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Abstract In this paper the modeling of a thin plate in unilateral contact with a rigid plane

is properly justified. Starting from the three-dimensional nonlinear Signorini problem, by

an asymptotic approach the convergence of the displacement field as the thickness of the

plate goes to zero is studied. It is shown that the transverse mechanical displacement field

decouples from the in-plane components and solves an obstacle problem.
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1 Introduction

In this paper, we consider the so-called Signorini problem, also called unilateral contact

problem, of an elastic body in contact with a rigid support. One of the major interests of this

modeling is to keep the full elastic tensor, namely, there is no assumption on the elastic isotropy

(see [1–2]).

Bilateral models for plates and shells were studied by formal asymptotic methods or by

variational analysis (see [3–4] and the references therein). The contact problem can be stated

as the minimization of some energy functional under an inequality constraint. The modelling

of unilateral contact problems of elastic bodies was established by Signorini in 1933. The

first mathematical properties of the solution to such a problem can be found in [5–6]. Later

Paumier gave, by an asymptotic approach, the model of an elastic Kirchhoff-Love plate in

unilateral contact (see [7]). Léger and Miara generalized Paumier’s work to elastic shallow shell.

They obtained the limit model written in terms of a variational inequality in the framework of

Cartesian (see [1]) and curvilinear coordinates (see [2]), respectively.

In this paper we properly justify the modeling of a thin plate in unilateral contact with a

rigid plane. By an asymptotic approach, we study the convergence of the displacement field as

the thickness of the plate goes to zero. We establish that the transverse mechanical displacement

field decouples from the in-plane components and solves an obstacle problem. In Section 2, we

study a Signorini problem arising in the case of three-dimensional plate. In Section 3, by using
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appropriate scalings, we give the new scaled variational inequality problem. In Section 4, we

prove the convergence of the solution when the thickness of the plate tends to zero and establish

the limit problem of a elastic plate in unilateral contact.

2 Thin Plate

In this paper, Latin indices take their values in the set {1,2,3}, Greek indices take their

values in the set {1,2}; and the Einstein summation convention is used. Bold letters are used

for vectors or vector spaces. We denote by a ·b the vector product between two vectors a and b.

| · |0,Ω, ‖·‖1,Ω stand for the classical norms in L2(Ω), H1(Ω) , respectively, for both scalar-valued

and vector-valued functions. Moreover, for simplicity let c denote different positive constants.

In order to establish properly the bi-dimensional model of a thin plate in contact with a

rigid plane, we take the reference configuration to be a cylinder with middle surface ω and

thickness 2ε. More precisely, let ε > 0 be a small parameter and ω be an open bounded and

connected subset of R2 with Lipschitz-continuous boundary γ. Then the reference configuration

of the plate under consideration is denoted by Ω
ε
, where Ωε = ω × (−ε, ε). We define a new

partition of the boundary ∂Ωε = Γε
+ ∪ Γε

−
∪ Γε

0 with the upper and lower faces Γε
+ = ω × {ε},

Γε
−
= ω × {−ε} and the lateral boundary Γε

0 = γ × [−ε, ε].

2.1 Three dimensional problem

We consider a family of plates with reference configuration Ω
ε
, made of elastic material with

elastic characteristic tensors C = (Cijkl). There exists a positive number c such that, for every

second order 3× 3 symmetric tensor M = (Mij) we have

Cijkl = Cijlk = Cklij , CijklMklMij ≥ c

3∑

i,j=1

M2
ij , (2.1)

We denote, respectively, σε and eε the stress and strain tensors, uε the mechanical displacement

field. The constitutive equation posed in Ωε is given by

σε(uε) = Ceε(uε). (2.2)

Let xε = (xε
k) be a generic point on Ω

ε
with xε

α ∈ ω and xε
3 ∈ (−ε, ε), and let ∂ε

i =
∂

∂xε
i

. Then

the linear strain tensor eε(uε) is defined by eε(uε) = 1

2
(∇εuε +(∇εuε)T ) or component-wisely

eεij(u
ε) =

1

2
(∂ε

i u
ε
j + ∂ε

ju
ε
i ).

For a plate subjected by applied body forces with density fε, the equilibrium problem posed

in Ωε reads

Divεσε(uε) = −fε. (2.3)

We consider the situation that the body is clamped on the whole lateral surface Γε
0, and is

subjected to applied surface forces with density gε on the upper surface and is in mechanical

contact with the lower face Γε
−
.
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2.2 The boundary conditions for a body in contact with a plane

We focus now on the unilateral contact with a horizontal plane set at level −ε. Let xε
−

=

(xε
1, x

ε
2,−ε) be a point on the lower face Γε

−
. The unilateral contact conditions first mean that

the displacement on Γε
−
must satisfy a nonpenetrability condition (xε

−
+ uε(xε

−
)) · e3 ≥ −ε, in

other words,

∀xε
−
∈ Γε

−
, −ε+ uε

3(x
ε
−
) ≥ −ε =⇒ uε

3(x
ε
−
) ≥ 0, (2.4)

where e3 = (0, 0, 1).

The so-called Signorini conditions which give the full description of the unilaterality are

classically obtained by adding the following constraints to the nonpenetrability condition:

(1) No tensile forces but only compressive forces are exerted on the boundary by the obstacle;

(2) all points in contact are on Γε
−

so that conditions (2.4) is an equality.

These constraints read

σε
3(x

ε
−
) = −(σε(xε

−
)ν) · e3 ≥ 0, ∀xε ∈ Γε

−
, (2.5)

σε
3(x

ε
−
)uε

3(x
ε
−
) = 0, ∀xε ∈ Γε

−
, (2.6)

where ν is the unit normal vector to ∂Ω, so the contact condition reads

uε
3(x

ε
−
) ≥ 0, σε

3(x
ε
−
) ≥ 0, σε

3(x
ε
−
)uε

3(x
ε
−
) = 0 on Γε

−
, (2.7)

and σε
3(x

ε
−
) is the Kuhn and Tucker multiplier associated to the contact condition. Eventually

we gather all the conditions and get





uε = 0 on Γε
0,

σε(uε)ν = gε on Γε
+,

uε
3 ≥ 0, σε

3 ≥ 0, σε
3u

ε
3 = 0 on Γε

−
.

(2.8)

The equilibrium problem which we are dealing with is finally written as





divσε = −fε in Ωε,

uε = 0 on Γε
0,

σε(uε)ν = gε on Γε
+,

uε
3 ≥ 0, σε

3 ≥ 0, σε
3u

ε
3 = 0 on Γε

−
.

(2.9)

2.3 The variational inequality in Ωε

The natural functional framework for (2.9) is the vector space K
ε(Ωε), where

K
ε(Ωε) = {vε ∈ H

1(Ωε), vε = 0 on Γε
0, vε3 ≥ 0 on Γε

−
} (2.10)
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is a convex set. Hence the weak solution uε to (2.9) is given by the following variational

inequality






Find uε ∈ Kε(Ωε), such that

∫

Ωε

Cε
ijkle

ε
kl(u

ε)eεij(v
ε − uε)dxε

≥

∫

Ωε

f ε(vε − uε)dxε +

∫

Γε

+

gε(vε − uε)daε, ∀vε ∈ K
ε(Ωε),

(2.11)

where daε is the area element of the boundary ∂Ωε.

Based on classical arguments, (2.9) and (2.11) are equivalent. Moreover, (2.11) has a unique

solution for any fixed ε > 0, and the weak solution associated to (2.9) is given by this unique

solution (for proof, see [8]).

Let us now introduce the scaling procedure in order to establish the convergence theorem

as ε → 0.

3 Scaling and Equilibrium Equation on the Fixed Domain Ω

3.1 Scalings of the unknowns and test functions

We now change the domain Ωε having the middle surface ω and the thickness 2ε into a

fixed domain Ω with the same middle surface and the thickness 2 independent of ε by means

of the simple geometrical transformation defined as follows: Let xε = (xε
k) be a generic point

on Ω
ε
. The corresponding point x = (xk) on Ω with xε

α = xα ∈ ω and xε
3 = εx3 ∈ (−ε, ε). This

induces ∂ε
α = ∂

∂xε

α

= ∂
∂xα

and ∂ε
3 = ∂

∂xε

3

= 1

ε
∂

∂x3
. By analogy, the boundary of the domain Ω is

divided into three parts: ∂Ω = Γ−∪Γ+∪Γ0, Γ− = ω×{−1}, Γ+ = ω×{1}, Γ0 = γ× [−1, 1].

We give the scaled displacement u(ε) and the scaled test functions v defined on Ω as

{
uε
α = ε2uα(ε), uε

3 = εu3(ε),

vεα = ε2vα, vε3 = εv3.
(3.1)

Along with the scaling procedure, we set e = (eij) to denote the scaled linearized strain

tensor, the components of which are





eεαβ(v
ε) = ε2eαβ(v),

eεα3(v
ε) = εeα3(v),

eε33(v
ε) = e33(v),

(3.2)

where eij(v) =
1

2
(∂jvi + ∂ivj).

3.2 Assumptions on the data

In order to obtain a nontrivial limit problem by asymptotic analysis, it is essential to scale

the data in accordance with the scalings of the unknowns. More precisely, we assume that there
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exist functions f ∈ L
2(Ω) and g ∈ L

2(Γ+) independent of ε, such that

{
f ε
α = ε2fα, f ε

3 = ε3f3, ∀x ∈ Ω,

gεα = ε3gα, gε3 = ε4g3, ∀x ∈ Γ+.
(3.3)

3.3 Contact condition on the fixed domain

After the scaling process, the non-penetrability condition holds now on Γ− and reads

v3(x1, x2,−1) ≥ 0, ∀(x1, x2) ∈ ω, (3.4)

and the corresponding functional space is

K(Ω) = {v ∈ H
1(Ω), v = 0 on Γ0, v3(x1, x2,−1) ≥ 0 on Γ−}.

3.4 Equilibrium problem on the fixed domain Ω = ω × (−1, 1)

Replacing uε and vε by their scaled values u(ε) and v given by (3.1) in the problem (2.11),

respectively, we get the following problem posed over the fixed domain Ω






Find u(ε) ∈ K(Ω), such that

ε5
∫

Ω

Cαβστeστ (u(ε))eαβ(v − u(ε))dx

+2ε4
∫

Ω

Cαβσ3(eσ3(u(ε))eαβ(v − u(ε)) + eαβ(u(ε))eσ3(v − u(ε)))dx

+4ε3
∫

Ω

Cα3σ3eσ3(u(ε))eα3(v − u(ε))dx

+ε3
∫

Ω

Cαβ33(e33(u(ε))eαβ(v − u(ε)) + eαβ(u(ε))e33(v − u(ε)))dx

+2ε2
∫

Ω

Cα333(e33(u(ε))eα3(v − u(ε)) + eα3(u(ε))e33(v − u(ε)))dx

+ε

∫

Ω

C3333e33(u(ε))e33(v − u(ε))dx

≥ ε5
∫

Ω

f(v − u(ε))dx+ ε5
∫

Γ+

g(v − u(ε))da, ∀v ∈ K(Ω),

(3.5)

where da is the area element of the boundary ∂Ω.

Classical arguments (see [8]) can be applied to prove the existence and uniqueness of the

weak solution to the variational inequality problem (3.5). We have the following theorem.

Theorem 3.1 For any fixed ε > 0, the problem (3.5) has a unique weak solution.

4 Convergence

The aim of this section is to show that when ε tends to zero, the sequence {u(ε)} converges

to a limit u which solves a two-dimensional obstacle problem. An important preliminary point

here is the following lemma, which is a version of Korn’s inequality.
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Lemma 4.1 For all v ∈ H1(Ω), the mapping v →
{∑

ij

|eij(v)|
2
0,Ω

} 1
2 is a norm over the

set K(Ω), which is equivalent to the norm induced by ‖ · ‖1,Ω

Proof The proof follows from the fact that the set K(Ω) is a closed subset of the vector

space {v ∈ H1(Ω), v = 0 on Γ0}.

Theorem 4.1 Assume that f ∈ L
2(Ω) and g ∈ L

2(Γ+). Then

(i) As ε tends to 0, the family {u(ε)} converges strongly in the set K(Ω) to a limit u.

(ii) The limit u is a Kirchhoff-Love displacement field, namely, there exists ζ = (ζH , ζ3) ∈

VH(ω)×K3(ω), such that

uα = ζα − x3∂αζ3, u3 = ζ3,

where the bi-dimensional functional spaces VH(ω) and K3(ω) are

{
VH(ω) = {ηH = (ηα) ∈ H

1(ω), ηH = 0 on γ},

K3(ω) = {η3 ∈ H2(ω), η3 = ∂νη3 = 0 on γ, η3 ≥ 0 in ω}.

(iii) The function ζ = (ζH , ζ3) solves the following problem: Find (ζH , ζ3) ∈ VH(ω)×K3(ω),

such that




2

3

∫

ω

C̃αβστ∂στ ζ3∂αβ(η3 − ζ3)dω

≥

∫

ω

(
p3(η3 − ζ3)− sα∂α(η3 − ζ3)

)
dω, ∀η3 ∈ K3(ω),

2

∫

ω

C̃αβστeστ (ζH)eαβ(ηH)dω =

∫

ω

pαηαdω, ∀ηH ∈ VH(ω),

(4.1)

where the mechanical forces are given by

pi(x1, x2) :=

∫ 1

−1

fidx3 + gi, sα(x1, x2) :=

∫ 1

−1

x3fαdx3 + gα, (4.2)

and the new bi-dimensional elastic tensor C̃ = (C̃αβστ ) is given by

C̃αβστ = Cαβστ −
1

△
Cαβk3△

k
στ , (4.3)

where





△ = ǫpqrC13p3C23q3C33r3,

△1
ζη = ǫpqrC3pζηC23q3C33r3,

△2
ζη = ǫpqrC13p3C3qζηC33r3,

△3
ζη = ǫpqrC13p3C23q3C3rζη,

(4.4)

in which ǫijk denote the Levi-Civitta symbol

ǫijk =

{
1, (i, j, k) is even permutation of (1, 2, 3),

−1, (i, j, k) is odd permutation of (1, 2, 3).
(4.5)
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Proof The proof is divided into four steps. In the first step, we introduce a new scaled

strain tensor R(ε). By means of some boundness results we get that the sequence {u(ε)}

converges weakly to a limit u which is a Kirchhoff-Love field. The second step deals with

certain technical results about the components of this strain tensor. In the third step we show

that the convergence of the family {u(ε)} towards the Kirchhoff-Love field u is actually strong.

The fourth step completes the proof by deducing the variational problem.

Step I. Let us introduce the following symmetric tensor R(ε) = (Rij(ε)) ∈ L2(Ω) by





Rαβ(ε)(v) = eαβ(v),

Rα3(ε)(v) =
1

ε
eα3(v),

R33(ε)(v) =
1

ε2
e33(v).

By introducing R(ε)(u(ε)) in the variational inequality (3.5), we get





∫

Ω

CαβστRστ (ε)(u(ε))eαβ(v − u(ε))dx

+2

∫

Ω

Cαβσ3Rσ3(ε)(u(ε))eαβ(v − u(ε))dx

+

∫

Ω

Cαβ33R33(ε)(u(ε))eαβ(v − u(ε))dx

+
2

ε

∫

Ω

Cα3στRστ (u(ε))(ε)eα3(v − u(ε))dx

+
4

ε

∫

Ω

Cα3σ3Rσ3(ε)(u(ε))eα3(v − u(ε))dx

+
2

ε

∫

Ω

Cα333R33(ε)(u(ε))eα3(v − u(ε))dx

+
1

ε2

∫

Ω

C33στRστ (ε)(u(ε))e33(v − u(ε))dx

+
2

ε2

∫

Ω

C33σ3Rσ3(ε)(u(ε))e33(v − u(ε))dx

+
1

ε2

∫

Ω

C3333R33(ε)(u(ε))e33(v − u(ε))dx

≥

∫

Ω

f · (v − u(ε))dx+

∫

Γ+

g · (v − u(ε))da.

(4.6)

By introducing the new tensors R(ε)(v − u(ε)) into the inequality (4.6), we obtain
∫

Ω

CijklRkl(ε)(u(ε))Rij(ε)(v − u(ε))dx ≥

∫

Ω

f · (v − u(ε))dx+

∫

Γ+

g · (v − u(ε))da. (4.7)

Taking v = 0 in (4.7), we get

−

∫

Ω

CijklRkl(ε)(u(ε))Rij(ε)(u(ε))dx ≥ −

∫

Ω

f · u(ε)dx−

∫

Γ+

g · u(ε)da,

which yields
∫

Ω

CijklRkl(ε)(u(ε))Rij(ε)(u(ε))dx ≤

∫

Ω

f · u(ε)dx +

∫

Γ+

g · u(ε)da.
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Using the coerciveness properties of tensors C, it follows from this inequality that

|R(ε)(u(ε))|20,Ω ≤ c|u(ε)|0,Ω ≤ c‖u(ε)‖1,Ω.

Recalling Korn’s inequality: there exists c > 0 such that

‖u(ε)‖21,Ω ≤ c|e(u(ε))|20,Ω,

we get that for 0 < ε ≤ 1, there exist c > 0 such that

‖u(ε)‖21,Ω ≤ c|e(u(ε))|20,Ω ≤ c|R(ε)(u(ε))|20,Ω ≤ c‖u(ε)‖1,Ω. (4.8)

These inequalities imply that the norms ‖u(ε)‖1,Ω and |R(ε)(u(ε))|0,Ω are uniformly bounded

with respect to ε. Then there exists a subsequence, still denoted by u(ε), and functions u ∈

H1(Ω) and R ∈ L2(Ω) such that as ε → 0, we have

{
u(ε) ⇀ u in H1(Ω),

R(ε)(u(ε)) ⇀ R(u) in L2(Ω).

Moreover, from the definition of R(ε), we have

|eα3(u(ε))|0,Ω ≤ cε, |e33(u(ε))|0,Ω ≤ cε2.

Hence ei3(u(ε)) ⇀ 0 in L2(Ω) as ε → 0, thus

|ei3(u)|0,Ω ≤ lim inf
ε→0

|ei3(u(ε))|0,Ω = 0.

Since ei3(u) = 0, we deduce that there exists a bi-dimensional field ζ = (ζi) such that ζα ∈

H1(ω) and ζ3 ∈ H2(ω), and u is a Kirchhoff-Love displacement field

uα = ζα − x3∂αζ3, u3 = ζ3.

The following lemma will be frequently used in the next step.

Lemma 4.2 Let the operator A(ε) : u(ε) −→ H1(Ω) which satisfies the weak convergence

A(ε)(u(ε)) ⇀ A(u) ∈ L
2(Ω) as ε → 0.

If u(ε) ∈ K(Ω) solves the variational inequality

∫

Ω

A(ε)(u(ε)) · ∂3
(
v − u(ε)

)
dx ≥ ε

∫

Ω

f ·
(
v − u(ε)

)
dx, ∀v ∈ K(Ω), (4.9)

then A(u) = 0.

Proof First taking v = 0 and then v = 2u(ε) in (4.9), we get

∫

Ω

A(ε)(u(ε)) · ∂3u(ε)dx = ε

∫

Ω

f · u(ε)dx.
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Moreover, (4.9) now reads
∫

Ω

A(ε)(u(ε)) · ∂3vdx ≥ ε

∫

Ω

f · vdx, ∀v ∈ K(Ω),

which implies ∫

Ω

A(u) · ∂3vdx ≥ 0, ∀v ∈ K(Ω).

We consider the following 2 cases for the in-plane components and the vertical component of

the displacement fields, respectively.

(1) Since vα belongs to a vector space, the previous inequality becomes an equality
∫

Ω

Aα(u) ∂3vαdx = 0, ∀vα ∈ H1(Ω),

then, following [1] we get Aα(u) = 0.

(2) For the transverse component we consider z, t ∈ D(Ω), z > 0 and choose v3 ≥ 0 under

the form

v3(x) = z(x1, x2) + max
−1<s<1

|t(x1, x2, s)|+

∫ x3

−1

t(x1, x2, s)ds.

By a direct computation we can show that
∫
Ω
A3(u) ∂3v3dx =

∫
Ω
A3(u) t(x1, x2, x3)dx = 0 for

all t ∈ D(Ω) implies A3(u) = 0.

Step II. Before establishing the strong convergence, we compute Ri3(u).

The weak convergence established in the Step I implies

Rαβ(ε)(u(ε)) ⇀ Rαβ(u) = eαβ(u) in L2(Ω) as ε → 0.

Taking v3 = u3(ε) and multiplying by ε in (4.6), we get





∫

Ω

(2Cα3στRστ (ε)(u(ε)) + 4Cα3σ3Rσ3(ε)(u(ε)) + 2Cα333R33(ε)(u(ε)))∂3(vα − uα(ε))dx

≥ −ε

∫

Ω

CαβστRστ (ε)(u(ε))eαβ(v − u(ε))dx− 2ε

∫

Ω

Cαβσ3Rσ3(ε)(u(ε))eαβ(v − u(ε))dx

−ε

∫

Ω

Cαβ33R33(ε)(u(ε))eαβ(v − u(ε))dx+ ε

∫

Ω

fα(vα − uα(ε))dx

+ε

∫

Γ+

gα(vα − uα(ε))da, ∀vα ∈ H1(Ω), vα = 0 on Γ0,

then, we obtain

2Cα3α3Rα3(u) + Cα333R33(u) = −Cα3αβeαβ(u).

Finally, taking vα = uα(ε) and multiplying by ε2 in (4.6), we obtain




∫

Ω

(C33στRστ (ε)(u(ε)) + 2C33σ3Rσ3(ε)(u(ε)) + C3333R33(ε)(u(ε)))∂3(v3 − u3(ε))dx

≥ −ε

∫

Ω

Cα3στRστ (u(ε))(ε)∂α(v3 − u3(ε))dx − 2ε

∫

Ω

Cα3σ3Rσ3(ε)(u(ε))∂α(v3 − u3(ε))dx

−ε

∫

Ω

Cα333R33(ε)(u(ε))∂α(v3 − u3(ε))dx + ε2
∫

Ω

f3(v3 − u3(ε))dx

+ε2
∫

Γ+

g3(v3 − u3(ε))da, ∀v3 ∈ H1(Ω), v3 = 0 on Γ0, v3 ≥ 0 on Γ−



1056 Y. Guan

and

2C33α3Rα3(u) + C3333R33(u) = −C33αβeαβ(u).

Thus, Ri3(u) satisfies the following linear system

2Ci3α3Rα3(u) + Ci333R33(u) = −Ci3αβeαβ(u). (4.10)

To show that this system has a unique solution, first by the symmetry and positivity of tensor

C in (2.1), for every second order 3× 3 symmetric tensor A = (Aij), we have

CijklAklAij ≥ cAklAij .

Next we note that the system (4.10) can be written as 2Ci3α3xα + Ci333x3 = fi, and the

determinant of this linear system is

∣∣∣∣∣∣

2C1313 2C1323 C1333

2C2313 2C2323 C2333

2C3313 2C3323 C3333

∣∣∣∣∣∣
= 4

∣∣∣∣∣∣

C1313 C1323 C1333

C2313 C2323 C2333

C3313 C3323 C3333

∣∣∣∣∣∣
.

With Akα = 0 we get CijklAklAij = Ci3j3Ai3Aj3 > 0, therefore the system (4.10) has a unique

solution




Rα3(u) = −
1

2△
△α

ζηeζη(u),

R33(u) = −
1

△
△3

ζηeζη(u),

(4.11)

where △, △α
ζη (α = 1, 2) and △3

ζη are given by (4.4).

Step III. The whole family {u(ε)} converges strongly.

Introduce the notation
∫
Ω
CA : Adx =

∫
Ω
CijklAklAijdx for all second order symmetric

tensor A. We have

c|R(ε)(u(ε))− R(u)|20,Ω

≤

∫

Ω

C
(
R(ε)(u(ε))− R(u)

)
:
(
R(ε)(u(ε))− R(u)

)
dx

≤

∫

Ω

CR(u) : (R(u)− 2R(ε)(u(ε)))dx +

∫

Ω

CR(ε)(u(ε)) : R(ε)(u(ε))dx.

Since we have already established the weak convergence R(ε) ⇀ R in L2(Ω) as ε → 0,

lim
ε→0

c|R(ε)(u(ε))− R(u)|20,Ω ≤ −

∫

Ω

CR(u) : R(u)dx+ lim
ε→0

∫

Ω

CR(ε)(u(ε)) : R(ε)(u(ε))dx.

Taking v = u, and passing to the limit as ε → 0 in (4.7), we get

∫

Ω

CR(u) : R(u)dx− lim
ε→0

∫

Ω

CR(ε)(u(ε)) : R(ε)(u(ε))dx ≥ 0,
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so we have lim
ε→0

|R(ε)(u(ε))− R(u)|20,Ω ≤ 0, {R(ε)(u(ε))} converges strongly to R(u) in L
2(Ω).

By the definition of R(ε), we have

|e(u(ε))− e(u)|20,Ω ≤
∑

α,β

|Rαβ(ε)(u(ε))−Rαβ(u)|
2
0,Ω + 2ε2

∑

α

|Rα3(ε)(u(ε))−Rα3(u)|
2
0,Ω

+ ε4|R33(ε)(u(ε))−R33(u)|
2
0,Ω,

which implies that the sequence {e(u(ε))} converges strongly to e(u) in L2(Ω). Then by Korn’s

inequality the sequence u(ε) converges strongly to u in H1(Ω).

Step IV. For any Kirchhoff-Love vector field v = (ζH , ζ3) ∈ VH(ω)×K3(ω), we have

eαβ(v) = eαβ(ηH)− x3∂αβη3, ei3(v) = 0.

Passing to the limit as ε → 0 in (4.7), for all vector field v = (ζH , ζ3) ∈ VH(ω)×K3(ω) we get

the following variational inequality:





∫

Ω

Cαβστ (eστ (ζH)− x3∂στ ζ3)(eαβ(ηH − ζH)− x3∂αβ(η3 − ζ3))dx

+2

∫

Ω

Cαβσ3

[
−

1

2△
(△σ

στ (eστ (ζH)− x3∂στ ζ3))
]
(eαβ(ηH − ζH)− x3∂αβ(η3 − ζ3))dx

+

∫

Ω

Cαβ33

[
−

1

△
(△3

στ (eστ (ζH)− x3∂στ ζ3))
]
(eαβ(ηH − ζH)− x3∂αβ(η3 − ζ3))dx

≥

∫

Ω

[
fα(ηα − ζα − x3∂α(η3 − ζ3)) + f3(η3 − ζ3)

]
dx

+

∫

Γ+

[
gα(ηα − ζα − x3∂α(η3 − ζ3)) + g3(η3 − ζ3)

]
da.

Then we get




2

∫

ω

C̃αβστeστ (ζH)eαβ(ηH − ζH)dω +
2

3

∫

ω

C̃αβστ∂στ ζ3∂αβ(η3 − ζ3)dω

≥

∫

ω

pH · (ηH − ζH)dω +

∫

ω

p3(η3 − ζ3)dω −

∫

ω

sα∂α(η3 − ζ3)dω.

This inequality can be decoupled as





2

3

∫

ω

C̃αβστ∂στ ζ3∂αβ(η3 − ζ3)dω

≥

∫

ω

p3(η3 − ζ3)dω −

∫

ω

sα∂α(η3 − ζ3)dω, ∀η3 ∈ K3(ω),

2

∫

ω

C̃αβστeστ (ζH)eαβ(ηH)dω =

∫

ω

pH · ηHdω, ∀ηH ∈ VH(ω),

(4.12)

where the mechanical forces and electric charges are given by

pi :=

∫ 1

−1

fidx3 + gi, sα :=

∫ 1

−1

x3fαdx3 + gα,

respectively, and the new characteristic tensor C̃ = (C̃αβστ ) of the elastic plate is given by

C̃αβστ = Cαβστ −
1

△
Cαβk3△

k
στ . (4.13)
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Remark 4.1 It is interesting that (4.1) consists of an equality in a vector space for the ζα

components, namely, for the membrane part of the solution, and an inequality in a cone for the

ζ3 component, namely, for the bending part of the solution. Thus, the obstacle condition deals

only with the bending part.
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[7] Paumier, J. C., Modélisation asymptotique d’un problème de plaque mince en contact unilatéral avec frotte-
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