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Abstract By considering the one-dimensional model for describing long, small ampli-
tude waves in shallow water, a generalized fifth-order evolution equation named the Olver
water wave (OWW) equation is investigated by virtue of some new pseudo-potential sys-
tems. By introducing the corresponding pseudo-potential systems, the authors system-
atically construct some generalized symmetries that consider some new smooth functions
{Xiβ}i=1,2,··· ,n

β=1,2,··· ,N depending on a finite number of partial derivatives of the nonlocal vari-

ables vβ and a restriction
∑

i,α,β

(
∂ξi

∂vβ

)2
+

(
∂ηα

∂vβ

)2 �= 0, i.e.,
∑

i,α,β

(
∂Gα

∂vβ

)2 �= 0. Furthermore,

the authors investigate some structures associated with the Olver water wave (AOWW)
equations including Lie algebra and Darboux transformation. The results are also ex-
tended to AOWW equations such as Lax, Sawada-Kotera, Kaup-Kupershmidt, Itô and
Caudrey-Dodd-Gibbon-Sawada-Kotera equations, et al. Finally, the symmetries are ap-
plied to investigate the initial value problems and Darboux transformations.

Keywords Generalized symmetries, Darboux transformations, Analytical solutions
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1 Introduction

Group-theory methods are useful for finding symmetry reductions and corresponding group-
invariant solutions of a partial differential equations (PDEs) system (see [2, 14, 23]). The local
theory of symmetries of differential equations has been well-established since the days of Sophus
Lie. Generalized, or higher-order symmetries can be traced back to the original paper of Noether
[22], and has acquired received added importance after the discovery that they play a critical
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role in integrable (soliton) partial differential equations (see [2, 14, 23]). While the local theory
is very well developed, the theory of nonlocal symmetries of nonlocal differential equations re-
mains incomplete. However, little importance is attached to the existence and applications of
nonlocal symmetries [2–3, 23]. Recently, there is some outstanding literature on research of the
generalized symmetries. Internal, external and generalized symmetries are investigated in [1].
A loop algebra of nonlocal isovectors of the Korteweg-de Vries (KdV) equation is introduced
in [10]. By inverse recursion operators, infinitely many nonlocal symmetries and the conformal
invariant forms (Schwartz forms) are researched in [6, 20–21]. Based on the geometric heat
flows, symmetries, invariant solutions and reduced equations for the affine case are investigated
in [11, 19, 25–26, 38]. Complex PT -symmetric extensions of the non-PT -symmetric Burger’s
equation are researched in [37]. Furthermore, the introduction of potential-type symmetries (see
[2]) and pseudopotential-type symmetries (see [36]) is proposed, which admits close prolonga-
tion extending the applicability of symmetry methods to obtain analytic solutions of evolution
equations. In that context, the original given system can be embedded in some prolonged
systems. Hence, these nonlocal symmetries with close prolongation are anticipated in [9, 27].

Recently, together with Bluman et al., we use the nonclassical method to construct “non-
classical symmetries” and time-dependent exact solutions for the dimensional nonlinear Kompa-
neets equation (see [4]). Interestingly, each of these solutions is expressed in terms of elementary
functions. Three of the classes exhibit quiescent behavior, and the other two classes exhibit
blow-up behavior in finite time. As a consequence, it is shown that the corresponding nontrivial
stationary solutions are unstable. By virtue of the Riemann theta function, we obtain some
periodic wave solutions of nonlinear evolution equations, discrete evolution equations and super-
symmetric evolution equations (see [12, 29–33]). In particular, we investigate the integrability
of a generalized variable-coefficient Kadomtsev-Petviashvili equation and a forced Korteweg-
de Vries equation in fluids (see [34–35]), respectively. In this paper, we present a method to
research generalized symmetries and their applications of a generalized fifth-order evolution
equation by virtue of some new pseudo-potential systems. The method is applied to obtain
the generalized symmetries of a generalized fifth-order Korteweg-de Vries equation, named the
OWW equation. As applications of the symmetries, we further investigate Lie algebras, initial
value problems and Darboux transformations of these fifth-order evolution equations.

In 1984, Olver [24] derived a one-dimensional model for describing long, small amplitude
waves in shallow water. The model can take the wave velocity or, alternatively, the surface
elevation as the principal variable. Exact solutions for the first case were obtained in the work
[17]. The second case leads to the equation

ut + ux + q1uxxxxx + q2u
2ux + q3uuxxx + q4uxuxx + q5uxxx + q6uux = 0, (1.1)

where u = u(x, t) provides a surface elevation, x is the horizontal coordinate, and real constants
qi (i = 1, · · · , 6) depend on the surface tension, which are given by

q1 =
( 19

360
− μ

12
− μ2

8

)
ν2, q2 = −3

8
χ2, q3 =

( 5
12

− μ

4

)
χν,

q4 =
(23

24
+

5
8
μ
)
χν, q5 =

(1
6
− μ

2

)
ν, q6 =

3
2
χ,

(1.2)
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where μ denotes a dimensionless surface tension coefficient, ν is the square of the ratio of fluid
depth to wave length, and χ is the ratio of wave amplitude to undisturbed fluid depth. The
small parameters ν and χ are assumed to be the same order of smallness. For no surface tension,
all these coefficients are nonzero, otherwise some of them can be taken as zero values.

The purpose of this paper is to present the method of obtaining generalized symmetries,
Lie algebras, initial value problems and Darboux transformations. Taking the well-known fifth-
order evolution equation, the OWW equation (1.1), as a special example, we present some
structures associated with the Olver water wave (AOWW) equations, such as a Lie algebra of
the generalized symmetries, which consider some new smooth functions: {Xiβ}i=1,2,··· ,n

β=1,2,··· ,N and a

restriction:
∑

i,α,β

(
∂ξi

∂vβ

)2
+

(
∂ηα

∂vβ

)2 �= 0, i.e.,
∑

i,α,β

(
∂Gα

∂vβ

)2 �= 0. Moreover, the generalized symme-

tries are applied to investigate initial value problems and Darboux transformations. The results
are also extended to AOWW equations, such as Lax, Sawada-Kotera, Kaup-Kupershmidt, Itô
and Caudrey-Dodd-Gibbon-Sawada-Kotera equations, et al.

The rest of the paper is organized as follows. In Section 2, for nonlinear partial differen-
tial equations, we propose a detailed description of the method to construct the generalized
symmetries by considering the nonlocal condition. By virtue of the method, in Section 3, we
introduce the corresponding pseudo-potential systems to obtain some generalized symmetries
and Lie algebras of the OWW and AOWW equations, respectively. In Section 4, we present
some applications for the generalized symmetries, such as initial value problems and Darboux
transformations. Finally, conclusions and discussions are presented in Section 5.

2 Generalized Symmetries of Partial Differential Equations

In this section, based on [1–28], we mainly present a detailed description of the method to
construct the generalized symmetries by considering the nonlocal condition.

Notational conventions Throughout this paper, we suppose the following notations.
Independent variables are denoted by xi, i = 1, 2, · · · , n, x = (x1, x2, · · · , xn), and dependent
variables are denoted by uα, α = 1, 2, · · · , m, u = (u1, u2, · · · , um). Partial derivatives with
respect to xi are indicated by sub-indices, and Di implies the total derivatives with respect to
some independent variable xi,

Di =
∂

∂xi
+

m∑
α=1

∑
#J≥0

uα
Ji

∂

∂uα
J

, (2.1)

where the unordered k-tuple J = (j1, j2, · · · , jk), 0 ≤ j1, j2, · · · , jk ≤ n stands for a multi-index
of order #J = k, uα

Ji = ∂uα
J

∂xi , and DJ implies the composition DJ = Dj1Dj2 · · ·Djk
.

Definition 2.1 Suppose that N is a non-zero integer. An N -dimensional covering π of a
system of partial differential equation(s) �σ[x,u] = 0, σ = 1, 2, · · · , k, is a triplet

π = ({vβ : β = 1, 2, · · · , N}; {Xiβ : i = 1, 2, · · · , n; β = 1, 2, · · · , N};
{D̃i : i = 1, 2, · · ·n})

(2.2)

of variables vβ: v = (v1, v2, · · · , vN ), where smooth functions Xiβ depend on xi, uα, vβ and a
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finite number of partial derivatives of uα, vβ, and linear operators

D̃i =
∂

∂xi
+

m∑
α=1

∑
#J≥0

uα
Ji

∂

∂uα
J

+
N∑

β=1

Xiβ
∂

∂vβ
, (2.3)

satisfy the following system:

D̃i(Xjβ) = D̃j(Xiβ), i, j = 1, 2, · · · , n, β = 1, 2, · · · , N, (2.4)

whenever uα(xi) is a solution of �σ[x,u] = 0.

As we understand hereafter that the index i runs from 1 to n and that the index β runs from
1 to N , we replace (2.2) by writing π = (vβ ; Xiβ ; D̃i). The variables vβ are considered as new
dependent variables (the “nonlocal variables” of the theory) and the operators D̃i satisfying
system (2.4) are new total derivatives which are used to consider the nonlocal variables vβ .
Interestingly, the operators D̃i satisfy

D̃i(vβ) = Xiβ , (2.5)

and these equations are compatible because the system (2.4) holds. Owing to the solutions of
system �σ[x,u] = 0, the total derivatives D̃i become ordinary partial derivatives. The system

∂vβ

∂xi
= Xiβ (2.6)

holds for each index β and each index i whenever uα(xi) is a solution of �σ[x,u] = 0. These
compatible equations specify the relations between the dependent variables uα and the nonlocal
variables vβ .

The nonlocal version of the formal linearization of the system �σ[x,u] = 0 is the matrix

�̃∗ =
(∑

l

∂�σ

∂uα
l

D̃l

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂�1

∂u1
+ · · · + ∂�1

∂u1
I

D̃I
∂�1

∂u2
+ · · · + ∂�1

∂u2
J

D̃J · · ·

∂�2

∂u1
+ · · · + ∂�2

∂u1
K

D̃K · · · · · ·

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.7)

The following is our definition of nonlocal symmetries by considering the nonlocal condition.

Definition 2.2 Suppose that �σ[x,u] = 0, σ = 1, 2, · · · , k, is a system of differential
equations, and assume that π = (vβ ; Xiβ ; D̃i) is a covering of �σ[x,u] = 0. A nonlocal π-
symmetry of �σ[x,u] = 0 given by a generalized vector field

X = ξi ∂

∂xi
+ ηα ∂

∂uα
+ φβ ∂

∂vβ
(2.8)

of the augmented system

�σ[x,u] = 0,
∂vβ

∂xi
= Xiβ (2.9)
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is a nonlocal symmetry if and only if X satisfies

prX(�σ[x,u]) = 0, (2.10)

prX
(∂vβ

∂xi
− Xiβ

)
= 0, (2.11)

∑
i,α,β

( ∂ξi

∂vβ

)2

+
(∂ηα

∂vβ

)2

�= 0, (2.12)

where prX is given by

prX =
∑

i

ξi ∂

∂xi
+

∑
α,J

ηα
J

∂

∂uα
J

+
∑
β,J

φβ
J

∂

∂vβ
J

(2.13)

and

ηα
J = DJ

(
ηα −

∑
i

ξiuα
i

)
+

∑
i

ξiuα
Ji, φβ

J = DJ

(
φβ −

∑
i

ξivβ
i

)
+

∑
i

ξivβ
Ji. (2.14)

Otherwise, X is a local symmetry of the system �σ[x,u] = 0.

Now, in order to capture all possible generalized symmetries of the augmented system (2.9),
as explained in [23], it is enough to consider evolutionary generalized vector fields. Thus,
hereafter we shall only consider the generalized vector field X of the form

X =
m∑

α=1

Gα ∂

∂uα
+

N∑
β=1

Hβ ∂

∂vβ
, (2.15)

where Gα and Hβ are smooth differential functions. As we know, in this case the generalized
symmetry conditions (2.10) and (2.11) imply that the infinitesimal deformation uα �→ uα +εGα

satisfies the system �σ[x,u] = 0 with first order for the deformation parameter ε, and that the
infinitesimal deformation vβ �→ vβ + εHβ satisfies the compatible system (2.9) with first order
for ε. Then we have the following proposition.

Proposition 2.1 Suppose that �σ[x,u] = 0, σ = 1, 2, · · · , k, is a system of partial differ-
ential equations, and assume that π = (vβ ; Xiβ ; D̃i) is a covering of �σ[x,u] = 0. A nonlocal
π-symmetry of �σ[x,u] = 0 is a generalized vector field generated by an ordered (m + N)-tuple
of functions (Gα, Hβ) depending on xi, uα, vβ and a finite number of xi-derivatives of u, vβ

X =
∑

α

Gα ∂

∂uα
+

∑
β

Hβ ∂

∂vβ
(2.16)

of the augmented system

�σ[x,u] = 0, D̃i(Xjβ) = D̃j(Xiβ), (2.17)

where Gα and Hβ are differential functions, and

G = (G1, G2, · · · , Gm)t, (2.18)
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if and only if X satisfies

�̃∗(G) = 0, (2.19)

D̃i(Hβ) = D̃ε(Xiβ), (2.20)∑
i,α,β

(∂Gα

∂vβ

)2

�= 0, (2.21)

whenever uα(xi) is a solution of �σ[x,u] = 0, where the operator D̃ε appearing in (2.20) is
given by

D̃ε =
m∑

α=1

∑
#K≥0

D̃K(Gα)
∂

∂uα
K

+
N∑

β=1

Hβ ∂

∂vβ
. (2.22)

Otherwise, X is a local symmetry of the system �σ[x,u] = 0.

It is worth emphasizing that (2.19) depends only on the vector G and the system �σ[x,u].
From the view point of Krasil’shchik and Vinogradov [36], one can see that the vector G is the
π-shadow of the nonlocal π-symmetry (Gα, Hβ). Also important to note is that the differential
operator D̃ε defined in (2.22) is the nonlocal version of the infinite prolongation of the vector
field

Gα ∂

∂uα
+ Hβ ∂

∂vβ
,

by considering the fact that the derivatives of the new nonlocal variables vβ can be written in
terms of the variables xi, uα, uα

J , vβ and vβ
J .

We always call “nonlocal symmetry” instead of “nonlocal π-symmetry”, and suppose that a
covering (2.2) of the system �σ[x,u] = 0 has been fixed. The fact that this method of nonlocal
symmetries depends essentially on coverings indicates that one should perhaps consider nonlocal
symmetries to be properly generalizing the class of intrinsic symmetries studied in [1].

Proposition 2.2 Let (Gα, Hβ) be a nonlocal π-symmetry of the system �σ[x,u] = 0, where
the covering π is given by (2.2), and then the vector field

Gα ∂

∂uα
+ Hβ ∂

∂vβ
(2.23)

is a generalized symmetry of the augmented system (2.9). That is to say, if (Gα, Hβ) is a
nonlocal π-symmetry of the system �σ[x,u] = 0, the linearized system

�σ
ε [x,u] = 0,

∂

∂ε

(∂vβ

xi

)
= Xiβ,ε (2.24)

is satisfied with uα
ε = Gα and vβ

ε = Hβ whenever uα(xi) and vβ(xi) satisfy the augmented
system (2.9). On the other hand, if the vector field (2.23) is a generalized symmetry of the
augmented system (2.9), then (Gα, Hβ) is a nonlocal π-symmetry of �σ[x,u] = 0, where π =

(vβ ; Xiβ ; D̃i) and D̃i = ∂
∂xi +

m∑
α=1

∑
#J≥0

uα
Ji

∂
∂uα

J
+

N∑
β=1

Xiβ
∂

∂vβ .

Because the generalized symmetry transforms a solution into another solution (see [23]),
Proposition 2.2 indicates the following corollary.
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Corollary 2.1 Let uα
0 (xi) and vβ

0 (xi) be solutions of the augmented system (2.9), and the
solution of the Cauchy problem

∂uα

∂ε
= Gα,

∂vβ

∂ε
= Hβ ;

uα(xi, 0) = uα
0 (xi), vβ(xi, 0) = vβ

0 (xi)
(2.25)

is a one-parameter family of solutions to the augmented system (2.9). In particular, nonlocal
symmetries transform solutions of the system �σ[x,u] = 0 to solutions for the same one.

We end this section by providing some examples.

Example 2.1 A nonlinear telegraph (NLT) system reads

u1
x − u2

t = 0,

u1
t − (u1)2u2

x − u1(1 − u1) = 0. (2.26)

The functions

ξ1 = f1(X1, X2), ξ2 = f2(X1, X2) exp(−t), η = u1f2(X1, X2) exp (−t) , (2.27)

where X1 = x − u2, X2 = t − log u1, and f1, f2 satisfy the following linear PDE system:

∂f2

∂X2
− exp(X2)

∂f1

∂X1
= 0,

∂f2

∂X1
− exp(X2)

∂f1

∂X2
= 0, (2.28)

which admit the following condition: Let u1, u2 be solutions of the NLT system (2.26), and the
“deformation” u + εη with x + εξ1, t + εξ2 is also a solution of the first order in parameter ε,
namely, the functions ξ1, ξ2 and η satisfy the linearized NLT equation. On the other hand, in
order to make this observation rigorous, we should take into account an extra nonlocal variable
v1 by satisfying

v1
t = u1, v1

x = u2. (2.29)

Therefore, the function η in (2.27) can be rewritten as η = v1
t f2(X1, X2) exp (−t), and then η

is a “local” and could perhaps be considered as the characteristic of a local symmetry for the
following augmented system:

v1
t = u1, v1

x = u2, u1
t − (u1)2u2

x − u1(1 − u1) = 0. (2.30)

Example 2.2 The Burger’s equation reads

ut = uxx + uux. (2.31)

The function

G = (2fx − uf) exp
(
− 1

2

∫
udx

)
, (2.32)

where f = f(x, t) satisfying ft − fxx = 0, admits the following condition: Let u be a solution
of the Burger’s equation (2.31), the “deformation” u + εG is also a solution of the first order
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in parameter ε, namely, the function G satisfies the linearized Burger’s equation. On the other
hand, in order to make this observation rigorous, we would take into account an extra nonloal
variable v1 by satisfying

v1
x = u, v1

t = ux +
1
2
u2. (2.33)

Therefore, the function (2.32) can be rewritten as G = (2fx − uf) exp
(
− 1

2v1
)
, and then G

is a “local” and could perhaps be considered as the characteristic of a local symmetry for the
following augmented system:

ut − uxx − uux = 0, v1
x − u = 0, v1

t − ux − 1
2
u2 = 0. (2.34)

Remark 2.1 In Example 2.1, setting x1 = x and x2 = t, one has N = 1, X11 = u2,
X21 = u2, and the first two equations of (2.30) correspond to the system (2.6). Similarly, in
Example 2.2, setting x1 = x and x2 = t, one has N = 1, X11 = u, and X21 = ux + 1

2u2, and
the last two equations of (2.34) correspond to the system (2.6).

Remark 2.2 Since we are allowed to replace all derivatives of vβ appearing in the equation
(2.16) by virtue of system (2.6), it is worth emphasizing that the coefficients Gα and Hβ of the
vector field (2.16) are supposed to depend not only on xi, uα, finite numbers of derivatives of
uα, and the new variables vβ , but also finite numbers of derivatives of vβ . This simplification
is crucial to obtain the classification results.

3 Lie Algebras and Generalized Symmetries of the OWW and AOWW
Equations

Let’s begin this part with some classical reductions of physical and mechanical interests,
recent examples of the OWW equation (1.1), among others, include the following:

(1) The Lax equation reads (see [18])

ut + 10uu3x + 20uxu2x + 30u2ux + u5x = 0. (3.1)

(2) The integrable Sawada-Kotera (SK) equation reads (see [29])

ut − 5uu3x − 5uxu2x − 5u2ux − u5x = 0. (3.2)

(3) The Kaup-Kupershmidt (KK) equation reads (see [15–16])

ut + 10uu3x + 25uxu2x + 20u2ux + u5x = 0. (3.3)

(4) The Itô equation reads (see [13])

ut + 3uu3x + 6uxu2x + 2u2ux + u5x = 0. (3.4)

(5) The Caudrey-Dodd-Gibbon-Sawada-Kotera equation (CDGSK) reads (see [7–8, 29–30])

ut + uxxxxx + 30uuxxx + 30uxuxx + 180u2
xxux = 0. (3.5)

In what follows, we investigate some pseudo-potentials, generalized symmetries and Lie
algebras for the OWW and AOWW equations, respectively.
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Theorem 3.1 The system of equations

vx = α(v)(λ1u
2 + λ2u + λ3),

vt = Θ1(u, v)uxxxx + Θ2(u, v)uxuxxx + Θ3(u, v)u2
xx

+ Θ4(u, v)uxx + Θ5(u, v)u2
x + Θ6(u, v),

(3.6)

with

Θ1(u, v) = −q1(2λ1u + λ2)α(v), Θ2(u, v) = 2q1λ1α(v), Θ3(u, v) = −λ1q1α(v),

Θ4(u, v) = −
(
λ2q5 + 2λ1q3u

2 + λ2q3u + 2λ1q5u
)
α(v), Θ5(u, v) = −1

2
λ2q3α(v) + λ1q5α(v),

Θ6(u, v) = −
(
λ2u +

2
3
λ1q6u

3 +
1
3
λ2q2u

3 +
1
2
λ2q6u

2 − 1
2
λ1q2u

4 + λ1u
2 − 1

)
α(v),

is completely integrable on solutions to the OWW equation for q4 = 2q3, where λ1, λ2, λ3 are
some nonzero real parameters and α(v) is an arbitrary function of v. Hence it determines a
pseudo-potential v for the OWW equation. On the other hand, the following system of equations
are compatible whenever u(x, t) is a solution of the OWW equation (1.1) and hence another
potential w for (nonlocal) conservation laws of the OWW equation:

wx = u + λ4,

wt = −u − q1uxxxx − 1
3
q2u

3 − q3uuxx

− 1
2
(q4 − q3)u2

x − q5uxx − 1
2
q6u

2 + λ5,

(3.7)

where λ4 and λ5 are also nonzero real parameters.

According to the idea of [5], the pseudo-potential v can be understood geometrically in
terms of geodesics of the pseudo-spherical surfaces associated with the OWW equation (1.1). It
is important to us that the compatible system of systems (3.6)–(3.7) yields a three-dimensional
covering π of the Olver water wave equation with nonlocal variables v and w.

Remark 3.1 By taking α(v) =
n∑

i=0

viv
i, here vi (i = 1, 2, · · · , n) are arbitrary constants.

Theorem 3.1 is the “Riccati form” of the linear problem associated with the OWW equation
(1.1) (see the classical paper by Chern et al [5]).

In what follows, we classify all first-order nonlocal π-symmetries of the OWW equation
(1.1). In order to do this, one can see that it is necessary to assume that the parameter λi

appearing in the systems (3.6)–(3.7) is also affected by the symmetry transformation. Namely,
the augmented system includes (1.1), (3.6)–(3.7) with the parameter λi.

The evolutionary vector field is of the form

X = G
∂

∂u
+ H1 ∂

∂v
+ H2 ∂

∂w
, (3.8)

where G, H1 and H2 are functions of x, t, u, v, w, λi and the derivatives of u, v and w.

Theorem 3.2 The first-order generalized symmetries of the augmented Olver water wave
(AOWW) systems (1.1), (3.6) and (3.7), represented by vector fields (3.8), are linear combina-
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tions of

X1 = ux
∂

∂u
, (3.9)

X2 = ut
∂

∂u
, (3.10)

X3 =
∂

∂w
, (3.11)

X4 = tut
∂

∂u
, (3.12)

X5 =
[
q3u + q5 − q3ux

(
− 1

2
q3x + q5q6t − 2q3t

)
+

5
2
q2
3tut

] ∂

∂u
, (3.13)

X6 = q2
3tut

∂

∂u
+

(
−4λ4q2 − 6λ5q2 − q6 + λ4q

2
6 + q2wt

)
t

∂

∂w
, (3.14)

X7 =
[
q3u + q5 − q3ux

(
− 1

2
q3x + q5q6t − 2q3t

)] ∂

∂u

+
1

2q2
[−2λ4q2x + q6x − 4λ4q2t − 6λ5q2t − q6t + λ4q

2
6t + 2q2q3w

− (−2λ4q2 + q6 + q2wx)(−q2x − 4q2t + q2
6t)]

∂

∂w
, (3.15)

X8 =
[
2q2q3u + 2q2q5 − 2q2q3ux

(
− 1

2
q3x + q5q6t − 2q3t

)
+ 5q2q

2
3tut

] ∂

∂u

+ [−2λ4q2x + q6x − 4λ4q2t − 6λ5q2t − q6t + λ4q
2
6t + 2q2q3w

− (−2λ4q2 + q6 + q2wx)(−q2x − 4q2t + q2
6t)

+ 5q2(−4λ4q2 − 6λ5q2 − q6 + λ4q
2
6 + q2wt)t]

∂

∂w
, (3.16)

X9 =
[
− (q3u + q5) + q3ux

(
1 − 1

2
q3x + q5q6t − 2q3t

)
− q3ut

(
1 − 5

2
q3t

)] ∂

∂u

+
{
− α(v)(λ2q5 + 2λ3q3 + 4q3)t + β(v)

(
x +

∫
3
2

q1q3

β(v)
dv + 1

)

−
[
− α′(v)vx(λ2q5 + 2λ3q3 + 4q3)t + β′(v)vx

(
x +

∫
3
2

q1q3

β(v)
dv + 1

)

+ β(v)
(
x +

∫
3
2

q1q3

β(v)
dv + 1

)
x

](
1 − 1

2
x − 2t

)
−

[
− α′(v)vt(λ2q5 + 2λ3q3 + 4q3)t − α(v)(λ2q5 + 2λ3q3 + 4q3)

+ β′(v)vt

(
x +

∫
3
2

q1q3

β(v)
dv + 1

)
+ β(v)

(
x +

∫
3
2

q1q3

β(v)
dv + 1

)
t

](
1 − 5

2
t
)} ∂

∂v
, (3.17)

where β(v) = (λ2q5 − 2λ3q3)α(v). Consequently, the vector field X9 is a nonlocal π-symmetry
of the OWW equation.

It is remarkable that the function β(v) is included in X9 since it affects the way in which
λ varies with the infinitesimal symmetry transformation (3.17). This function is also of impor-
tance to our observations on the Lie algebra structure of nonlocal π-symmetries; see Corollary
3.1 below. We also note that X1 and X2 are simply the generators of shifts with respect
to the independent variables: They are equivalent to − ∂

∂x and − ∂
∂t for the OWW equation,

respectively.
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Corollary 3.1 The nine symmetries (3.9)–(3.17) of the OWW equation generate a Lie
algebra with the commutation Table 3.1, whenever u, v and w satisfy the augmented OWW
system including (1.1), (3.6) and (3.7).

Table 3.1 The commutation table of the symmetry algebra for the OWW equation
with X0=X2 − X1 and X� = q2

3X0 − 5
2
q3
3X4.

X1 X2 X3 X4 X5 X6 X7 X8 X9

X1 q3X1 q3X1 2q2q3X1 −q3X1

X2 q3X2 q3X2 2q2q3X2 −q3X2

X3 q3X3 2q2q3X3

X4 q3X4 q3X4 2q2q3X4 −q3X4

X5 −q3X1 −q3X2 −q3X4
5
2
q3
3X4 −q2

3X0

X6 q3X6 2q2q3X6 −q3
3X4

X7 −q3X1 −q3X2 −q3X3 −q3X4 − 5
2
q3
3X4 −q3X6 −5q2q3X6 X�

X8 −2q2q3X1 −2q2q3X2 −2q2q3X3 −2q2q3X4 −2q2q3X6 5q2q3X6 2q2q
2
3X0

X9 q3X1 q3X2 q3X4 −q2
3X0 q3

3X4 −X� −2q2q
2
3X0

Corollary 3.1 implies that the symmetries (3.9)–(3.17) generate a nine-dimensional Lie al-
gebra G9. We stress the fact that this Lie algebra exists because we work on a fixed covering
of the OWW equation: we cannot expect the “space of all nonlocal symmetries” of a given
equation to possess a Lie algebra structure (see [36]).

It is worth emphasizing that the results of Theorems 3.1–3.2 and Corollary 3.1 depend on
the condition q4 = 2q3. In what follows, replacing the condition by q3 = q4, we consider the
pseudo-potentials and nonlocal π-symmetries AOWW equations by taking the SK equation
(3.2) for example, the results of which are quite different from those of Theorem 3.1 since the
condition is changed.

We can obtain the following conclusions analogous to those obtained for the OWW equation.

Theorem 3.3 The SK (AOWW) equation admits a pseudo-potential v determined by the
compatible equations

vx = λv2u +
1
λ

,

vt = λv2uxxxx − 2vuxxx +
(
3λv2u +

2
λ

)
uxx + λv2u2

x

− 2vuux + λv2u3 +
u2

λ
.

(3.18)

Moreover, the SK equation admits a potential w determined by the following two systems of
equations, which are compatible whenever u(x, t) satisfies (3.2):

wx = λu + λ,

wt = λuxxxx + 5λuuxx +
5
3
λu3.

(3.19)

Theorem 3.4 The first-order generalized symmetries of the augmented associated SK sys-
tem (3.2), (3.18) and (3.19), represented by vector fields (3.8), with G, H1 and H2 being func-
tions of the variables u, v, w, and the derivatives of u, v and w only, are linear combinations
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of

T1 = ux
∂

∂u
, (3.20)

T2 = ut
∂

∂u
, (3.21)

T3 =
∂

∂w
, (3.22)

T4 =
(
u +

1
2
xux +

5
2
tut

) ∂

∂u
, (3.23)

T5 = ux
∂

∂u
+ vx

∂

∂v
, (3.24)

T6 = ut
∂

∂u
+ vt

∂

∂v
, (3.25)

T7 = ux
∂

∂u
+ wx

∂

∂w
, (3.26)

T8 = ut
∂

∂u
+ wt

∂

∂w
, (3.27)

T9 = −(2u + xux + 5tut)
∂

∂u
+ (v − xvx − 5tvt)

∂

∂v
, (3.28)

T10 =
(
u +

1
2
xux +

5
2
tut

) ∂

∂u
+

(1
2
w − 3

2
λx +

1
4
xwx +

5
4
twt

) ∂

∂w
. (3.29)

Corollary 3.2 The ten symmetries (3.20)–(3.29) of the SK equation generate a Lie algebra
with the commutation Table 3.2, whenever u, v and w satisfy the augmented SK systems (3.2),
(3.18) and (3.19).

Table 3.2 The commutation table of the symmetry algebra for the SK equation.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 T1 −2T1 T1

X2 T2 −2T2 T2

X3
1
2
T3

X4 −T1 −T2 −T1 −T2 −T1 −T2

X5 T1 T5−3T1 T1

X6 T2 T6−3T2 T2

X7 T1 −2T1 2T7−T1

X8 T2 −2T2 2T8−T2

X9 2T1 2T2 3T1−T5 3T2−T6 2T1 2T2

X10 −T1 −T2 − 1
2
T3 −T1 −T2 T1−2T7 T2−2T8

4 Applications: The Finite Symmetry Transformation and Darboux
Transformation

In this section, by virtue of the flow of the vector fields obtained in Theorems 3.2 and 3.4,
we use our analysis to obtain explicit solutions to the OWW and AOWW (SK) equations. By
using the standard theory of generalized symmetries (see [1, 3, 14, 23–24]), we obtain a system
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of equations for the flow of the vector fields obtained in Theorem 3.2 and given by

∂x

∂ε
= −1

2
q3x(ε, τ) + q5q6t(ε, τ) − 2q3t(ε, τ), (4.1)

∂t

∂ε
= −5

2
q3t(ε, τ), (4.2)

∂v

∂ε
= β(v(ε, τ))t(ε, τ) − α(v(ε, τ))(λ2q5 − 2λ3q3)x(ε, τ) + β(v(ε, τ))

∫
3q1q3

2β(v(ε, τ))
dv, (4.3)

∂w

∂ε
=

1
2
q3w(ε, τ) − 2λ4q3t(ε, τ) − 3λ5q3t(ε, τ) − λ4q3x(ε, τ)

+ λ4q5q6t(ε, τ) − q5t(ε, τ) + q5x(ε, τ),
(4.4)

where ε denotes a flow parameter. There is no need to take into account an equation for u(ε, τ)
since it is proven that actually u(ε, τ) is determined by the equations (4.1)–(4.4).

Proposition 4.1 The initial value problem (4.1)–(4.4) with initial conditions

v0 = v(0, τ), w0 = w(0, τ), x0 = x(0, τ), t0 = t(0, τ) = τ, (4.5)

admits the following solution:

t(ε, τ) = τ exp
(
− 5

2
q3ε

)
, (4.6)

x(ε, τ) =
( 1

2q3
(2q3 − q5q6)τ exp(−2q3ε) + x0

)
exp

(
− 1

2
q3ε

)
, (4.7)

v(ε, τ) =
−q2

3B(τ)v0(3q1 − 1)(3q1 − 5)(4q3 + 2λ3q3 + λ5q5) exp(3
2q1q3ε)

A(τ)(3q1 − 1)(3q1 − 5)(4q3 + 2λ3q3 + λ2q5)v0 − (A(τ) + q2
3B(τ))B(τ)

, (4.8)

w(ε, τ) = − 1
6q2

3

(
6λ4q

2
3x0 − 6q3q5x0 − 6q2

3w0 + γ(τ)
)
exp

(1
2
q3ε

)

+
1

6q2
3

(
6λ4q

2
3x0 exp(2q3ε) − 6q3q5x0 exp(2q3ε) + γ(τ)

)
exp

(
− 5

2
q3x

)
, (4.9)

by taking α(v) = − v(ε,τ)2

λ2q5+(2λ3+4)q3
and q2q5 = 1

2q3q6, where γ(τ) is given by

γ(τ) = 6λ4q
2
3τ + 6λ5q

2
3τ − 3λ4q3q5q6τ + q2

5q6τ, (4.10)

A(τ) = (3q1 − 1)(λ2q
2
5q6 − 2λ3q3q5q6 + 8λ3q

2
3 + 8q2

3)t − 2q3(3q1 − 5)(λ2q5 − 2λ3q3)x0, (4.11)

B(τ) = (9q2
1 − 18q1 + 5)(4q3 + λ2q5 + 2λ3q3). (4.12)

From this proposition, one can construct explicit families of solutions to the interesting
OWW equation. In fact, it includes a Darboux transformation. Let us assume that the “old”
independent variables are τ and t, and we can obtain the following results.

Theorem 4.1 Suppose that the OWW equation (1.1), understood as an equation for v(τ, t),
is invariant under the transformations τ �→ x and v(τ, t) �→ v(x, t). Then

x = x(τ, t) =
1

2q3
(2q3 − q5q6) t

+ x0

(A(τ)(3q1 − 1)(3q1 − 5)(4q3 + 2λ3q3 + λ2q5)v0 − (A(τ) + q2
3B(τ))B(τ)

−q2
3B(τ)v0(3q1 − 1)(3q1 − 5)(4q3 + 2λ3q3 + λ5q5)

)− 1
3
v−

1
3 ,

(4.13)
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and v(x, t) is obtained by inverting (4.13) as follows:

v(x, t) = x3
0

(
x(τ, t) − 1

2q3
(2q3 − q5q6)

)−3

× −q2
3B(τ)(3q1 − 1)(3q1 − 5)(4q3 + 2λ3q3 + λ5q5)v(x, t)

A(τ)(3q1 − 1)(3q1 − 5)(4q3 + 2λ3q3 + λ2q5)v(x, t) − (A(τ) + q2
3B(τ))B(τ)

, (4.14)

with A(τ) and B(τ) given by (4.11) and (4.12), respectively.

Theorem 4.2 Assume that the OWW equation (1.1), understood as an equation for w(τ, t),
is invariant under the transformations τ �→ x and w(τ, t) �→ w(x, t). Then

x =x(τ, t) = x0Γ(τ, t) +
1

2q3
(2q3 − q5q6) τΓ(τ, t)5, (4.15)

where Γ(τ, t) satisfies the following system:

q3γ(τ)Γ(τ, t)6 + (λ4q3 − q5)x0Γ(τ, t)2 + q3Γ(τ, t)w

+
1

6q3
(6λ4q

2
3x0 − 6q3q5x0 − 6q2

3w0 + γ(τ)) = 0, (4.16)

and w(x, t) is obtained by inverting (4.15)–(4.16) as follows:

w(x, t) = − 1
6q2

3Γ(τ, t)
[
6q6

3γ(τ)Γ(τ, t)6 + 6q3(λ4q3 − q5)x0Γ(τ, t)

+6q3(λ4q3 − q5)x0 − 6q2
3w(x, t) + γ(τ)

]
, (4.17)

with

(2q3 − q5q6) τΓ(τ, t)5 + 2q3x0Γ(τ, t) − 2q3x(τ, t) = 0. (4.18)

Similarly, taking τ and x as the “old” independent variables, we can obtain the following
results.

Theorem 4.3 Suppose that the OWW equation (1.1), understood as an equation for v(x, ε),
is invariant under the transformations ε �→ t and v(x, ε) �→ ṽ(x, t). Then

t = t(x, ε)

= τ
(A(τ)(3q1 − 1)(3q1 − 5)(4q3 + 2λ3q3 + λ2q5)v0 − (A(τ) + q2

3B(τ))B(τ)
−q2

3B(τ)v0(3q1 − 1)(3q1 − 5)(4q3 + 2λ3q3 + λ5q5)

)− 5
3q1

v
− 5

3q1 ,

(4.19)

and ṽ(x, t) is obtained by inverting (4.19) as follows:

ṽ(x, t) =
−q2

3B(τ)(3q1 − 1)(3q1 − 5)(4q3 + 2λ3q3 + λ5q5)t(x, ε)v(x, t)
[A(τ)(3q1 − 1)(3q1 − 5)(4q3 + 2λ3q3 + λ2q5)v(x, t) − (A(τ) + q2

3B(τ))B(τ)] τ
,

(4.20)

with A(τ) and B(τ) given by (4.11) and (4.12), respectively.

Theorem 4.4 Assume that the OWW equation (1.1), understood as an equation for w(x, ε),
is invariant under the transformations ε �→ t and w(x, ε) �→ w̃(x, t). Then

t =t(x, ε) = τΓ(x, ε)5, (4.21)



On the Lie Algebras, Generalized Symmetries and Darboux Transformations 557

where Γ(x, ε) satisfies the system (4.16), and w̃(x, t) is obtained by inverting (4.21), (4.16) as
follows:

w̃(x, t) = − 1
6q2

3Γ(x, ε)
[
6q6

3γ(τ)τ−1t(x, ε)Γ(x, ε) + 6q3(λ4q3 − q5)x0Γ(x, ε)

+6q3(λ4q3 − q5)x0 − 6q2
3w(x, t) + γ(τ)

]
, (4.22)

with

τΓ(x, ε)5 − t(x, ε) = 0. (4.23)

In what follows, we can investigate the SK (AOWW) equation. Following the foregoing
theory, we can obtain similar Darboux transforms.

With initial conditions v0 = v(0, τ), w0 = w(0, τ), x0 = x(0, τ) and t0 = t(0, τ) = τ , we
have a system for the flow of the vector fields obtained in Theorem 3.4 and given by

x(ε, τ) = x0 exp
(1

2
ε
)
, t(ε, τ) = t0 exp

(5
2
ε
)
,

v(ε, τ) = v0 exp (ε) , w(ε, τ) = (w0 − λεx0) exp
(1

2
ε
)
.

(4.24)

As in the OWW equation case, we do not calculate explicitly u(ε, τ), since this function is
completely determined by v(ε, τ) and w(ε, τ).

For simplicity, we consider the SK equation (3.2) as an equation for w(τ, t) and w(x, ε). In
the same way as stated in the OWW equation, we have the following theorem.

Theorem 4.5 (i) Suppose that the SK (AOWW) equation (3.2), understood as an equation
for w(τ, t), is invariant under the transformations τ �→ x and w(τ, t) �→ w(x, t). Then

x = x(τ, t) =
x0w

w0 − λx0 (ln v − ln v0)
, (4.25)

and w(x, t) is obtained by inverting (4.25) and replacing into

w(x, t) =
x(τ, t)

x0
[w(x, t) − λx0 (ln v(x, t) − ln v(x, t))] , (4.26)

where v(x, t) can be derived from (4.24)

v(x, t) =
(x(τ, t)

x0

)2

v(x, t), (4.27)

with v(x, t) determined by (4.24).
(ii) Assume that the SK (AOWW) equation (3.2), understood as an equation for w(x, ε), is

invariant under the transformations ε �→ t and w(x, ε) �→ w̃(x, t). Then

t =t(x, ε) = t0

( w

w0 − λx0 (ln v − ln v0)

)5

, (4.28)

and w̃(x, t) is obtained by inverting (4.28) and replacing into

w̃(x, t) =
( t(x, ε)

t0

)
[w(x, t) − λx0 (ln v(x, t) − ln v(x, t))] , (4.29)
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where ṽ(x, t) can be derived from (4.24)

ṽ(x, t) =
( t(x, ε)

t0

) 2
5
v(x, t), (4.30)

with v(x, t) is determined by (4.24).

Following the foregoing method, by virtue of the pseudo-potential variables v(x, t), w(x, t)
and generalized symmetries, we present Darboux transformations of the OWW equation (1.1)
and the (SK) AOWW equation (3.2), respectively. These formulae are used to find families of
non-trivial solutions to the OWW equation and SK (AOWW) equation.

5 Conclusions and Discussions

In this paper, we have shown that combining generalized symmetries with the nonlocal
condition can result in a variety of applications. The main new progresses made in this paper
in the general aspect of evolution equations are given as follows:

(i) The generalized symmetries can be used to investigate the initial value problems.
(ii) The generalized symmetries can be used to construct Darboux transformations.
(iii) Lie algebras and generalized symmetries can be obtained from new pseudo-potential

systems and vice versa.
(iv) Different kinds of Darboux transformations may assume the same infinitesimal forms,

and then new kinds of Darboux transformations may be obtained from old ones.
(v) New finite-dimensional pseudo-potential systems can be solved by generalized symme-

tries and related Darboux transformations, and then the original evolution equation can be
investigated from lower-dimensional ones owing to the existence of generalized symmetries.

The above results are realized especially for the fifth-order evolution equation, OWW and
AOWW equations. For an OWW equation, it admits a new class of pseudo-potential systems
resulting in its Lie algebras, generalized symmetries, initial value problems and Darboux trans-
formations. Since such pseudo-potential systems are of the Riccati type, more information
about their bilinear forms are also researched through the Cole-Hopf transformation.

For the purpose of extending applicability of the generalized symmetry to obtain analytic
solutions of the OWW and AOWW equations, we introduce two new pseudo-potential vari-
ables v and w to form a new class of pseudo-potential systems, so that the original generalized
symmetries can be transformed to some local symmetries of the new systems. Based on the
generalized symmetries, we can investigate Lie algebras, initial value problems and Darboux
transformations, et al. By means of the Darboux transformations, the analytic solutions of
OWW and AOWW equations are obtained via the transformations of trivial solutions. Con-
sidering the complete local symmetries of the pseudo-potential systems, we can further achieve
rich group invariant solutions, such as rational solutions, special function solutions, solitary
wave solutions and periodic function solutions, et al.

However, in this paper, it still remains unclear what kind of pseudo-potential systems can be
used to construct the generalized symmetries of the original evolution equation and what kind
of generalized symmetries can be applied to obtain nontrivial solutions. The integrability of the
pseudo-potential systems should be further investigated. Furthermore, one may consider soliton
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solutions, rational solutions, peakon solutions, breather solutions and algebraic geometry solu-
tions of the completely integrable pseudo-potential systems to achieve corresponding solutions
of the OWW and AOWW equations, respectively. It is quite reasonable and meaningful that
these matters merit our further study.

Acknowledgement The authors express their sincere thanks to the referees for their
careful reading of the manuscript and constructive suggestions.
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