

p+ 1
(w1w

p−1)t ≤ Ct−1w1w
p−1

(

1 +
σ(x)

t

)

.

Integrating over [t0, t], one has

∫ t

t0

H(s)ds =

∫ t

t0

∫

Rn

[

wp − 1

p+ 1
(w1w

p−1)t

]

|v|p+1dxds

≤ C

∫ t

t0

s−1

∫

Rn

(

1 +
σ(x)

s

)

w1(s, x)w
p−1(s, x)|v(s, x)|p+1dxds. (2.24)

Thus, by using Lemma 2.2 and (2.24), we derive the estimate in Lemma 2.3.

From Lemmas 2.2–2.3 and the weighted energy inequality (2.12), we get the following esti-

mate

E(vt,∇v, v)(t) =
1

2

∫

Rn

w1(v
2
t + b|∇v|2)dx +

1

2

∫

Rn

[2wvtv + (Qw1 + wt + aw)v2]dx

≤ E(vt,∇v, v)(t0) + CW (t)
p+1
2 + C

∫ t

t0

s−1−ρW (s)
p+1
2 ds. (2.25)
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Using w1 > 0 and Q ≥ 0, which follows from Lemma 2.1(iii), we obtain Qw1 ≥ 0. Since
d
dt(wv

2) = wtv
2 + 2wvvt, we can rewrite (2.25) as follows

1

2

∫

Rn

w1(v
2
t + b|∇v|2)dx+

1

2

∫

Rn

awv2dx+
1

2

d

dt

∫

Rn

wv2dx

≤ E(vt,∇v, v)(t0) + CW (t)
p+1
2 + C

∫ t

t0

s−1−ρW (s)
p+1
2 ds. (2.26)

We need one more preparation.

Lemma 2.4 Let γ ∈ [0, 1], c0 > 0, E0 > 0 be given real numbers, and let f ∈ C([t0, Tm))

be a monotone increasing function. If a function h ∈ C1([t0, Tm)) satisfies the inequality

h′(t) + c0t
−γh(t) ≤ E0 + f(t),

then the following estimate holds

h(t) ≤ h(t0) + C(E0 + f(t))tγ

with some constant C > 0.

Proof The proof is similar to [7], so we omit it.

Let

M(t) := max
0≤s≤t

W (s). (2.27)

Note that the function t 7→ M(t) is monotone increasing. Under these preparations one can

prove the following lemma.

Lemma 2.5 Let γ ∈ [0, 1], then the following bound holds

∫

Rn

wv2dx ≤
∫

Rn

wv2dx|t=t0 + Ctγ
[

E(vt,∇v, v)(t0) +M(t)
p+1
2 +

∫ t

t0

s−1−ρW (s)
p+1
2 ds

]

for t ∈ [t0, Tm) with large t0 > 0.

Proof Since a(x) ≥ g(t) ≥ g0t
−γ as it was presented in Proposition 2.2, it follows from

(2.26) that

g0t
−γ

∫

Rn

wv2dx+
d

dt

∫

Rn

wv2dx ≤ 2E(vt,∇v, v)(t0) + CM(t)
p+1
2 + C

∫ t

t0

s−1−ρW (s)
p+1
2 ds.

Note that the function

t 7→ CM(t)
p+1
2 + C

∫ t

t0

s−1−ρW (s)
p+1
2 ds

is monotone increasing. We can apply Lemma 2.4 with

h(t) =

∫

Rn

wv2dx, E0 = 2E(vt,∇v, v)(t0), c0 = g0,

f(t) = CM(t)
p+1
2 + C

∫ t

t0

s−1−ρW (s)
p+1
2 ds
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and obtain the desired estimate.

Denote by

Eu(t) :=
1

2

∫

Rn

|ut|2dx+
1

2

∫

Rn

b(x)|∇u|2dx,

where u ∈ X1[0, Tm) is the weak solutions of (1.1)–(1.2). We are in need of the following

lemmas.

Lemma 2.6 For each t ∈ [0, Tm), it is true that
∫

Rn

w(t, x)v2(t, x)dx ≤ CR(t)‖∇u‖2,

E(vt,∇v, v)(t) ≤ CR(t)Eu(t),

with some t-dependent constant CR(t) satisfying lim
t→+∞

CR(t) = +∞.

Proof The proof is omitted since it elementary follows from the fact that v = w−1u,

w = t−me−m1
A(x)

t , the compact support of the data and the Poincaré inequality.

The standard energy inequality associated with the problem (1.1)–(1.2) is

Eu(t) ≤ Eu(0) +
1

p+ 1
‖u(t, ·)‖p+1

p+1. (2.28)

Lemma 2.7 Let t0 > 0 be the time defined in Lemmas 2.1–2.6, then there exists T ∈
(t0, Tm), which depends on ε > 0, such that for all t ∈ [0, T ]

Eu(t) ≤ 2Eu(0) ≤ (‖u1‖2 + b1(1 +R)2‖∇u0‖2)ε2,
lim
ε→0+

T = +∞.

Proof With a simple modification for [7], the lemma can be easily proved, so we omit it

here.

3 Global Existence

In this section, we are going to prove the main theorem and corollaries. However, we need

to state several lemmas in order to find the decay estimates for the energy, L2 and Lp+1 norms.

Lemma 3.1 Assume that the a(x) and b(x) satisfy (1.7)–(1.8), and γ = 2α
2−β ∈ [0, 1], if

the weights w and w1 satisfy conditions (i)–(iii) and

(iv) w(t, x) ≤ C1t
−γw1(t, x),

(v) |wt(t, x)| ≤ C1t
−γw(t, x),

then
∫

Rn

w1(v
2
t + b|∇v|2)dx ≤ Cε2,

∫

Rn

awv2dx ≤ Cε2
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for all t ≥ t0.

Proof For the proof of conditions (iv)–(v) (see [19]), Lemma 2.7 shows that we can consider

the case t0 < T < Tm. Using the inequality (2.25), since Qw1 ≥ 0, we have
∫

Rn

w1(v
2
t + b|∇v|2)dx +

∫

Rn

(2wvtv + wtv
2 + awv2)dx

≤ 2E(vt,∇v, v)(t0) + CW (t)
p+1
2 + C

∫ t

t0

s−1−ρW (s)
p+1
2 ds. (3.1)

For any ǫ ∈ (0, 1), since

|2wvtv| ≤ ǫtγwv2t + ǫ−1t−γwv2,

then

2wvtv ≥ −ǫtγwv2t − ǫ−1t−γwv2.

Hence, (3.1) becomes
∫

Rn

w1(v
2
t + b|∇v|2)dx− ǫtγ

∫

Rn

wv2t dx − ǫ−1t−γ
∫

Rn

wv2dx+

∫

Rn

(wt + aw)v2dx

≤ 2E(vt,∇v, v)(t0) + CW (t)
p+1
2 + C

∫ t

t0

s−1−ρW (s)
p+1
2 ds.

That is,
∫

Rn

(w1 − ǫtγw)(v2t + b|∇v|2)dx+

∫

Rn

(wt + aw − ǫ−1t−γw)v2dx

≤ 2E(vt,∇v, v)(t0) + CW (t)
p+1
2 + C

∫ t

t0

s−1−ρW (s)
p+1
2 ds,

conditions (iv) and (v) yield

(1 − ǫC1)

∫

Rn

w1(v
2
t + b|∇v|2)dx +

∫

Rn

awv2dx− (C1 + ǫ−1)t−γ
∫

Rn

wv2dx

≤ 2E(vt,∇v, v)(t0) + CW (t)
p+1
2 + C

∫ t

t0

s−1−ρW (s)
p+1
2 ds.

Having this together with Lemma 2.5, we obtain

(1− ǫC1)

∫

Rn

w1(v
2
t + b|∇v|2)dx +

∫

Rn

awv2dx

≤ CE(vt,∇v, v)(t0) + Ct−γ
∫

Rn

wv2dx|t=t0 + CM(t)
p+1
2 + C

∫ t

t0

s−1−ρW (s)
p+1
2 ds,

where C > 0 is a constant independent of ǫ. By taking ǫ > 0 sufficiently small, one has
∫

Rn

w1(v
2
t + b|∇v|2)dx+

∫

Rn

awv2dx

≤ CE(vt,∇v, v)(t0) + Ct−γ
∫

Rn

wv2dx|t=t0 + CM(t)
p+1
2 + C

∫ t

t0

s−1−ρW (s)
p+1
2 ds
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for all t ∈ [t0, Tm). From this inequality and Lemma 2.6, we obtain the final estimate of W (t)

W (t) ≤ Ct0Eu(t0) + CM(t)
p+1
2 +

t
−ρ
0

ρ

(

max
0≤s≤t

W (s)
) p+1

2

, t ∈ [t0, Tm).

Applying Lemma 2.7, we have

M(t) ≤ Ct0ε
2 + CM(t)

p+1
2 , t ∈ [t0, Tm)

for sufficiently small ε, then continuous non-decreasing function M(t) must remain bounded.

Indeed, if C2
p+1
2 (Ct0ε

2)
p−1
2 < 1, then M(t) can never equal 2Ct0ε

2. If it does, we would

have

2Ct0ε
2 ≤ Ct0ε

2 + C(2Ct0ε
2)

p+1
2 ,

that is

1 ≤ C2
p+1
2 (Ct0ε

2)
p−1
2

which is false. Therefore

M(t) < 2Ct0ε
2, t ∈ [t0, Tm). (3.2)

This implies that Tm = ∞, in other words, we have global solutions.

Lemma 3.2 Let a(x) and b(x) satisfy (1.7)–(1.8), assume that the weights w and w1 satisfy

conditions (i)–(v) together with

(vi) w1w
−3(w2

t + b|∇w|2) ≤ Ca(x),

where C is a constant. Then, the solution u of (1.1)–(1.2) satisfies
∫

Rn

a(x)w−1u2dx ≤ Cε2,

∫

Rn

w1w
−2(u2t + b|∇u|2)dx ≤ Cε2,

for all t ≥ t0.

Proof For the proof of condition (vi), see [19]. To prove the first estimate, we use the

second estimate of Lemma 3.1 with v = w−1u. It is left to prove.

We have the second estimate

v2t = (−w−2wtu+ w−1ut)
2 ≥ 1

2
w−2u2t − 3w−4w2

t u
2

and

|∇v|2 = | − w−2u∇w + w−1∇u|2 ≥ 1

2
w−2|∇u|2 − 3w−4|∇w|2u2.

These equalities imply

1

2
w1w

−2(u2t + b|∇u|2) ≤ w1(v
2
t + b|∇v|2) + 3w1w

−4(w2
t + b|∇w|2)u2.
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Integrating this inequality over Rn and using (vi), Lemma 3.1, we obtain

1

2

∫

Rn

w1w
−2(u2t + b|∇u|2)dx ≤

∫

Rn

w1(v
2
t + b|∇v|2)dx + C

∫

Rn

w−1a(x)u2dx ≤ Cε2.

Here we are in a position to proof the main theorem and corollaries.

Proof of Theorem 1.1 Using the first estimate of Lemma 3.2, we have the following

weighted estimates
∫

Rn

a(x)e(µ−δ)
A(x)

t u2dx ≤ Cε2t2δ−µ. (3.3)

Further by using the bounds for A(x), namely,

A1(1 + |x|)2−α−β ≤ A(x) ≤ A2(1 + |x|)2−α−β , for x ∈ R
n,

together with (1.7) we get the estimate

a(x) ≥ CA(x)−
α

2−α−β = Ct−
α

2−α−β

(A(x)

t

)− α
2−α−β

≥ Ct−
α

2−α−β e−δ
A(x)

t ,

where C > 0 and t ≥ t0 is sufficiently large. Substituting this lower bound for a(x) into

inequality (3.3), we have the decay estimate for the L2-norm of solution
∫

Rn

e(µ−2δ)A(x)
t u2dx ≤ Cε2t

α
2−α−β

+2δ−µ.

To prove the decay estimate for the energy of solution u, we use the second estimate of Lemma

3.2,
∫

Rn

w1w
−2(u2t + b|∇u|2)dx ≤ Cε2,

which is equivalent to
∫

Rn

e(µ−δ)
A(x)

t

(1

t
+
A(x)

t2

)−1

(u2t + b|∇u|2)dx ≤ Cε2t2δ−µ.

To simplify the estimate, we notice that

(1

t
+
A(x)

t2

)−1

= t
(

1 +
A(x)

t

)−1

≥ C0te
−δA(x)

t (3.4)

with some C0 > 0 depending on δ. Hence,

∫

Rn

e(µ−2δ)A(x)
t (u2t + b|∇u|2)dx ≤ Cε2t2δ−µ−1.

Finally, we can show the decay estimate for the Lp+1 norm of the solution u. From Lemma 2.2

and (3.2), we find that
∫

Rn

w1w
p−1|v|p+1dx ≤ Cε2t−ρ.
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Applying v = w−1u and the weights w, w1, one obtains

∫

Rn

(1

t
+
A(x)

t2

)−1

tµ−2δe(µ−δ)
A(x)

t |u|p+1dx ≤ Cε2t−ρ.

Using (3.4) again, we have

∫

Rn

e(µ−2δ)A(x)
t |u|p+1dx ≤ Cε2t−ρ+2δ−µ−1.

These yield the estimates in Theorem 1.1 with a loss of decay δ. To obtain the final form we

only replace 2δ by δ.

Proof of Corollary 1.1 To obtain the weighted energy estimate, we combine Theorem

1.1 with the lower bound of A(x) from Proposition 1.1, namely,

A0(1 + |x|)2−α−β ≤ A(x) ≤ A1(1 + |x|)2−α−β . (3.5)

We complete the proof by substituting this lower bound of A(x) into the result of Theorem 1.1.

Proof of Corollary 1.2 The result is similar to but more precise than the first corollary.

Using properties (A3) and (A4) in Proposition 1.1, we write the main decay estimates as

∫

Rn

e(
n−α

2−α−β
−δ)A(x)

t u2dx ≤ Ctδ−
n−α

2−α−β ,

∫

Rn

e(
n−α

2−α−β
−δ)A(x)

t (u2t + b|∇u|2)dx ≤ Ctδ−
n−α

2−α−β
−1,

∫

Rn

e(
n−α

2−α−β
−δ)A(x)

t |u|p+1dx ≤ Ct−ρ+δ−
n−α

2−α−β
−1,

where

A(x) ∼ a2

b2(n− α)(2 − α− β)
|x|2−α−β , |x| → ∞.

Hence there exists a C > 0, such that

A(x) + C ≥ a2

b2(n− α)(2 − α− β + δ)
|x|2−α−β , |x| ∈ R

n.

The remain part is a lower bound of A(x) which is similar to (3.5).

Proof of Corollary 1.3 It can be concluded from Corollary 1.2 easily, and so we omit it.

Proof of Corollary 1.4 For the energy estimate in Theorem 1.1, we restrict the integration

to {x : A(x) ≥ t1+κ} and complete the proof.

4 Blow-up

In this section, we prove the blow-up part of Theorem 1.2. We adopt on the method of test

functions developed by Zhang [21].
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Proof of Theorem 1.2 First we find a non-negative φ ∈ C∞
o (R× R

n) such that

φ(t, x) =







1, (t, x) ∈ [−1, 1]×B(R),

0, (t, x) ∈ R× R
n

[−2, 2]×B(R)
.

The function φ also satisfies the addition condition

|D2φ(t, x)|4 + |Dφ(t, x)|2 ≤ Cφ(t, x), (t, x) ∈ (R× R
n),

where D = (∂t,∇) and C > 0 is some constant, see [21] for the existence of such function. Then

the test function φT is defined by

φT (t, x) = φ
( t

T 2−α−β
,
x

T

)

, (t, x) ∈ (R× R
n),

where T is some large parameter. Let PT be the subset of R× R
n, where φT = 1 and

QT = (supp(D2φT ) ∪ supp(DφT )) ∩ ([0,+∞)× R
n),

that is, QT is the support of derivatives restricted to t ≥ 0. It is easy to see that

PT ⊃ {(t, x) : t ≤ T 2−α−β and |x| ≤ RT },
QT ⊂ {(t, x) : t > T 2−α−β or |x| > RT }.

(4.1)

Assume that a global solution u exists. To obtain a contradiction, we multiply the equation

(1.1) by φqT , with q =
2p
p−1 . First using integration by part over [0,+∞]× R

n, it is easy to see

that
∫ ∞

0

∫

Rn

u(∂2t φ
q
T − b(x)∆φqT −∇b(x) · ∇φqT − a(x)∂tφ

q
T )dxdt

=

∫ ∞

0

∫

Rn

|u|p−1uφ
q
Tdxdt+

∫

Rn

(a(x)u0 + u1)dx. (4.2)

Here we use φT (0, x) = 1, ∂φT (0, x) = 1 and the initial conditions on u to evaluate boundary

integral at t = 0.

Next, we estimate the integral on the left side of (4.2) and compare it with the integrals on

the right side of (4.2). A straightforward calulation yields

|∂2t φqT − b(x)∆φqT −∇b(x) · ∇φqT − a(x)∂tφ
q
T |

≤ C[φq−2
T (∂tφT )

2 + φ
q−1
T (∂2t φT ) + b(x)φq−2

T (∇φT )2 + b(x)φq−1
T △φT

+∇b(x) · ∇φTφq−1
T + a(x)φq−1

T ∂tφT ]

≤ C[T−2(2−α−β)φ
q− 3

2

T + T−2b(x)φq−1
T + T−1∇b(x) · φq−

1
2

T + T−(2−α−β)a(x)φ
q− 1

2

T ].

By Holder’s inequality, we have
∣
∣
∣

∫ ∞

0

∫

Rn

u(∂2t φ
q
T − b(x)∆φqT −∇b(x) · ∇φqT − a(x)∂tφ

q
T )dxdt

∣
∣
∣

≤ C

∫ ∞

0

∫

QT

|u|(T−2(2−α−β)φ
q− 3

2

T + T−2b(x)φq−1
T + T−1∇b(x) · φq−

1
2

T

+ T−(2−α−β)a(x)φ
q− 1

2

T )dxdt

≤ C
(∫ ∞

0

∫

QT

|u|pφqT dxdt
) 1

p

I
p−1
p (T ), (4.3)
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where I(T ) = I1(T ) + I2(T ) + I3(T ) + I4(T ), Ii(T ) (i=1,2,3,4) will be given as follows, and we

will estimate Ii(T ) (i=1,2,3,4) separately.

I1(T ) ≤
∫ ∞

0

∫

Rn

|T−2(2−α−β)φ
1
2

T |
p

p−1dxdt ≤ CT−2(2−α−β) p
p−1

∫ 2T 2−α−β

0

∫

|x|≤2RT

1dxdt

≤ CT−2(2−α−β) p
p−1+(2−α−β)+n ≤ CT−(2−β) p

p−1+(2−α−β)+n, (4.4)

where we use 2(2− α− β) ≥ 2− β from the assumption 2α+ β ≤ 2.

I2(T ) ≤ CT−2 p
p−1

∫ 2T 2−α−β

0

∫

|x|≤2RT

(1 + |x|)
βp
p−1dxdt ≤ CT−(2−β) p

p−1+(2−α−β)+n. (4.5)

To proceed, we estimate the I3(T ) and I4(T ).

I3(T ) ≤ CT− p
p−1

∫ 2T 2−α−β

0

∫

|x|≤2RT

(1 + |x|)
(β−1)p
p−1 dxdt

≤ C







T− p
p−1+(2−α−β), β < 1,

(1 − β)p

p− 1
> n,

T− p
p−1+(2−α−β) lnT, β < 1,

(1 − β)p

p− 1
= n,

T−(2−β) p
p−1+(2−α−β)+n, β < 1,

(1 − β)p

p− 1
< n or β ≥ 1.

Using 2− α− β < 1, which follows from the assumption α+ β > 1, we obtain

− p

p− 1
+ (2− α− β) < − p

p− 1
+ 1 = − 1

p− 1
< 0,

thus an upper bound is

I3(T ) ≤ CT−(2−β) p
p−1+(2−α−β)+n. (4.6)

With the same reason of estimating I3(T ), we have

I4(T ) ≤ CT−(2−α−β) p
p−1

∫ 2T 2−α−β

0

∫

|x|≤2RT

(1 + |x|)−
αp
p−1dxdt

≤ C







T
−(2−α−β)

p

p− 1
+(2−α−β)

,
αp

p− 1
> n,

T
−(2−α−β)

p

p− 1
+(2−α−β)

lnT,
αp

p− 1
= n,

T
−(2−β)

p

p− 1
+(2−α−β)+n

,
αp

p− 1
< n

≤ CT−(2−β) p
p−1+(2−α−β)+n. (4.7)

Therefore, by using (4.4)–(4.7), we derive the final estimate of I(T ),

I(T ) ≤ CT−(2−β) p
p−1+(2−α−β)+n.
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Combing with (4.2)–(4.3) and the assumption of initial data, we have

∫ ∞

0

∫

Rn

|u|pφqT dxdt ≤ C
( ∫ ∞

0

∫

QT

|u|pφqT dxdt
) 1

p

T−(2−β)+(2−α−β+n)p−1
p , (4.8)

where C is indepent of T . Finally, we show that the above inequality cannot hold as T → ∞.

If p ≤ p2(n, α, β), then

−(2− β) + (2− α− β + n)
p− 1

p
≤ 0,

and (4.8) shows that

(∫ ∞

0

∫

PT

|u|pdxdt
) p−1

p ≤ C.

Letting T → ∞ and using (4.1), we conclude that u ∈ Lp([0,+∞)×R
n). Hence (4.1) also implies

that ‖u‖Lp(QT ) → 0 as T → ∞. Passing to the limit in (4.8), we obtain ‖u‖Lp([0,+∞)×Rn) ≤ 0

for any 1 < p ≤ p2(n, α, β). Since u is a non-trivial solution, that is impossible.
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