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Abstract This paper deals with homology groups induced by the exterior algebra gen-
erated by the simplicial compliment of a simplicial complex K. By using Čech homology
and Alexander duality, the authors prove that there is a duality between these homology
groups and the simplicial homology groups of K.
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1 Introduction

Throughout this paper, k is a field or an integer ring Z. k[m] = k[v1, · · · , vm] is the graded
polynomial algebra on m variables, and deg(vi) = 2. The face ring (also known as the Stanley-
Reisner ring) of a simplicial complex K on [m] is the quotient ring

k(K) = k[m]/IK ,

where IK is the ideal generated by those square free monomials vi1 · · · vis for which {i1, · · · , is}
is not a simplex in K.

For any simple polytope Pn, Davis and Januszkiewicz introduced a Tm-manifold ZP with
an orbit space Pn in [5]. After that, Buchstaber and Panov generalized this definition to any
simplicial complex K with vertices [m] = {1, · · · ,m}, and named it the moment-angle complex(
i.e., the moment-angle complex ZK =

⋃
σ∈K

D(σ), where D(σ) = Y1×Y2× · · · ×Ym, Yi = D2 if

i ∈ σ and Yi = S1 if i �∈ σ
)
.

The following theorem is proved by Buchstaber and Panov [3] for the case over a field by
using Eilenberg-Moore spectral sequence, and by [1] for the general case.

Theorem 1.1 (see [7, Theorem 4.7]) Let K be a simplicial complex. Then the following
isomorphism of algebras holds:

H∗(ZK ;k) = Tork[x]
∗ (k(K),k).
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In their proof, they proved that H∗(ZK ;k) = H̃∗[Λ[u1,u2, · · · ,um] ⊗ k[x], d] first. Then
they used the Koszul resolution on k to get

Tork[x]
∗ (k,k(K)) = H̃∗[Λ[u1,u2, · · · ,um] ⊗ k[x], d].

Since Tork[x]
∗ (k, k(K)) has a natural Z ⊕ Zm-bigrade, the bigraded cohomology ring can be

decomposed as follows:

H∗(ZK ;k) = Tork[x]
∗ (k,k(K)) =

⊕
i≥0

⊕
I⊆[m]

Tork[x]
i, I (k,k(K)).

Hochster gave a combinatorial description of the Tor-groups Tork[x]
i,∗ (k,k(K)).

Theorem 1.2 (see [6])

Tork[x]
i,∗ (k,k(K)) =

⊕
I⊆[m]

H̃ |I|−i−1(KI ;k),

where KI = {ω ⊆ I|ω ∈ K}, and H̃−1(∅;k) = k.

Then in [4] they developed a more precise description.

Theorem 1.3 (see [4, Theorem 3.2.9])

Tork[x]
i, I (k,k(K)) = H̃ |I|−i−1(KI ;k),

where H̃−1(∅;k) = k.

Recently, Zheng and Wang has proposed another way to compute Tork[x]
∗ (k(K),k) by using

Taylor resolution on Stanley-Reisner ring k(K) in [8]. This method was presented firstly by
Yuzvinsky in [9].

They defined the simplicial complement P of a simplicial complex K as below.

Definition 1.1 (Missing Face and Simplicial Complement) Let K be a simplicial complex
on the set [m] as above. A missing face of K is the subset τ ⊆ [m], where τ /∈ K and every
proper subset of τ is a simplex of K.

A simplicial complement P is a subset of all non-faces of K containing all missing faces.

The Stanley-Reisner ideal IP is the homogeneous ideal generated by all square-free mono-
mials xτ = xi1xi2 · · ·xis , where τ = {i1, · · · , is} ∈ P . Obviously, for any two simplicial com-
plements P and P ′ of the complex K, IP = IP ′ = IK .

Then one can define exterior algebra Λ∗[P ] generated by all faces of the simplicial comple-
ment P . For any monomial u = τi1τi2 · · · τis , define the total set Su = τi1 ∪ τi2 ∪ · · · ∪ τis . So
Λ∗[P ] has a natural Z ⊕ Zm-bigrade, which means

Λ∗[P ] =
⊕
i∈N

⊕
I⊆[m]

Λi,I [P ],

where Λi,I [P ] is generated by the monomial u satisfying Su = I and the degree of monomial u
is i.
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Theorem 1.4 (see [8]) Let K be a simplicial complex on the set [m], and let P be one of
the simplicial compliments of K. Give a differential d : Λr[P ] −→ Λr−1[P ], generated by

d(u) =
r∑
s=1

(−1)s+1∂su · δ∂su,

where ∂su = τi1 · · · τ̂is · · · τir , and δ∂su = 1 if Su = S∂su; otherwise δ∂su = 0. The differential d
keeps the second grade. Then

Tork[x]
i,I (k(K),k) = Hi(Λi,I [P ], d).

Remark 1.1 Let K be a simplicial complex and P be one of its simplicial complements.
By Theorem 1.4, we know that the homology group Hi(Λi,I [P ], d) of simplicial complement P
is not related to the choice of P . It just depends on the simplicial complex K. So if we fix
the second degree by the set of all vertices [m], then we can get a homology group which just
depends on the simplicial complex K. We call it homology group of simplicial complements.

In this paper, we will first give the geometric description of the new differential d on Λ∗,[m][P ].
And the following theorem is proved by using the simplicial Alexander duality.

Theorem 1.5 For any simplicial complex K on the set [m], let P be one of the simplicial
compliments of K. Then we have the following group isomorphism:

Hi(Λ∗,[m][P ], d) = H̃m−i−1(K;k),

where we assume H−1(Λ[∅], d) = k.

It is easy to check that PI = {τ ⊆ I | τ ∈ P} is a simplicial complement of KI , where
KI = {ω ⊆ I | ω ∈ K}. So we have following corollary.

Corollary 1.1
Hi(Λ∗,I [P ], d) = H̃ |I|−i−1(KI ;k).

Remark 1.2 Consider the following commutative diagram:

Hi(Λ∗,I [P ], d)

ψ∼=
��

∼=
φ

�� Tork[x]
i, I (k(K),k)

∼= η

��

H̃ |I|−i−1(KI ;k)
∼=
ζ

�� Tork[x]
i, I (k,k(K))

The isomorphisms φ, ψ and η come from Theorem 1.4, Corollary 1.1 and a classical result
in homological algebra theory respectively, and ζ = ηφψ−1 is also an isomorphism. Thus we
give a new proof of the Hochster theorem.

2 Geometric Description of the Differential d

If K is a simplex, the theorem is trivial. So in this paper, we assume that K is a simplicial
complex on the set [m], but not a simplex. Denote

P0 = 2[m] −K − [m] = {τ1, τ2, · · · , τs}.
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P0 is obviously one of the simplicial complements of the complex K. For any τi ∈ P0, we have
simplicial complex star∂Δm−1τi = {τ ∈ ∂Δm−1 | τ ∪ τi ∈ ∂Δm−1}. Clearly, the star∂Δm−1τi
is a triangulation of Dm−2. We denote by Ui = Int|star∂Δm−1τi| the interior of the geometric
realization of the complex star∂Δm−1τi.

Proposition 2.1 U = {Ui}i=1,2,··· ,s is an open cover of the topological space U(K), where
U(K) = |∂Δm−1|\|K|.

Proof If x ∈ |∂Δm−1|\|K|, x must be an interior point of some simplex of ∂Δm−1. Since
x /∈ K, there is a simplex τ ∈ P0 satisfying x ∈ Int|τ |. In other words, x ∈ Int|star∂Δm−1τ |,
where τ ∈ P0.

Definition 2.1 (The Nerve and the Čech Homology of an Open Cover) For any topological
space X, let U = {Ui}i=1,2,··· ,s be an open cover of the space X. To every open set Ui, we
assign a vertex i. If Ui1 ∩ Ui2 ∩ · · · ∩ Uir �= ∅, we get a simplex (i1, i2, · · · , ir). Then we get a
complex called the nerve of U, denoted by N (U), where

N (U) = {(i1, i2 · · · , ir) ⊆ [s] | Ui1 ∩ Ui2 ∩ · · · ∩ Uir �= ∅}.

Define Ȟ∗(X ;U;k) = H̃∗(N (U);k), called the reduced Čech homology groups of an open
cover U.

Theorem 2.1 Let K be a simplicial complex on [m], P0 = {τ1, τ2, · · · , τs} be defined as
above. By Proposition 2.1, U = {Ui}i=1,2,··· ,s forms an open cover of the topological space U(K).
Then the homology groups H∗(Λ∗,[m][P0], d) is exactly the reduced Čech homology groups of the
open cover U. Precisely, we have the following isomorphisms:

Hn(Λ∗,[m][P0], d) = Ȟn−2(U(K);U;k).

Before proving Theorem 2.3, we are going to work on the following lemma first.

Lemma 2.1 All notations are as above, i, j = 1, 2, · · · , s. Then
(1) if τi ∪ τj �= [m], then

(star∂Δm−1τi) ∩ (star∂Δm−1τj) = star∂Δm−1τi∪τj
;

(2) Ui ∩ Uj �= ∅ ⇔ τi ∪ τj �= [m].

Proof (1) Obviously holds, by definition.
(2) If τ = τi ∪ τj � [m], then star∂Δm−1τ ⊂ star∂Δm−1τi, since τ ⊂ τi. So

Int|star∂Δm−1τ | ⊂ Int|star∂Δm−1τi|.

Similarly, Int|star∂Δm−1τ | ⊂ Int|star∂Δm−1τj |. Since τ �= [m], Int|star∂Δm−1τ | �= ∅, and then
Ui ∩ Uj �= ∅.

On the other hand, if Ui ∩ Uj �= ∅, then from (1)

(star∂Δm−1τi) ∩ (star∂Δm−1τj) = star∂Δm−1τi ∪ τj �= ∅.

Thus τi ∪ τj �= [m].
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Proof of Theorem 2.1 By Proposition 2.1 and Definition 2.2, we know U = {Ui}i=1,2,··· ,s
forms an open cover of the topological space U(K). And the nerve of the cover U is the complex

N (U) = {(i1, i2 · · · , ir) ⊆ [s] | Ui1 ∩ Ui2 ∩ · · · ∩ Uir �= ∅}.

Lemma 2.4 shows that Ui1 ∩ Ui2 ∩ · · · ∩ Uir �= ∅ if and only if τi1 ∪ τi2 · · · ∪ τir �= [m].
So the nerve complex can be written as

N (U) = {(i1, i2 · · · , ir) ⊆ [s] | τi1 ∪ τi2 · · · ∪ τir �= [m]}.

Let Λ∗[P0] be the exterior algebra generated by {τ1, τ2, · · · , τs}. We define another differential
∂ : Λr[P0] → Λr−1[P0] by

∂(u) =
r∑
s=1

(−1)s+1∂su,

where ∂su = τi1 · · · τ̂is · · · τir for any monomial u = τi1τi2 · · · τis .
We define a map

Φ : C̃∗(N (U),k) −→ Λ∗+1[P0],

generated by Φ((i1, i2 · · · , ir)) := τi1τi2 · · · τir ∈ Λr[P ], where (i1, i2, · · · , ir) is an (r−1)-simplex
of N (U). Obviously, Φ is a monomorphism.

Then we get a short exact sequence of the chain complexes,

0 → (C̃∗(N (U),k), ∂) → (Λ∗+1[P0], ∂) → (Λ∗+1[P0]/C̃∗(N (U),k), d′) → 0,

where Λ∗+1[P0]/C̃∗(N (U),k) is generated by all monomials u ∈ Λ∗,[m][P0] (i.e., Su = [m]).
The differential d′ is induced by ∂.

It is easy to see that there is a chain isomorphism

(Λ∗+1[P0]/C̃∗(N (U),k), d′) ∼= (Λ∗,[m][P0], d),

where (Λ∗,[m][P0], d) is as in Theorem 1.4.
Since (Λ∗[P0], ∂) is isomorphic to the chain complex of the simplex with s+1 vertices, clearly

H̃∗(Λ∗[P0], ∂) = 0, and from the long exact sequence induced by the short exact sequence above,
we get that

Hn(Λ∗,[m][P0], d) = H̃n−2(N (U);k) = Ȟn−2( U(K);U;k).

3 Barycentric Subdivision and Inflation Complex

Let K be a simplicial complex on the set [m] as above. Here come two new complexes
constructed from K.

Definition 3.1 (Barycentric Subdivision and Inflation Complex) The barycentric subdivi-
sion of the simplicial complex K is a simplicial complex K ′ on the set {σ ∈ K}, where

K ′ = {(σ0, σ1, · · · , σn) | σ0 � σ1 � · · · � σn; σi ∈ K, i = 0, 1, · · · , n}.

The inflation complex of the complex K is also a simplicial complex F(K) on the set {σ ∈ K},
where

F(K) = {(σ0, σ1, · · · , σn) | σ0 ∩ σ1 ∩ · · · ∩ σn �= ∅; σi ∈ K, i = 0, 1, · · · , n}.
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Remark 3.1 The barycentric subdivision K ′ and inflation complex F(K) of the same
complex K are both the complexes on the set {σ ∈ K}. For a simple x(σ0, σ1, · · · , σn) of K ′,
it is clear that σ0 � σ1 � · · · � σn, which means σ0 ∩σ1 ∩ · · · ∩σn �= ∅. So (σ0, σ1, · · · , σn) is a
simplex in F(K). Thus the barycentric subdivision K ′ is a subcomplex of the inflation complex
F(K).

Definition 3.2 Let K be a simplicial complex. For any sunbclomlex L ⊂ K, define the
(closed) combinatorial neighborhood UK(L) of L in K by UK(L) =

⋃
σ∈L

starKσ.

Lemma 3.1 Let K be a simplicial complex on [m]. Then the geometric realization of the
barycentric subdivision K ′ is a deformation retract of the geometric realization of the inflation
complex F(K).

Before proving Lemma 3.1, we need the following statement coming from homotopy theory.

Statement A Given that a pair (X,A) satisfies the homotopy extension property, if the
inclusion A ↪→ X is a homotopy equivalence, then A is a deformation retraction of X .

Proof of Lemma 3.1 In this proof, we do not distinguish simplicial complexes and their
geometric realizations.

We prove this by induction on the number l of simplices of K. If l = 1, the lemma is clearly
true. For the induction step, choose a maximal simplex τ of K. Then K0 = K \τ is a simplicial
complex. Let L = ∂τ = {σ | σ � τ}. Clearly L′ is a subcomplex of K ′

0. There is a deformation
retraction r′ : UK′

0
(L′) → L′ corresponding to the vertex set map σ → σ∩τ (easy to verify that

this map is simplicial).
Meanwhile, define a subcomplex L of F(K0) by

L = {(σ0, σ1, · · · , σi) ∈ F(K0) | σ0 ∩ σ1 ∩ · · · ∩ σi ∩ τ �= ∅}.
Similarly, there is a deformation retraction r′′ : L → F(L) corresponding to the vertex set map:
σ → σ ∩ τ. Since F(L) � L′ by induction, the two deformation retractions give L � UK′

0
(L′),

and then by statement A, UK′
0
(L′) is a deformation retraction of L. It is easy to see that

UK′
0
(L′) = K ′

0 ∩ L. So there is a deformation retraction

r1 : K ′
0

⋃
UK′

0
(L′)

L → K ′
0,

which satisfies r1(L) = UK′
0
(L′). Since K ′

0 � F(K0) by induction and K ′
0

⋃
UK′

0
(L′)

L is a sub-

complex of F(K0), applying statement A again, we get a deformation retraction:

r2 : F(K0) → K ′
0

⋃
UK′

0
(L′)

L.

The composition r1◦r2 is a deformation retraction from F(K0) to K ′
0 which satisfies r1◦r2(L) =

UK′
0
(L′).
From the definition ofK0 and L, we haveK ′ = K ′

0

⋃
L′

coneL′ and F(K) = F(K0)
⋃
L

coneL.
So r1 ◦ r2 can be naturally extended to a deformation retraction

r0 : F(K) → K ′
0

⋃
UK′

0
(L′)

coneUK′
0
(L′).
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Note that UK′
0
(L′)

⋃
L′

coneL′ is a subcomplex of coneUK′
0
(L′) and they are both contractible

spaces
(
r′ extends to a deformation retraction from UK′

0
(L′)

⋃
L′

coneL′ to coneL′). Then by

applying statement A again, there is a deformation retraction from coneUK′
0
(L′) to

UK′
0
(L′)

⋃
L′

coneL′,

which can be extended to a deformation retraction

r : K ′
0

⋃
UK′

0
(L′)

coneUK′
0
(L′) → K ′.

Thus the composition r ◦ r0 is the desired deformation retraction and the induction step is
finished.

Remark 3.2 By Lemma 3.1, we have the following isomorphisms of homology groups
(reduced or unreduced):

i∗ : H∗(K ′;k) −→ H∗(F(K);k),

i∗ : H̃∗(K ′;k) −→ H̃∗(F(K);k).

4 Proof of Theorem 1.5

Following the definitions in [4, 7], we have Alexander dual simplicial complex of a complex
and simplicial Alexander duality theorem.

Definition 4.1 (Alexander Dual Simplicial Complex) Let K be a simplicial complex on
[m], but not the simplex Δm−1. The Alexander dual simplicial complex is defined as

K̂ := {σ ⊂ [m] | [m]\σ /∈ K}.

Theorem 4.1 (Simplicial Alexander Duality, see [4]) Let K be a simplicial complex on [m],
but not Δm−1. Then the following duality holds:

H̃j(K̂;k) ∼= H̃m−3−j(K;k),

where −1 ≤ j ≤ m− 2 and we use the agreement H̃−1(∅) = H̃−1(∅) = k.

Remark 4.1 As before, we use the notation P0 = 2[m] − K − [m] to denote a simplicial
complement of K.

The inflation complex of the dual complex K̂ is the complex on the set {σ | [m]\σ ∈ P0},
i.e.,

F(K̂) = {(σ1, σ2, · · · , σi) | [m]\σj /∈ K,σ1 ∩ σ2 ∩ · · · ∩ σi �= ∅}.
There is a one-to-one map from {σ �= [m] | [m] \ σ /∈ K} to P0 (σ → [m] \ σ). Moreover,
it is easy to check that σ1 ∩ σ2 ∩ · · · ∩ σi �= ∅, [m]\σj ∈ P0 for j = 1, · · · , i, if and only if
τ1 ∪ τ2 ∪ · · · ∪ τi �= [m], where τj = [m]\σj ∈ P0, j = 1, · · · , i.

So the inflation complex of the dual complex K̂ is isomorphic to the complex on P0, which
is also denoted by F(K̂):

F(K̂) = {(τ1, τ2, · · · , τi) | τj ∈ P0; τ1 ∪ τ2 ∪ · · · ∪ τi �= [m]}.
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We recall the proof of Theorem 2.3. If we assume P0 = {τ1, τ2, · · · , τs}, U = {Ui}i=1,2,··· ,s
would form an open cover of the topological space U(K). The nerve complex is the complex
below:

N (U) = {(i1, i2, · · · , ir) | τi1 ∪ τi2 · · · ∪ τir �= [m]}.
It is obvious that the inflation complex F(K̂) is isomorphic to the nerve complex N (U).

Now we can finish the proof of Theorem 1.5.

Proof of Theorem 1.5 By Theorem 2.3, we have

Hi(Λ∗,[m][P ], d) ∼= H̃i−2(N (U);k).

Remark 4.3 tells us F(K̂) ∼= N (U). Then by Lemma 3.1, we have

H̃i(N (U);k) ∼= H̃i(F(K̂);k) ∼= H̃i(K̂ ′;k).

Combining with the simplicial Alexander duality

H̃i(K̂;k) ∼= H̃m−3−i(K;k),

we get the final result
Hi(Λ∗,[m][P ], d) ∼= H̃m−i−1(K;k).

Remark 4.2 Proposition 2.1 told us that U = {Ui}i=1,2,··· ,s is an open cover of the topo-
logical space U(K), where U(K) = |∂Δm−1|\|K|. In [2, Corollary 13.3], there is a theory
that if the cover U of the topological space X is good enough, then the Čech homology of
this cover is exactly the homology of the space X . Here “good” means that for each simplex
σ = (i1, i2, · · · , in) ∈ N (U), H̃∗(Uσ) = 0, where Uσ = Ui1 ∩Ui2 ∩· · ·∩Uin . Luckily, it is easy to
prove that the open cover U given by any simplicial complement of the complex P is “good”.
It will give us another proof of Theorem 1.5, combining with the geometric Alexander duality
theorem.

Acknowledgement The authors are grateful to Q. Zheng for his helpful suggestions,
without his help, the proof of Lemma 3.1 would be much more complicated.
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