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Abstract This paper deals with backward stochastic differential equations with jumps,
whose data (the terminal condition and coefficient) are given functions of jump-diffusion
process paths. The author introduces a type of nonlinear path-dependent parabolic integro-
differential equations, and then obtains a new type of nonlinear Feynman-Kac formula
related to such BSDEs with jumps under some regularity conditions.
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1 Introduction

Linear backward stochastic differential equations (BSDEs for short) were introduced by
Bismut [2] in 1973. Pardoux and Peng [16] established the existence and uniqueness theo-
rem for nonlinear BSDEs under a standard Lipschitz condition in 1990. Then, Peng [18–19]
and Pardoux and Peng [17] introduced the nonlinear Feynman-Kac formula, which provides a
probabilistic representation for a wide class of semilinear partial differential equations (see also
[13]). Since then, especially after the publication of the paper [11], in which the applications
of BSDEs in finance were discussed, the theory of BSDE has received wide attention for both
theoretical research and applications.

Recently, Dupire [7] introduced a new functional Itô’s formula, which non-trivially gener-
alized the classical one through a new notion-path derivative (see [4–6] for more general and
systematic research). It extends the Itô stochastic calculus to functionals of a given process. It
provides an excellent tool for the study of path-dependence. In fact, he showed that a smooth
path functional solves a linear path-dependent PDE if its composition with a Brownian motion
generates a martingale, which provided a functional extension of the classical Feynman-Kac
formula. Moreover, by virtue of the BSDE approach, we obtained the existence and uniqueness
of the smooth solution to the semilinear path-dependent PDE (see [21]). These methods are
mainly based on stochastic calculus.
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The aim of this paper is to generalize the above results to the case of BSDEs with both
Brownian motion and a Poisson random measure. Consider the following BSDE with jumps:⎧⎨
⎩−dY (t) = f(t,X, Y (t), Z(t),K(t)) dt − Z(t) dB(t) −

∫
E

K(t, e)μ̃(dt, de), t ∈ [0, T ],

Y (T ) = Φ(X),
(1.1)

where X is a d-dimensional diffusion satisfying the SDE

X(t) = x+
∫ t

0

b(X(r))dr +
∫ t

0

σ(X(r))dB(r) +
∫ t

0

∫
E

β(X(r−), e)μ̃(dr, de), (1.2)

in which b : Rd �→ Rd, σ : Rd �→ Rd×d, β : Rd × E �→ Rd are some measurable functions, and
f : Λ × Rn × Rn×d × L2(E, E , λ; Rn) �→ Rn is a non-anticipative functional with respect to X .
Note that (1.1) is “non-Markovian”. We will prove that under certain smooth assumptions (see
Section 4) the solution (Y (t), Z(t),K(t)) to (1.1) solves the following type of PDE, which is
said to be path-dependent parabolic integro-differential equations (PIDEs for short). For each
l ∈ {1, · · · , n},

Dtul(γt) + Lul(γt) + fl(γt, u(γt), Dxu(γt)σ(γt(t)), u(γβ(γt(t),e)
t ) − u(γt)) = 0,

u(γ) = Φ(γ), (1.3)

where the derivative is the Dupire’s path derivative (see Section 2.1). More specifically, the
path-function u(t,X(s)0≤s≤t) := Y (t, ω) is the unique C

1,2
l,lip-solution to the path-dependent

PIDEs (1.3). We refer to Buckdahn-Pardoux [3] for the Markovian case when both Φ and f are
functions of the forward diffusion. The results of this paper non-trivially generalize the ones of
[3] (see also [1]) for the path-dependent situation.

The paper is organized as follows. In Section 2, we present some existing results in the theory
of functional Itô’s formula and BSDEs that we will use in this paper. In Section 3, we state
the nonlinear Feynman-Kac formula for the “discrete functional” form. Then, in Subsections
4.1–4.2, we first establish some estimates and regularity results for the solution to BSDEs with
path. Finally, in Subsection 4.3, we obtain our main results, i.e., Theorems 4.4 and 4.5, which
provide a one to one correspondence between BSDEs and the path-dependent PIDEs.

When the coefficients of BSDE are only Lipschitz functions, we usually can not obtain the
smooth results given in this paper, and therefore a new type of viscosity solutions is required. In
the Brownian motion case, we refer to [20] for the corresponding comparison theorem. Moreover,
[8] introduced a different stochastic approach to derive a maximum principle for semilinear path-
dependent partial differential equations. For a recent account and development of this theory,
we refer the readers to [9–10].

2 Preliminaries

2.1 Functional Itô’s formula

The following notations are mainly from Dupire [7].
Let T > 0 be fixed. For each t ∈ [0, T ], we denote by Λt the set of càdlàg Rd-valued

functions on [0, t]. For each γ ∈ ΛT , the value of γ at time s ∈ [0, T ] is denoted by γ(s). Thus
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γ = γ(s)0≤s≤T is a càdlàg process on [0, T ] and its value at time s is γ(s). The path of γ up
to time t is denoted by γt, i.e., γt = γ(s)0≤s≤t ∈ Λt. Denote Λ =

⋃
t∈[0,T ]

Λt. We sometimes

specifically write

γt = γ(s)0≤s≤t = (γ(s)0≤s<t, γ(t))

to indicate the terminal position γ(t) of γt, which often plays a special role in this framework.
For each γt ∈ Λ and x ∈ Rd, we denote by γt(s) the value of γt at s ∈ [0, t] and γx

t :=
(γt(s)0≤s<t, γt(t) + x), which is also an element of Λt. Analogously, we can define X(t) and Xt

for a process X .
Now consider the function u of path, i.e., u : Λ �→ R. This function u = u(γt)γt∈Λ can also

be regarded as a family of real valued functions

u(γt) = u(t, γt(s)0≤s≤t) = u(t, γt(s)0≤s<t, γt(t)), γt ∈ Λt, t ∈ [0, T ].

We also denote u(γx
t ) := u(t, γt(s)0≤s<t, γt(t) + x) for γt ∈ Λt, x ∈ Rd.

We introduce the distance on Λ. Let 〈·, ·〉 and | · | denote the inner product and the norm
in Rd. For each 0 ≤ t ≤ t ≤ T and γt, γt ∈ Λ, we denote

‖γt‖ : = sup
s∈[0,t]

|γt(s)|,

d∞(γt, γt) : = sup
s∈[0,t∨t]

|γt(s ∧ t) − γt(s ∧ t)| + |t− t| 12 .

It is obvious that Λt is a Banach space with respect to ‖ · ‖. Since Λ is not a linear space,
d∞ is not a norm.

Definition 2.1 (Continuous) A function u : Λ �→ R is said to be Λ-continuous at γt ∈ Λ,
if for any ε > 0, there exists δ > 0 such that for each γt ∈ Λ with d∞(γt, γt) < δ, we have
|u(γt) − u(γt)| < ε. u is said to be Λ-continuous if it is Λ-continuous at each γt ∈ Λ.

Remark 2.1 In our framework, we often regard u(γx
t ) as a function of t, γt and x, i.e.,

u(γx
t ) = u(t, γt(s)0≤s<t, γt(t) + x). Thus, for a fixed γt ∈ Λ, u(γx

t ) is regarded as a function of
(t, x) ∈ [0, T ]× Rd.

Definition 2.2 Given u : Λ �→ R and γt ∈ Λ, if there exists p ∈ Rd, such that

u(γx
t ) = u(γt) + 〈p, x〉 + o(|x|) as x→ 0, x ∈ Rd, (2.1)

then we say that u is (vertically) differentiable at γt and denote Dxu(γt) = p. u is said to be
vertically differentiable in Λ if Dxu(γt) exists for each γt ∈ Λ. We can similarly define the
Hessian Dxxu(γt). It is an S(d)-valued function defined on Λ, where S(d) is the space of all
d× d symmetric matrices.

For each γt ∈ Λ, we denote

γt,s(r) = γt(r)1[0,t)(r) + γt(t)1[t,s](r), r ∈ [0, s].

It is clear that γt,s ∈ Λs.
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Definition 2.3 For a given γt ∈ Λ, if we have

u(γt,s) = u(γt) + a(s− t) + o(|s− t|), as s→ t, s ≥ t, (2.2)

then we say that u(γt) is (horizontally) differentiable in t at γt and denote Dtu(γt) = a. u is
said to be horizontally differentiable in Λ if Dtu(γt) exists for each γt ∈ Λ.

Definition 2.4 Define Cj,k(Λ) as the set of functions u defined on Λ, which are j times
horizontally and k times vertically differentiable in Λ, such that all these derivatives are Λ-
continuous.

Definition 2.5 Function u is said to have the horizontal local Lipschitz property if and only
if

d∞(γt, γt1) < η ⇒ |u(γt1,t2) − u(γt1)| < C(t2 − t1),

∀γt ∈ Λ, ∃C ≥ 0, η ≥ 0, ∀t1 < t2 ≤ T, ∀γt1 ∈ Λ.

Definition 2.6 u is said to be in C
1,2
l,lip(Λ), if u ∈ C1,2(Λ) and for ϕ = u,Dtu,Dxu, Dxxu,

we have

|ϕ(γt) − ϕ(γt)| ≤ C(1 + ‖γt‖k + ‖γt‖k)d∞(γt, γt) for each γt, γt ∈ Λ,

where C and k are some constants depending only on ϕ.

Example 2.1 If u(γt) = f(t, γt(t)) with f ∈ C1,1([0, T [×R), then

Dtu(γt) = ∂tf(t, γt(t)), Dxu(γt) = ∂xf(t, γt(t)),

which are the classic derivatives. In general, these derivatives also satisfy the classic properties:
linearity, the product rule and the chain rule.

The functional Itô formula for continuous martingale was firstly obtained by Dupire [7], and
then generalized by Cont and Fournié [4] to more general formulation.

Theorem 2.1 Let (Ω,F , (Ft)t∈[0,T ], P ) be a probability space. X is a semimartingale and
u is in C

1,2
l,lip(Λ). If Dxu has the horizontal local Lipschitz property, then for any t ∈ [0, T [ :

u(Xt) − u(X0) =
∫ t

0

Dsu(Xs−)ds+
∫ t

0

Dxu(Xs−)dX(s) +
1
2

∫ t

0

tr[Dxxu(Xs−)d[X ]c(s)]

+
∫ t

0

∫
Rd\{0}

[u(Xz
s−) − u(Xs−) −Dxu(Xs−)z]μ(dt, dz), a.s.

Remark 2.2 If u ∈ C
1,2
l,lip(Λ), the horizontal local Lipschitz property for Dxu does not hold

in general.

In this paper, we will use the following functional Itô formula.

Theorem 2.2 Let (Ω,F , (Ft)t∈[0,T ], P ) be a probability space. X = M + A is a semi-
martingale, where M is a continuous local martingale and A is a finite variation process. If
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u ∈ C
1,2
l,lip(Λ), then for any t ∈ [0, T [,

u(Xt) − u(X0) =
∫ t

0

Dsu(Xs−)ds+
∫ t

0

Dxu(Xs−)dX(s) +
1
2

∫ t

0

tr[Dxxu(Xs−)d[X ]c(s)]

+
∫ t

0

∫
Rd\{0}

[u(Xz
s−) − u(Xs−) −Dxu(Xs−)z]μ(dt, dz), a.s.

We give the sketch of proof of Theorem 2.2, which is essentially from Cont and Fournié [4].

Proof Without loss of generality, we assume that X and
∑

s≤T

|ΔX(s)| are bounded. Oth-

erwise, for each p, denote τp := inf
{
s ≥ 0 : |X(s)| ≥ p or

∑
r≤s

|ΔX(r)| ≥ p
}

and consider a

process Xτp .
Let us introduce a sequence of random subdivisions of [0, t], and define the following sequence

of stopping times:

σn
0 = 0, σn

i = inf
{
s ≥ σn

i−1 : |ΔX(s)| ≥ 1
n

or 2ns ∈ N
}
∧ t.

Then sup
{|X(u) − X(σn

i )| + t
2n , i ≤ 2n, u ∈ [σn

i , σ
n
i+1)

}
tends to 0 as n → ∞. We set

Xn(s) =
∞∑

i=0

X(σn
i+1−)1[σn

i ,σn
i+1)(s) +X(t)1{t}(t).

Recall that u ∈ C
1,2
l,lip(Λ) and

∑
i

|σn
i+1 − σn

i |
1
2 |ΔX(σn

i )| ≤ C
1

2
n
2
,

(note that (56) also converges to 0 in [4]), and then using the same method as in [4], one can
get

u(Xt) − u(X0) =
∫ t

0

Dsu(Xs−)ds+
∫ t

0

Dxu(Xs−)dX(s) +
1
2

∫ t

0

tr[Dxxu(Xs−)d[X ]c(s)]

+
∫ t

0

∫
Rd\{0}

[u(Xz
s−) − u(Xs−) −Dxu(Xs−)z]μ(dt, dz), a.s.,

which completes the proof.

2.2 BSDEs

Let (Ω,F , P ) be a completed probability space. The filtration (Ft)0≤t≤T is generated by the
following two mutually independent stochastic processes defined on (Ω,F , P ), and augmented
by all P -null sets:

(1) A d-dimensional standard Wiener process {B(t)}t≥0.
(2) A Poisson random measure μ on R+ ×E, where E := Rd\{0} is equipped with its Borel

field E , with a compensator ν(dt, de) = dtλ(de), such that {μ̃([0, t]×A) = (μ−ν)([0, t]×A)}t≥0

is a martingale for all A ∈ E satisfying λ(A) < ∞. λ is assumed to be a σ-finite measure on
(E, E) satisfying ∫

E

(1 ∧ |e|)λ(de) <∞. (2.3)

It is also a right continuous filtration.
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Remark 2.3 We assume that the Lévy measure λ satisfies (2.3) instead of
∫

E
(1∧|e|2)λ(de)

< ∞, and then the jump-diffusion process X in the sequel satisfies the conditions of the func-
tional Itô formula (2.2).

We also introduce the following spaces of processes which will be used frequently in the
sequel:

Lp(FT ; Rn) := {the Rn-valued FT -measurable random variable ξ : E[|ξ|p] <∞},
Sp(0, T ; Rn) :=

{
the Rn-valued Ft-adapted càdlàg process Y : E

[
sup

0≤t≤T
|Y (t)|p

]
<∞

}
,

Hp(0, T ; Rn×d) :=
{
the Rn×d-valued Ft-predictable measurable process Z :

E
[(∫ T

0

|Z(t)|2dt
) p

2
]
<∞

}
,

Kp
λ(0, T ; Rn) :=

{
mappings K : Ω × [0, T ]× E �→ RnP × E measurable:

E
[(∫ T

0

∫
E

|K(t, e)|2λ(de)dt
) p

2
]
<∞

}
,

Finally, we define Σ := (Y, Z,K) ∈ Bp with

‖Σ‖p
Bp = E

[
sup

0≤t≤T
|Y (t)|p +

(∫ T

0

|Z(t)|2dt
) p

2
+

( ∫ T

0

∫
E

|K(t, e)|2λ(de)dt
) p

2
]
.

Let us consider a function f : Ω×Rn×Rn×d×L2(E, E , λ; Rn) �→ Rn, which is P-measurable
for each (y, z, k) ∈ Rn ×Rn×d ×L2(E, E , λ; Rn). For the function f , we will make the following
assumptions:

(A1) f(·, 0, 0, 0) ∈ H2(0, T ; Rn).
(A2) There exists a constant C ≥ 0, such that for all t ∈ [0, T ], y, y ∈ Rn, z, z ∈ Rn×d,

k, k ∈ L2(E, E , λ; Rn), P -a.s.

|f(t, y, z, k)− f(t, y, z, k)| ≤ C(|y − y| + |z − z| + ‖k − k‖E).

The following result on BSDEs with jumps is by now well-known, and for its proof the
readers are referred to Lemma 2.4 in [22] or Theorem 2.1 in [1].

Lemma 2.1 Let f satisfy the conditions (A1)–(A2), and then for each ξ ∈ L2(FT ; Rn), the
BSDE with jump

Y (t) = ξ +
∫ T

t

f(s, Y (s), Z(s),K(s))ds−
∫ T

t

Z(s)dB(s)

−
∫ T

t

∫
E

K(s, e)μ̃(ds, de), 0 ≤ t ≤ T (2.4)

has a unique adapted solution

(Y (t), Z(t),K(t))0≤t≤T ∈ B2.

We have the following comparison theorem for solutions to (2.4) (see Proposition 2.6 in [1]).
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Lemma 2.2 (Comparison Theorem) Let h : Ω× [0, T ]×R×Rd×R �→ R be P×B×Bd×B-
measurable and satisfy that for any y, y ∈ R, z, z ∈ Rd, q, q ∈ R, and t ∈ [0, T ], there exists
some constant K > 0, such that

(i) E
[ ∫ T

0 |h(t, 0, 0, 0)|2dt] <∞,
(ii) |h(t, y, z, q)− h(t, y, z, q)| ≤ K(|y − y| + |z − z| + |q − q|),
(iii) q �→ h(t, y, z, q) is non-decreasing.

Furthermore, let l : Ω × [0, T ]× E �→ R be P × B(E) measurable and satisfy

0 ≤ l(t, e) ≤ K(1 ∧ |e|), e ∈ E.

Set

f1(t, ω, y, z, k) := h
(
t, ω, y, z,

∫
E

k(e)l(t, ω, e)λ(de)
)
,

(t, ω, y, z, k) ∈ [0, T ]× Ω × R × Rd × L2(E, E , λ; R).

Given ξ1, ξ2 ∈ L2(FT ; R), we have that f2 satisfies (A1)–(A2). Denote by (Y 1, Z1,K1) and
(Y 2, Z2,K2) the solutions to the BSDE with the data (ξ1, f1) and (ξ2, f2), respectively. Then
we have the following result: If ξ1 ≥ ξ2 and f1(t, y, z, k) ≥ f2(t, y, z, k), a.s., a.e. for any
(y, z, k) ∈ R × Rd × L2(E, E , λ; R), then Y 1(t) ≥ Y 2(t), a.s., for all t ∈ [0, T ].

For each i ∈ {1, 2}, the drivers gi are given by

gi(s, y, z, u) = f(s, y, z, u) + ϕi(s), ds× dP -a.e.,

where ϕi ∈ H2(0, T ; Rn) and f satisfies the assumptions (A1)–(A2). The following lemma is
due to Buckdahn-Pardoux [3].

Lemma 2.3 Let ξi ∈ L2(FT ; Rn). Then the solution (Y i, Zi,Ki) to the BSDE (2.4) with
the data (ξi, gi) satisfies the following estimate: For any p ≥ 2, there exists Cp depending on T

and p, such that

‖Σ1 − Σ2‖p
Bp ≤ E

[
|ξ1 − ξ2|p +

( ∫ T

0

|ϕ1(s) − ϕ2(s)|ds
)p]

.

Remark 2.4 Note that in Lemma 2.3, we assume only that ξi ∈ L2(FT ) and the process
ϕi ∈ H2(t, T ; Rn) to guarantee the solvability of the BSDE. However, if p ≥ 2 and the right-hand
side is ∞, the estimate obviously holds.

3 Nonlinear Feynman-Kac Formula for “Discrete Functional” Form

Cn(Rp; Rq), Cn
b,lip(Rp; Rq), Cn

l,lip(Rp; Rq) will denote respectively the set of functions of class
Cn from Rp into Rq, the set of those functions of class Cn(Rp; Rq) whose partial derivatives of
order less than or equal to n are bounded Lipschitz continuous functions, and the set of those
functions of class Cn(Rp; Rq), which together with all their partial derivatives of order less than
or equal to n are in Cl,lip(Rp; Rq), where Cl,lip(Rp; Rq) is the space of all Rq-valued continuous
functions ϕ defined on Rp, such that

|ϕ(x) − ϕ(y)| ≤ C(1 + |x|k + |y|k)|x− y|, ∀x, y ∈ Rp.
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Here C and k are some constants depending only on ϕ.
In this section, we shall study the nonlinear Feynman-Kac formula when the BSDEs with

jumps are of the “discrete functional” form. We refer to [12] for the BSDEs case (see also [14–
15]). Consider the following (discrete) functional-type BSDEs defined on an arbitrary interval
[t, T ] ⊂ [0, T ]: For each s ∈ [t, T ],⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(s) = x+
∫ s

t

b(X(r))dr +
∫ s

t

σ(X(r))dB(r) +
∫ s

t

∫
E

β(X(r−), e)μ̃(dr, de),

Y (s) = g(X(t1), · · · , X(tN))

+
∫ T

s

f(s,X(t1 ∧ r), · · · , X(tN ∧ r), Y (r), Z(r),K(r))dr

−
∫ T

s

Z(r)dB(r) −
∫ T

s

∫
E

K(r, e)μ̃(dr, de),

(3.1)

where 0 = t0 ≤ t1 ≤ · · · ≤ tN = T is a given partition on [0, T ]. We denote any solution
to (3.1), whenever it exists, by (Xt,x, Y t,x, Zt,x,Kt,x) to indicate its dependence on the initial
data (t, x). For convenience, for any x = (x1, · · · , xN ) ∈ RNd and k = 1, · · · , N, set

x(k) = (x1,x2, · · · , xk) ∈ Rkd, x(k,N) = (xk, · · · , xN) ∈ R(N−k+1)d,

X
(k)
t = (X0,x(t1 ∧ t), X0,x(t2 ∧ t) −X0,x(t1 ∧ t), · · · , X0,x(tk ∧ t) −X0,x(tk−1 ∧ t)),

X
(k,N)
t = (X0,x(tk ∧ t) −X0,x(tk−1 ∧ t), · · · , X0,x(tN ∧ t) −X0,x(tN−1 ∧ t)).

In particular, denote

X(k) = (X0,x(t1), · · · , X0,x(tk) −X0,x(tk−1)),

X(k,N) = (X0,x(tk) −X0,x(tk−1), · · · , X0,x(tN ) −X0,x(tN−1)).

Then (3.1) can be rewritten as

Y (t) = g(X(N)) +
∫ T

t

f(s,X(N)
s , Y (s), Z(s),K(s))ds

−
∫ T

t

Z(s)dB(s) −
∫ T

t

∫
E

K(s, e)μ̃(ds, de).

For each k = N,N − 1, · · · , 1, consider a sequence of semilinear PIDEs with parameters,
defined recursively in a “backward” manner as follows: First, fix x(N−1) as a parameter, and
define

uN+1(T, x(N−1), x, 0) = g(x(N−1), x), x ∈ Rd.

Next, for each k = N,N − 1, · · · , 1, we fix x(k−1) as a parameter, and consider the following
PIDEs: For each (t, x) ∈ [tk−1, tk) × Rd,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂uk

i

∂t
(t, x(k−1), x) + Luk

i (t, x(k−1), x) + fi

(
t, x(k−1), x, 0, · · · , 0, uk(t, x(k−1), x),

∂xu
k(t, x(k−1), x)σ(x), uk(t, x(k−1), x+ β(x, ·)) − uk(t, x(k−1), x)

)
= 0,

uk
i (tk, x(k−1), x) = uk+1

i (tk, x(k−1), x, 0), i = 1, · · · , n.
(3.2)

For ϕ ∈ C2(Rd; R), the operator L is given by

Lϕ(t, x) =
1
2
tr[σσT(x)∂2

xxϕ(x)] + ∂xϕ(x)b(x) +
∫

E

[ϕ(x+ β(x, e))−ϕ(x)− ∂xϕ(x)β(x, e)]λ(de).
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Now suppose that all PIDEs have classical solutions which are denoted by uk
i , i = 1, · · · , n, k =

N,N − 1, · · · , 1. For convenience, set

vk(t, x(k−1), x) = ∂xu
k(t, x(k−1), x), k = N,N − 1, · · · , 1.

Finally, for t ∈ [0, T ], if t ∈ (tk−1, tk], k = N,N − 1, · · · , 2 or t ∈ [t0, t1], denote

Y (t) := uk(t,X(k)
t ), Z(t) := vk(t,X(k)

t− )σ(X(t−)),

K(t, e) := uk(t,X(k−1)
t , X(t−) + β(X(t−), e) −X(tk−1)) − u(t,X(k)

t− ).
(3.3)

Then, we have the following nonlinear Feynman-Kac formula.

Theorem 3.1 Assume that all PIDEs in (3.2) have classical solutions whose derivatives
are of polynomial growth. Then, the process (Y, Z,K) defined by (3.3) solves BSDE (3.1) on
[0, T ].

Proof We shall check the case t ∈ [tN−1, tN ], and the other cases can be argued in the
same way.

For t ∈ (tN−1, tN ],

Y (t) = uN (t,X(N−1), X(t) −X(tN−1)),

Z(t) = ∂xu
N (t,X(N−1), X(t−) −X(tN−1))σ(X(t−)),

K(t, e) = u(t,X(N−1), X(t−) + β(X(t−), e) −X(tN−1)) − u(t,X(N−1), X(t−) −X(tN−1)).

Applying the Itô’s formula and by the definition of uN , we deduce that

duN(t,X(N−1), X(t) −X(tN−1))

= (∂tu
N (t,X(N−1), X(t−) −X(tN−1)) + LuN(t,X(N−1), X(t−)−X(tN−1)))dt

+ ∂xu
N (t,X(N−1), X(t−) −X(tN−1))σ(X(t−))dB(t)

+
∫

E

(u(t,X(N−1), X(t−) + β(X(t−), e) −X(tN−1))

− u(t,X(N−1), X(t−) −X(tN−1)))ũ(dt, de).

From (3.2), we obtain that (Y, Z,K) solves the BSDE on (tN−1, T ]. Note that at t = tN−1,

Y (tN−1, ω) = uN−1(tN−1, X
(N−2)(ω), X(tN−1, ω) −X(tN−2, ω))

= uN(tN−1, X
(N−2)(ω), X(tN−1, ω) −X(tN−2, ω), 0)

= uN(tN−1, X
(N−1)(ω), 0).

From the definitions of the functions uN−1 and vN−1, we can similarly prove that (Y, Z,K)
solves the BSDE on (tN−2, tN−1]. Continuing this way for N steps, the proof is completed.

We should note that various assumptions can be made to guarantee the existence and
uniqueness of the classical solution to the system of PIDEs, as well as the adapted solution to
the BSDE (3.1). In particular, by Theorem 4.1 in [3], we have the following lemma.
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Lemma 3.1 Let b ∈ C2
b,lip(Rd; Rd), σ ∈ C2

b,lip(Rd; Rd×d), β : Rd × E �→ Rd be measurable.
For all e ∈ E, β(·, e) ∈ C3

b (Rd; Rd), there exists a constant K ≥ 0, such that

|β(0, e)| ≤ K(1 ∧ |e|),∣∣∣ ∂|k|
∂xk

β(x, e)
∣∣∣ ≤ K(1 ∧ |e|), ∀x ∈ Rd, e ∈ E, k ∈ N with 1 ≤

d∑
i=1

ki ≤ 3.

For each i ∈ {1, · · · , N}, f i(s, x1, · · · , xN , y, z, k) ∈ C0,0,2([0, T ]×R(N−1)d×Rd ×Rn ×Rn×d ×
L2(E, E , λ; Rn); Rn) and

f i(s, x1, · · · , xi, · · · , xN , y, z, k) = f(s, x1, · · · , xN , · · · , xi, y, z, k), ∀xi ∈ Rd.

Moreover, for each s ∈ [0, T ], f i(s, x1, · · · , xN , y, z, k) ∈ C0,2
l,lip(R(N−1)d × Rd × Rn × Rn×d ×

L2(E, E , λ; Rn); Rn). Functions ∂yf
i(t, ·), ∂zf

i(t, ·), ∂kf
i(t, ·) are bounded Lipschitz functions,

and so are their derivatives of order one with respect to xN , y, z, k. Furthermore, all their
Lipschitz coefficients are uniformly bounded. If for each i ∈ {1, · · · , N}, gi(x1, · · · , xN ) ∈
C0,2

l,lip(R(N−1)d × Rd; Rn) and

gi(x1, · · · , xi, · · · , xN ) = g(x1, · · · , xN , · · · , xi), ∀xi ∈ Rd,

then all PDEs in (3.2) have classical solutions.

Note that when we say the (Frechet) derivative w.r.t k is bounded, we mean that its norm
in L2(E, E , λ; Rn) is bounded. In the sequel, we always assume that b, σ, β satisfy the above
conditions.

Remark 3.1 From (3.3), the process Z is left continuous with right limit (LCRL for short).
Since the Brownian motion is continuous, we can also define Z by Z(t) := vk(t,X(k)

t )σ(X(t))
in (3.3).

4 Nonlinear Feynman-Kac Formula for Functional Form

In this section, we will generalize the nonlinear Feynman-Kac formula for the path-dependent
situation. The following directional derivatives will be used frequently in the sequel.

Definition 4.1 Suppose that Φ is an Rn-valued function on ΛT . Then Φ is said to be in
C2(ΛT ; Rn), if it is twice continuously Frechet differentiable at each γ ∈ ΛT . Φ is said to be in
C2

l,lip(ΛT ; Rn) if Φ ∈ C2(ΛT ; Rn) and there exist some constants C ≥ 0 and k ≥ 0 depending
only on Φ such that for each s ≤ t ∈ [0, T ], γ, γ ∈ ΛT ,

(i) |Φ′
x(γ)1[s,t)‖ + ‖Φ′′

xx(γ)1[s,t)‖ ≤ C(1 + ‖γ‖k + ‖γ‖k)(t− s),
(ii) |Φ(γ) − Φ(γ)| ≤ C(1 + ‖γ‖k + ‖γ‖k)

∫ T

0 |γ(s) − γ(s)|ds,
(iii) |Ψ(γ) − Ψ(γ)| ≤ C(1 + ‖γ‖k + ‖γ‖k)‖γ − γ‖

with Ψ = Φ′
x,Φ

′′
xx. Analogously, for each t ∈ [0, T ], we can define C2(Λt; Rn), C2

l,lip(Λt; Rn),
C1

l,lip(Λt; Rn), Cl,lip(Λt; Rn).

Remark 4.1 Since ΛT is a Banach space with respect to the uniform norm, for each γ,
Φ′

x(γ) is a ΛT �→ Rn bounded linear map, and Φ′′
xx(γ) is a ΛT ×ΛT �→ Rn bounded linear map.
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Example 4.1 If Φ(γ) =
∫ T

0
ϕ(γ(s)) ds for some ϕ ∈ C2

b,lip(R), then Φ ∈ C2
l,lip(ΛT ; R).

In the rest of this paper, we shall make use of the following assumptions on the generator f
and the terminal Φ of our BSDE.

(H1) Φ is an Rn-valued function on ΛT . Moreover, Φ ∈ C2
l,lip(ΛT ; Rn) with the Lipschitz

coefficients C and k.
(H2) f(γt, y, z, k) is an Rn-valued continuous function on Λ× Rn × Rn×d × L2(E, E , λ; Rn).

For any γt ∈ Λ, (y, z, k) �→ f(γt, y, z, k) is in C2
l,lip(Rn ×Rn×d ×L2(E, E , λ; Rn); Rn), (y, z, k) �→

f ′
y(γt, y, z, k), f ′

z(γt, y, z, k), f ′
k(γt, y, z, k) are in C1

b,lip(Rn×Rn×d×L2(E, E , λ; Rn); Rn), (y, z, k)
�→ f ′

x(γt, y, z, k) is a Lispchitz function and (y, z, k) �→ f ′′
xx(γt, y, z, k), f ′′

xy(γt, y, z, k), f ′′
xz(γt, y,

z, k), f ′′
xk(γt, y, z, k) are in Cl,lip(Rn×Rn×d×L2(E, E , λ; Rn); Rn) for any (y, z, k), γt �→ f(γt, y, z,

k) is in C2
l,lip(Λt; Rn), γt �→ f ′

y(γt, y, z, k), f ′
z(γt, y, z, k), f ′

k(γt, y, z, k) are in C1
l,lip(Λt; Rn),

γt �→ f ′′
yy(γt, y, z, k), f ′′

zz(γt, y, z, k), f ′′
kk(γt, y, z, k), f ′′

yz(γt, y, z, k), f ′′
yk(γt, y, z, k), f ′

zk(γt, y, z, k)
are in Cl,lip(Λt; Rn). They are all continuous in t, and so are their derivatives. Moreover, all
their Lipschitz coefficients are uniformly bounded.

(H3) f(γt, y, z) = f(t, γt(t), y, z, k), where

f ∈ C0,2([0, T ] × Rd × Rn × Rn×d × L2(E, E , λ; Rn); Rn).

For each t ∈ [0, T ], f(t, ·) ∈ C2
l,lip(Rd ×Rn ×Rn×d ×L2(E, E , λ; Rn); Rn) and ∂yf(t, ·), ∂zf(t, ·),

∂kf(t, ·) are in Cb,lip(Rd×Rn×Rn×d×L2(E, E , λ; Rn); Rn), and so are their derivatives of order
one with respect to x, y, z, k. Moreover, all their Lipschitz coefficients are uniformly bounded.

It is obvious that the assumption (H3) implies the assumption (H2).
Assume that (H1)–(H2) hold. For any γt ∈ Λ, (Yγt(s), Zγt(s),Kγt(s))t≤s≤T is the solution

to the following BSDE:

Yγt(s) = Φ(Xγt) +
∫ T

s

f(Xγt
r , Yγt(r), Zγt(r),Kγt(r))dr

−
∫ T

s

Zγt(r)dB(r) −
∫ T

s

∫
E

Kγt(r, e)μ̃(dr, de), (4.1)

where
Xγt(u) := γt(u)1[0,t](u) +Xt,γt(t)(u)1(t,T ](u).

By Lemma 2.1, for each γt ∈ Λ, (4.1) has a unique solution (Yγt , Zγt ,Kγt) ∈ B2 and Yγt(t)
defines a deterministic mapping from Λ to Rn.

4.1 Property of solution to the BSDE with jumps

We next establish higher-order moment estimates for the solution of the BSDE (4.1). With-
out loss of generality, the Lipschitz coefficients of f are also denoted by C and k. For conve-
nience, define Yγt(s), Zγt(s),Kγt(s) for any t, s ∈ [0, T ], γt ∈ Λ by Yγt(s) = Yγt(s ∨ t), while
Zγt(s) = 0 and Kγt(s) = 0 for s < t.

From Lemma 2.3 and Proposition 3.5 in [21], we deduce the following theorem.

Theorem 4.1 For any p ≥ 2, there exist some constants Cp > 0 and q > 0 depending on
C, T, k, p, such that for any t, t ∈ [0, T ], γt, γt ∈ Λ, h, h ∈ R\{0},

(i) ‖Σγt − Σγt
‖p
Bp ≤ Cp(1 + ‖γt‖q + ‖γt‖q)

[|t− t| p
2 +

( ∫ T

0 |γ(t ∧ s) − γ(t ∧ s)|ds)p]
,
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(ii) ‖Δi
hΣγt − Δi

h
Σγt

‖p
Bp ≤ Cp(1 + ‖γt‖q + ‖γt‖q + |h|q + |h|q)

·(|h|p1t<t + |h|p1t<t + |h− h|p + dp∞(γt, γt)),
where Δi

hΣγt(s) = 1
h (Y

γ
hei
t

(s)−Yγt(s), Zγ
hei
t

(s)−Zγt(s),Kγ
hei
t

(s)−Kγt(s)) and (e1, · · · , ed) is

an orthonormal basis of Rd.

Now we define

u(γt) := Yγt(t) for γt ∈ Λ. (4.2)

Theorem 4.2 For each γt ∈ Λ, {Yγx
t
(s), s ∈ [0, T ], x ∈ Rd} has a version which is a.e. in

C0,2([0, T ] × Rd). In particular, Dxu(γt), Dxxu(γt) exist and u ∈ C
0,2
l,lip(Λ).

Proof To simplify presentation, we shall only prove the case when n = d = 1, as the
higher-dimensional case can be treated in the same way without substantial difficulty.

Since for each h, h ∈ R\{0} and k, k ∈ R,

‖Σγk
t
− Σ

γk
t
‖p
Bp ≤ Cp(1 + ‖γt‖q + |k|q + |k|q)|k − k|p,

‖ΔhΣγk
t
− ΔhΣ

γk
t
‖p
Bp ≤ Cp(1 + ‖γt‖q + |h|q + |h|q + |k|q + |k|q)(|h− h|p + |k − k|p),

using the Kolmogorov’s criterion, the existence of a continuous derivative of Yγx
t
(s) with respect

to x follows from the above estimates, as so is the existence of mean-square derivatives of
Zγx

t
(s) and Kγx

t
(s, ·) with respect to x, which is mean square continuous in x. Denote them by

(DxYγt , DxZγt , DxKγt).
By the definition of vertical derivatives,Dxu(γt) exists. We shall prove u(γt) is Λ-continuous.

Putting s = t in the BSDE (4.1) and taking expectation, we get

u(γt) = E
[
Φ(Xγt) +

∫ T

t

f(Xγt
r , Yγt(r), Zγt(r),Kγt(r)) dr

]
.

For each γt, γt ∈ Λ with t ≥ t,

|u(γt) − u(γt)|

≤ E[|Φ(Xγt) − Φ(Xγt)|] + E
[ ∫ t

t

|f(Xγt
r , Yγt

(r), Zγt
(r),Kγt

(r))| dr
]

+ E
[ ∫ T

t

|f(Xγt
r , Yγt(r), Zγt(r),Kγt(r)) − f(Xγt

r , Yγt
(r), Zγt

(r),Kγt
(r))| dr

]
≤ E

[
C(1 + T )(1 + ‖Xγt‖k +

∥∥Xγt

∥∥k
)‖Xγt −Xγt‖

+ 4(t− t)
1
2

(∫ t

t

(|f(Xγt
r , 0, 0, 0)|2 + |CYγt

(r)|2 + |CZγt
(r)|2 + ‖CKγt

(r)‖2
E
) dr

) 1
2

+ C

∫ T

t

(|Yγt(r) − Yγt
(r)| + |Zγt(r) − Zγt

(r)| + ‖Kγt(r) −Kγt
(r)‖E) dr

]
,

where we have used the assumptions (H1)–(H2) in the last inequality. Applying Theorem 4.1,
we can find some constant C1 depending only on C, k and T so that

|u(γt) − u(γt)| ≤ C1(1 + ‖γt‖k + ‖γt‖k)
(
|t− t| 12 +

∫ T

0

|γ(t ∧ s) − γ(t ∧ s)|ds
)

≤ C1(1 + ‖γt‖k + ‖γt‖k)d∞(γt, γt).



BSDEs and Path-Dependent PIDEs 637

By a similar argument, we have u ∈ C
0,1
l,lip(Λ).

By Lemma 4.1, we conclude that sup
s

|Zγt(s)| and sup
s

‖Kγt(s)‖E are in Lp(FT ) for any p > 0.

Since (DxYγt , DxZγt , DxKγt) is the solution to the following linearized BSDE:

DxYγt(s) = Φ′
x(Xγt)∇Xγt +

∫ T

s

[
f ′

y(X
γt
r , Yγt(r), Zγt(r),Kγt(r))DxYγt(r)

+ f ′
z(X

γt
r , Yγt(r), Zγt(r),Kγt(r))DxZγt(r)

+ f ′
k(Xγt

r , Yγt(r), Zγt(r),Kγt(r))DxKγt(r)

+ f ′
x(Xγt

r , Yγt(r), Zγt(r))∇Xγt
r

]
dr

−
∫ T

s

DxZγt(r) dB(r) −
∫ T

s

∫
E

DxKγt(r, e)μ̃(dr, de),

the existence of a continuous second-order partial derivative of Yγx
t
(s) with respect to x is

proved in a similar fashion and this completes the proof.

4.2 Path regularity of processes Z and K

In [3], when the BSDE is the state-dependent case, i.e., f = f(t, γ(t), y, z, k) and Φ =
ϕ(γ(T )), it is shown that Z,K and Y are connected in the following sense under appropriate
assumptions:

Zγt(s) = ∂xu(s,Xγt(s−))σ(Xγt(s−)),

Kγt(s) = u(s,Xγt(s−) + β(Xγt(s−))) − u(s,Xγt(s−)).

In this section, we extend this result to the path-dependent case. Indeed, we have below a
formula relating Z,K with Y .

Theorem 4.3 Under assumptions (H1)–(H2), for each fixed γt ∈ Λ, the processes (Zγt(s),
Kγt(s))s∈[t,T ] have the following a.s. left continuous version given by

Zγt(s) = Dxu(Xγt

s−)σ(Xγt(s−)),

Kγt(s) = u((Xγt

s−)β(Xγt (s−),·)) − u(Xγt

s−).
(4.3)

A direct consequence of Theorem 4.3 is the following result.

Lemma 4.1 For each p ≥ 2, there exist some constants Cp and q depending only on C, T, k
and p, such that

Zγt(s) ≤ Cp(1 + ‖Xγt
s ‖q), ∀s ∈ [t, T ], P -a.s.

and

E
[

sup
s∈[t,T ]

|Zγt(s)|p
]
≤ Cp(1 + ‖γt‖q), E

[
sup

s∈[t,T ]

‖Kγt(s)‖p
E

]
≤ Cp(1 + ‖γt‖q).

Now we give the proof of Theorem 4.3.

Proof of Theorem 4.3 To simplify presentation, we shall only prove the case when
n = d = 1, as the higher-dimensional case can be treated in the same way without substantial
difficulty. We will suppress the superscript γt for notational convenience.
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Step 1 For each s ∈ [0, T ) and a positive integer m, we introduce a mapping γm(γs) :
Λs �→ Λs:

γm(γs)(r) = γs(r)1[0,t)(r) +
m−1∑
k=0

γs(t
m
k+1 ∧ s)1[tm

k ∧s,tm
k+1∧s)(r) + γs(s)1{s}(r),

where tmk = t + k(T−t)
m , k = 0, 1, · · · ,m. Denote um(γs) := u(γm(γs)), and then there exists

some constant C, such that

E
[

sup
s∈[t,T ]

|um(Xs) − u(Xs)|
]
≤ CE

[(
1 + sup

s∈[t,T ]

|X(s)|k
)

sup
s∈[t,T ]

|Xs − γm(Xs)|
]

≤ C(1 + ‖γt‖k)
1
m

1
4
.

By Lemma 2.3, we also have E
[

sup
s∈[t,T ]

|um(Xs) − Y (s)|] ≤ C(1 + ‖γt‖k) 1

m
1
4
. Consequently,

u(Xs) = Y (s).
Step 2 Denote Φm(γ) := Φ(γm(γ)) and fm(γs, y, z, k) := f(γm(γs), y, z, k). Then for each

m, there exist some functions ϕm defined on Λt×Rm×d and ψm defined on [t, T ]×Λt×Rm×d×
Rn × Rn×d × L2(E, E , λ; R), such that

Φm(γ) = ϕm(γt, γ(tm1 ) − γ(t), · · · , γ(tmm) − γ(tnm−1)),

fm(γs, y, z, k) = ψm(s, γt, γs(t
m
1 ∧ s) − γs(t), · · · , γs(t

m
m ∧ s) − γs(t

m
n−1 ∧ s), y, z, k).

Indeed, set

ϕm(γt, x1, · · · , xm) := Φ
((
γt(s)1[0,t)(s) +

m∑
k=1

xk1[tm
k−1,tm

k )(s) + xm1{T}(s)
)

0≤s≤T

)
,

ϕm(γt, x1, · · · , xm) := ϕm

(
γt, γt(t) + x1, γt(t) + x1 + x2, · · · , γt(t) +

m∑
i=1

xi

)
.

Recalling the assumptions (H1)–(H2), we obtain that ϕi
m(ωt, x1, · · · , xm) ∈ C0,2

l,lip(R(m−1)d ×
Rd; Rn) for each fixed ωt and i ∈ {1, · · · ,m}, where

ϕi
m(ωt, x1, · · · , xi, · · · , xm) = ϕm(ωt, x1, · · · , xm, · · · , xi), ∀xi ∈ Rd.

In particular,

∂xiϕm(γt, γ(tm1 ) − γ(t), · · · , γ(tmm) − γ(tmm−1)) = Φ′
x(γm(γ))1[tm

i−1,T ] for each γ ∈ Λ.

Furthermore, for each fixed ωt and i ∈ {1, · · · ,m}, ψi
m(s, ωt, x1, · · · , xm, y, z, k) ∈ C0,0,2([t, T ]×

R(m−1)d × Rd × Rn × Rn×d × L2(E, E , λ; Rn); Rn), where

ψi
m(s, ωt, x1, · · · , xi, · · · , xm, y, z, k) = ψm(s, ωt, x1, · · · , xm, · · · , xi, y, z, k), ∀xi ∈ Rd.

For each

s ∈ [t, T ], ψi
m(s, ωt, x1, · · · , xn, y, z) ∈ C0,2

l,lip(R(m−1)d × Rd × Rn × Rn×d × L2(E, E , λ; Rn); Rn).
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Functions ∂yψ
i
m(t, ·), ∂zψ

i
m(t, ·), and ∂kψ

i
m(t, ·) are bounded Lipschitz functions, and so are

their derivatives of order one with respect to xm, y, z, k.
Now consider the following BSDEs, for any t ≥ t, γt ∈ Λt,

Y
(m)
γt

(s) = Φm(Xγt) +
∫ T

s

fm(Xγt
r , Y

(m)
γt

(r), Z(m)
γt

(r),K(m)
γt

(r)) dr

−
∫ T

s

Z
(m)
γt

(r) dB(r) −
∫ T

s

∫
E

K
(m)
γt

(r, e)μ̃(dr, de).

Denote u(m)(γt) := Y
(m)
γt

(t) for each γt ∈ Λ. By Theorems 3.1, 4.2 and Lemma 3.1 (see also
Lemma 3.10 in [21]), we can get u(m)(γt) ∈ C

1,2
l,lip(Λ). Moreover, for each s ∈ [t, T ], γs ∈ Λ, and

l ∈ {1, · · · , n},

Dtu
(m)
l (γs) + Lu(m)

l (γs) + fl(γs, u
(m)(γs), Dxu

(m)(γs)σ(γs(s)), u
(m)(γβ(γs(s),e)

s )

− u(m)(γs)) = 0.
(4.4)

In particular, for each s ∈ [t, T ],

Dxu
(m)(Xs−)σ(X(s−)) = Z(m)(s) a.s.

Denote by C0 a constant that depends only on C, T and k, which is allowed to change from
line to line. From Lemma 2.3, for each γt ∈ Λ,

|u(m)(γt) − u(γt)|
≤ C0E

[
|Φm(Xγt) − Φ(Xγt)|2

+
∫ T

0

|f(Xγt
r , Y

(m)
γt

(r), Z(m)
γt

(r),K(m)
γt

(r)) − fm(Xγt
r , Y

(m)
γt

(r), Z(m)
γt

(r),K(m)
γt

(r))|2 dr
] 1

2

≤ C0E
[(

1 + ‖γt‖k + sup
s

|Xγt(s)|k
)2

‖γm(Xγt) −Xγt‖2
] 1

2

≤ C0(1 + ‖γt‖k)
(
E

[
sup

s
|Xγt(s) −

m−1∑
k=1

Xγt(tmk+1)1[tm
k ,tm

k+1)
(s)|4

]
+ ‖γm(γt) − γt‖4

) 1
4

≤ C0(1 + ‖γt‖k)
( 1
m

1
4

+ ‖γm(γt) − γt‖
)
.

Moreover, we also deduce that

|Dxu
(m)(γt) −Dxu(γt)| ≤ C0(1 + ‖γt‖k)

( 1
m

1
4

+ ‖γm(γt) − γt‖
)
. (4.5)

Thus, it holds that

lim
m
E

[
sup

s∈[t,T ]

|Dxu
(m)(Xs−) −Dxu(Xs−)|p

]

≤ C0 lim
m
E

[
sup

s∈[t,T ]

∣∣∣(1 + ‖Xs‖k)
( 1
m

1
4

+ ‖γm(Xs) −Xs‖
)∣∣∣p]

= 0.
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By Lemma 2.3, lim
m
E

[| ∫ T

t
|Z(u) − Z(m)(u)|2 du| p

2
]

= 0, which implies that

Dxu(Xs−)σ(X(s−)) = Z(s), ds× dP -a.e. on [t, T ].

Step 3 From BSDE (4.1), we see that the compensated processes of jumps of Y are given
by ∑̃

t<r≤s

ΔY (r) =
∫ s

t

∫
E

K(r, e)μ̃(dr, de).

Since Y (s) = u(Xs), we also have the representation

∑̃
t<r≤s

ΔY (r) =
∫ s

t

∫
E

(u(Xβ(X(r−),e)
r− ) − u(Xr−))μ̃(dr, de). (4.6)

We claim that the function t �→ u(γx
t−) is left continuous for each γt ∈ Λ and x ∈ Rd. Recalling

the proof of Theorem 4.2, for each γt ∈ Λ and x ∈ Rd, there exists some constant C1 depending
on γt, x, such that

lim
tn↑t

|u(γx
t−)−u(γx

tn−)| ≤ C1 lim
tn↑t

[
|tn−t| 12 +

∫ t

tn

|γ(tn−)+x−γ(s)|ds+
∫ T

t

|γ(tn−)−γ(t−)|ds
]

= 0.

Thus the integrand in (4.6) is predictable, and from the uniqueness of the integral representa-
tion, we obtain the desired result.

4.3 Path-dependent parabolic integro-differential equations

We now establish the relationship between our BSDE and the following path-dependent
parabolic integro-differential equation:

⎧⎨
⎩
∀l ∈ {1, · · · , n}, γt ∈ Λ, t ∈ [0, T ),
Dtul(γt) + Lul(γt) + fl(γt, u(γt), Dxu(γt)σ(γt(t)), u(γβ(γt(t),e)

t ) − u(γt)) = 0,
u(γT ) = Φ(γT ), γT ∈ ΛT ,

(4.7)

where u = (u1, · · · , un) : Λ �→ Rn is a function on Λ and

Lul(γt) := Dxul(γt)b(γt(t)) +
1
2
tr[(σσT)(γt(t))Dxxul(γt)]

+
∫

E

[ul(γ
β(γt(t),e)
t ) − ul(γt) −Dxul(γt)β(γt(t), e)]λ(de).

We immediately obtain the following theorem.

Theorem 4.4 Assume that assumptions (H1)–(H2) hold, and let u ∈ C
1,2
l,lip(Λ) be a solution

to (4.7). Then for each γt ∈ Λ, we have u(γt) = Yγt(t), where (Yγt(s), Zγt(s),Kγt(s))t≤s≤T

is the unique solution to the BSDE (4.1). Consequently, the path-dependent PDE (4.7) has at
most one C

1,2
l,lip-solution.

Proof We again suppress the superscript γt for notational convenience. Applying the
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functional Itô’s formula (2.2) to u(Xs) on s ∈ [t, T ), for each l ∈ {1, · · · , n},

dul(Xs) = (Dsul(Xs−) +
1
2
tr[σσTDxxul(Xs−)])ds+Dxul(Xs−)dX(s)

+
∫

E

[ul(X
β(X(s−),e)
s− ) − ul(Xs−) −Dxul(Xs−)β(X(s−), e)]μ(ds, de)

= (Dsul(Xs−) +Dxul(Xs−)b(X(s−)) +
1
2
tr[(σσT)(X(s−))Dxxul(Xs−)])ds

+Dxul(Xs−)σ(X(s−))dB(s) +
∫

E

[ul(X
β(X(s−),e)
s− ) − ul(Xs−)]μ̃(ds, de)

+
∫

E

[ul(X
β(X(s−),e)
s− ) − ul(Xs−) −Dxul(Xs−)β(X(s−), e)]λ(de)ds.

Since u solves PDE (4.7), we have that

−dul(Xs) = fl(Xs, u(Xs), Dxu(Xs−)σ(X(s−)), u(Xβ(X(s−),e)
s− ) − u(Xs−))ds

−Dxul(Xs−)σ(X(s−))dB(s) −
∫

E

[ul(X
β(X(s−),e)
s− ) − ul(Xs−)]μ̃(dt, de).

Recalling u(XT ) = Φ(XT ) and u ∈ C
1,2
l,lip(Λ), (Y (s), Z(s),K(s)) = (u(Xs), Dxu(Xs−)σ(X(s−)),

u(Xβ(X(s−),e)
s− )−u(Xs−)) is the unique solution to the BSDE (4.1). In particular, u(γt) = Yγt(t).

This completes the proof.

By Theorem 4.4 and Lemma 2.2, we have the following comparison theorem of path-
dependent PIDE.

Lemma 4.2 Let n = 1. We assume that f = fi, Φ = Φi, i = 1, 2 satisfy the same
assumptions as in Lemma 2.2 and Theorem 4.4. Moreover,

(i) f1(γt, y, z, k) ≤ f2(γt, y, z, k), for each (γt, y, z, k) ∈ Λ × R × Rd × L2(E, E , λ; R);
(ii) Φ1(γT ) ≤ Φ2(γT ) for each γT ∈ ΛT .

If ui ∈ C
1,2
l,lip(Λ) is the solution to (4.7) associated with (f,Φ) = (fi,Φi), i = 1, 2, respectively,

then for each γt ∈ Λ, u1(γt) ≤ u2(γt).

We are now in a position to prove the converse to the above result.

Theorem 4.5 Under assumptions (H1)–(H2), the function u defined in (4.2) is the unique
C

1,2
l,lip(Λ)-solution to the path-dependent PIDE (4.7).

Proof Let δ > 0 be such that t+δ ≤ T . We again suppress the superscript γt for notational
convenience. Hence

u(γt,t+δ) − u(γt) = u(γt,t+δ) − u(Xt+δ) + u(Xt+δ) − u(γt). (4.8)

By (4.8) and the proof of Theorem 4.3, we obtain a.s. (choosing a subsequence if necessary)

u(γt,t+δ) − u(γt) = lim
n→∞[u(m)(γt,t+δ) − u(m)(Xt+δ)] −

∫ t+δ

t

f(Xs, Y (s), Z(s),K(s)) ds

+
∫ t+δ

t

Z(s) dB(s) +
∫ t+δ

t

∫
E

K(s)μ̃(dt, de).
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Moreover, for each γt ∈ Λd with t ≥ t,

|Dxxu
(m)(γt) −Dxxu(γt)| ≤ C0(1 + ‖γt‖k)

( 1
m

1
4

+ ‖γm(γt) − γt‖
)
. (4.9)

Now applying the Itô’s formula, we deduce that

u
(m)
l (γt,t+δ) − u

(m)
l (Xt+δ)

=
∫ t+δ

t

Dsu
(m)
l (γt,s) ds−

∫ t+δ

t

Dsu
(m)
l (Xs) ds−

∫ t+δ

t

Dxu
(m)
l (Xs)σ(X(s)) dB(s)

−
∫ t+δ

t

Lu(m)
l (Xs) ds−

∫ t+δ

t

∫
E

[u(m)
l (Xβ(X(s−),e)

s− ) − u
(m)
l (Xs−)]μ̃(dt, de).

Thus by (4.5), (4.9) and the dominated convergence theorem, we have

ul(γt,t+δ) − ul(γt)

= −
∫ t+δ

t

Dxul(Xs)σ(X(s)) dB(s) −
∫ t+δ

t

[Lul(Xs) + fl(Xs, Y (s), Z(s),K(s))] ds

−
∫ t+δ

t

∫
E

[ul(X
β(X(s−),e)
s− ) − ul(Xs−)]μ̃(dt, de) +

∫ t+δ

t

Zl(s) dB(s)

+
∫ t+δ

t

∫
E

Kl(s, e)μ̃(dt, de) + lim
m→∞Cm

l , (4.10)

where

Cm
l =

∫ t+δ

t

Dsu
(m)
l (γt,s)ds−

∫ t+δ

t

Dsu
(m)
l (Xs) ds.

Recalling (4.4), we can find some constant c depending only on C, T, γt and k so that

|Dsu
(m)(γt,s) −Dsu

(m)(Xs)| ≤ c
(
1 + sup

u∈[t,s]

|X(u)|k
)
‖γt,s −Xs‖.

Hence
|Cm

l | ≤ cδ sup
s∈[t,t+δ]

(1 + |X(s) −X(t)|k)|X(s) − γt(t)|.

Finally, taking expectation on both sides of (4.10) yields

lim
δ→0

ul(γt,t+δ) − ul(γt)
δ

= −Lul(γt) − fl(γt, u(γt), Dxu(γt)σ(γt(t)), u(γβ(γt(t),e)
t ) − u(γt)).

Thus u ∈ C
1,2
l,lip(Λ) and it satisfies (4.7).

Remark 4.2 We make assumptions (H1)–(H2). Then

(u(Xt), Dxu(Xt)σ(X(t)), u(Xβ(X(t−),e)
t− ) − u(Xt−))

is the unique solution to the BSDE (2.4).

Remark 4.3 In the case that Φ(γ) = ϕ(γ(T )) for some ϕ ∈ C2
l,lip(Rd; Rn) and f satisfies

(H3), the above result is the nonlinear Feynman-Kac formula, which is given by Buckdahn-
Pardoux [3].
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Example 4.2 Suppose n = d = 1 and

f(t, y, z, k) = c(t)y,

where f satisfies (H3). In this case, the BSDE (4.1) has the explicit solution as follows:

Yγt(s) = Φ(Xγt)e
∫

T
s

c(r) dr −
∫ T

s

e
∫

u
s

c(r)drZγt(u) dB(u) −
∫ T

t

∫
E

e
∫

u
s

c(r)drKγt(u)μ̃(du, de).

Given Φ : ΛT �→ R,

Φ(γ) =
∫ T

0

ϕ(γ(s)) ds

for some ϕ ∈ C2
b,lip(R), then for each γt ∈ Λt,

u(γt) =
∫ t

0

ϕ(γt(s)) dse
∫

T
t

c(r) dr +
∫ T

t

e
∫

T
t

c(r) drE[ϕ(Xt,γt(t)(s))] ds.

Using the classic Feynman-Kac formula, we deduce that

us(t, x) = E[ϕ(Xt,x(s))]

is the solution to the following parabolic integro-differential equation:{
∂tu

s(t, x) + Lus(t, x) = 0, t ∈ [0, s),
us(s, x) = ϕ(x).

Thus

u(γt) =
∫ t

0

ϕ(γt(s)) dse
∫ T

t
c(r) dr +

∫ T

t

e
∫ T

t
c(r) drus(t, γt(t)) ds.

By the definitions of horizontal derivatives and vertical derivatives, we have

Dtu(γt) = −c(t)u(γt) + e
∫

T
t

c(r) dr

∫ T

t

∂tu
s(t, γt(t)) ds,

Dxu(γt) = e
∫

T
t

c(r) dr

∫ T

t

∂xu
s(t, γt(t)) ds,

Dxxu(γt) = e
∫

T
t

c(r) dr

∫ T

t

∂2
xxu

s(t, γt(t)) ds.

Consequently,

Dtu(γt) + Lu(γt) = −c(t)u(γt),

which satisfies (4.7).
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[4] Cont, R. and Fournié, D. A., Change of variable formulas for non-anticipative functionals on path space,
J. Funct. Anal., 259(4), 2010, 1043–1072.
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