Nonlinear Maps Preserving the Jordan Triple *-Product on Factor von Neumann Algebras*

Changjing LI¹ Quanyuan CHEN² Ting WANG³

Abstract Let \mathcal{A} and \mathcal{B} be two factor von Neumann algebras. For $A, B \in \mathcal{A}$, define by $[A, B]_* = AB - BA^*$ the skew Lie product of A and B. In this article, it is proved that a bijective map $\Phi : \mathcal{A} \to \mathcal{B}$ satisfies $\Phi([[A, B]_*, C]_*) = [[\Phi(A), \Phi(B)]_*, \Phi(C)]_*$ for all $A, B, C \in \mathcal{A}$ if and only if Φ is a linear *-isomorphism, or a conjugate linear *isomorphism, or the negative of a linear *-isomorphism, or the negative of a conjugate linear *-isomorphism.

Keywords Jordan triple *-product, Isomorphism, von Neumann algebras 2000 MR Subject Classification 47B48, 46L10

1 Introduction

Let \mathcal{A} be a *-algebra and η be a non-zero scalar. For $A, B \in \mathcal{A}$, define the Jordan η -*-product of A and B by $A \diamondsuit_{\eta} B = AB + \eta BA^*$. The Jordan (-1)-*-product, which is customarily called the skew Lie product, was extensively studied because it naturally arises in the problem of representing quadratic functionals with sesquilinear functionals (see [9–11]) and in the problem of characterizing ideals (see [2, 8]). We often write the Jordan (-1)-*-product by $[A, B]_*$, that is $[A, B]_* = AB - BA^*$. A not necessarily linear map Φ between *-algebras \mathcal{A} and \mathcal{B} is said to preserve the Jordan η -*-product if $\Phi(A \diamondsuit_{\eta} B) = \Phi(A) \diamondsuit_{\eta} \Phi(B)$ for all $A, B \in \mathcal{A}$. Recently, many authors have started to pay more attention to the maps preserving the Jordan η -*-product between *-algebras (see [1, 3, 6–7]). In [3], Dai and Lu proved that if Φ is a bijective map preserving the Jordan η -*-product between two von Neumann algebras, one of which has no central abelian projections, then Φ is a linear *-isomorphism if η is not real and Φ is a sum of a linear *-isomorphism and a conjugate linear *-isomorphism if η is real.

Recently, Huo et al. [5] studied a more general problem. They considered the Jordan triple η -*-product of three elements A, B and C in a *-algebra \mathcal{A} defined by $A \diamondsuit_{\eta} B \diamondsuit_{\eta} C = (A \diamondsuit_{\eta} B) \diamondsuit_{\eta} C$ (we should be aware that \diamondsuit_{η} is not necessarily associative). A map Φ between *-algebras \mathcal{A} and \mathcal{B} is said to preserve the Jordan triple η -*-product if $\Phi(A \diamondsuit_{\eta} B \diamondsuit_{\eta} C) = \Phi(A) \diamondsuit_{\eta} \Phi(B) \diamondsuit_{\eta} \Phi(C)$ for all $A, B, C \in \mathcal{A}$. Clearly a map between *-algebras preserving the Jordan η -*-product also

Manuscript received October 25, 2015. Revised March 3, 2016.

¹Corresponding author. School of Mathematical Sciences, Shandong Normal University, Jinan 250014, China. E-mail: lcjbxh@163.com

²College of Information, Jingdezhen Ceramic Institute, Jingdezhen 333403, Jiangxi, China.

E-mail: cqy0798@163.com

³Department of Mathematics and Statistics, Nanyang Normal University, Nanyang 473061, Henan, China. E-mail: tingwang526@126.com

^{*}The work was supported by the National Natural Science Foundation of China (No.11526123, No.11401273) and the Natural Science Foundation of Shandong Province of China (No. ZR2015PA010).

preserves the Jordan triple η -*-product. However, the map $\Phi : \mathbb{C} \to \mathbb{C}$, $\Phi(\alpha + \beta i) = -4(\alpha^3 + \beta^3 i)$ is a bijection which preserves the Jordan triple (-1)-*-product and Jordan triple 1-*-product, but it does not preserve the Jordan (-1)-*-product or Jordan 1-*-product. So, the class of those maps preserving the Jordan triple η -*-product is, in principle wider than the class of maps preserving the Jordan η -*-product.

In [5], let $\eta \neq -1$ be a non-zero complex number, and let Φ be a bijection between two von Neumann algebras, one of which has no central abelian projections, satisfying $\Phi(I) = I$ and preserving the Jordan triple η -*-product. Huo et al. showed that Φ is a linear *-isomorphism if η is not real and Φ is the sum of a linear *-isomorphism and a conjugate linear *-isomorphism if η is real. On the one hand, Huo et al. did not consider the case $\eta = -1$. However, the Jordan (triple) (-1)-*-product is the most meaningful and important in Jordan (triple) η -*-products. On the other hand, it is easy to see that a map Φ preserving the Jordan triple η -*-product does not need to satisfy $\Phi(I) = I$. Indeed, let $\Phi(A) = -A$ for all $A \in \mathcal{A}$. Then Φ preserves the Jordan triple η -*-product but $\Phi(I) = -I$. Because of the above two reasons, in this paper, we will discuss maps preserving the Jordan triple (-1)-*-product without the assumption $\Phi(I) = I$. We mainly prove that a bijective map Φ between two factor von Neumann algebras preserves the Jordan triple (-1)-*-product if and only if Φ is a linear *-isomorphism, or a conjugate linear *-isomorphism, or the negative of a linear *-isomorphism, or the negative of a conjugate linear *-isomorphism.

As usual, \mathbb{R} and \mathbb{C} denote respectively the real field and complex field. Throughout, algebras and spaces are over \mathbb{C} . A von Neumann algebra \mathcal{A} is a weakly closed, self-adjoint algebra of operators on a Hilbert space H containing the identity operator I. \mathcal{A} is a factor von Neumann algebra means that its center contains only the scalar operators. It is clear that if \mathcal{A} is a factor von Neumann algebra, then \mathcal{A} is prime, that is, for $A, B \in \mathcal{A}$ if $A\mathcal{A}B = \{0\}$, then A = 0 or B = 0.

2 The Main Result and Its Proof

To complete the proof of main theorem, we need two lemmas.

Lemma 2.1 Let \mathcal{A} be an arbitrary factor von Neumann algebra with the identity operator I and $A \in \mathcal{A}$. If $AB = BA^*$ for all $B \in \mathcal{A}$, then $A \in \mathbb{R}I$.

Proof In fact, take B = I, then $A = A^*$. So AB = BA for all $B \in A$, which implies A belongs to the center of A. Note that A is a factor, it follows that $A \in \mathbb{R}I$.

Lemma 2.2 (see [4, Problem 230]) Let \mathcal{A} be a Banach algebra with the identity I. If $A, B \in \mathcal{A}$ and $\lambda \in \mathbb{C}$ are such that $[A, B] = \lambda I$, where [A, B] = AB - BA, then $\lambda = 0$.

The main result in this paper is as follows.

Theorem 2.1 Let \mathcal{A} and \mathcal{B} be two factor von Neumann algebras. Then a bijective map $\Phi : \mathcal{A} \to \mathcal{B}$ satisfies $\Phi([[A, B]_*, C]_*) = [[\Phi(A), \Phi(B)]_*, \Phi(C)]_*$ for all $A, B, C \in \mathcal{A}$ if and only if Φ is a linear *-isomorphism, or a conjugate linear *-isomorphism, or the negative of a linear *-isomorphism.

Proof Clearly, we only need to prove the necessity. First we give a key technique. Suppose

that A_1, A_2, \dots, A_n and T are in \mathcal{A} such that $\Phi(T) = \sum_{i=1}^n \Phi(A_i)$. Then for all $S_1, S_2 \in \mathcal{A}$, we have

$$\Phi([[S_1, S_2]_*, T]_*) = [[\Phi(S_1), \Phi(S_2)]_*, \Phi(T)]_* = \sum_{i=1}^n \Phi([[S_1, S_2]_*, A_i]_*),$$
(2.1)

$$\Phi([[S_1,T]_*,S_2]_*) = [[\Phi(S_1),\Phi(T)]_*,\Phi(S_2)]_* = \sum_{i=1}^n \Phi([[S_1,A_i]_*,S_2]_*)$$
(2.2)

and

$$\Phi([[T, S_1]_*, S_2]_*) = [[\Phi(T), \Phi(S_1)]_*, \Phi(S_2)]_* = \sum_{i=1}^n \Phi([[A_i, S_1]_*, S_2]_*).$$
(2.3)

In the following, we will complete the proof of Theorem 2.1 by proving several claims. Claim 1 $\Phi(0) = 0$.

Since Φ is surjective, there exists $A \in \mathcal{A}$ such that $\Phi(A) = 0$. Then we obtain $\Phi(0) = \Phi([[0, A]_*, A]_*) = [[\Phi(0), \Phi(A)]_*, \Phi(A)]_* = 0$.

Claim 2 $\Phi(\mathbb{R}I) = \mathbb{R}I$, $\Phi(\mathbb{C}I) = \mathbb{C}I$ and Φ preserves self-adjoint elements in both directions.

Let $\lambda \in \mathbb{R}$ be arbitrary. Since Φ is surjective, there exists $B \in \mathcal{A}$ such that $\Phi(B) = I$. By Claim 1, we have that

$$0 = \Phi([[\lambda I, A]_*, B]_*)$$

= $[[\Phi(\lambda I), \Phi(A)]_*, I]_*$
= $\Phi(\lambda I)\Phi(A) - \Phi(A)\Phi(\lambda I)^* - \Phi(A)^*\Phi(\lambda I)^* + \Phi(\lambda I)\Phi(A)^*$

holds true for all $A \in \mathcal{A}$. That is,

$$\Phi(\lambda I)(\Phi(A) + \Phi(A)^*) = (\Phi(A) + \Phi(A)^*)\Phi(\lambda I)^*$$

holds true for all $A \in \mathcal{A}$. So

$$\Phi(\lambda I)B = B\Phi(\lambda I)^*$$

holds true for all $B = B^* \in \mathcal{B}$. Since for every $B \in \mathcal{B}$, $B = B_1 + iB_2$ with $B_1 = \frac{B+B^*}{2}$ and $B_2 = \frac{B-B^*}{2i}$, it follows that

$$\Phi(\lambda I)B = B\Phi(\lambda I)^*$$

holds true for all $B \in \mathcal{B}$. It follows from Lemma 2.1 that $\Phi(\lambda I) \in \mathbb{R}I$. Note that Φ^{-1} has the same properties as Φ . Similarly, if $\Phi(A) \in \mathbb{R}I$, then $A \in \mathbb{R}I$. Therefore, $\Phi(\mathbb{R}I) = \mathbb{R}I$.

Let $A = A^* \in \mathcal{A}$. Since $\Phi(\mathbb{R}I) = \mathbb{R}I$, there exists $\lambda \in \mathbb{R}$ such that $\Phi(\lambda I) = I$. Then

$$0 = \Phi([[A, \lambda I]_*, \lambda I]_*) = [[\Phi(A), I]_*, I]_*$$

= $2\Phi(A) - 2\Phi(A)^*.$

Hence $\Phi(A) = \Phi(A)^*$. Similarly, if $\Phi(A) = \Phi(A)^*$, then $A = A^* \in \mathcal{A}$. Therefore Φ preserves self-adjoint elements in both directions.

Let $\lambda \in \mathbb{C}$ be arbitrary. For every $A = A^* \in \mathcal{A}$, we obtain that

$$0 = \Phi([[A, \lambda I]_*, C]_*)$$

= [[\Phi(A), \Phi(\lambda I)]_*, \Phi(C)]_*

holds true for all $C \in \mathcal{A}$. It follows from Lemma 2.1 that

$$[\Phi(A), \Phi(\lambda I)]_* \in \mathbb{R}I.$$

Since $A = A^*$, we have $\Phi(A) = \Phi(A)^*$. Hence

$$[\Phi(A), \Phi(\lambda I)] \in \mathbb{R}I.$$

It follows from Lemma 2.2 that

$$[\Phi(A), \Phi(\lambda I)] = 0,$$

and then

$$B\Phi(\lambda I) = \Phi(\lambda I)B$$

for all $B = B^* \in \mathcal{B}$. Thus for every $B \in \mathcal{B}$, since $B = B_1 + iB_2$ with $B_1 = \frac{B+B^*}{2}$ and $B_2 = \frac{B-B^*}{2i}$, we get

$$\Phi(\lambda I)B = B\Phi(\lambda I)$$

holds true for all $B \in \mathcal{B}$. Hence $\Phi(\lambda I) \in \mathbb{C}I$. Similarly, if $\Phi(A) \in \mathbb{C}I$, then $A \in \mathbb{C}I$. Therefore, $\Phi(\mathbb{C}I) = \mathbb{C}I$.

Claim 3 $\Phi(\frac{1}{2}I) = \pm \frac{1}{2}I$, $\Phi(\frac{1}{2}iI) = \pm \frac{1}{2}iI$, $\Phi(iA) = i\Phi(A) \ (\forall A \in \mathcal{A}) \text{ or } \Phi(iA) = -i\Phi(A) \ (\forall A \in \mathcal{A})$, where *i* is the imaginary unit.

By Claim 2, we have

$$\Phi\left(-\frac{1}{2}I\right) = \alpha I, \quad \Phi\left(\frac{1}{2}I\right) = \beta I$$

and

$$\Phi\left(-\frac{1}{2}\mathrm{i}I\right) = (\gamma_1 + \gamma\mathrm{i})I, \quad \Phi\left(\frac{1}{2}\mathrm{i}I\right) = (\omega_1 + \omega\mathrm{i})I$$

where $\alpha, \beta, \gamma, \omega, \gamma_1, \omega_1 \in \mathbb{R}$ and $\alpha \beta \gamma \omega \neq 0$. It follows from $0 = \left[\left[-\frac{1}{2} \mathrm{i}I, -\frac{1}{2} \mathrm{i}I \right]_*, -\frac{1}{2}I \right]_*$ that

$$0 = \left[\left[\Phi\left(-\frac{1}{2}iI\right), \Phi\left(-\frac{1}{2}iI\right) \right]_*, \Phi\left(-\frac{1}{2}I\right) \right]_* = \left[\left[(\gamma_1 + \gamma i)I, (\gamma_1 + \gamma i)I \right]_*, \alpha I \right]_* = 4\alpha\gamma\gamma_1 iI.$$

So $\gamma_1 = 0$. Similarly, by the equality $0 = \left[\left[\frac{1}{2} i I, \frac{1}{2} i I \right]_*, -\frac{1}{2} I \right]_*$, we get that $\omega_1 = 0$. Now we get

$$\Phi\left(-\frac{1}{2}I\right) = \alpha I, \quad \Phi\left(\frac{1}{2}I\right) = \beta I, \quad \Phi\left(-\frac{1}{2}iI\right) = \gamma iI, \quad \Phi\left(\frac{1}{2}iI\right) = \omega iI.$$

It follows from $-\frac{1}{2}iI = \left[\left[-\frac{1}{2}iI, -\frac{1}{2}I\right]_*, -\frac{1}{2}I\right]_*$ that

$$\gamma \mathbf{i}I = \Phi\left(-\frac{1}{2}\mathbf{i}I\right) = \left[\left[\Phi\left(-\frac{1}{2}\mathbf{i}I\right), \Phi\left(-\frac{1}{2}I\right)\right]_{*}, \Phi\left(-\frac{1}{2}I\right)\right]_{*} = 4\alpha^{2}\gamma \mathbf{i}I.$$
(2.4)

Also the equality $\frac{1}{2}iI = \left[\left[-\frac{1}{2}iI, -\frac{1}{2}I\right]_*, \frac{1}{2}I\right]_*$ implies

$$\omega \mathbf{i}I = \Phi\left(\frac{1}{2}\mathbf{i}I\right) = \left[\left[\Phi\left(-\frac{1}{2}\mathbf{i}I\right), \Phi\left(-\frac{1}{2}I\right)\right]_{*}, \Phi\left(\frac{1}{2}I\right)\right]_{*} = 4\alpha\beta\gamma\mathbf{i}I,$$
(2.5)

the equality $\frac{1}{2}I = \left[\left[-\frac{1}{2}iI, -\frac{1}{2}I \right]_*, -\frac{1}{2}iI \right]_*$ implies

$$\beta I = \Phi\left(\frac{1}{2}I\right) = \left[\left[\Phi\left(-\frac{1}{2}iI\right), \Phi\left(-\frac{1}{2}I\right)\right]_{*}, \Phi\left(-\frac{1}{2}iI\right)\right]_{*} = -4\alpha\gamma^{2}I$$
(2.6)

636

and $-\frac{1}{2}I_{\mathcal{A}} = \left[\left[-\frac{1}{2}iI, -\frac{1}{2}I \right]_{*}, \frac{1}{2}iI \right]_{*}$ ensures that $\alpha I = \Phi\left(-\frac{1}{2}I \right) = \left[\left[\Phi\left(-\frac{1}{2}iI \right), \Phi\left(-\frac{1}{2}I \right) \right]_{*}, \Phi\left(\frac{1}{2}iI \right) \right]_{*} = -4\alpha\gamma\omega I.$ (2.7)

Now (2.4)–(2.7) ensures that

$$\alpha^2 = \gamma^2 = \frac{1}{4}, \quad \alpha = -\beta, \quad \gamma = -\omega.$$
(2.8)

For every $A \in \mathcal{A}$, it follows from $iA = \left[\left[-\frac{1}{2}iI, -\frac{1}{2}I \right]_*, A \right]_*$ that

$$\Phi(iA) = \left[\left[\Phi\left(-\frac{1}{2}iI \right), \Phi\left(-\frac{1}{2}I \right) \right]_*, \Phi(A) \right]_* = 4\alpha\gamma i\Phi(A),$$
(2.9)

which together with (2.8) implies that $\Phi(iA) = i\Phi(A)$ ($\forall A \in A$) or $\Phi(iA) = -i\Phi(A)$ ($\forall A \in A$).

Choose an arbitrary nontrivial projection $P_1 \in \mathcal{A}$, and write $P_2 = I - P_1$. Denote $\mathcal{A}_{ij} = P_i \mathcal{A} P_j$, i, j = 1, 2, then $\mathcal{A} = \sum_{i,j=1}^2 \mathcal{A}_{ij}$. For every $A \in \mathcal{A}$, we may write $A = \sum_{i,j=1}^2 \mathcal{A}_{ij}$. In all that follows, when we write A_{ij} , it indicates that $A_{ij} \in \mathcal{A}_{ij}$. The following Claims 4–9 are devoted to the additivity of Φ .

Claim 4 For every $A_{11} \in \mathcal{A}_{11}$ and $B_{22} \in \mathcal{A}_{22}$, we have

$$\Phi(A_{11} + B_{22}) = \Phi(A_{11}) + \Phi(B_{22})$$

Since Φ is surjective, we may find an element $T = \sum_{i,j=1}^{2} T_{ij} \in \mathcal{A}$ such that

$$\Phi(T) = \Phi(A_{11}) + \Phi(B_{22}).$$

Since $[[iP_1, I]_*, A_{22}]_* = 0$, it follows from (2.1) and Claim 1 that

$$\Phi([[iP_1, I]_*, T]_*) = \Phi([[iP_1, I]_*, A_{11}]_*).$$

By the injectivity of Φ , we obtain that

$$2i(P_1T + TP_1) = [[iP_1, I]_*, T]_* = [iP_1, I]_*, A_{11}]_* = 4iA_{11},$$

and then we get $T_{11} = A_{11}$, $T_{12} = T_{21} = 0$. Similarly, $T_{22} = B_{22}$, proving the claim.

Claim 5 For every $A_{12} \in \mathcal{A}_{12}, B_{21} \in \mathcal{A}_{21}$, we have

$$\Phi(A_{12} + B_{21}) = \Phi(A_{12}) + \Phi(B_{21}).$$

Choose $T = \sum_{i,j=1}^{2} T_{ij} \in \mathcal{A}$ such that

$$\Phi(T) = \Phi(A_{12}) + \Phi(B_{21}).$$

Since

$$[[i(P_2 - P_1), I]_*, A_{12}]_* = [[i(P_2 - P_1), I]_*, B_{21}]_* = 0,$$

it follows from (2.1) that

$$\Phi([[i(P_2 - P_1), I]_*, T]_*) = 0.$$

From this, we get $[[i(P_2 - P_1), I]_*, T]_* = 0$. So $T_{11} = T_{22} = 0$.

Since $[[A_{12}, P_1]_*, I]_* = 0$, it follows from (2.3) that

$$\Phi([[T, P_1]_*, I]_*) = \Phi([[B_{21}, P_1]_*, I]_*).$$

By the injectivity of Φ , we obtain that

$$2(TP_1 - P_1T^*) = [[T, P_1]_*, I]_* = [[B_{21}, P_1]_*, I]_* = 2(B_{21} - B_{21}^*).$$

Hence $T_{21} = B_{21}$. Similarly, $T_{12} = A_{12}$, proving the claim.

Claim 6 For every $A_{11} \in \mathcal{A}_{11}, B_{12} \in \mathcal{A}_{12}, C_{21} \in \mathcal{A}_{21}, D_{22} \in \mathcal{A}_{22}$, we have

$$\Phi(A_{11} + B_{12} + C_{21}) = \Phi(A_{11}) + \Phi(B_{12}) + \Phi(C_{21})$$

and

$$\Phi(B_{12} + C_{21} + D_{22}) = \Phi(B_{12}) + \Phi(C_{21}) + \Phi(D_{22})$$

Let $T = \sum_{i,j=1}^{2} T_{ij} \in \mathcal{A}$ be such that

$$\Phi(T) = \Phi(A_{11}) + \Phi(B_{12}) + \Phi(C_{21})$$

It follows from (2.1) and Claim 5 that

$$\Phi(2i(P_2T + TP_2))$$

= $\Phi([[iP_2, I]_*, T]_*)$
= $\Phi(([[iP_2, I]_*, A_{11}]_*) + \Phi(([[iP_2, I]_*, B_{12}]_*) + \Phi(([[iP_2, I]_*, C_{21}]_*))$
= $\Phi(2iB_{12}) + \Phi(2iC_{21})$
= $\Phi(2i(B_{12} + C_{21})).$

Thus $P_2T + TP_2 = B_{12} + C_{21}$, which implies $T_{22} = 0$, $T_{12} = B_{12}$, $T_{21} = C_{21}$. Now we get $T = T_{11} + B_{12} + C_{21}$.

Since

$$[[i(P_2 - P_1), I]_*, B_{12}]_* = [[i(P_2 - P_1), I]_*, C_{21}]_* = 0,$$

it follows from (2.1) that

$$\Phi([[i(P_2 - P_1), I]_*, T]_*) = \Phi([[i(P_2 - P_1), I]_*, A_{11}]_*),$$

from which we get $T_{11} = A_{11}$. Consequently, $\Phi(A_{11} + B_{12} + C_{21}) = \Phi(A_{11}) + \Phi(B_{12}) + \Phi(C_{21})$.

Similarly, we can get that $\Phi(B_{12} + C_{21} + D_{22}) = \Phi(B_{12}) + \Phi(C_{21}) + \Phi(D_{22}).$

Claim 7 For every $A_{11} \in \mathcal{A}_{11}, B_{12} \in \mathcal{A}_{12}, C_{21} \in \mathcal{A}_{21}, D_{22} \in \mathcal{A}_{22}$, we have

$$\Phi(A_{11} + B_{12} + C_{21} + D_{22}) = \Phi(A_{11}) + \Phi(B_{12}) + \Phi(C_{21}) + \Phi(D_{22}).$$

Let $T = \sum_{i,j=1}^{2} T_{ij} \in \mathcal{A}$ be such that

$$\Phi(T) = \Phi(A_{11}) + \Phi(B_{12}) + \Phi(C_{21}) + \Phi(D_{22}).$$

638

It follows from (2.1) and Claim 6 that

$$\Phi(2iP_1T + 2iTP_1) = \Phi([[iP_1, I]_*, T]_*)$$

= $\Phi(([iP_1, I]_*, A_{11}]_*) + \Phi(([[iP_1, I]_*, B_{12}]_*)$
+ $\Phi(([[iP_1, I]_*, C_{21}]_*) + \Phi(([[iP_1, I]_*, D_{22}]_*))$
= $\Phi(4iA_{11}) + \Phi(2iB_{12}) + \Phi(2iC_{21})$
= $\Phi(4iA_{11} + 2iB_{12} + 2iC_{21}).$

Thus

$$P_1T + TP_1 = 2A_{11} + B_{12} + C_{21}$$

it follows that $T_{11} = A_{11}$, $T_{12} = B_{12}$, $T_{21} = C_{21}$. Similarly, we can get

$$\Phi(2iP_2T + 2iTP_2) = \Phi(4iD_{22} + 2iB_{12} + 2iC_{21})$$

From this, we get $T_{22} = D_{22}$, proving the claim.

Claim 8 For every $A_{jk}, B_{jk} \in \mathcal{A}_{jk}, \ 1 \leq j \neq k \leq 2$, we have

$$\Phi(A_{jk} + B_{jk}) = \Phi(A_{jk}) + \Phi(B_{jk}).$$

Since

$$\left[\frac{i}{2}I, P_j + A_{jk}\right]_*, P_k + B_{jk}\right]_* = i(A_{jk} + B_{jk}) + i(A_{jk}^*) + i(B_{jk}A_{jk}^*),$$

we get from Claim 7 that

$$\begin{split} &\Phi(\mathbf{i}(A_{jk} + B_{jk})) + \Phi(\mathbf{i}A_{jk}^{*}) + \Phi(\mathbf{i}(B_{jk}A_{jk}^{*})) \\ &= \Phi\left(\left[\left[\frac{\mathbf{i}}{2}I, P_{j} + A_{jk}\right]_{*}, P_{k} + B_{jk}\right]_{*}\right) \\ &= \left[\left[\Phi\left(\frac{\mathbf{i}}{2}I\right), \Phi(P_{j} + A_{jk})\right]_{*}, \Phi(P_{k} + B_{jk})\right]_{*} \\ &= \left[\left[\Phi\left(\frac{\mathbf{i}}{2}I\right), \Phi(P_{j}) + \Phi(A_{jk})\right]_{*}, \Phi(P_{k}) + \Phi(B_{jk})\right]_{*} \\ &= \left[\left[\Phi\left(\frac{\mathbf{i}}{2}I\right), \Phi(P_{j})\right]_{*}, \Phi(P_{k})\right]_{*} + \left[\left[\Phi\left(\frac{\mathbf{i}}{2}I\right), \Phi(P_{j})\right]_{*}, \Phi(B_{jk})\right]_{*} \\ &+ \left[\left[\Phi\left(\frac{\mathbf{i}}{2}I\right), \Phi(A_{jk})\right]_{*}, \Phi(P_{k})\right]_{*} + \left[\left[\Phi\left(\frac{\mathbf{i}}{2}I\right), \Phi(A_{jk})\right]_{*}, \Phi(B_{jk})\right]_{*} \\ &= \Phi(\mathbf{i}B_{jk}) + \Phi(\mathbf{i}(A_{jk} + A_{jk}^{*})) + \Phi(\mathbf{i}(B_{jk}A_{jk}^{*})) \\ &= \Phi(\mathbf{i}B_{jk}) + \Phi(\mathbf{i}A_{jk}) + \Phi(\mathbf{i}A_{jk}^{*}) + \Phi(\mathbf{i}(B_{jk}A_{jk}^{*})), \end{split}$$

which implies $\Phi(i(A_{jk} + B_{jk})) = \Phi(iB_{jk}) + \Phi(iA_{jk})$. By Claim 3, we obtain that $\Phi(A_{jk} + B_{jk}) = \Phi(A_{jk}) + \Phi(B_{jk})$.

Claim 9 For every $A_{jj} \in \mathcal{A}_{jj}$ and $B_{jj} \in \mathcal{A}_{jj}$, $1 \leq j \leq 2$, we have

$$\Phi(A_{jj} + B_{jj}) = \Phi(A_{jj}) + \Phi(B_{jj}).$$

Let $T = \sum_{i,j=1}^{2} T_{ij} \in \mathcal{A}$ be such that

$$\Phi(T) = \Phi(A_{jj}) + \Phi(B_{jj}).$$

C. J. Li, Q. Y. Chen and T. Wang

For $1 \le j \ne k \le 2$, it follows from (2.1) that

$$\Phi([[iP_k, I]_*, T]_*) = \Phi([[iP_k, I]_*, A_{jj}]_*) + \Phi([[iP_k, I_{\mathcal{A}}]_*, B_{jj}]_*) = 0.$$

Hence $P_kT + TP_k = 0$, which implies $T_{jk} = T_{kj} = T_{kk} = 0$. Now we get $T = T_{jj}$. For every $C_{jk} \in \mathcal{A}_{jk}, \ j \neq k$, it follows from (2.2) and Claim 8 that

$$\Phi(2iT_{jj}C_{jk}) = \Phi([[iP_j, T_{jj}]_*, C_{jk}]_*)$$

= $\Phi([[iP_j, A_{jj}]_*, C_{jk}]_*) + \Phi([[iP_j, B_{jj}]_*, C_{jk}]_*)$
= $\Phi(2iA_{jj}C_{jk}) + \Phi(2iB_{jj}C_{jk})$
= $\Phi(2i(A_{jj}C_{jk} + B_{jj}C_{jk})).$

Hence

$$(T_{jj} - A_{jj} - B_{jj})C_{jk} = 0$$

for all $C_{jk} \in \mathcal{A}_{jk}$. By the primeness of \mathcal{A} , we get that $T_{jj} = A_{jj} + B_{jj}$, proving the claim. Claim 10 Φ is *-additive.

The additivity of Φ is an immediate consequence of Claims 7–9. For every $A \in \mathcal{A}$, $A = A_1 + iA_2$, where $A_1 = \frac{A+A^*}{2}$ and $A_2 = \frac{A-A^*}{2i}$ are self-adjoint elements. By Claims 2–3, if for every $A \in \mathcal{A}$, $\Phi(iA) = i\Phi(A)$, then

$$\Phi(A^*) = \Phi(A_1 - iA_2) = \Phi(A_1) - \Phi(iA_2)$$

= $\Phi(A_1) - i\Phi(A_2) = \Phi(A_1)^* - i\Phi(A_2)^*$
= $\Phi(A_1)^* + (i\Phi(A_2))^* = \Phi(A_1 + iA_2)^*$
= $\Phi(A)^*.$

Similarly, if $\Phi(iA) = -i\Phi(A) \ (\forall A \in \mathcal{A})$, we also have $\Phi(A^*) = \Phi(A)^*$.

By Claims 3 and 10, we get that $\Phi(I) = I$ or $\Phi(I) = -I$. In the rest of this section, we deal with these two cases respectively.

Case 1 If $\Phi(I) = I$, then Φ is either a linear *-isomorphism or a conjugate linear *-isomorphism.

If $\Phi(I) = I$, by (2.8)–(2.9) and Claim 10, then $\alpha = -\frac{1}{2}$, $\beta = \frac{1}{2}$, $\gamma = -\omega$, $\Phi(iI) = 2\omega iI$ and $\Phi(iA) = -2\gamma i\Phi(A)$ for all $A \in \mathcal{A}$. For all $A, B \in \mathcal{A}$, we can obtain that

$$-4\gamma i\Phi(AB + BA^*) = 2\Phi(i(AB + BA^*)) = \Phi(2i(AB + BA^*))$$

= $\Phi([[iI, A]_*, B]_*) = [[\Phi(iI), \Phi(A)]_*, \Phi(B)]_*$
= $4\omega i(\Phi(A)\Phi(B) + \Phi(B)\Phi(A)^*).$

From this, we get

$$\Phi(AB + BA^*) = \Phi(A)\Phi(B) + \Phi(B)\Phi(A)^*.$$
(2.10)

For all $A, B \in \mathcal{A}$, it follows from Claim 3 that

$$\Phi(AB - BA^{*}) = \Phi((iA)(-iB) + (-iB)(iA)^{*})$$

= $\Phi(iA)\Phi(-iB) + \Phi(-iB)\Phi(iA)^{*}$
= $-\Phi(iA)\Phi(iB) - \Phi(iB)\Phi(iA)^{*}$
= $\Phi(A)\Phi(B) - \Phi(B)\Phi(A)^{*}.$ (2.11)

640

Summing (2.10) with (2.11), we get that $\Phi(AB) = \Phi(A)\Phi(B)$.

For every rational number q, we have $\Phi(qI) = qI$. Indeed, since q is a rational number, there exist two integers r and s such that $q = \frac{r}{s}$. Since $\Phi(I) = I$ and Φ is additive, we get that

$$\Phi(qI) = \Phi\left(\frac{r}{s}I\right) = r\Phi\left(\frac{1}{s}I\right) = \frac{r}{s}\Phi(I) = qI.$$

Let A be a positive element in \mathcal{A} . Then $A = B^2$ for some self-adjoint element $B \in \mathcal{A}$. It follows from Claim 11 that $\Phi(A) = \Phi(B)^2$. By Claim 2, we get that $\Phi(B)$ is self-adjoint. So $\Phi(A)$ is positive. This shows that Φ preserves positive elements.

Let $\lambda \in \mathbb{R}$. Choose sequence $\{a_n\}$ and $\{b_n\}$ of rational numbers such that $a_n \leq \lambda \leq b_n$ for all n and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \lambda$. It follows from

$$a_n I \leq \lambda I \leq b_n I$$

that

$$a_n I_{\mathcal{B}} \le \Phi(\lambda I) \le b_n I.$$

Taking the limit, we get that $\Phi(\lambda I_{\mathcal{A}}) = \lambda I_{\mathcal{B}}$. Hence for all $A \in \mathcal{A}$,

$$\Phi(\lambda A) = \Phi((\lambda I)A) = \Phi(\lambda I)\Phi(A) = \lambda\Phi(A).$$

Hence Φ is real linear. Therefore, if $\Phi(iA) = i\Phi(A)$ ($\forall A \in \mathcal{A}$), then Φ is a linear *-isomorphism. If $\Phi(iA) = -i\Phi(A)$ ($\forall A \in \mathcal{A}$), then Φ is a conjugate linear *-isomorphism.

Case 2 If $\Phi(I) = -I$, then Φ is either the negative of a linear *-isomorphism or the negative of a conjugate linear *-isomorphism.

Consider that the map $\Psi : \mathcal{A} \to \mathcal{B}$ defined by $\Psi(A) = -\Phi(A)$ for all $A \in \mathcal{A}$. It is easy to see that Ψ satisfies $\Psi([[A, B]_*, C]_*) = [[\Psi(A), \Psi(B)]_*, \Psi(C)]_*$ for all $A, B, C \in \mathcal{A}$ and $\Psi(I) = I$. Then the arguments for Case 1 ensure that Ψ is either a linear *-isomorphism or a conjugate linear *-isomorphism. So Φ is either the negative of a linear *-isomorphism or the negative of a conjugate linear *-isomorphism.

Combining Cases 1–2, the proof of Theorem 2.1 is finished.

Acknowledgement The authors would like to thank the referee for his valuable comments and suggestions.

References

- Bai, Z. and Du, S., Maps preserving products XY YX* on von Neumann algebras, J. Math. Anal. Appl., 386, 2012, 103–109.
- [2] Brešar, M. and Fošner, A., On ring with involution equipped with some new product, *Publ. Math. Debrecen*, 57, 2000, 121–134.
- [3] Dai, L. and Lu, F., Nonlinear maps preserving Jordan *-products, J. Math. Anal. Appl., 409, 2014, 180–188.
- [4] Halmos, P. R., A Hilbert Space Problem Book, 2nd ed, Springer-Verlag, New York, Heideberg, Berlin, 1982.
- Huo, D., Zheng, B. and Liu, H., Nonlinear maps preserving Jordan triple η-*-products, J. Math. Anal. Appl., 430, 2015, 830–844.
- [6] Li, C., Lu, F. and Fang, X., Mappings preserving new product XY+YX* on factor von Neumann algebras, Linear Algebra Appl., 438, 2013, 2339–2345.

- [7] Li, C., Lu, F. and Fang, X., Nonlinear ξ-Jordan *-derivations on von Neumann algebras, Linear Multilinear Algebra, 62, 2014, 466–473.
- [8] Molnár, L., A condition for a subspace of $\mathcal{B}(H)$ to be an ideal, Linear Algebra Appl., 235, 1996, 229–234.
- [9] Šemrl, P., On Jordan *-derivations and an application, Colloq. Math., 59, 1990, 241-251.
- [10] Šemrl, P., Quadratic functionals and Jordan *-derivations, Studia Math., 97, 1991, 157–165.
- [11] Šemrl, P., Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc., 119, 1993, 1105–1113.