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Abstract This paper presents several examples of fundamental problems involving weak
continuity and compactness for nonlinear partial differential equations, in which compen-
sated compactness and related ideas have played a significant role. The compactness and
convergence of vanishing viscosity solutions for nonlinear hyperbolic conservation laws are
first analyzed, including the inviscid limit from the Navier-Stokes equations to the Euler
equations for homentropic flow, the vanishing viscosity method to construct the global
spherically symmetric solutions to the multidimensional compressible Euler equations, and
the sonic-subsonic limit of solutions of the full Euler equations for multi-dimensional steady
compressible fluids. Then the weak continuity and rigidity of the Gauss-Codazzi-Ricci sys-
tem and corresponding isometric embeddings in differential geometry are revealed. Further
references are also provided for some recent developments on the weak continuity and com-
pactness for nonlinear partial differential equations.
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1 Introduction

Nonlinear partial differential equations (PDEs) can be written in the following general form:

N [U ] = 0, (1.1)

where N [·] is a nonlinear mapping, and U is an unknown function that is called a solution if U
solves (1.1).

Two of the fundamental issues for nonlinear PDEs (1.1) are the following:
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(i) Weak Continuity and Rigidity: Let {Uε}ε>0 be a sequence of exact solutions satisfying{
N [Uε] = 0,

Uε ⇀ U in some topology as ε→ 0.
(1.2)

Issue 1.1 Does the limit function U satisfy

N [U ] = 0, (1.3)

or

Ñ [U ] = 0 (1.4)

for a different nonlinear mapping Ñ [·] associated with the original nonlinear mapping N [·] and
the solution sequence {Uε}ε>0?

Such an issue arises in rigidity problems in geometry, mechanics, among others.

(ii) Compactness and Convergence: Let {Uε}ε>0 be a sequence of approximate or multiscale
solutions satisfying {

N ε[Uε] = 0,
Uε ⇀ U in some topology as ε→ 0.

(1.5)

Issue 1.2 Does the limit function U satisfy (1.3), or (1.4) for a different nonlinear mapping
Ñ [·] associated with the nonlinear mappings N ε[·] and the solution sequence {Uε}ε>0?

This issue arises in the viscosity methods, relaxation methods, numerical methods, as well as
problems for homogenization, hydrodynamic limits, and search for effective equations, among
others.

This paper presents several examples of these fundamental problems involving weak con-
tinuity and compactness for nonlinear PDEs, in which compensated compactness and related
ideas, developed by Luc Tartar [85–89] and François Murat [70–74], have played a significant
role (see also [91]). In particular, in Section 2, we first analyze the compactness and conver-
gence of vanishing viscosity solutions to hyperbolic conservation laws. In Section 3, we reveal
the weak continuity and rigidity of the Gauss-Codazzi-Ricci system and corresponding isomet-
ric embeddings in differential geometry. Further references are also provided for some recent
developments on the weak continuity and compactness for nonlinear PDEs. We finally remark
that, as we will see in Sections 3–4, many fundamental problems in this direction are still open,
which require further new mathematical ideas, techniques, and approaches that deserve our
special attention.

2 Compactness and Convergence of Vanishing Viscosity Solutions to
Hyperbolic Conservation Laws

Consider the following one-dimensional nonlinear hyperbolic conservation laws of the form:

∂tU + ∂xF (U) = 0, U ∈ R
N , (2.1)
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where F : R
N → R

N is a nonlinear mapping so that all the eigenvalues of ∇UF (U) are real.

To solve these nonlinear PDEs, one of the important approaches is the viscosity method for
which one honors the physical or designs an artificial N ×N matrix function as follows:

D : R
N →MN×N , D(U) ≥ 0, (2.2)

so that

(i) ∂tU + ∂xF (U) = ε∂x(D(U)∂xU) admits a global solution Uε(t, x) for each fixed ε > 0;

(ii) Uε(t, x) → U(t, x) in some topology as ε→ 0, and U(t, x) is an entropy solution.

This method for the multidimensional case can be analogously formulated.

The idea of the vanishing viscosity method originates in the philosophy of regarding the
inviscid gas as the limit of viscous gases, which can date back to the 19th century, including the
works by Stokes (1848), Rankine (1870), Hugoniot (1889), Rayleigh (1910), Taylor (1910) and
Weyl (1949), among others (see also [28] and the references cited therein). This idea has played
an essential role in developing the mathematical theory of hyperbolic conservation laws (such
as discontinuous solutions, entropy conditions, existence, uniqueness, and solution behavior),
as well as numerical methods and related applications (such as shock capturing, upwind, and
kinetic schemes). This method becomes increasingly important, especially for understanding
the recently observed non-uniqueness phenomena for the weak solutions satisfying the entropy
equality for the multidimensional Euler equations (see [29–30]). On the other hand, the realiza-
tion of this method is truly challenging in mathematics, since it involves several fundamental
difficulties in analysis, including singular limits, nonlinearity, discontinuity, singularity, oscilla-
tion, cavitation, and concentration.

2.1 Compactness and convergence via BV -estimates

This compactness framework is based on the compactness theorem in BV, which is a suf-
ficient framework to ensure the strong compactness and convergence of exact/approximate
solutions. On the other hand, achieving the BV-estimates of exact/approximate solutions is
usually very challenging for the nonlinear systems, even though it is relatively easier for the
scalar case.

2.1.1 Scalar conservation laws

Consider the Cauchy problem for scalar conservation laws (N = 1) as follows:

∂tU + ∂xF (U) = ε∂xxU (2.3)

with the initial data U |t=0 = U0 ∈ BV ∩L∞(R). It can be shown that there exists C independent
of ε such that the viscous solutions Uε = Uε(t, x) of (2.3) satisfy

(i) Maximum principle: ‖Uε‖L∞ ≤ C;

(ii) BV-estimate: ‖∂xUε‖L1 + ‖∂tUε‖L1 ≤ C.

See [51, 57, 76] for the one-dimensional case, and [55, 92] for the multidimensional case.
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One of the approaches to achieve the BV-estimate is due to Vol’pert [92], which yields

∂t(|∂xUε|) + ∂x(F ′(Uε)|∂xUε|) ≤ ε∂xx(|∂xUε|),
∂t(|∂tUε|) + ∂x(F ′(Uε)|∂tUε|) ≤ ε∂xx(|∂tUε|)

in the sense of distributions, leading to the BV-estimate.
Then the compactness theorem in BV implies the strong convergence of Uε(t, x).
Similar arguments can yield the L1-equicontinuity of Uε directly, which is also a corollary

of the L1-stability and the comparison principle via Kruzhkov’s method (see [55]).
The same arguments also work for multidimensional scalar conservation laws (see [55, 92]);

see also [11] for scalar conservation laws with memory.

2.1.2 Hyperbolic systems of conservation laws: BV -estimate via Glimm’s ap-
proach

Glimm [41] first developed a random choice method, the Glimm scheme, and derived the
BV -estimate of the corresponding Glimm approximate solutions, based on the Glimm functional
and corresponding wave interaction estimates. The techniques developed have been successfully
employed to establish the global existence of solutions in BV and analyze the behavior of
solutions in BV (structure, uniqueness, stability, and asymptotic behavior of solutions in BV )
when the total variation of the initial data is small (see also [28, 33, 42, 61] and the references
cited therein).

Theorem 2.1 For a strictly hyperbolic system (2.1) on U in a neighborhood of a compact
set K ⊂ R

N , there exist constants δ > 0 and C such that, if

Tot.Var.{U0} < δ, lim
x→−∞U0(x) ∈ K, (2.4)

then there exists a global solution U(t, x) such that

Tot.Var.{U(t, ·)} ≤ C Tot.Var.{U0}.

Glimm’s approach was further employed to handle the front-tacking method and developed
to analyze the L1-stability of global solutions obtained by either the Glimm scheme or the front
tracking method (see [5, 28, 50, 58, 62] and the references cited therein). The approach was
also developed to analyze the well-posedness for two-dimensional steady supersonic Euler flows
past a Lipschitz wedge in [16, 25].

2.1.3 Hyperbolic systems of conservation laws: BV –estimate for the artificial
viscosity method

Consider the following Cauchy problem for one-dimensional nonlinear hyperbolic systems
of conservation laws with vanishing artificial viscosity (i.e., D(U) = IN×N ):

∂tU + ∂xF (U) = ε∂xxU (2.5)

and the initial data U(0, x) = U0(x) ∈ BV (RN ).
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Theorem 2.2 (Bianchini-Bressan [4]) For a strictly hyperbolic system (2.1) on U in a
neighborhood of a compact set K ⊂ R

N , there exist constants δ > 0 and Cj , j = 1, 2, 3, such that,
if U0 satisfies (2.4), then, for any fixed ε > 0, there exists a unique solution Uε(t, ·) := SεtU0(·)
of the Cauchy problem (2.5) such that

(i) BV bound : Tot.Var.{SεtU0} ≤ C1 Tot.Var.{U0};
(ii) L1-stability :

‖SεtU0 − Sεt V0‖L1 ≤ C2 ‖U0 − V0‖L1 ,

‖SεtU0 − SεsU0‖L1 ≤ C3 (|t− s| + |√εt−√
εs|).

These imply the strong convergence and L1-stability of the limit solution to (2.1).
The strategies to achieve the BV-estimate include the following steps:
(i) Employ the heat kernel to estimate the solution for t ∈ [0, τε],

‖∂xUε(t, ·)‖L1 ≤ κ δ,

where κ is small, independent of ε and δ.
(ii) Decompose ∂xUε along a suitable basis of unit vectors {r1, · · · , rN},

∂xU
ε =

∑
vεi ri (sum of gradients of viscous travelling waves).

(iii) Derive a system of N equations for these scalar components,

∂tv
ε
i + ∂x(λ̃ivεi ) − ε∂xxv

ε
i = φεi , i = 1, · · · , N.

Then, as the scalar case, we obtain that, for all t ≥ τε,

‖vεi (t, ·)‖L1 ≤ ‖vεi (τε, ·)‖L1 +
∫ ∞

τε

∫ ∞

−∞
|φεi (t, x)|dxdt.

(iv) Construct the basis {r1, · · · , rN} in an appropriate way so that, for t ≥ τε,∫ ∞

τε

∫ ∞

−∞
|φεi (t, x)|dxdt ≤ Ĉ,

which implies
Tot.Var.{Uε(t, ·)} = ‖Uεx(t, ·)‖L1 ≤

∑
i

‖vεi (t, ·)‖L1 ≤ C,

where Ĉ and C are independent of ε > 0.
Remark 2.1 The results above still hold even for non-conservative strictly hyperbolic sys-

tems. On the other hand, this approach requires both the artificial viscosity (i.e., D(U) =
IN×N ) and the total variation of the initial data sufficiently small.

Remark 2.2 A longstanding open problem is the BV -estimate and convergence of vanish-
ing viscosity approximation Uε governed by the general form as follows:

∂tU
ε + ∂xF (Uε) = ε∂x(D(Uε)∂xUε) (2.6)

for general viscosity matrices D(U), including the Navier-Stokes viscosity matrices. This es-
pecially includes the fundamental problem in mathematical fluid dynamics, the inviscid limit
of solutions of the Navier-Stokes equations to the Euler equations for homentropic flow via the
BV-estimate, which is still open.
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2.2 Compactness and convergence via compensated compactness

We now discuss the compactness and convergence of exact/approximate solutions to con-
servation laws via compensated compactness and related ideas, which only require much weak
bounds that may be obtained easily through natural energy/entropy estimates as our examples
below indicate.

2.2.1 Scalar conservation laws

Consider the Cauchy problem for scalar conservation laws (2.3) (N = 1) with the following
initial data:

U |t=0 = U0 ∈ L∞(R).

Then it can be easily shown that there exists C, independent of ε, such that the viscous solutions
Uε satisfy the following natural estimates:

(i) Maximum principle: ‖Uε‖L∞ ≤ C or ‖Uε‖Lp ≤ C.
(ii) Dissipation estimate: ‖√εUεx‖L2

loc
≤ C.

The second estimate is a direct corollary of the natural energy estimate as follows:

ε|∂xUε|2 = −∂t
( |Uε|2

2

)
− ∂x

(∫ Uε

wF ′(w)dw
)

+ ε∂xx

( |Uε|2
2

)
.

These estimates imply that, for any η ∈ C2 with entropy flux q(U) =
∫ U

η′(w)F ′(w)dw,

∂tη(Uε) + ∂xq(Uε) is compact in H−1
loc .

Then the compensated compactness arguments yield the weak continuity of F (Uε), or even the
strong convergence of Uε(t, x) a.e.

For the convex case, Tartar [85] was the first to employ one entropy pair (η∗(U), q∗(U)) =
(U2, 2

∫ U
wF ′(w)dw) to conclude the strong convergence, which initiated the successful applica-

tions of compensated compactness to nonlinear hyperbolic conservation laws. For the nonconvex
case, the entropy pair (η∗(U), q∗(U)) = (F (U),

∫ U (F ′(w))2)dw) also suffices to conclude the
weak continuity with respect to the general equation, and the strong convergence when the
equation is genuinely nonlinear for almost all U , as observed by Chen-Lu [18] and Luc Tartar
independently. See also [36, 80, 84].

The approach also applies to (2.6) (N = 1) with more general viscosity terms, as well as
scalar conservation laws with memory (see [27]).

For these, the following div-curl lemma plays an essential role.

Lemma 2.1 (see [70, 85]) Let Ω ⊂ R
d, d ≥ 2, be open bounded. Let p, q > 1 such that

1
p + 1

q = 1. Assume that, for any ε > 0, two vector fields

uε ∈ Lp(Ω; Rd), vε ∈ Lq(Ω; Rd)

satisfy the following:
(i) uε ⇀ u weakly in Lp(Ω; Rd) as ε→ 0;
(ii) vε ⇀ v weakly in Lq(Ω; Rd) as ε→ 0;
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(iii) div uε are confined in a compact subset of W−1,p
loc (Ω; R);

(iv) curl vε are confined in a compact subset of W−1,q
loc (Ω; Rd×d).

Then the scalar products of uε and vε are weakly continuous:

uε · vε → u · v

in the sense of distributions.

Various variations of Lemma 2.1 for different applications/purposes were developed (see [6,
91] and the references therein).

2.2.2 Hyperbolic systems of conservation laws: Compensated compactness for the
artificial viscosity method

Consider (2.5) with artificial viscosity. Assume that there exists a strictly convex entropy
function η∗(U),∇2η∗(U) > 0. In many cases, it can be shown that there exists C independent
of ε such that

(i) Invariant regions: ‖U ε‖L∞ ≤ C;
(ii) Dissipation estimate: ‖√ε∂xUε‖L2

loc
≤ C.

In fact, the dissipation estimate is natural as the scalar case, directly from the energy
estimate as follows:

ε(∂xUε)T∇2η∗(Uε)∂xUε = −∂tη∗(Uε) − ∂xq∗(Uε) + ε∂xxη∗(Uε).

Then, for any η ∈ C2 with entropy flux q, i.e., ∇q(U) = ∇η(U)∇F (U),

∂tη(Uε) + ∂xq(Uε) is compact in H−1
loc .

The compensated compactness arguments can yield the strong convergence of Uε(t, x) when
the system has strong nonlinearity.

The similar compensated compactness arguments apply to the systems with more general
viscosity matrices (2.6) for ∇2η∗(U)D(U) ≥ c0 > 0. Another advantage of this approach is to
allow the initial data of large oscillation without bounded variation.

In order to achieve the strong compactness, as first indicated by Tartar [85], combining the
div-curl lemma (see [70, 85]) and the Young measure representation theorem (see [1, 3, 85]),
we have the following commutation identity for the associated Young measure ν = ν(t,x)(λ)
(probability measure) for the sequence Uε(t, x):

〈ν(λ), η1(λ)q2(λ) − q1(λ)η2(λ)〉
= 〈ν(λ), η1(λ)〉〈ν(λ), q2(λ)〉 − 〈ν(λ), q1(λ)〉〈ν(λ), η2(λ)〉 (2.7)

for any entropy pairs (ηj , qj), j = 1, 2, and

∂t〈ν, η(λ)〉 + ∂x〈ν, q(λ)〉 ≤ 0

in the sense of distributions for any convex entropy pair (η, q),∇2η ≥ 0. Then the main
mathematical issue is whether ν is a Dirac measure. The key point is the imbalance of regularity
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of the operator in the commutation identity, that is, the operator on the left is more regular
than the one on the right due to cancellation when the system has strong nonlinearity. If so,
the compactness of Uε(t, x) in L1 follows.

For strict hyperbolicity with N = 2, there are two families of entropy pairs determined by
two arbitrary functions, which yield an affirmative answer to the issue (see [17, 28, 35, 68, 77,
81]).

Further challenges include nonstrictly hyperbolic systems, viscosity matrices with

∇2η∗(U)D(U) ≥ 0

but not positive definite, and initial data of large oscillation with only energy bounds (with-
out bounded variation or L∞-uniform bound). We now start with a fundamental example of
nonstrictly hyperbolic systems.

2.2.3 Homentropic Euler equations: Compensated compactness for the artificial
viscosity method

The homentropic Euler equations take the following form:⎧⎨⎩∂tρ+ ∂xm = 0,

∂tm+ ∂x

(m2

ρ
+ p(ρ)

)
= 0,

(2.8)

where ρ is the density, u = m
ρ is the fluid velocity that is well-defined when ρ > 0, and

p = p(ρ) = ρ2e′(ρ) is the pressure with internal energy e(ρ).
For a polytropic perfect gas,

p(ρ) = κργ , e(ρ) =
κ

γ − 1
ργ−1, (2.9)

where γ > 1 is the adiabatic exponent, and the constant κ in the pressure-density relation may
be chosen as κ = (γ−1)2

4γ without loss of generality.
One of the main difficulties for solving (2.8) is that strict hyperbolicity fails when ρ→ 0.
An entropy function η(ρ,m) is called a weak entropy if η(ρ,m)|ρ=0 = 0. The weak entropy

pairs can be represented as

ηψ(ρ, ρu) =
∫

R

χ(s)ψ(s)ds, qψ(ρ, ρu) =
∫

R

(θs+ (1 − θ)u)χ(s)ψ(s)ds (2.10)

for any C2-test function ψ(s), where χ(s) is the weak entropy kernel as follows:

χ(s) := [ρ2θ − (u− s)2]λ+, θ =
γ − 1

2
, λ =

3 − γ

2(γ − 1)
. (2.11)

The following mechanical energy-energy flux pair (η∗, q∗):

η∗(ρ,m) =
1
2
m2

ρ
+ ρe(ρ), q∗(ρ,m) =

1
2
m3

ρ2
+m

(
e(ρ) +

p

ρ

)
is a convex entropy pair for (2.8).
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Consider the following homentropic Euler equations with artificial viscosity:⎧⎪⎨⎪⎩
∂tρ+ ∂xm = ε∂2

xρ,

∂tm+ ∂x

(m2

ρ
+ p(ρ)

)
= ε∂2

xm.
(2.12)

It can be shown for (2.12) that there exists C > 0, independent of ε > 0, such that
(i) Invariant regions for the L∞-estimate:

0 ≤ ρε(t, x) ≤ C, |mε(t, x)| ≤ Cρε(t, x) a.e.;

(ii) Dissipation estimate:

√
ε‖∂x(ρε,mε)‖L2([0,T ]×R) ≤ C,

via the mechanical energy pair (η∗, q∗) that is strictly convex for 1 < γ ≤ 2, and convex for
γ > 2 for which a corresponding weighted dissipation estimate can be obtained.

These estimates yield that, for any C2 weak entropy pair (η, q),

∂tη(ρε,mε) + ∂xq(ρε,mε) is compact in H−1
loc .

Then the convergence problem for (ρε,mε) is reduced to the reduction problem for a measure-
valued solution νt,x as follows.

Problem 2.1 If supp νt,x is bounded, then

νt,x = ν(ρ(t,x),m(t,x)), (2.13)

that is, (ρε(t, x),mε(t, x)) → (ρ(t, x),m(t, x)) a.e. (t, x).

This problem was solved by DiPerna [34] for γ = N+2
N , N ≥ 5 odd, Ding-Chen-Luo [31–32]

and Chen [8] for γ ∈ (1, 5
3 ], Lions-Perthame-Tadmor [64] for γ ≥ 3, Lions-Perthame-Souganidis

[63] for γ ∈ (5
3 , 3), and Chen-LeFloch [14] for general pressure laws. The key point is to employ

effectively the weak entropy pairs in the commutation identity (2.7) for the associated Young
measure νt,x with compact support.

The convergence of related numerical methods with corresponding numerical viscosity ma-
trices including the Lax-Friedrichs scheme and Godunov scheme was also established in [31–32]
(see also [10]).

The isothermal case γ = 1 was also handled by Huang-Wang [52] (see also [59]).
Some further important problems include the inviscid limit from the compressible Navier-

Stokes equations to the compressible Euler equations (see Subsection 2.3) and the existence of
global spherically symmetric solutions to the compressible Euler equations (see Subsection 2.4).

2.3 Navier-Stokes equations: Inviscid limit

Consider the following Cauchy problem:{
ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = εuxx
(2.14)
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with the initial conditions

(ρ, u)|t=0 = (ρε0(x), u
ε
0(x)), lim

x→±∞(ρε0(x), u
ε
0(x)) = (ρ±, u±), (2.15)

where (ρ±, u±) are constant end-states with ρ± > 0, and the viscosity coefficient ε ∈ (0, ε0] for
some fixed ε0.

The existence of C2-solutions (ρε, uε)(t, x) for large initial data was obtained by Kanel [54]
for the same ending states and by Hoff [48] for different ending states.

Inviscid Limit Problem Does the solution sequence (ρε, uε)(t, x) of (2.14) strongly con-
verge to a solution to the homentropic Euler equations (2.8) when ε→ 0?

This problem was addressed by Gilbarg [40], Hoff-Liu [49], and Gùes-Métivier-Williams-
Zumbrun [45] for some physical cases with special structures for which the limit solution contains
only one shock.

For the general case, several new difficulties arise, which include

(i) No invariant regions: Only energy norms;

(ii) Direct derivative estimates only partially: ‖√ε∂xuε‖L2
loc

≤ C;

(iii) No a priori bounded support of the measure-valued solution νt,x.

Nevertheless, the following theorem has been established.

Theorem 2.3 (Chen-Perepelitsa [19]) Let the initial functions (ρε0, u
ε
0) satisfy∫ ∞

−∞
Φ∗(ρε0(x),m

ε
0(x))dx ≤ E0 <∞,∫ ∞

−∞

(
ε2

|ρε0,x(x)|2
ρε0(x)3

+ 2ε
|ρε0,x(x)uε0(x)|

ρε0(x)
+ ρε0(x)|uε0(x)|

)
dx ≤ E1 <∞,

where Φ∗(ρ,m) = η∗(ρ,m)−η∗(ρ,m)−∇η∗(ρ,m)·(ρ−ρ,m−m) ≥ 0 for m = ρu, (ρ, u) is a pair
of smooth monotone functions satisfying (ρ(x), u(x)) = (ρ±, u±) when ±x ≥ L0 for some large
L0 > 0, and both E0 and E1 are independent of ε. Let (ρε,mε), mε = ρεuε, be the solution of
the Cauchy problem for the Navier-Stokes equations (2.14) for each fixed ε > 0. Then, when
ε → 0, there exists a subsequence of (ρε,mε) that converges strongly almost everywhere to a
finite-energy solution (ρ,m) to the Cauchy problem for the homentropic Euler equations (2.8)
for any γ > 1.

The strategies for this include the following steps:

(i) Derive the finite-energy bound and higher integrability bound (replacing L∞ bound).

(ii) Derive a new derivative estimate for ε∂xρε.

(iii) Show the H−1-compactness of weak entropy dissipation measures only for weak entropy
pairs with compactly supported C2-test functions.

(iv) Prove that any connected component of support of the measure-valued solution νt,x must
be bounded, which reduces to the case when the support of νt,x is bounded as in Subsection
2.2.3.
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To achieve these, the following key estimates of solutions to the Navier-Stokes equations are
essential: There exist C1 > 0 and C2 = C2(E0, E1,K, γ, t) independent of ε for any compact
set K ⊂ R such that, for any t > 0,

(i) Energy estimate:∫ ∞

−∞
Φ∗(ρε(t, x),mε(t, x)) dx +

∫ t

0

∫ ∞

−∞
ε|uεx|2 dxdτ ≤ E0;

(ii) New derivative estimate for the density:

ε2
∫ |ρεx(t, x)|2

ρε(t, x)3
dx+ ε

∫ t

0

∫ ∞

−∞
(ρε)γ−3|ρεx|2 dxdτ ≤ C1(E0 + E1);

(iii) Higher integrability bound:∫ t

0

∫
K

(ρε|uε|3 + (ρε)γ+θ + (ρε)γ+1) dxdτ ≤ C2.

The higher integrability estimate (iii) is motivated by the related work by Lions-Perthame-
Tadmor [64] and LeFloch-Westdickenberg [60]. For some related earlier work on the convergence
of approximate solutions in the Lp-framework, see [82] for a 2×2 system of elasticity with severe
growth conditions, and [60] for the convergence of approximate solutions with full dissipation
in the energy norms for the homentropic Euler equations with γ ∈ (1, 5

3 ].
Let νt,x be the Young measure determined by the solutions of the Navier-Stokes equations

(2.14). Then νt,x is confined by

θ(s2 − s1)(χ(s1)χ(s2) − χ(s1) χ(s2))

= (1 − θ)(uχ(s2) χ(s1) − uχ(s1) χ(s2)) for a.e. s1, s2 ∈ R,

for the entropy kernel χ(s) := [ρ2θ − (u − s)2]λ+ with θ = γ−1
2 and λ = 3−γ

2(γ−1) , where f(s) :=
〈νt,x, f(s; ρ, u)〉.

The goal is to establish that the Young measure is a Dirac mass in the phase plane for
(ρ,m). The new difficulty is now that supp νt,x is unbounded in general.

We divide the proof into three cases.
Case 1 γ = 3. The same argument for the bounded support of νt,x applies as in [64]. In

this case, θ = 1 and the commutation relation becomes

χ(s1)χ(s2) = χ(s1) χ(s2),

which implies χ(s)
2

= χ(s)2 by taking s1 = s2, that is,

〈νt,x, (χ(s) − χ(s))2〉 = 0 for any s ∈ R.

This implies that ν must be a Dirac mass on the set {ρ > 0} or be supported completely in the
vacuum V = {ρ = 0}, that is, the measure-valued solution νt,x is a Dirac mass (2.13) in the
phase plane for (ρ,m).

Case 2 γ > 3. Let A := ∪ {(u − ρθ, ρθ + u) : (ρ, u) ∈ supp ν}. Let J = (s−, s+) be any
connected component of A. Note that suppχ(s) = {(ρ, u) : u− ρθ ≤ s ≤ u+ ρθ}.
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Claim 2.1 The connected component J is bounded for γ > 3.

On the contrary, let inf{s : s ∈ J} = −∞. Our strategy is to fix M0 first such that
M0 + 1 ∈ J and restrict s2 ∈ (M0,M0 +1), then choose sufficiently small s1 ≤ −2|M0| to reach
the contradiction.

To achieve this, two following estimates are essential:

(i)
∫M0+1

M0

χ(s1)χ(s2)

χ(s1)
ds2 ≤ C(λ)|s1|λ for λ < 0, which is our key new observation.

(ii) χ(s1)χ(s2)

χ(s1)
≥ χ(s2) a.e. s1, s2 ∈ J, s1 < s2, by employing Lions-Perthame-Tadmor’s

argument in [64].
Combining the two estimates, we have∫ M0+1

M0

χ(s1)χ(s2)
χ(s1)

ds2 ≥
∫ M0+1

M0

χ(s2)ds2 = C(M0, λ) > 0,

which implies that, when s1 → −∞,

0 < C(M0, λ) =
∫ M0+1

M0

χ(s1)χ(s2)
χ(s1)

ds2 ≤ C(λ)|s1|λ → 0.

This arrives at the contradiction.
The case when J is unbounded from above can be treated similarly.
This indicates that any connected component J of the support of the Young measure ν is

bounded for γ > 3, which reduces to the Lions-Perthame-Tadmor’s case for γ > 3 in [64].
Case 3 γ ∈ (1, 3). On the contrary, suppose that a connected component J of the support

is unbounded from below.
Let M0 = sup{s : s ∈ J} ∈ (−∞,∞]. Let s1, s2, s3 ∈ (−∞,M0) with s1 < s2 < s3. The

commutation relation leads to

(s3 − s1)χ(s2)
χ(s1)χ(s3)
χ(s1)χ(s3)

= (s2 − s1)
χ(s1)χ(s2)
χ(s1)

+ (s3 − s2)
χ(s3)χ(s2)
χ(s3)

. (2.16)

Differentiating this equation in s2 and dividing by (s3 − s1), we obtain

χ′(s2)
χ(s1)χ(s3)
χ(s1)χ(s3)

=
s2 − s1
s3 − s1

χ(s1)χ′(s2)
χ(s1)

+
s3 − s2
s3 − s1

χ(s3)χ′(s2)
χ(s3)

+
1

s3 − s1

χ(s1)χ(s2)
χ(s1)

− 1
s3 − s1

χ(s3)χ(s2)
χ(s3)

. (2.17)

Our strategy is to take s1 → −∞ first and then show that the left-hand side has a smaller
order than the right-hand side to arrive at the contradiction.

To do this, we divide the argument into five steps:
(i) Show the estimate

χ(s1)χ(s3)
χ(s1) χ(s3)

≥ 1 for any s1, s3 ∈ J

by employing Lions-Perthame-Tadmor’s argument in [64].
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(ii) Show that χ(s) ≥ 0, but is not identically zero, and χ(s) → 0 as s → inf J, supJ . This
yields that there exists s2 such that χ′(s2) > 0 and χ(s2) > 0.

(iii) Let s3 > s2 be the points such that χ(s3) > 0, and let s1 → −∞. From the first identity
(2.16),

χ(s1)χ(s2)
χ(s1)

= χ(s2)
χ(s1)χ(s3)
χ(s1) χ(s3)

+ o(1) as s1 → −∞.

(iv) Show that [χ′(s)]+ ≤ 2λ
s−s1χ(s).

(v) From the second equation (2.17), by throwing away the negative terms, we have

χ′(s2)
χ(s1)χ(s3)
χ(s1) χ(s3)

≤ 2λ+ 1
s3 − s1

χ(s1)χ(s2)
χ(s1)

+ o(1),

which implies (
χ′(s2) − 2λ+ 1

s3 − s1
χ(s2)

) χ(s1)χ(s3)
χ(s1) χ(s3)

≤ o(1).

This arrives at the contradiction as s1 → −∞.

Another different proof was given by LeFloch-Westdickenberg [60] for 1 < γ ≤ 5
3 . The invis-

cid limit of the viscous shallow water equations to the Saint-Venant system was also established
in [20].

2.4 Spherically symmetric solutions to the multidimensional homentropic Euler
equations

The homentropic Euler equations for multidimensional compressible fluids take the following
form: {

ρt + ∇x(ρv) = 0,

(ρv)t + ∇x(ρv ⊗ v) + ∇xp = 0,
(2.18)

where x = (x1, · · · , xd) ∈ R
d, ∇x is the gradient with respect to x ∈ R

d, and v = (v1, · · · , vd) ∈
R
d is the velocity. The pressure-density constitutive relation (by scaling) satisfies (2.9).

We seek the spherically symmetric solutions of the following form:

ρ(t,x) = ρ(t, r), v(t,x) = u(t, r)
x
r
, r = |x|. (2.19)

Then the functions (ρ,m) = (ρ, ρu) are governed by⎧⎪⎨⎪⎩
ρt +mr +

d− 1
r

m = 0,

mt +
(m2

ρ
+ p(ρ)

)
r
+
d− 1
r

m2

ρ
= 0.

(2.20)

For the defocusing case, the existence of expanding spherically symmetric solutions with the
following bounds:

0 ≤ ρ(t, r)
γ−1

2 ≤ u(t, r) ≤ C <∞,

has been constructed, provided that the initial functions have the same bounds in [9].
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For the focusing case, the singularity of imploding self-similar spherically symmetric solu-
tions was discussed in [26, 44, 79, 93]. It is indicated indeed in [78] that there is no BV or L∞

bound for the imploding solutions in general.
A longstanding open problem is whether the concentration phenomenon occurs at the origin,

that is, whether the density ρ develops a measure at the origin. In [21], we developed a method
of vanishing artificial viscosity to prove that the vanishing viscosity limit solution does not form
concentration at the origin, but has a bounded total energy. More precisely, we construct a
sequence of vanishing viscosity solutions to the following initial-boundary problem:⎧⎪⎪⎨⎪⎪⎩

ρt +mr +
d− 1
r

m = ε
(
ρrr +

d− 1
r

ρr

)
,

mt +
(m2

ρ
+ pδ(ρ)

)
r
+
d− 1
r

m2

ρ
= ε

(
mrr +

d− 1
r

m
)
r
,

(2.21)

with the appropriate approximate initial data

(ρ,m)|t=0 = (ρε0(r),m
ε
0(r)) → (ρ0,m0) a.e. as ε→ 0, (2.22)

and the boundary condition

(ρr,m)|r=a(ε) = (0, 0), (ρ,m)|r=b(ε) = (ρ(ε), 0), (2.23)

where (ρ0,m0) is the initial data for the spherical symmetric solution to (2.20), pδ(ρ) = δρ2+κργ

with δ = δ(ε), and a(ε), b(ε), ρ(ε) and δ(ε) are positive with a(ε) → 0, b(ε) → ∞, (ρ(ε), δ(ε)) →
(0, 0), as well as certain combinations of (b(ε), ρ(ε), δ(ε)) tending to 0, as ε→ 0 (see [21]). Then
we have the following theorem.

Theorem 2.4 (Chen-Perepelitsa [21]) Let the initial functions (ρ0,m0) for (2.20) satisfy
the finite-energy conditions. Then

(i) for sufficiently small fixed ε > 0, there exists a global viscous solution (ρε,mε) to the
initial-boundary value problem (2.21)–(2.23) satisfying that, for any compact set K ⊂ R+ and
T > 0, there exists CT > 0 independent of ε > 0 such that, for any 0 < t ≤ T ,∫ b(ε)

a(ε)

(1
2
ρε(uε)2 + ρεe(ρε)

)
(t, r) rd−1dr

+ ε

∫ t

0

∫ b(ε)

a(ε)

(
(ρε)γ−2|ρεr|2 + ρε|uεr|2 +

ρε(uε)2

2r2
)
rd−1drdt ≤ CT ,

∫ t

0

∫
K

(ρε|uε|3 + (ρε)γ+θ + (ρε)γ+1) rd−1drdτ ≤ CT ;

(ii) when ε→0, there exists a subsequence of (ρε,mε) that converges strongly almost every-
where to a finite-energy spherically symmetric solution (ρ,m) to (2.20) for any γ > 1 with the
initial data (ρ0,m0).

The key ingredients are the uniform a priori estimates in (i) in combination with the reduc-
tion of the corresponding Young measure discussed in Subsection 2.3.
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Recently, we have also solved and/or made progress on several fundamental problems in non-
linear partial differential equations by employing the viscosity method. These include the van-
ishing viscosity approximation for transonic flow in Chen-Slemrod-Wang [22] (see also Morawetz
[67, 69]), and the subsonic-sonic limit of exact/approximate solutions to the full Euler equations
for multidimensional steady compressible fluids in Chen-Huang-Wang [13].

3 Weak Continuity and Rigidity of the Gauss-Codazzi-Ricci System
and Corresponding Isometric Embeddings

The isometric embedding problem is a longstanding fundamental problem in differential
geometry. As is well-known from differential geometry, given a surface, we can compute its
metric {gij} and the associated first fundamental form

I =
∑

gijdxidxj ,

and its curvatures are determined by the second fundamental form

II =
∑

hijdxidxj .

Then a natural mathematical question is as follows:

Isometric Embedding Problem Given a metric {gij}, can we find a surface in the
Euclidean space with the given metric {gij}?

In other words, we seek a map r : Ω → R
N such that

dr · dr =
N∑

i,j=1

gijdxidxj

in the local coordinates, that is, ∂xir · ∂xjr = gij so that (∂xir, ∂xjr), i �= j, in R
d are linearly

independent.
This is an inverse problem, which is a realization question for a given abstract metric {gij}.

A further question is whether we can produce even more sophisticated surfaces or thin sheets
for applications. These questions are truly fundamental, not only in mathematics such as
differential geometry and topology, but also in many applications such as the understanding
evolution of sophisticated shapes of surfaces or thin sheets in nature including elastic materials,
protein folding in biology and algorithmic origami, as well as design and visual arts, among
others.

The mathematical study of this problem has a long history, including the early important
works by Schlaefli (1873), Darboux (1894), Hilbert (1901), Weyl (1916), Janet (1926–1927)
and Cartan (1926–1927) (see also [47] and the references therein). In particular, Nash [75]
established the Nash isometric embedding theorem (also called the Ck-embedding theorem,
k ≥ 3) as follows.

Theorem 3.1 Every n-dimensional Riemannian manifold (analytic or Ck, k ≥ 3) can be
Ck-isometrically imbedded in the Euclidean space R

d with d = 2sn + 4n for the compact case
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and d = (n+ 1)(3sn + 4n) for the noncompact case, where sn = n(n+1)
2 is the Jenet dimension

(see [53]).

The results were further improved with lowerer target dimensions by Gromov [43] with
d = sn + 2n+ 3 and Günther [46] with d = max{sn + 2n, sn + n+ 5}.

The following further problems are important for applications:
(i) Rigidity of isometric embeddings: Is a weak limit of a sequence of isometric embeddings

in some topology still an isometric embedding?
(ii) Lowerest target dimension for global isometric embeddings, which is expected to be the

Janet dimension d = sn.
(iii) Optimal or assigned regularity such as C1,1, W 2,p and BV 1.
The regularity issue is quite sensitive. For example, Efimov’s example in [38] indicates that

there is no C2-isometric embedding when n = 2 and d = sn = 3.
For n = 2 and d = 3, the fundamental theorem in differential geometry indicates the

following result.

Theorem 3.2 There exists a surface in R
3 whose first and second fundamental forms are

I and II, if the coefficients {gij} and {hij} of the two given quadratic forms I and II, I being
positive definite, satisfy the Gauss-Codazzi system. That is, given {gij}, the second fundamental
coefficients {hij} are determined by the Codazzi equations (compatibility) as follows:⎧⎨⎩∂xM − ∂yL = LΓ(2)

22 − 2MΓ(2)
12 +NΓ(2)

11 ,

∂xN − ∂yM = −LΓ(1)
22 + 2MΓ(1)

12 −NΓ(1)
11 ,

(3.1)

subject to the following Gauss equation (i.e., the Monge-Ampère type constraint):

LN −M2 = K, (3.2)

where
L =

h11√|g| , M =
h12√|g| , N =

h22√|g| , |g| = g11g22 − g2
12,

Γ(k)
ij are the Christoffel symbols, depending on gij up to their first derivatives, and K(x, y) is

the Gauss curvature, determined by gij up to their second derivatives.

This theorem holds even when hij ∈ Lp (see [65–66]). Note that (3.1)–(3.2) is a system
of nonlinear PDEs of the mixed elliptic-hyperbolic type, which is determined by the sign of
the Gauss curvature K. Surfaces with Gauss curvature of changing signs are very normal in
geometry, including tori such as toroidal shells or doughnut surfaces.

Fluid Dynamics Formalism for Isometric Embedding (Chen-Slemrod-Wang [23]).
Set L = ρv2 + p,M = −ρuv,N = ρu2 + p and q2 = u2 + v2. Choose p as the Chaplygin type
gas as follows: p = − 1

ρ .

The Codazzi equations (3.1) become the following balance laws of momentum equations:⎧⎨⎩∂x(ρuv) + ∂y(ρv2 + p) = −(ρv2 + p)Γ(2)
22 − 2ρuvΓ(2)

12 − (ρu2 + p)Γ(2)
11 ,

∂x(ρu2 + p) + ∂y(ρuv) = −(ρv2 + p)Γ(1)
22 − 2ρuvΓ(1)

12 − (ρu2 + p)Γ(1)
11 ,
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and the Gauss equation becomes the Bernoulli relation

p = −
√
q2 +K.

Define the sound speed c2 = p′(ρ). Then c2 = 1
ρ2 = q2 +K.

c2 > q2 and the “flow” is subsonic when K > 0.
c2 < q2 and the “flow” is supersonic when K < 0.
c2 = q2 and the “flow” is sonic when K = 0.
Based on this connection, the existence and continuity of isometric embeddings via com-

pensated compactness and entropy analysis were first addressed in [23].
For higher-dimensional cases, the isometric embeddings of n-dimensional Riemannian man-

ifolds (n ≥ 3) into R
d are described by the following Gauss-Codazzi-Ricci system:

Gauss equations

hajih
a
kl − hakih

a
jl = Rijkl; (3.3)

Codazzi equations

∂halj
∂xk

− ∂hakj
∂xl

+ Γmlj h
a
km − Γmkjh

a
lm + κakbh

b
lj − κalbh

b
kj = 0; (3.4)

Ricci equations

∂κalb
∂xk

− ∂κakb
∂xl

− gmn
(
hamlh

b
kn − hamkh

b
ln

)
+ κakcκ

c
lb − κalcκ

c
kb = 0, (3.5)

where {Rijkl} is the Riemann curvature tensor, and κakb = −κbka are the coefficients of the
connection form (torsion coefficients) on the normal bundle; the indices a, b, c run from 1 to N ,
and i, j, k, l,m, n run from 1 to d ≥ 3.

The Gauss-Codazzi-Ricci system (3.3)–(3.5) has no type, neither purely hyperbolic nor
purely elliptic for the general Riemann curvature tensor Rijkl (see [7]). However, we have
established the following weak continuity and rigidity of (3.3)–(3.5) and the corresponding
embedded surfaces.

Theorem 3.3 (Chen-Slemrod-Wang [24]) Consider the Gauss-Codazzi-Ricci system (3.3)–
(3.5).

(i) Let (ha,εij , κ
a,ε
lb ) be a sequence of solutions to (3.3)–(3.5), which is uniformly bounded in

Lp, p > 2. Then the weak limit vector field (haij , κ
a
lb) of the sequence (ha,εij , κ

a,ε
lb ) in Lp is still a

solution to (3.3)–(3.5).
(ii) There exists a minimizer (haij , κ

a
lb) for the following minimization problem:

min
S

‖(h, κ)‖pLp(Ω) := min
S

∫
Ω

√
|g|(|hijhij |

p
2 + |κlbκlb|

p
2 )dx,

where S is the set of weak solutions to (3.3)–(3.5).

This weak continuity and rigidity theorem is a reminiscence of the polyconvexity theory in
nonlinear elasticity by Ball [2], for which the rigidity of elastic bodies can be achieved.
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The proof of this theorem is based on the following observations on the div-curl structure
of the Gauss-Codazzi-Ricci system:

div (

k︷ ︸︸ ︷
0, · · · , 0, ha,εlj , 0, · · · ,−ha,εkj︸ ︷︷ ︸

l

, 0, · · · , 0) = R1,

curl (ha,ε1i , h
a,ε
2i , · · · , ha,εdi ) = R2,

div (

k︷ ︸︸ ︷
0, · · · , 0, κa,εlb , 0, · · · ,−κa,εkb︸ ︷︷ ︸

l

, 0, · · · , 0) = R3,

curl (κa,ε1b , κ
a,ε
2b , · · · , κa,εdb ) = R4,

div (

k︷ ︸︸ ︷
0, · · · , 0, hb,εli , 0, · · · ,−hb,εki︸ ︷︷ ︸

l

, 0, · · · , 0) = R5,

curl (hb,ε1i , h
b,ε
2i , · · · , hb,εdi ) = R6,

div (

k︷ ︸︸ ︷
0, · · · , 0, κb,εlc , 0, · · · ,−κb,εkc︸ ︷︷ ︸

l

, 0, · · · , 0) = R7,

curl (κb,ε1c , κ
b,ε
2c , · · · , κb,εdc ) = R8,

and Rj , j = 1, 2, · · · , 8, are confined in a compact set in H−1
loc (Ω).

Then employing the Murat-Tartar’s div-curl lemma directly yields

ha,εlj h
a,ε
ki − ha,εkj h

a,ε
li ⇀ haljh

a
ki − hakjh

a
li,

ha,εlj h
b,ε
ki − ha,εkj h

b,ε
li ⇀ haljh

b
ki − hakjh

b
li,

κa,εkb κ
b,ε
lc − κa,εlb κ

b,ε
kc ⇀ κakbκ

b
lc − κalbκ

b
kc,

κa,εkb h
b,ε
li − κa,εlb h

b,ε
ki ⇀ κakbh

b
li − κalbh

b
ki

in the sense of distributions as ε→ 0, which implies the weak continuity and rigidity of (3.3)–
(3.5) and the corresponding isometric embeddings.

A compactness framework for the Gauss-Codazzi-Ricci system (3.3)–(3.5) was established in
[24] as follows: Given any sequence of approximate solutions to this system which is uniformly
bounded in L2 and has reasonable bounds on the errors made in the approximation (the errors
are confined in a compact subset of H−1

loc ), the approximating sequence has a weakly convergent
subsequence whose limit is still a solution to (3.3)–(3.5).

These results indicate that the weak limit of isometrically embedded surfaces is still an
isometrically embedded surface in R

d for any Riemann curvature tensor {Rijkl} without re-
striction, which is the rigidity property of embedded surfaces in geometry.
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[87] Tartar, L., Compacité par compensation: Résultats et perspectives, Nonlinear Partial Differential Equa-
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