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Abstract The inverse spectral problem for the Dirac operators defined on the interval
[0, π] with self-adjoint separated boundary conditions is considered. Some uniqueness re-
sults are obtained, which imply that the pair of potentials (p(x), r(x)) and a boundary
condition are uniquely determined even if only partial information is given on (p(x), r(x))
together with partial information on the spectral data, consisting of either one full spectrum
and a subset of norming constants, or a subset of pairs of eigenvalues and the correspond-
ing norming constants. Moreover, the authors are also concerned with the situation where
both p(x) and r(x) are Cn-smoothness at some given point.

Keywords Eigenvalue, Norming constant, Boundary condition, Inverse spectral
problem

2000 MR Subject Classification 34A55, 34L40

1 Introduction

In this paper, we are concerned with the Dirac operator H := H(p(x), r(x); α, β) which is

formulated as

HY :=
(

0 1
−1 0

)
dY

dx
+

(
p(x) 0

0 r(x)

)
Y (x) (1.1)

for x ∈ [0, π], subject to the self-adjoint separated boundary conditions

cosαy1(0) + sin αy2(0) = 0, (1.2)

cosβy1(π) + sin βy2(π) = 0. (1.3)

Here Y (x) = (y1(x), y2(x))T, α, β ∈ [0, π) and the potentials p(x), r(x) ∈ L2[0, π] are all real-

valued. It is known (see [1]) that the operator H is self-adjoint in L2[0, π] × L2[0, π] and has

a real simple discrete spectrum, denoted by σ(H) := {λn}n∈Z\{0}, accumulating at −∞ and

+∞.

Manuscript received April 28, 2013. Revised March 12, 2014.
1College of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, China;
College of Science, Xi’an Shiyou University, Xi’an 710065, China. E-mail: imwzhy@163.com

2College of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, China.
E-mail: weimath@vip.sina.com

∗This work was supported by the National Natural Science Foundation of China (No. 11171198) and the
Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 2013JK0563).



254 Z. Y. Wei and G. S. Wei

It is well known (see [1–2]) that the potentials p and r of the Dirac operator H defined by

(1.1)–(1.3) are uniquely determined in terms of one of the following three sets of spectral data:

Γ1 := {λn, αn, n ∈ Z\{0}}, (1.4)

Γ2 := {λn, κn, n ∈ Z\{0}}, (1.5)

Γ3 := {λn, λ̃n, n ∈ Z\{0}}, (1.6)

where λ̃n is the eigenvalue of the same problem as (1.1)–(1.3) but with β in (1.3) replaced

by β̃ (β̃ �= β), κn is called the terminal velocitie (or a norming constant) and αn is called a

normalized constant corresponding to eigenvalue λn, which are defined as

κn =
u1(0, λn)
u1(π, λn)

(1.7)

and

α2
n =

∫ π

0

u2
1(x, λn) + u2

2(x, λn)dx, (1.8)

respectively. Here (u1(x, z), u2(x, z))T =: U(x, z) is the solution of the Dirac equation H(Y ) =

zY with the initial conditions

u1(0) = sin α, u2(0) = − cosα. (1.9)

The present paper will mainly investigate the uniqueness problem of the determination of

the potentials p and r under the circumstances, where only partial information of (p, r), the

eigenvalues {λn}n∈Z\{0} and the norming constants {κn}n∈Z\{0} are available.

In 1996, Amour [3] proved the half-inverse theorem for the Dirac operators, which says

that the Dirichlet spectrum (that is α = 0 = β in (1.2)–(1.3)) determines the potentials (p, r)

uniquely provided that the potentials (p, r) are given a priori on the half-left (or half-right) of

the interval [0, π]. This result is a generation of Hochstadt and Lieberman’s theorem (see [4])

for Sturm-Liouville operators. Furthermore, in 2001, Delrio and Grbert [5] considered the case

where the potentials are a priori known on [a, π] with 0 ≤ a < π and proved that this together

with a part of two spectra determines the potentials (p, r) uniquely on [0, π]. This result can

be viewed as a parallel one of Gesztesy and Simon’s theorems (see [6, Theorem 1.3]) for the

Sturm-Liouville problems.

For the question of uniqueness of the inverse Sturm-Liouville problems, Wei and Xu in

[7] showed that norming constants play an equal role as eigenvalues. They obtained some

uniqueness results for Sturm-Liouville problems, analogous to the theorems of Gesztesy-Simon

(see [6]) and Hochstadt-Lieberman (see [4]), which imply that the potential q can be completely

determined even if partial information is given on q together with partial information on the

spectral data Γ1 or Γ2.

The main aim of the present paper is to generalize the results of [7] to the Dirac operators.

More specifically, we will show that the pair of potentials (p(x), r(x)) and a boundary condition

are uniquely determined even if only partial information is given on (p(x), r(x)) together with
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partial information on the spectral data, consisting of either one full spectrum and a subset of

norming constants, or a subset of pairs of eigenvalues and the corresponding norming constants.

Moreover, we also concern with the situation in which both p(x) and r(x) are Cn-smoothness

at some given point.

Throughout this paper, for any S ⊂ σ(H), the statement that the set S is almost symmetric

means that λn ∈ S for n ∈ N imply λ−n ∈ S with finitely many possible exceptions. For each

t ≥ 0, we define

nS(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
0<n<t
λn∈S

1, t > 0,

−
∑

t<n<0
λn∈S

1, t < 0.

We state the main results of this paper through two cases. We first treat the case of one full

spectrum and a subset of norming constants to be known. The other case that the known

eigenvalues and norming constants are pairs will be treated in Theorem 1.2 below.

Theorem 1.1 Let a ∈ (0, π
2 ), and p(x), r(x) ∈ Cn(a − ε, a + ε) for some n ∈ N and ε > 0.

Let the subset S ⊂ σ(H) be almost symmetric such that κj are known for λj ∈ S. Suppose that

lim
t→∞

nS(t)
t

= γ (1.10)

exists, and for μ1 ∈ R, t0 > 0,

nS(t)

⎧⎪⎨
⎪⎩
≥

(
1 − 2a

π

)
[t] + μ1 +

(
1 − 2a

π

)
− (n + 1), t ≥ t0,

≤ −
(
1 − 2a

π

)
[−t] + μ1, t ≤ −t0

(1.11)

for all t ∈ R. Then the potentials (p(x), r(x)) on [0, a] together with (p(j)(a), r(j)(a)) (j =

1, 2, · · · , n), κj corresponding to λj ∈ S, and σ(H) uniquely determine β and the potentials

(p(x), r(x)) on [0, π].

Let us mention that if p(x), r(x) ∈ Cn(a − ε, a + ε), then n values of norming constants

can be replaced by the values of (p(j)(a), r(j)(a)) (j = 1, 2, · · · , n), that is, in the set S, n

norming constants can be missed. It should be noted that if a = 0 in the above theorem, that

is, the knowledge of the potentials (p(x), r(x)) is missing, then (p(x), r(x)) on [0, π] are uniquely

determined by Γ2 := {λn, κn, n ∈ Z\{0}}.
The following theorem treats the case that the known eigenvalues and norming constants

are pairs.

Theorem 1.2 Let a ∈ (0, π). Set the subset S ⊂ σ(H) be almost symmetric such that κj

is known for λj ∈ S. Suppose that

lim
t→∞

nS(t)
t

= γ (1.12)
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exists, and for μ2 ∈ R, t0 > 0, ε > 0 being an arbitrary number,

nS(t)

⎧⎪⎨
⎪⎩
≥

(
1 − a

π

)
[t] + μ2 +

(
1 − a

π

)
+ ε, t ≥ t0,

≤ −
(
1 − a

π

)
[−t] + μ2, t ≤ −t0.

(1.13)

Then the potentials (p(x), r(x)) on [0, a], λj ∈ S and the corresponding norming constants κj

determine uniquely β and the potentials (p(x), r(x)) on [0, π].

It is worth pointing out the special case where a = π
2 , we only need half (e.g. the even or

the odd) of the full spectrum and the corresponding norming constants to uniquely determine

(p(x), r(x)) on [0, π] and β. In this situation, the problem reduces to Theorem 1 in [3], for which

one can see that the other half of the spectrum is replaced by half of the norming constants.

The method we use to obtain our results is based on the uniqueness theorem of Weyl-

Titchmarsh-m-function (see [8–9]). This approach has been employed skillfully by Del Rio,

Gesztesy and Simon in a series of papers (see [10–12]) to deal with inverse problems. The key

technique relies on the asymptotic expansion of an m-function.

The organization of this paper is as follows. In Section 2, we give some preliminaries to our

problems. The proofs of our theorems are presented in Section 3.

2 Preliminaries

We begin by recalling some classical results, which will be needed later. Let U(x, z) =

(u1(x, z), u2(x, z))T and V (x, z) = (v1(x, z), v2(x, z))T denote the solutions of the equation

HY = zY (2.1)

for x ∈ [0, π], with the initial conditions

u1(0, z) = sinα, u2(0, z) = − cosα (2.2)

and

v1(π, z) = sin β, v2(π, z) = − cosβ, (2.3)

respectively. It is known (see [1]) that, as |z| → ∞ in C, the following asymptotic formulae are

uniformly in x ∈ [0, π]:

u1(x, z) = sin
{
zx − 1

2

∫ x

0

[p(τ) + r(τ)]dτ + α
}

+ O
( e|Im z|x

|z|
)
,

u2(x, z) = − cos
{
zx − 1

2

∫ x

0

[p(τ) + r(τ)]dτ + α
}

+ O
(e|Im z|x

|z|
) (2.4)

and

v1(x, z) = sin
{
z(π − x) − 1

2

∫ π

x

[p(τ) + r(τ)]dτ − β
}

+ O
(e|Im z|(π−x)

|z|
)
,

v2(x, z) = cos
{
z(π − x) − 1

2

∫ π

x

[p(τ) + r(τ)]dτ − β
}

+ O
(e|Im z|(π−x)

|z|
)
.

(2.5)
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As is well known, the eigenvalues {λj}j∈Z\{0} of operator H have the asymptotic formula

λj = j +
ϑ

π
+ O

(1
j

)
(2.6)

as j → ∞, where ϑ = β − α + 1
2

∫ π

0 (p(τ) + r(τ))dτ . Note that U(x, λj) and V (x, λj) are

eigenfunctions corresponding to the eigenvalue λj . From (1.2) we see that if sinα sin β �= 0,

then the norming constant κj associated with λj is

v1(0, λj)
v1(π, λj)

= κj =
u1(0, λj)
u1(π, λj)

, (2.7)

that is, κj = v1(0,λj)
sin β = sin α

u1(π,λj)
; otherwise, κj can be represented by

v2(0, λj)
v2(π, λj)

= κj =
u2(0, λj)
u2(π, λj)

.

Let us introduce the Weyl-Titchmarsh-m function (see [13]) for the operator H, which reads

as

m(x, z) =
v2(x, z)
v1(x, z)

. (2.8)

Note that m(x, z) is the Herglotz function, that is, m : C+ → C+ is analytic, and it has the

following asymptotic formula:

m(x, z) = i + o(1), (2.9)

which is uniformly in x ∈ [0, π − δ] for δ > 0, as |z| → ∞ in any sector ε < Arg(z) < π − ε for

ε > 0. Furthermore, let ω be a number from the interval N+2
N+3 < ω < 1, and let the set D ⊂ Z

be determined thus by

D = {x + iy ∈ D : |x| > 1, k|x|ω < y < k|x|, k > 0}.

If the potentials p(x), r(x) belong to the class CN [0, δ) for some δ > 0, then, for all z ∈ D, the

high-energy asymptotic expansion of the Weyl-Titchmarsh-m function holds (see [14]):

m(x, z) = i −
N∑

j=1

bj(x)
zj

+ O
( 1

|z|N+θ̃

)
(2.10)

as z = x + iy(∈ D) → ∞, where θ̃ = 1 − (1 − ω)(N + 3) and the functions bj(x) are given by

the recursive equalities:

b1(x) =
1
2i

[r(x) − ip(x)],

bn+1(x) =
[1
2
ib′n(x) − ip(x)bn(x)

]

− 1
2
i

n∑
j=1

bj(x)bn+1−j(x) − 1
2
ip(x)

n−1∑
j=1

bj(x)bn−j(x).

With the above preliminaries out of way, in order to prove Theorem 1.1 and Theorem 1.2,

let (p(x), r(x)) be given on [0, a] and let (p1(x), r1(x)), (p2(x), r2(x)) be two candidates for
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(p(x), r(x)) extended to the interval [0, π]. Denote by mj(x, z) the m-function corresponding

to operators Hj := H((pj(x), rj(x)); α, βj) for j = 1, 2.

A similar statement of the Dirac operator to the uniqueness theorem of Marchenko (see [8])

is the following lemma.

Lemma 2.1 (see [8]) If m1(a, z) = m2(a, z), then p1(x) = p2(x), r1(x) = r2(x) on [a, π]

and tan β1 = tan β2.

Finally, for functions p(x), r(x) ∈ L2[0, π], we introduce the Green’s formula associating

with (1.1) which reads as following:

(HY (x), Z̄(x)) − (Y (x), HZ̄(x))

=
∫ x

0

(y′
2z1 − y′

1z2)dt −
∫ x

0

(y1z
′
2 − y2z

′
1)dt

= [Y, Z]|x0 , (2.11)

where Y (x) = (y1(x), y2(x))T, and Z(x) = (z1(x), z2(x))T. Particularly, if both Y (x) =

(y1(x), y2(x))T and Z(x) = (z1(x), z2(x))T are solutions of (2.1), then [Y, Z](x) = [Y, Z](0)

is a constant for x ∈ [0, π].

3 Proof of Theorems

In this section we give the proofs of our main results. Let Uj = (uj,1(x, z), uj,2(x, z))T and

Vj = (vj,1(x, z), vj,2(x, z))T for j = 1, 2 be solutions of the equation

HjY (x) = zY (x) (x ∈ [0, π]) (3.1)

subject to the initial conditions

uj,1(0, z) = sinα, uj,2(0, z) = − cosα (3.2)

and

vj,1(π, z) = sin βj , vj,2(π, z) = − cosβj , (3.3)

respectively. Let

Wj(z) = vj,1(0, z) cosα + vj,2(0, z) sinα. (3.4)

Then the zeros of equations Wj(z) = 0 coincide with the eigenvalues {λ(j)
n }n∈Z\{0} of the

operators Hj , where Wj(z) are called the characteristic functions of Hj .

In virtue of (2.5), we infer that if z = iy with y ∈ R, we have

|vj,1(a, iy)| = e|y|(π−a)
(
1 + O

( 1
|y|

))
,

|vj,2(a, iy)| = e|y|(π−a)
(
1 + O

( 1
|y|

)) (3.5)
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as y → ∞. This together with (3.4) yields

|Wj(iy)| = e|y|π
(
1 + O

( 1
|y|

))
. (3.6)

For our purpose of this paper, we need the following Lemmas 3.1–3.4.

Lemma 3.1 (see [15]) Let zn, n ≥ 1 be complex numbers with

lim
n→∞

n

zn
= b ∈ R.

Suppose further that for some c > 0, |zn − zm| ≥ c|n − m|. Let

F (z) =
∞∏

n=1

(
1 − z2

z2
n

)
. (3.7)

Then for any ε > 0, as r = |z| → ∞,

F (reiϕ) = O(eπbr| sin ϕ|+εr) (3.8)

and
1

F (reiϕ)
= O(e−πbr| sin ϕ|+εr), if |reiϕ − zn| ≥ 1

8
c. (3.9)

Lemma 3.2 (see [16]) Let F (z) be an entire function of the zero exponential type, i.e.,

lim sup
r→∞

lnM(r)
r

≤ 0, M(r) = max
ϕ |F (reiϕ)|.

If F (z) is bounded along a line, then F (z) is a constant. In particular, if F (z) → 0 when

|z| → ∞ along a line, then F (z) ≡ 0.

Lemma 3.3 Let σ(Hj) be the sets of eigenvalues of operators Hj for j = 1, 2. If σ(H1) =

σ(H2), then the characteristic functions W1(z) = W2(z).

Proof Let {λ(j)
n }n∈Z\{0} be the eigenvalues of Hj for j = 1, 2. It is known that the

characteristic functions Wj(z) of the operators Hj , defined by (3.4), are entire functions in z

of order 1, and consequently by Hadamard’s factorization theorem (see [17, p. 289]), which are

uniquely determined up to a multiplicative constant by their zeros:

Wj(z) = Cj · p.v.
∏

k∈Z\{0}

(
1 − z

λ
(j)
k

)
:= Cj lim

N→∞

+N∏
k=−N

k �=0

(
1 − z

λ
(j)
k

)
, (3.10)

where Cj is some constant. Furthermore, recalling Green’s formula (2.11) and (3.4), Wj(z) =

cosβjuj,1(π) + sin βjuj,2(π). It follows from (2.4) that

Wj(z) = sin(zπ − ϑj) + O
( e|Im z|π

|z|
)
, (3.11)
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where ϑj = βj − α + 1
2

∫ π

0 (pj(τ) + rj(τ))dτ . Consider the functions

Δj(z) := sin(zπ − ϑj) = − sinϑj · p.v.
∏

k∈Z\{0}

(
1 − z

k + ϑj

π

)
. (3.12)

These together with (3.10) yield

Wj(z)
Δj(z)

= − Cj

sin ϑj
· p.v.

∏
k∈Z\{0}

k + ϑj

π

λ
(j)
k

λ
(j)
k − z

k + ϑj

π − z

= − Cj

sin ϑj
· p.v.

∏
k∈Z\{0}

k + ϑj

π

λ
(j)
k

· p.v.
∏

k∈Z\{0}

[
1 − (k + ϑj

π ) − λ
(j)
k

k + ϑj

π − z

]
.

Since lim
z→∞
z �∈R

Wj(z)
Δj(z) = 1, from (3.11) and (3.12), it follows that

Cj = − sinϑj · p.v.
∏

k∈Z\{0}

λ
(j)
k

k + ϑj

π

. (3.13)

Since λ
(1)
k = λ

(2)
k , taking the asymptotic formulae of λ

(1)
k and λ

(2)
k (see(2.6)) into account we

calculate ϑ1 = ϑ2 and therefore C1 = C2. This implies W1(z) = W2(z) and completes the

proof.

Lemma 3.4 For j=1, 2, let {λ(j)
n }n∈Z\{0} and {κ(j)

n }n∈Z\{0} be the eigenvalues and norming

constants of operators Hj, respectively. If λ
(1)
n = λ

(2)
n for n ∈ Z\{0}, and κ

(1)
l = κ

(2)
l for l large

enough, then sin β1 = sin β2.

Proof Taking (2.5) into κ
(j)
l = vj,1(0,λ

(j)
l )

vj,1(π,λ
(j)
l )

(see (2.7)), we have

κ
(j)
l =

1
sin βj

sin(λ(j)
l π − ϑj − α) + O

( 1

|λ(j)
l |

)
.

From the proof of Lemma 3.3, we know ϑ1 = ϑ2. It follows from (2.6) that

lim
l→∞

κ
(1)
l

κ
(2)
l

= lim
l→∞

sin β2

sin β1

(
1 + O

(1
l

))
= 1.

This shows sin β1 = sinβ2 and completes the proof.

Basing on the above preliminaries, now we give the proofs of Theorems 1.1–1.2.

Proof of Theorem 1.1 Define

GS(z) = p.v.
∏

λn∈S

(
1 − z

λn

)
. (3.14)

We prove first that GS(z) is an entire function. Set

F±(z) =
∏

n∈Z+
λ±n∈S

(
1 +

z

λ±n

)(
1 − z

λ±n

)
.
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From Lemma 3.1, for any ε > 0, we have

1
F±(reiθ)

= O(e−πr| sin θ|+εr)

as r = |z| → ∞, θ = Argz. Note that the set S is almost symmetrical, which implies∣∣∣ 1
G2

S(reiθ)

∣∣∣ =
∣∣∣ 1
F+(reiθ)F−(reiθ)

∣∣∣
= O(e−2πr| sin θ|+2εr),

that is, ∣∣∣ 1
GS(reiθ)

∣∣∣ = O(e−πr| sin θ|+εr) ≤ M0e−πr| sin θ|+rε.

This shows that GS(z) is of locally uniform convergence and hence it is an entire function with

zeros {λn}.
Second, we give the estimation about the lower bound of |GS(iy)|. From (3.14), for z =

x + iy,

ln|GS(z)| = p.v.
∑

λn∈S

1
2
ln

[(
1 − x

λn

)2

+
( y2

λ2
n

)]

= p.v.
∑

λn∈S

1
2
ln

(
1 − 2x

λn
+

|z|2
λ2

n

)

=
1
2

∫ +∞

−∞
ln

(
1 − 2x

t
+

|z|2
t2

)
dnS(t). (3.15)

Integrating (3.15) by parts, we obtain

ln|GS(z)| =
∫ +∞

−∞
nS(t)

|z|2
t3 − x

t2

1 − 2x
t + |z|2

t2

dt

=
∫ +∞

−∞

nS(t)
t

y2 − x(t − x)
y2 + (t − x)2

dt.

This yields

ln|GS(iy)| =
∫ +∞

−∞

nS(t)
t

y2

y2 + t2
dt

=
∫ −1

−∞
nS(t)

y2

t(y2 + t2)
dt +

∫ +∞

1

nS(t)
y2

t(y2 + t2)
dt. (3.16)

It is noted that ∫ +∞

1

[t]
t

y2

y2 + t2
dt +

∫ −1

−∞

−[−t]
t

y2

y2 + t2
dt

= ln
∣∣∣ sin(iπy)

iπy

∣∣∣
= π|y| − ln|y| + O(1), (3.17)
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because of the known formula
sin(πz)

πz
=

∞∏
n=1

(
1 − z2

n2

)
.

On the other hand, we have∫ +∞

1

y2

t(y2 + t2)
dt =

1
2
ln(y2 + 1) = ln|y| + O(1) (3.18)

from the relation
y2

t(y2 + t2)
= − d

dt

(1
2
ln

(
1 +

y2

t2

))
.

Analogously, we obtain ∫ −1

−∞

y2

t(y2 + t2)
dt = −ln|y| + O(1). (3.19)

Taking the inequality (1.11) into (3.16) and using (3.18)–(3.19) and (3.23), we deduce that

ln|GS(iy)| ≥
(
1 − 2a

π

)
(π|y| − ln|y|) +

[
μ1 − (n + 1) +

(
1 − 2a

π

)]
ln|y| − μ1ln|y| + O(1)

= (π − 2a)|y| − (n + 1)ln|y| + O(1).

It follows that

GS(iy) ≥ c1e(π−2a)|y||y|−(n+1). (3.20)

Finally, we complete the proof. Let Ṽ (x, z) = (ṽ1(x, z), ṽ2(x, z))T be another solution of the

equation H2Y = zY with the initial conditions

ṽ1(π, z) = sin β̃, ṽ2(π, z) = − cos β̃,

where β̃ ∈ [0, π] and β̃ �= β1, β2. It should be noted that, at the boundary x = π, Ṽ (x, z)

satisfies

ṽ1(π, z) cos β̃ + ṽ2(π, z) sin β̃ = 0.

Consider the operator H(p2, r2; α, β̃). It is easy to see that its eigenvalues, denoted by {μn}n∈Z\{0},

are the zeros of the following equation:

W̃ (0, z) := ṽ1(0, z) cosα + ṽ2(0, z) sinα = 0, (3.21)

and the eigenvalues are interlaced and disjoint to the eigenvalues of H(p2, r2; α, β) (see [18]).

Define

F (z) =
(v1,1(0, z)

sin β1
− v2,1(0, z)

sin β2

)
W̃ (0, z),

which implies that F (μn) = 0 for all n ∈ Z\{0}. Furthermore, we have F (λl) = 0 for all λl ∈ S

because of v1,1(0,λl)
sin β1

= κ
(1)
l = κ

(2)
l = v2,1(0,λl)

sin β2
(see (2.7)). Noting that W1(z) = W2(z) and

sin β1 = sinβ2 from Lemmas 3.3–3.4, by using the equations (3.4) and (3.21), we get

F (z) =
[v1,1(0, z)

sin β1
(ṽ1(0, z) cosα + ṽ2(0, z) sinα) − ṽ1(0, z)

sin β1
W1(z)

]
−

[v2,1(0, z)
sin β2

(ṽ1(0, z) cosα + ṽ2(0, z) sinα) − ṽ1(0, z)
sin β2

W2(z)
]

=
sin α

sin β1

∣∣∣∣v1,1 ṽ1

v1,2 ṽ2

∣∣∣∣
(0,z)

− sin α

sin β2

∣∣∣∣v2,1 ṽ1

v2,2 ṽ2

∣∣∣∣
(0,z)

.
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Since p1(x) = p2(x) and r1(x) = r2(x) on [0, a], using the Green’s formulae (2.11) and (2.8),

we have

F (z) =
sin α

sinβ1

∣∣∣∣v1,1 ṽ1

v1,2 ṽ2

∣∣∣∣
(a,z)

− sin α

sin β2

∣∣∣∣v2,1 ṽ1

v2,2 ṽ2

∣∣∣∣
(a,z)

=
sin α

sinβ1
v1,1(a, z)ṽ1(a, z)(m̃(a, z) − m1(a, z))

− sinα

sin β2
v2,1(a, z)ṽ1(a, z)(m̃(a, z) − m2(a, z)),

where m̃(a, z) = ṽ2(a,z)
ṽ1(a,z) is the Weyl m-function associating with the solution Ṽ (x, z). Further-

more, since p
(j)
1 (a) = p

(j)
2 (a), r

(j)
1 (a) = r

(j)
2 (a) for j = 1, 2, · · · , n, by using (2.10) and (3.5), we

infer that

|F (z)| ≤ sin α

sin β1
|v1,1(a, z)ṽ1(a, z)||m̃(a, z) − m1(a, z)|

+
sinα

sin β2
|v2,1(a, z)ṽ1(a, z)||m̃(a, z) − m2(a, z)|

≤ e2|y|(π−a)
(
1 + O

( 1
|y|

))
O

( 1

yn+1+θ̃

)
. (3.22)

Let us define H(z) by

H(z) =
F (z)

GS(z)W̃ (z)
.

The cross ratio F (z) vanishes at each point where GS(z)W̃ (z) vanishes, and also GS(z)W̃ (z)

necessarily has simple zeros since H(p2, r2; α, β2) and H(p2, r2; α, β̃) have simple spectra, re-

spectively, and their spectra are interlaced and disjointed. Thus H(z) is an entire function, and

from (3.6), (3.20) and (3.22), we have

|H(iy)| ≤
e2|y|(π−a)

(
1 + O

(
1
|y|

))
O

(
1

yn+1+θ̃

)
e(π−2a)|y||y|−(n+1)e|y|π

(
1 + O

(
1
|y|

))
= O

( 1

yθ̃

)
. (3.23)

It turns out that |H(iy)| → 0 as y → ∞. By Lemma 3.2, we obtain H(z) ≡ 0 for all z ∈ C. We

can multiply H(z) by GS(z), which has isolated zeros, so we conclude that m1(a, z) = m2(a, z).

From Lemma 2.1, we have β1 = β2 and p1(x) = p2(x), r1(x) = r2(x) on [a, π]. The proof is

completed.

Proof of Theorem 1.2 Set

FV (z) = (cotβ2 − cotβ1)ṽ1(π, z) +
1

sin β1

∫ π

0

V T
1 (x, z)Q(x)Ṽ (x, z)dx, (3.24)

where V1(x) = (v1,1(x), v1,2(x))T, Ṽ (x) = (ṽ1(x), ṽ2(x))T and Q(x) = diag(p1(x)−p2(x), r1(x)−
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r2(x)). Then from the initial conditions (3.3), we have

FV (z) =
(v1,2(π, z)

sin β1
− v2,2(π, z)

sin β2

)
ṽ1(π, z) +

1
sinβ1

∫ π

0

V T
1 (x, z)Q(x)Ṽ (x, z)dx

=
(v1,2(π, z)

sin β1
− v2,2(π, z)

sin β2

)
ṽ1(π, z) +

1
sinβ1

∫ π

0

dW{V1(x, z), Ṽ (x, z)}

=
1

sin β1
v1,1ṽ2(π, z) − 1

sinβ2
v2,2ṽ1(π, z) − 1

sin β1

∣∣∣∣v1,1 ṽ1

v1,2 ṽ2

∣∣∣∣
(0,z)

, (3.25)

where W{V1(x, z), Ṽ (x, z)} is the Wronskian of V1(x, z) and Ṽ (x, z). Since

v1,1(π) = sinβ1, v2,1(π) = sin β2,

by using the Green’s formula (2.11), we have

FV (z) =
1

sin β2
v2,1ṽ2(π, z) − 1

sin β2
v2,2ṽ1(π, z) − 1

sin β1

∣∣∣∣v1,1 ṽ1

v1,2 ṽ2

∣∣∣∣
(0,z)

=
1

sin β2

∣∣∣∣v2,1 ṽ1

v2,2 ṽ2

∣∣∣∣
(π,z)

− 1
sin β1

∣∣∣∣v1,1 ṽ1

v1,2 ṽ2

∣∣∣∣
(0,z)

=

∣∣∣∣∣∣∣∣
1

sinβ2
v2,1 − 1

sin β1
v1,1 ṽ1

1
sinβ2

v2,2 − 1
sin β1

v1,2 ṽ2

∣∣∣∣∣∣∣∣
(0,z)

=
1

sin α

∣∣∣∣∣∣∣∣
1

sinβ2
v2,1 − 1

sin β1
v1,1 ṽ1

1
sinβ2

W2 − 1
sinβ1

W1 W̃

∣∣∣∣∣∣∣∣
(0,z)

.

Note that if λj ∈ S, then v1,1(0,λl)
sin β1

= κ
(1)
l = κ

(2)
l = v2,1(0,λl)

sin β2
(see (2.7)). This shows that

FV (λj) = 0. Furthermore, since p1(x) = p2(x), and r1(x) = r2(x) on [0, a], it follows from

(3.25) that

FV (z) =
(v1,2(π, z)

sin β1
− v2,2(π, z)

sin β2

)
ṽ1(π, z) +

1
sin β1

∫ π

a

dW{V1(x, z), Ṽ (x, z)}

=
1

sin α

∣∣∣∣∣∣∣
1

sin β2
v2,1 − 1

sin β1
v1,1 ṽ1

1
sin β2

W2 − 1
sinβ1

W1 W̃

∣∣∣∣∣∣∣
(a,z)

.

Let VD(x, z) := Ṽ be the solution of the equation H2Y = zY satisfying the initial conditions

Ṽ (a, z) = (0, 1)T. Then

FVD (z) =
1

sin β2
v2,1(a, z) − 1

sinβ1
v1,1(a, z).

Defining

GS(z) = p.v.
∏

λj∈S

(
1 − z

λj

)
, HD(z) =

FVD (z)
GS(z)

,
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by the hypothesis on S and the arguments of the proof of Theorem 1.1, we have

|GS(iy)| ≥ c2e|y|(π−a)|y|ε

and

|FVD (iy)| ≤ c3e|y|(π−a)
(
1 + O

( 1
|y|

))
,

which yields

|HD(iy)| = O(|y|−ε) → 0

as y → ∞. Hence HD(z) = 0 and v1,1(a,z)
sin β1

= v2,1(a,z)
sin β2

for all z ∈ C.

Let VN (x, z) := Ṽ be the solution of the equation H2Y = zY satisfying the initial conditions

Ṽ (a, z) = (1, 0)T. We have

FVN (z) =
1

sin β2
v2,2(a, z) − 1

sin β1
v1,2(a, z). (3.26)

Define

HN (z) =
FVN (z)
GS(z)

.

Since v1,1(a,z)
sin β1

= v2,1(a,z)
sin β2

for all z ∈ C, from (2.9), (3.5), (3.20) and (3.26), we have

|HN (iy)| =
|m2(a, iy) − m1(a, iy)||v1,1(a, iy)|

|GS(iy)|| sin β1|

≤
O(1)e|y|(π−a)

(
1 + O

(
1
|y|

))
e|y|(π−a)|y|ε

= O(|y|−ε) → 0

as y → ∞. This shows HN (z) = 0, and v1,2(a,z)
sin β1

= v2,2(a,z)
sin β2

for all z ∈ C. Thus we conclude

that m1(a, z) = m2(a, z). By Lemma 2.1, we have p1(x) = p2(x), r1(x) = r2(x) on [0, π], and

β1 = β2. The proof is completed.
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