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Abstract The authors present the general theory of cleft extensions for a cocommutative
weak Hopf algebra H . For a right H-comodule algebra, they obtain a bijective corre-
spondence between the isomorphisms classes of H-cleft extensions AH ↪→ A, where AH is
the subalgebra of coinvariants, and the equivalence classes of crossed systems for H over
AH . Finally, they establish a bijection between the set of equivalence classes of crossed
systems with a fixed weak H-module algebra structure and the second cohomology group
H2
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(H,Z(AH)), where Z(AH) is the center of AH .
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1 Introduction

Weak Hopf algebras (or quantum groupoids in the terminology of Nikshych and Vainerman
[21]) were introduced by Böhm, Nill and Szlachányi [9] as a new generalization of Hopf algebras
and groupoid algebras. The main differences with other Hopf algebraic constructions, such
as quasi-Hopf algebras and rational Hopf algebras, are the following: Weak Hopf algebras are
coassociative but the coproduct is not required to preserve the unity morphism or, equivalently,
the counity is not an algebra morphism. Some motivations to study weak Hopf algebras come
from their connection with the theory of algebra extensions, the important applications in the
study of dynamical twists of Hopf algebras and their link with quantum field theories and
operator algebras (see [21]). It is well-known that groupoid algebras of finite groupoids provide
examples of weak Hopf algebras. If G is a finite groupoid (a category with a finite number of
objects such that each morphism is invertible) then the groupoid algebra over a commutative
ring R is an example of cocommutative weak Hopf algebra. There are more interesting examples
of cocommutative weak Hopf algebras, for example recently Bulacu [11–12] proved that Cayley-
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2Departamento de Álxebra, Universidad de Santiago de Compostela, E-15771 Santiago de Compostela,
Spain. E-mail: josemanuel.fernandez@usc.es
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Dickson and Clifford algebras provide examples of commutative and cocommutative weak Hopf
algebras in some suitable symmetric monoidal categories of graded vector spaces.

As in the Hopf algebra setting, it is possible to define a theory of crossed products for weak
Hopf algebras. The key to extend the crossed product constructions of the Hopf world to the
weak setting is the use of idempotent morphisms combined with the ideas given in [10]. In
[4, 16], the authors defined a product on A⊗V , for an algebra A and an object V both living in
a strict monoidal category C, where every idempotent splits. In order to obtain that product,
we must consider two morphisms ψA

V : V ⊗A→ A⊗ V and σA
V : V ⊗ V → A⊗ V which satisfy

some twisted-like and cocycle-like conditions, respectively. Associated to these morphisms, it is
possible to define an idempotent morphism ∇A⊗V : A⊗V → A⊗V , that becomes the identity
in the classical case. The image of this idempotent inherits the associative product from A⊗V .
In order to define a unit for Im (∇A⊗V ), and hence to obtain an algebra structure, we require the
existence of a preunit ν : K → A⊗V , and, under these conditions, it is possible to characterize
weak crossed products with a unit as products on A⊗V that are morphisms of left A-modules
with preunit. Finally, it is convenient to observe that, if the preunit is a unit, the idempotent
becomes the identity, and we recover the classical examples of the Hopf algebra setting. The
theory presented in [4, 16] contains as a particular instance the one developed by Brzeziński in
[10] as well as all the crossed products constructed in the weak setting, for example the ones
defined in [13, 18, 22]. Recently, Böhm [8] showed that a monad in the weak version of the Lack
and Street’s 2-category of monads in a 2-category is identical to a crossed product system in
the sense of [4], and also in [17] we can find that unified crossed products (see [1]) and partial
crossed products (see [20]) are particular instances of weak crossed products. An interesting
example of weak crossed product comes from the theory of weak cleft extensions associated
to weak Hopf algebras. This notion was introduced in [2], and it provides examples of weak
crossed products satisfying twisted and cocycle conditions (see [4]). These crossed products
are deeply connected with Galois theory as we can see in the intrinsic characterization of weak
cleftness in terms of weak Galois extensions with normal basis obtained in [19]. We want to
point out that, when we particularize this weak cleft theory to the Hopf algebra setting, we
obtain a more general notion than the usual one of cleft extension (see [19, Definition 7.2.1])
because in this case the uniqueness of the cleaving morphism is not guaranteed.

The theory of crossed products in the Hopf setting arises as a generalization of the classical
smash products, and by the results obtained by Doi and Takeuchi [15], we know that every
cleft extension D ↪→ A with cleaving morphism f , such that f(1H) = 1A induces a crossed
product D�σH , where σ : H ⊗H → D is a suitable convolution invertible morphism (a normal
2-cocycle). Conversely, in [7] we can find the reverse result, that is, if D�σH is a crossed
product, the extension D ↪→ D�σH is cleft. On the other hand, Sweedler [23] introduced the
cohomology of a cocommutative Hopf algebra H with coefficients in a commutative H-module
algebra A. We will denote these cohomology groups as HϕA(H•, A), where ϕA is a fixed action
of H over A. In [23], we can find an interesting interpretation of the second cohomology group
H2

ϕA
(H,A) in terms of extensions: This group classifies the set of equivalence classes of cleft

extensions, i.e., classes of equivalent crossed products determined by a 2-cocycle. This result
was extended by Doi [14] proving that, in the noncommutative case, there exists a bijection
between the isomorphism classes of H-cleft extensions D of A and equivalence classes of crossed
systems for H over A with a fixed action. If H is cocommutative, the equivalence is described
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by H2
ϕZ(A)

(H,Z(A)), where Z(A) is the center of A.
The aim of this paper is to extend the preceding results to cocommutative weak Hopf

algebras completing the program initiated in [5]. To do that, in the second section, we introduce
the notion of H-cleft extension for a weak Hopf algebra H , and we prove that this kind of
extensions are examples of weak cleft extensions as the ones introduced in [2] and satisfying that
the classical notion used in the papers of Doi and Takeuchi is obtained when we particularize
to the Hopf setting. We also prove that, under cocommutative conditions, we can assume
without loss of generality that the associated cleaving morphism is a total integral. In the third
section, assuming that H is cocommutative, we prove that it is possible to identify the set of
crossed systems in a weak setting as the set of weak crossed products induced by a weak left
action and a convolution invertible twisted normal 2-cocycle. As a consequence, we obtain the
main result of this section that assures the following: If (A, ρA) is a right H-comodule algebra,
there exists a bijective correspondence between the equivalence classes of H-cleft extensions
AH ↪→ A and the equivalence classes of crossed systems for H over AH , where AH denotes the
subalgebra of coinvariants in the weak setting. Finally, in the fourth section, we generalize the
result obtained by Doi and Takeuchi about the characterization of equivalence classes of crossed
systems using the second Sweedler cohomology group. To obtain this generalization, we must
use the cohomology theory of algebras over commutative weak Hopf algebras developed in [5].
The main result contained in [5, Theorem 3.11] asserts that if (A,ϕA) is a commutative left
H-module algebra, there exists a bijection between the second cohomology group, denoted by
H2

ϕA
(H,A), and the equivalence classes of weak crossed products A⊗αH , where α : H⊗H → A

is a morphism satisfying normal and 2-cocycle conditions. Then, by this bijection and using
the results of the previous sections, we obtain the description of the bijection between the
isomorphism classes of H-cleft extensions AH ↪→ B and the equivalence classes of crossed
systems for H over AH in terms of H2

ϕZ(AH )
(H,Z(AH)).

2 Integrals over Weak Hopf Algebras

From now on, C denotes a strict symmetric category with tensor product denoted by ⊗
and unit object K. With c, we will denote the natural isomorphism of symmetry, and we
also assume that C has equalizers. Then, under these conditions, every idempotent morphism
q : Y → Y splits, i.e., there exist an object Z and morphisms i : Z → Y and p : Y → Z, such
that q = i ◦ p and p ◦ i = idZ . We denote the class of objects of C by |C| and for each object
M ∈ |C|, the identity morphism by idM : M → M . For simplicity of notation, given objects
M , N , P in C and a morphism f : M → N , we write P ⊗ f for idP ⊗ f and f ⊗ P for f ⊗ idP .

An algebra in C is a triple A = (A, ηA, μA), where A is an object in C and ηA : K → A (unit),
μA : A⊗A→ A (product) are morphisms in C, such that μA ◦ (A⊗ ηA) = idA = μA ◦ (ηA ⊗A),
μA ◦ (A⊗μA) = μA ◦ (μA⊗A). We will say that an algebra A is commutative if μA ◦cA,A = μA.
Given two algebras A = (A, ηA, μA) and B = (B, ηB, μB), f : A → B is an algebra morphism,
if μB ◦ (f ⊗ f) = f ◦ μA and f ◦ ηA = ηB. If A, B are algebras in C, the object A ⊗ B is an
algebra in C, where ηA⊗B = ηA ⊗ ηB and μA⊗B = (μA ⊗ μB) ◦ (A⊗ cB,A ⊗B).

For an algebra A, we define the center of A as a subalgebra Z(A) of A with inclusion algebra
morphism iZ(A) : Z(A) → A satisfying μA ◦ (A ⊗ iZ(A)) = μA ◦ cA,A ◦ (A ⊗ iZ(A)), and such
that if f : B → A is a morphism with μA ◦ (A⊗ f) = μA ◦ cA,A ◦ (A⊗ f), there exists a unique
morphism f ′ : B → Z(A) satisfying iZ(A) ◦ f ′ = f. Trivially Z(A) is a commutative algebra.
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A coalgebra in C is a triple D = (D, εD, δD), where D is an object in C and εD : D → K

(counit), δD : D → D ⊗D (coproduct) are morphisms in C, such that (εD ⊗D) ◦ δD = idD =
(D ⊗ εD) ◦ δD, (δD ⊗ D) ◦ δD = (D ⊗ δD) ◦ δD. We will say that D is cocommutative, if
cD,D ◦ δD = δD holds. If D = (D, εD, δD) and E = (E, εE , δE) are coalgebras, f : D → E is a
coalgebra morphism, if (f ⊗ f) ◦ δD = δE ◦ f and εE ◦ f = εD. When D, E are coalgebras in C,
D ⊗ E is a coalgebra in C, where εD⊗E = εD ⊗ εE and δD⊗E = (D ⊗ cD,E ⊗ E) ◦ (δD ⊗ δE).

If A is an algebra, B a coalgebra and α : B → A, β : B → A are morphisms, we define the
convolution product by α ∧ β = μA ◦ (α⊗ β) ◦ δB.

Let A be an algebra. The pair (M,ϕM ) is a left A-module, if M is an object in C and
ϕM : A ⊗M → M is a morphism in C satisfying ϕM ◦ (ηA ⊗M) = idM , ϕM ◦ (A ⊗ ϕM ) =
ϕM ◦ (μA ⊗M). Given two right A-modules (M,ϕM ) and (N,ϕN ), f : M → N is a morphism
of right A-modules if ϕN ◦ (A⊗ f) = f ◦ ϕM .

Let C be a coalgebra. The pair (M,ρM ) is a right C-comodule, if M is an object in C and
ρM : M → M ⊗ C is a morphism in C satisfying (M ⊗ εC) ◦ ρM = idM , (M ⊗ ρM ) ◦ ρM =
(M ⊗ δC) ◦ ρM . Given two right C-comodules (M,ρM ) and (N, ρN ), f : M → N is a morphism
of right C-comodules, if (f ⊗ C) ◦ ρM = ρN ◦ f .

By weak Hopf algebras, we understand the objects introduced in [9] as a generalization of
ordinary Hopf algebras. Here we recall the definition of these objects in a monoidal symmetric
setting.

Definition 2.1 A weak Hopf algebra H is an object in C with an algebra structure (H, ηH ,

μH) and a coalgebra structure (H, εH , δH), such that the following axioms hold:
(1)

δH ◦ μH = (μH ⊗ μH) ◦ δH⊗H .

(2)

εH ◦ μH ◦ (μH ⊗H) = (εH ⊗ εH) ◦ (μH ⊗ μH) ◦ (H ⊗ δH ⊗H)

= (εH ⊗ εH) ◦ (μH ⊗ μH) ◦ (H ⊗ (cH,H ◦ δH) ⊗H).

(3)

(δH ⊗H) ◦ δH ◦ ηH = (H ⊗ μH ⊗H) ◦ (δH ⊗ δH) ◦ (ηH ⊗ ηH)

= (H ⊗ (μH ◦ cH,H) ⊗H) ◦ (δH ⊗ δH) ◦ (ηH ⊗ ηH).

(4) There exists a morphism λH : H → H in C (called the antipode of H) satisfying:
(i) idH ∧ λH = ((εH ◦ μH) ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH) ⊗H),
(ii) λH ∧ idH = (H ⊗ (εH ◦ μH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)),
(iii) λH ∧ idH ∧ λH = λH .

It is easy to see that a weak Hopf algebra is a Hopf algebra if and only if the morphism δH
is unit-preserving or if and only if the counit is a homomorphism of algebras.

If H is a weak Hopf algebra in C, the antipode is unique, antimultiplicative, anticomulti-
plicative and leaves the unit and the counit invariant as follows:

λH ◦ μH = μH ◦ (λH ⊗ λH) ◦ cH,H , δH ◦ λH = cH,H ◦ (λH ⊗ λH) ◦ δH , (2.1)

λH ◦ ηH = ηH , εH ◦ λH = εH . (2.2)
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If we define the morphisms ΠL
H (target), ΠR

H (source), Π
L

H and Π
R

H by

ΠL
H = ((εH ◦ μH) ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH) ⊗H),

ΠR
H = (H ⊗ (εH ◦ μH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)),

Π
L

H = (H ⊗ (εH ◦ μH)) ◦ ((δH ◦ ηH) ⊗H), Π
R

H = ((εH ◦ μH) ⊗H) ◦ (H ⊗ (δH ◦ ηH)),

respectively, it is straightforward to show that they are idempotent and ΠL
H , ΠR

H satisfy the
equalities

ΠL
H = idH ∧ λH , ΠR

H = λH ∧ idH , (2.3)

respectively (see [9]). Moreover, we have

ΠL
H ◦ Π

L

H = ΠL
H , ΠL

H ◦ Π
R

H = Π
R

H , ΠR
H ◦ Π

L

H = Π
L

H , ΠR
H ◦ Π

R

H = ΠR
H , (2.4)

Π
L

H ◦ ΠL
H = Π

L

H , Π
L

H ◦ ΠR
H = ΠR

H , Π
R

H ◦ ΠL
H = ΠL

H , Π
R

H ◦ ΠR
H = Π

R

H , (2.5)

ΠL
H = Π

R

H ◦ λH = λH ◦ Π
L

H , ΠR
H = Π

L

H ◦ λH = λH ◦ Π
R

H , (2.6)

ΠL
H ◦ λH = ΠL

H ◦ ΠR
H = λH ◦ ΠR

H , ΠR
H ◦ λH = ΠR

H ◦ ΠL
H = λH ◦ ΠL

H . (2.7)

For the morphisms target, we have the following identities:

μH ◦ (H ⊗ ΠL
H) = ((εH ◦ μH) ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H), (2.8)

μH ◦ (ΠR
H ⊗H) = (H ⊗ (εH ◦ μH)) ◦ (cH,H ⊗H) ◦ (H ⊗ δH), (2.9)

μH ◦ (H ⊗ Π
L

H) = (H ⊗ (εH ◦ μH)) ◦ (δH ⊗H), (2.10)

μH ◦ (Π
R

H ⊗H) = ((εH ◦ μH) ⊗H) ◦ (H ⊗ δH), (2.11)

(H ⊗ ΠL
H) ◦ δH = (μH ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH) ⊗H), (2.12)

(ΠR
H ⊗H) ◦ δH = (H ⊗ μH) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)), (2.13)

(Π
L

H ⊗H) ◦ δH = (H ⊗ μH) ◦ ((δH ◦ ηH) ⊗H), (2.14)

(H ⊗ Π
R

H) ◦ δH = (μH ⊗H) ◦ (H ⊗ (δH ◦ ηH)), (2.15)

ΠL
H ◦ μH ◦ (H ⊗ ΠL

H) = ΠL
H ◦ μH . (2.16)

Definition 2.2 Let H be a weak Hopf algebra. We will say that a right H-comodule (A, ρA)
is a right H-comodule algebra, if A is an algebra such that ρA ◦ μA = μA⊗H ◦ (ρA ⊗ ρA) and
any one of the following equivalent conditions holds:

(1) (A⊗ ΠL
H) ◦ ρA = (μA ⊗H) ◦ (A⊗ cH,A) ◦ ((ρA ◦ ηA) ⊗A),

(2) (A⊗ Π
R

H) ◦ ρA = (μA ⊗H) ◦ (A⊗ (ρA ◦ ηA)),
(3) (A⊗ ΠL

H) ◦ ρA ◦ ηA = ρA ◦ ηA,

(4) (A⊗ Π
R

H) ◦ ρA ◦ ηA = ρA ◦ ηA,

(5) (ρA ⊗H) ◦ ρA ◦ ηA = (A⊗ μH ⊗H) ◦ (ρA ⊗ δH) ◦ (ηA ⊗ ηH),
(6) (ρA ⊗H) ◦ ρA ◦ ηA = (A⊗ (μH ◦ cH,H) ⊗H) ◦ (ρA ⊗ δH) ◦ (ηA ⊗ ηH).

If (A, ρA) is a rightH-comodule algebra, the triple (A,H,ΓH
A ) is a right-right weak entwining

structure, where

ΓH
A = (A⊗ μH) ◦ (cH,A ⊗H) ◦ (H ⊗ ρA) (2.17)
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(see [13]). Therefore the following identity holds:

(A⊗ εH) ◦ ΓH
A = μA ◦ (eA ⊗A), (2.18)

where

eA = (A⊗ εH) ◦ ΓH
A ◦ (H ⊗ ηA). (2.19)

We denote by MH
A (ΓH

A ) the category of weak entwined modules, i.e., the objectsM in C together
with two morphisms φM : M ⊗ A → A and ρM : M → M ⊗H , such that (M,φM ) is a right
A-module, (M,ρM ) is a right H-comodule, and such that the following equality:

ρM ◦ φM = (φM ⊗H) ◦ (M ⊗ ΓH
A ) ◦ (ρM ⊗A) (2.20)

holds. Then, if (A, ρA) is a right H-comodule algebra, (A, μA, ρA) is an object of MH
A (ΓH

A ).
If (A, ρA) is a right H-comodule algebra, we define the subalgebra of coinvariants of A as

the equalizer:

���AH A A⊗H ,
iA

ρA

ζA

where ζA = (μA ⊗H) ◦ (A⊗ cH,A) ◦ ((ρA ◦ ηA)⊗A). Note that, as a consequence of Definition
2.2(1), we have that ζA = (A ⊗ ΠL

H) ◦ ρA. It is easy to see that (AH , ηAH , μAH ) is an algebra,
with ηAH and μAH to be the factorizations through the equalizer iA of the morphisms ηA and
μA ◦ (iA ⊗ iA), respectively. For example, the weak Hopf algebra H is a right H-comodule
algebra with right H-comodule structure given by ρH = δH , and subalgebra of coinvariants HH

is the image of the idempotent morphism ΠL
H . In what follows, we will denote this image by

HL.

Definition 2.3 Let H be a weak Hopf algebra, and (A, ρA) be a right H-comodule algebra.
We define an integral as a morphism of right H-comodules f : H → A. Moreover, if f◦ηH = ηA,
we say that the integral is total.

An integral f : H → A is convolution invertible, if there exists a morphism f−1 : H → A

(called the convolution inverse of f), such that
(1) f−1 ∧ f = eA,

(2) f ∧ f−1 = (A⊗ (εH ◦ μH)) ◦ ((ρA ◦ ηA) ⊗H),
(3) f−1 ∧ f ∧ f−1 = f−1,

where eA is the morphism defined in (2.19).

Trivially, the inverse is unique. Moreover, using the condition Definition 2.3(1), if f is an
integral convolution invertible, we get that f ∧ f−1 ∧ f = f. Finally, when f is a total integral,
we can rewrite the equality Defnition 2.3(1) as f−1 ∧ f = f ◦ ΠR

H and Definition 2.3(2) as
f ∧ f−1 = f ◦ Π

L

H .

Example 2.1 LetH be a weak Hopf algebra, such that ΠL
H = Π

L

H (equivalently, ΠR
H = Π

R

H).
Then the identity idH is a convolution invertible total integral with inverse λH . Note that this
equality is always true in the Hopf algebra setting. In our case, it holds, for example, if H is a
cocommutative weak Hopf algebra.
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Definition 2.4 Let H be a weak Hopf algebra and (A, ρA) be a right H-comodule algebra.
We say that AH ↪→ A is an H-cleft extension, if there exists an integral f : H → A convolution
invertible, such that the morphism f ∧ f−1 factorizes through the equalizer iA. In what follows,
the morphism f will be called a cleaving morphism associated to the H-cleft extension AH ↪→ A.

Proposition 2.1 Let H be a weak Hopf algebra, and (A, ρA) be a right H-comodule algebra,
such that AH ↪→ A is an H-cleft extension with cleaving morphism f . Then the equality

ρA ◦ f−1 = (f−1 ⊗ λH) ◦ cH,H ◦ δH (2.21)

holds.

Proof We define the following morphisms: r = ρA ◦ f−1, s = ρA ◦ f and t = (f−1 ⊗ λH) ◦
cH,H ◦ δH .

First of all, we show that s ∧ r = s ∧ t. Indeed,

s ∧ r = ρA ◦ (f ∧ f−1)

= (A⊗ ΠL
H) ◦ ρA ◦ (f ∧ f−1)

= (μA ⊗ (ΠL
H ◦ μH ◦ (H ⊗ ΠL

H))) ◦ (A⊗ cH,A ⊗H) ◦ ((ρA ◦ f) ⊗ (ρA ◦ f−1)) ◦ δH
= (μA ⊗ ΠL

H) ◦ (A⊗ cH,A) ◦ ((ρA ◦ f) ⊗ f−1) ◦ δH
= (μA ⊗H) ◦ (A⊗ cH,A) ◦ (((f ⊗ (μH ◦ (H ⊗ λH) ◦ δH)) ◦ δH) ⊗ f−1) ◦ δH
= s ∧ t.

In the foregoing calculations, the first equality follows by using that A is a right H-comodule
algebra; the second one follows because AH ↪→ A is H-cleft; in the third one, we use (2.16); the
fourth one relies on the equality (μA ⊗ μH) ◦ (A⊗ cH,A ⊗ ΠL

H) ◦ (ρA ⊗ ρA) = (μA ⊗H) ◦ (A⊗
cH,A)⊗ (ρA ⊗A), the fifth one is a consequence of the definition of ΠL

H ; finally, in the last one,
we use that f is an integral.

Using similar techniques (2.6) and (2.10), we obtain that t ∧ s = r ∧ s.
On the other hand, using Definition 2.1(2) and that f is an integral we have that the equality

(f−1 ∧ f) ◦ μH = ((εH ◦ μH) ⊗ (f−1 ∧ f)) ◦ (H ⊗ δH) holds.
Now we use the previous equality and that f is a convolution invertible integral to get that

t ∧ s ∧ t = t.

t ∧ s ∧ t = (μA ⊗H) ◦ (A⊗ cH,A) ◦ (A⊗ μH ⊗A) ◦ (cH,A ⊗H ⊗A)

◦ (λH ⊗ (((f−1 ∧ f) ⊗ ΠL
H) ◦ δH) ⊗A) ◦ (δH ⊗ f−1) ◦ δH

= (μA ⊗H) ◦ (A⊗ cH,A) ◦ (A⊗ μH ⊗A) ◦ (cH,A ⊗H ⊗A)

◦ (λH ⊗ ((((f−1 ∧ f) ◦ μH) ⊗H) ◦ (H ⊗ cH,H)

◦ ((δH ◦ ηH) ⊗H)) ⊗A) ◦ (δH ⊗ f−1) ◦ δH
= (μA ⊗H) ◦ (A⊗ cH,A) ◦ (A⊗ μH ⊗A) ◦ (cH,A ⊗H ⊗A)

◦ (λH ⊗ (((((εH ◦ μH) ⊗ (f−1 ∧ f)) ◦ (H ⊗ δH)) ⊗H)

◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH) ⊗H)) ⊗A)

◦ (δH ⊗ f−1) ◦ δH
= cH,A ◦ ((λH ∧ ΠL

H) ⊗ (f−1 ∧ f ∧ f−1)) ◦ δH = t.
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Taking into account that r ∧ s ∧ r = r, the equalities r = r ∧ s∧ r = t∧ s∧ r = t∧ s ∧ t = t

hold and we conclude the proof.

Proposition 2.2 Let H be a cocommutative weak Hopf algebra, and (A, ρA) be a right H-
comodule algebra. If there exists a convolution invertible integral f : H → A, then AH ↪→ A is
an H-cleft extension.

Proof Let f−1 be the convolution inverse of f . We have to show that f ∧ f−1 factorizes
through the equalizer iA. Indeed,

ζA ◦ (f ∧ f−1)

= (A⊗ ΠL
H) ◦ ρA ◦ (A⊗ (εH ◦ μH)) ◦ ((ρA ◦ ηA) ⊗H)

= (A⊗H ⊗ (εH ◦ μH)) ◦ (A⊗ ((ΠL
H ⊗H) ◦ δH) ⊗H) ◦ ((ρA ◦ ηA) ⊗H)

= (A⊗H ⊗ (εH ◦ μH)) ◦ (A⊗ ((ΠL
H ⊗H) ◦ cH,H ◦ δH) ⊗H) ◦ ((ρA ◦ ηA) ⊗H)

= (A⊗ (εH ◦ μH) ⊗H) ◦ (ρA ⊗ cH,H) ◦ (((A ⊗ ΠL
H) ◦ ρA ◦ ηA) ⊗H)

= (A⊗ (εH ◦ μH) ⊗H) ◦ (ρA ⊗ cH,H) ◦ ((ρA ◦ ηA) ⊗H)

= (A⊗H ⊗ (εH ◦ μH)) ◦ (A⊗ (cH,H ◦ δH) ⊗H) ◦ ((ρA ◦ ηA) ⊗H)

= (A⊗H ⊗ (εH ◦ μH)) ◦ (A⊗ δH ⊗H) ◦ ((ρA ◦ ηA) ⊗H)

= ρA ◦ (f ∧ f−1).

In the foregoing calculations, the first and the last equalities follow by Definition 2.3(2); the
second, fourth and sixth ones use the condition of comodule for A; in the third and seventh
ones we use that H is cocommutative; finally the fifth one follows by Definition 2.2(3).

Remark 2.1 Let H be a weak Hopf algebra, and (A, ρA) be a right H-comodule algebra.
We want to point out the relation between the notion of H-cleft extension and the one of weak
H-cleft extension given in [2]. In [2], we introduce the set RegWR(H,A) as the one whose
elements are the morphisms h : H → A, such that there exists a morphism h−1 : H → A, called
the left weak inverse of h, such that h−1 ∧ h = eA, where eA is the morphism defined in (2.19)
for the right-right weak entwining structure ΓH

A associated to (A, ρA) (see (2.17)).
Then, following [2, Definition 1.9], we say that AH ↪→ A is a weak H-cleft extension if there

exists a morphism h : H → A in RegWR(H,A) of right H-comodules, such that the equality
ΓH

A ◦(H⊗h−1)◦δH = ζA ◦(eA∧h−1) holds. Moreover, we can assume without loss of generality
that eA ∧ h−1 = h−1 and the previous equality can be expressed as

ΓH
A ◦ (H ⊗ h−1) ◦ δH = ζA ◦ h−1, (2.22)

and, as a consequence [2, Proposition 1.12], the morphism qA = μA ◦ (A ⊗ h−1) ◦ ρA : A → A

factorizes through iA. Therefore, there exists a unique morphism pA : A → AH , such that
qA = iA ◦ pA. Then, h ∧ h−1 = qA ◦ h, and, as a consequence, h ∧ h−1 admits a factorization
through iA. Moreover, by [2, Remark 1.10], we know that if there exists an h ∈ RegWR(H,A)
of right H-comodules,

ΓH
A = (μA ⊗H) ◦ (A⊗ (ρA ◦ μA)) ◦ (((h−1 ⊗ h) ◦ δH) ⊗A). (2.23)
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Theorem 2.1 Let H be a weak Hopf algebra, and (A, ρA) be a right H-comodule algebra. If
there exists an h ∈ RegWR(H,A) of right H-comodules, such that eA∧h−1 = h−1, the following
assertions are equivalent:

(i) The morphism h ∧ h−1 factorizes through the equalizer iA and h−1 satisfies (2.21).
(ii) The equality (2.22) holds.

Proof If (ii) holds, AH ↪→ A is a weak H-cleft extension and then h ∧ h−1 admits a
factorization through iA. The equality (2.21) follows in a similar way to the proof given in
Proposition 2.1 by using that eA ∧ h−1 = h−1.

Conversely, assume that (i) holds. Then

ΓH
A ◦ (H ⊗ h−1) ◦ δH

= (μA ⊗H) ◦ (A⊗ (ρA ◦ μA)) ◦ (((h−1 ⊗ h) ◦ δH) ⊗ h−1) ◦ δH
= (μA ⊗ ΠL

H) ◦ (h−1 ⊗ (ρA ◦ (h ∧ h−1))) ◦ δH
= ((μA ◦ (A⊗ μA)) ⊗ (ΠL

H ◦ μH)) ◦ (h−1 ⊗ h⊗ cH,A ⊗H)

◦ (H ⊗ δH ⊗ (ρA ◦ h−1)) ◦ (H ⊗ δH) ◦ δH
= (μA ⊗ ΠL

H) ◦ (eA ⊗ cH,A) ◦ (δH ⊗ h−1) ◦ δH
= (((A⊗ εH) ◦ ΓH

A ) ⊗ ΠL
H) ◦ (H ⊗ cH,A) ◦ (δH ⊗ h−1) ◦ δH

= (A⊗ (εH ◦ μH) ⊗ ΠL
H) ◦ (cH,A ⊗ cH,H) ◦ (H ⊗ cH,A ⊗H)

◦ (δH ⊗ (ρA ◦ h−1)) ◦ δH
= (A⊗ (ΠL

H ◦ μH)) ◦ (cH,A ⊗H) ◦ (H ⊗ (ρA ◦ h−1)) ◦ δH
= (h−1 ⊗ ΠL

H) ◦ cH,H ◦ δH ,

where the first equality follows by (2.23), the second one uses that h ∧ h−1 factorizes through
iA and the third one follows because A is a weak entwined module and h is a morphism of right
H-comodules. In the fourth equality, we use (2.21), and the fifth one is a consequence of the
properties of ΠL

H . The sixth one follows by (2.18), and the seventh one relies on the definition
of ΓH

A . Using (2.8) and (2.16), we obtain the eighth equality. Finally, the last one follows by
(2.21) and the properties of ΠL

H .
On the other hand,

ζA ◦ h−1 = (A⊗ Π
R

H) ◦ ρA ◦ h−1 = (h−1 ⊗ (Π
R

H ◦ λH)) ◦ cH,H ◦ δH = (h−1 ⊗ ΠL
H) ◦ cH,H ◦ δH .

Then the proof is complete.

Corollary 2.1 Let H be a weak Hopf algebra, and (A, ρA) be a right H-comodule algebra.
If AH ↪→ A is an H-cleft extension, then it is a weak H-cleft extension.

Proof If AH ↪→ A is an H-cleft extension, there exists an integral f : H → A convolution
invertible, such that the morphism f ∧f−1 factorizes through the equalizer iA, where f−1 is the
convolution inverse of f . Then, f ∈ RegWR(H,A), eA ∧ f−1 = f−1, and by using Proposition
2.1, the equality (2.21) holds. Therefore, as a consequence of the previous theorem, we obtain
that AH ↪→ A is a weak H-cleft extension.

Remark 2.2 As a consequence of Corollary 2.1, the results proved in [2–3] for weak H-
cleft extensions can be applied for H-cleft extensions. For example, if AH ↪→ A is an H-cleft
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extension with cleaving morphism f , the morphism qA = μA ◦ (A⊗f−1)◦ρA factorizes through
the equalizer iA, i.e., there exists a morphism pA : A→ AH such that iA ◦pA = qA. Also, using
[4, Lemmas 3.9 and 3.11], we have the following equalities:

μA ◦ (qA ⊗ f) ◦ ρA = idA, (2.24)

pA ◦ μA ◦ (iA ⊗A) = μAH ◦ (AH ⊗ pA). (2.25)

Definition 2.5 Let H be a weak Hopf algebra. Two H-cleft extensions AH ↪→ A and
BH ↪→ B are equivalent (written by AH ↪→ A ∼ BH ↪→ B), if AH = BH , and there exists a
morphism of right H-comodule algebras T : A→ B, such that T ◦ iA = iB.

Note that, if theH-cleft extensions AH ↪→ A and AH ↪→ B are equivalent, and f is a cleaving
morphism for AH ↪→ A, it is easy to show that g = T ◦ f is a cleaving morphism for AH ↪→ B

with g−1 = T ◦f−1. Under these conditions, T is an isomorphism. If f is the cleaving morphism
associated to AH ↪→ A, we define four morphisms as follows: γA = (pA⊗H)◦ρA : A→ AH ⊗H,
χA = μA ◦ (iA ⊗ f) : AH ⊗ H → A and γB = (pB ⊗ H) ◦ ρB : B → AH ⊗ H, χB =
μB ◦(iB ⊗g) : AH ⊗H → B, where pA and pB are the factorizations of qA = μA◦(A⊗f−1)◦ρA,
qB = μB ◦ (A⊗ g−1) ◦ ρB, respectively, and iA, iB are the corresponding equalizer morphisms.
Then,

χB ◦ γA = μB ◦ ((iB ◦ pA) ⊗ g) ◦ ρA = μB ◦ ((T ◦ qA) ⊗ (T ◦ f)) ◦ ρA

= T ◦ μA ◦ (A⊗ (f−1 ∧ f)) ◦ ρA

= T ◦ μA ◦ (A⊗ eA) ◦ ρA = T,

iB ◦ pB ◦ T = μB ◦ (B ⊗ (T ◦ f−1)) ◦ ρB ◦ T = T ◦ qA = T ◦ iA ◦ pA = iB ◦ pA.

If we define T−1 : B → A by T−1 = χA ◦ γB, we have

T ◦ T−1 = μB ◦ ((T ◦ iA ◦ pB) ⊗ (T ◦ f)) ⊗ ρB = μB ◦ (B ⊗ eB) ◦ ρB = idB,

and in a similar way, T−1 ◦ T = idA. Therefore, T is an isomorphism.
Obviously, “ ∼ ” is an equivalence relation, and we denote by [BH ↪→ B] the isomorphisms

class of the H-cleft extension BH ↪→ B.

It is a well-known fact in the Hopf algebra setting that, if AH ↪→ A is an H-cleft extension
with convolution invertible integral f , the morphism h = μA ◦(f⊗(f−1 ◦ηH)) is a total integral
which is convolution invertible. There is a similar result for weak Hopf algebras, although we
want to point out that the proof is very different, because in our case δH ◦ ηH 	= ηH ⊗ ηH .
Actually, in order to give the convolution inverse of this morphism, we assume that the weak
Hopf algebra is cocommutative. This hypothesis can be removed in the classical case, because
for Hopf algebras the morphisms ΠL

H , ΠR
H Π

L

H and Π
R

H trivialize.

Proposition 2.3 Let H be a weak Hopf algebra with invertible antipode. If AH ↪→ A is an
H-cleft extension with cleaving morphism f , then h = μA ◦ (f ⊗ (f−1 ◦ ηH)) is a total integral.
Moreover, if H is cocommutative, h is convolution invertible.

Proof The morphism h = μA ◦ (f⊗ (f−1 ◦ηH)) is an integral, where f−1 is the convolution
inverse of f . Indeed,

ρA ◦ h = μA⊗H ◦ ((ρA ◦ f) ⊗ (ρA ◦ f−1 ◦ ηH))
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= (A⊗ (λH ◦ λ−1
H )) ◦ μA⊗H ◦ (((f ⊗H) ◦ δH) ⊗ ((f−1 ⊗ λH) ◦ cH,H ◦ δH ◦ ηH))

= (μA ⊗H) ◦ (f ⊗ (cH,A ◦ (λH ⊗ f−1) ◦ (μH ⊗H)

◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH) ⊗ λ−1
H ))) ◦ δH

= (μA ⊗H) ◦ (f ⊗ (cH,A ◦ (λH ⊗ f−1) ◦ (H ⊗ ΠL
H) ◦ δH ◦ λ−1

H )) ◦ δH
= (μA ⊗H) ◦ (f ⊗ ((f−1 ◦ ΠL

H ◦ λ−1
H ) ⊗H) ◦ δH) ◦ δH

= (h⊗H) ◦ δH .

The first equality follows because A is a right H-comodule algebra, the second one uses that
λH is an isomorphism, the third and the fifth ones are the consequences of the antimultiplicative
property for λH , λ−1

H and the naturality of c, the fourth one follows by (2.12), and finally, the
last one uses (2.6).

Now, using Proposition 2.1, the properties of the antipode and (2.6), we have

(A⊗ (εH ◦ μH)) ◦ (cH,A ⊗H) ◦ (H ⊗ (ρA ◦ f−1 ◦ ηH))

= (A⊗ (εH ◦ μH)) ◦ (cH,A ⊗H) ◦ (H ⊗ ((f−1 ⊗ λH) ◦ cH,H ◦ δH ◦ ηH))

= ((εH ◦ μH ◦ cH,H) ⊗ f−1) ◦ (λ−1
H ⊗ (δH ◦ ηH))

= f−1 ◦ ΠL
H ◦ λ−1

H = f−1 ◦ Π
R

H .

As a consequence, h = f ∧ (f−1 ◦ Π
R

H), and then we get that h is total because, by the
previous equality and (2.15), h ◦ ηH = (f ∧ (f−1 ◦ Π

R

H)) ◦ ηH = (f ∧ f−1) ◦ ηH = ηA.

Now we assume that H is cocommutative. We define h−1 = μA ◦ ((f ◦ηH)⊗f−1). Following
a similar way to the one developed for h, it is easy to prove the equalities h−1 = (f ◦ΠR

H)∧f−1

and μA ◦ (f−1 ⊗ (f ◦ ηH)) = μA ◦ (f−1 ⊗ (f ◦ ΠR
H ◦ λH)) ◦ cH,H ◦ δH . As a consequence of the

last equation, taking into account that H is cocommutative, we obtain that

μA ◦ ((f−1 ◦ ηH) ⊗ (f ◦ ηH)) = ηH . (2.26)

We conclude the proof showing that h−1 is the convolution inverse of h. Condition (2) in
Definition 2.3 follows because, as a consequence of (2.26), h ∧ h−1 = f ∧ f−1 = (A ⊗ (εH ◦
μH)) ◦ ((ρA ◦ ηA) ⊗H).

As far as Definition 2.3(1), using that f is a convolution invertible integral, A is an H-
comodule algebra and (2.15), we get that h−1∧h = (A⊗(εH◦μH))◦(cH,A⊗H)◦(H⊗(ρA◦ηA)) =
eA.

The proof for the condition (3) in Definition 2.3 for h follows a similar pattern, and we leave
the details to the reader. Then h is convolution invertible.

Remark 2.3 As a consequence of the previous proposition, in the cocommutative setting,
we can assume that the integral is total.

In the following definition, we recall the notion of left weak H-module algebra introduced
in [5].

Definition 2.6 Let H be a weak Hopf algebra. We will say that A is a left weak H-module
algebra if A is an algebra and there exists a morphism ϕA : H ⊗A→ A satisfying

(1) ϕA ◦ (ηH ⊗A) = idA,
(2) ϕA ◦ (H ⊗ μA) = μA ◦ (ϕA ⊗ ϕA) ◦ (H ⊗ cH,A ⊗A) ◦ (δH ⊗A⊗A),
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(3) ϕA ◦ (μH ⊗ ηA) = ϕA ◦ (H ⊗ (ϕA ◦ (H ⊗ ηA))),
and any one of the following equivalent conditions holds:

(4) ϕA ◦ (ΠL
H ⊗A) = μA ◦ ((ϕA ◦ (H ⊗ ηA) ⊗A),

(5) ϕA ◦ (Π
L

H ⊗A) = μA ◦ cA,A ◦ ((ϕA ◦ (H ⊗ ηA) ⊗A),
(6) ϕA ◦ (ΠL

H ⊗ ηA) = ϕA ◦ (H ⊗ ηA),

(7) ϕA ◦ (Π
L

H ⊗ ηA) = ϕA ◦ (H ⊗ ηA),
(8) ϕA ◦ (H ⊗ (ϕA ◦ (H ⊗ ηA))) = ((ϕA ◦ (H ⊗ ηA)) ⊗ (εH ◦ μH)) ◦ (δH ⊗H),
(9) ϕA ◦ (H ⊗ (ϕA ◦ (H ⊗ ηA))) = ((εH ◦ μH) ⊗ (ϕA ◦ (H ⊗ ηA))) ◦ (H ⊗ cH,H) ◦ (δH ⊗H).
If we replace (3) by
(3)′ ϕA ◦ (μH ⊗A) = ϕA ◦ (H ⊗ ϕA),

we will say that (A,ϕA) is a left H-module algebra.

Remark 2.4 Note that as a consequence of Definition 2.6(4)–(5) if the weak Hopf algebra
is cocommutative the morphism ϕA ◦ (H⊗ηA) factorizes through the center of A, that is, there
exists a unique morphism nA : H → Z(A), such that iZ(A)◦nA = ϕA◦(H⊗ηA). Moreover, if H
is a Hopf algebra and (A,ϕA) is a left weak H-module algebra, conditions (4)–(9) in Definition
2.6 imply that εH ⊗ ηA = ϕA ◦ (H ⊗ ηA). As a consequence, the equality (3) in Definition 2.6
is always true and ϕA is a weak action of H on A (see [6]).

Proposition 2.4 Let H be a cocommutative weak Hopf algebra. If AH ↪→ A is an H-cleft
extension with cleaving morphism f , the pair (AH , ϕAH ) is a left weak H-module algebra, where
ϕAH is the factorization of the morphism ϕA = μA ◦ (A⊗ (μA ◦ cA,A)) ◦ (((f ⊗ f−1) ◦ δH)⊗ iA)
through the equalizer iA.

Proof If AH ↪→ A is an H-cleft extension, as a consequence of Corollary 2.1, we have that
AH ↪→ A is a weak H-cleft extension, and then, using [2, Proposition 1.15], we know that ϕAH

factorizes through the equalizer iA and satisfies Definition 2.2(2). Moreover it is easy to see
that

ϕAH = pA ◦ μA ◦ (f ⊗ iA), (2.27)

and then Definition 2.2(1) holds.
As far as Definition 2.2(3),

ϕAH ◦ (H ⊗ (ϕAH ◦ (H ⊗ ηAH )))

= pA ◦ μA ◦ (f ⊗ (qA ◦ f))

= pA ◦ μA ◦ (f ⊗ (f ∧ f−1))

= ((pA ◦ μA) ⊗ (εH ◦ μH)) ◦ (f ⊗ (ρA ◦ ηA) ◦H)

= (pA ⊗ (εH ◦ μH)) ◦ (A⊗ Π
R

H ⊗H) ◦ ((ρA ◦ f) ⊗H)

= ((pA ◦ qA ◦ f) ⊗ (εH ◦ μH)) ◦ (δH ⊗H)

= ((pA ◦ (f ∧ f−1)) ⊗ (εH ◦ μH)) ◦ (δH ⊗H)

= (pA ⊗ (εH ◦ μH)) ◦ ((ρA ◦ ηA) ⊗ μH)

= (pA ◦ (f ∧ f−1)) ◦ μH

= ϕAH ◦ (μH ⊗ ηAH ),
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where the first equality follows by (2.27); the second one follows because qA ◦ f = f ∧ f−1; the
third, sixth and seventh ones are consequences of Definition 2.3(2); in the fourth one, we use
that A is a right H-comodule algebra; in the fifth one, we use (2.11) and that f is an integral;
finally, in the last one, we use that pA ◦ (f ∧ f−1) = ϕAH ◦ (H ⊗ ηAH ).

It only remains to show one of the equivalent conditions (4)–(9) in Definition 2.6. We get
(6) in Definition 2.6:

ϕAH ◦ (ΠL
H ⊗ ηAH ) = pA ◦ (f ∧ f−1) ◦ ΠL

H = pA ◦ (A⊗ (εH ◦ μH)) ◦ ((ρA ◦ ηA) ⊗ ΠL
H)

= pA ◦ (f ∧ f−1) = ϕAH ◦ (H ⊗ ηAH ).

3 Crossed Systems for Weak Hopf Algebras

Taking into account the theory developed in the previous section, in the remainder of this
paper, we will assume that H is a cocommutative weak Hopf algebra. In this section, we
generalize the theory of crossed systems over a Hopf algebra given by Doi [14] to the weak
setting. Also we obtain a bijective correspondence between the isomorphisms classes of H-cleft
extensions [AH ↪→ A] and the equivalence classes of crossed systems for H over AH . Following
[5, Definition 1.18], we have the following definition.

Definition 3.1 Let (A,ϕA) be a left weak H-module algebra. We define RegϕA
(H,A),

as the set of morphisms h : H → A, such that there exists a morphism h−1 : H → A (the
convolution regular inverse of h) satisfying the following equalities:

(1 h ∧ h−1 = h−1 ∧ h = u1,

(2) h ∧ h−1 ∧ h = h,

(3) h−1 ∧ h ∧ h−1 = h−1,

where u1 = ϕA ◦ (H ⊗ ηA).
In a similar way, RegϕA

(H⊗H,A) is the set of morphisms σ : H⊗H → A, such that there
exists a morphism σ−1 : H ⊗H → A satisfying:

(4) σ ∧ σ−1 = σ−1 ∧ σ = u2,

(5) σ ∧ σ−1 ∧ σ = σ,

(6) σ−1 ∧ σ ∧ σ−1 = σ−1,

where u2 = ϕA ◦ (H ⊗ u1).

Note that h−1 is unique because, if there exists a morphism g : H → A satisfying Definition
3.1 (1)–(3) for h, we have

g = g ∧ h ∧ g = u1 ∧ g = h−1 ∧ h ∧ g = h−1 ∧ u1 = h−1 ∧ h ∧ h−1 = h−1.

The proof for the unicity of σ−1 is similar and, of course, the sets RegϕA
(H,A), RegϕA

(H⊗
H,A) may be empty. Note that, using (3) of Definition 2.6, we have

u2 = u1 ◦ μH . (3.1)

Also, as a consequence of [5, Proposition 1.19], we know that, if (A,ϕA) is a left weak
H-module algebra, such that there exists an h : H → A satisfying that:

h ∧ h−1 = h−1 ∧ h = u1, h ∧ h−1 ∧ h = h, h−1 ∧ h ∧ h−1 = h−1,
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the following equalities are equivalent:

h ◦ ηH = ηA, (3.2)

h ◦ ΠL
H = u1, (3.3)

h ◦ Π
L

H = u1. (3.4)

In a similar way, it is possible to see that, if σ : H ⊗H → A is a morphism, such that

σ ∧ σ−1 = σ−1 ∧ σ = u2, σ ∧ σ−1 ∧ σ = σ, σ−1 ∧ σ ∧ σ−1 = σ−1,

the following equalities are equivalent:

σ ◦ (ηH ⊗H) = u1, (3.5)

σ ◦ (ΠL
H ⊗H) ◦ δH = u1, (3.6)

σ ◦ cH,H ◦ (H ⊗ Π
L

H) ◦ δH = u1. (3.7)

Finally, the following assertions are equivalent:

σ ◦ (H ⊗ ηH) = u1, (3.8)

σ ◦ (H ⊗ ΠR
H) ◦ δH = u1, (3.9)

σ ◦ cH,H ◦ (Π
R

H ⊗H) ◦ δH = u1. (3.10)

Proposition 3.1 Let (A,ϕA) be a left weak H-module algebra. If there exists an h : H → A

satisfying the following equalities: h∧h−1 = h−1∧h = u1, h∧h−1∧h = h, h−1∧h∧h−1 = h−1,

we have that h ◦ ηH = ηA if and only if h−1 ◦ ηH = ηA.

Proof If h ◦ ηH = ηA, using (2.12) and (3.3), we have

h−1 ◦ ηH = (h−1 ∧ u1) ◦ ηH = (h−1 ∧ (h ◦ ΠL
H)) ◦ ηH = u1 ◦ ηH = ηA.

Conversely, if h−1 ◦ ηH = ηA, h ◦ ηH = (h ∧ u1) ◦ ηH = (h ∧ (h−1 ◦ ΠL
H)) ◦ ηH = u1 ◦ ηH = ηA.

Definition 3.2 Let (A,ϕA) be a left weak H-module algebra, and σ : H ⊗ H → A be a
morphism satisfying Definition 3.1(4)–(6). We say that (ϕA, σ) is a crossed system for H over
A if the following conditions hold:

(1)

μA ◦ (A⊗ ϕA) ◦ (σ ⊗ μH ⊗A) ◦ (δH⊗H ⊗A)

= μA ◦ ((ϕA ◦ (H ⊗ ϕA)) ⊗A) ◦ (H ⊗H ⊗ cA,A) ◦ (H ⊗H ⊗ σ ⊗A) ◦ (δH⊗H ⊗A).

(2)
((ϕA ◦ (H ⊗ σ))) ∧ (σ ◦ (H ⊗ μH)) = ((σ ⊗ εH) ∧ (σ ◦ (μH ⊗H)).

(3)
σ ◦ (H ⊗ ηH) = σ ◦ (ηH ⊗H) = ϕA ◦ (H ⊗ ηA).

It is clear that our condition (4) in Definition 3.1 over σ implies that it is left invertible in
the sense of [22, Definition 4.1]. In any case, to obtain the main results of this paper and a
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good cohomological interpretation, we need the right invertibility, that is Definition 3.1(4)–(6).
Moreover, the morphism σ is in RegϕA

(H ⊗H,A), and Definition 3.2(2) is equivalent to

μA ◦ (σ−1 ⊗ (ϕA ◦ (H ⊗ σ))) ◦ (δH⊗H ⊗H) = (σ ◦ (μH ⊗H)) ∧ (σ−1 ◦ (H ⊗ μH)). (3.11)

Two crossed systems for H over A, (ϕA, σ) and (φA, τ) are said to be equivalent, denoted
by (ϕA, σ) ≈ (φA, τ), if ϕA ◦ (H ⊗ ηA) = φA ◦ (H ⊗ ηA) and there exists an h in RegϕA

(H,A)∩
RegφA

(H,A) with h ◦ ηH = ηA, such that

ϕA = μA ◦ (μA ⊗A) ◦ (h⊗ φA ⊗ h−1) ◦ (δH ⊗ cH,A) ◦ (δH ⊗A), (3.12)

σ = μA ◦ (μA ⊗ h−1) ◦ (μA ⊗ τ ⊗ μH) ◦ (h⊗ φA ⊗ δH⊗H)

◦ (δH ⊗ h⊗H ⊗H) ◦ δH⊗H . (3.13)

Proposition 3.2 The relation ≈ is an equivalence relation.

Proof Let (ϕA, σ) be a crossed system. The morphism u1 is in RegϕA
(H,A) with inverse

u−1
1 = u1, and satisfies that u1◦ηH = ηA. Moreover, using that (A,ϕA) is a left weakH-module

algebra, we have

μA ◦ (μA ⊗A) ◦ (u1 ⊗ ϕA ⊗ u−1
1 ) ◦ (δH ⊗ cH,A) ◦ (δH ⊗A)

= μA ◦ (μA ⊗A) ◦ ((ϕA ◦ (H ⊗ ηA)) ⊗ ϕA ⊗ (ϕA ◦ (H ⊗ ηA))) ◦ (δH ⊗ cH,A) ◦ (δH ⊗A)

= μA ◦ (ϕA ⊗ (ϕA ◦ (H ⊗ ηA))) ◦ (δH ⊗ cH,A) ◦ (δH ⊗A) = ϕA,

and get (3.12).
As far as (3.13), using that (A,ϕA) is a left weak H-module algebra and taking into account

that σ is in RegϕA
(H ⊗H,A), we have that

μA ◦ (μA ⊗ u−1
1 ) ◦ (μA ⊗ σ ⊗ μH) ◦ (u1 ⊗ ϕA ⊗ δH⊗H) ◦ (δH ⊗ u1 ⊗H ⊗H) ◦ δH⊗H

= μA ◦ ((μA ◦ (ϕA ◦ (H ⊗ ηA)) ⊗ ϕA) ⊗ (σ ∧ (ϕA ◦ (μH ⊗ ηA))))

◦ (δH ⊗ (ϕA ◦ (H ⊗ ηA)) ⊗H ⊗H ◦ δH⊗H)

= μA ◦ ((ϕA ◦ (μH ⊗ ηA)) ⊗ (σ ∧ σ−1 ∧ σ)) ◦ δH⊗H)

= σ ∧ σ−1 ∧ σ = σ,

and the relation is reflexive.
In order to get that ≈ is symmetrical, assume that (ϕA, σ) ≈ (φA, τ). Let h be the morphism

in RegϕA
(H,A)∩RegφA

(H,A) satisfying (3.12)–(3.13), such that h◦ηH = ηA. Then the inverse
h−1 is in RegϕA

(H,A) ∩ RegφA
(H,A). As a consequence of Proposition 3.1, we obtain that

h−1 ◦ ηH = ηA. Moreover,

μA ◦ (μA ⊗A) ◦ (h−1 ⊗ ϕA ⊗ h) ◦ (δH ⊗ cH,A) ◦ (δH ⊗A)

= μA ◦ (μA ⊗A) ◦ ((h−1 ∧ h) ⊗ φA ⊗ (h−1 ∧ h)) ◦ (δH ⊗ cH,A) ◦ (δH ⊗A)

= μA ◦ (μA ⊗A) ◦ ((φA ◦ (H ⊗ ηA)) ⊗ φA ⊗ (φA ◦ (H ⊗ ηA))) ◦ (δH ⊗ cH,A) ◦ (δH ⊗A)

= μA ◦ (φA ⊗ (φA ◦ (H ⊗ ηA))) ◦ (H ⊗ cH,A) ◦ (δH ⊗A) = φA,

by using that (ϕA, σ) ≈ (ψA, τ), Definition 3.1(1) and that (A,ψA) is a left weak H-module
algebra. In a similar way, we obtain (3.13) and the relation is symmetrical.
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Finally we show the transitivity. Assume that (ϕA, σ) ≈ (φA, τ) and (φA, τ) ≈ (χA, γ) with
morphisms h in RegϕA

(H,A)∩RegφA
(H,A) and g in RegφA

(H,A)∩RegχA
(H,A), respectively.

Then, the convolution product h ∧ g is in RegϕA
(H,A) ∩ RegχA

(H,A). Using (2.12), (3.3),
Defnition 3.1(2) and that g−1 ∧ g = h−1 ∧ h, we obtain that (h ∧ g) ◦ ηH = ηA.

The proof for the conditions (3.12)–(3.13) follows a similar pattern to the well-known proof
in the classical case, and we leave the details to the reader.

Remark 3.1 We have given the detailed calculus for the above proposition in order to
illustrate the differences when working with weak Hopf algebras. Note that the proof is trivial
in the classical case: If H is a Hopf algebra, the relation is reflexive using the morphism
h = εH ⊗ ηA, and it is easy to get that it is symmetrical because h∧ h−1 = h−1 ∧ h = εH ⊗ ηA.
Obviously, these equalities are not true for weak Hopf algebras.

Proposition 3.3 Let (A,ϕA) be a left weak H-module algebra and σ ∈ RegϕA
(H ⊗H,A).

The following assertions hold:
(i) σ ◦ (ηH ⊗H) = u1 ⇔ σ−1 ◦ (ηH ⊗H) = u1.

(ii) σ ◦ (H ⊗ ηH) = u1 ⇔ σ−1 ◦ (H ⊗ ηH) = u1.

Proof We prove (i). The proof of (ii) is similar, and we leave the details to the reader.

σ−1 ◦ (ηH ⊗H)

= (σ−1 ∧ u2) ◦ (ηH ⊗H)

= μA ◦ (σ−1 ⊗ (u1 ◦ μH)) ◦ δH⊗H ◦ (ηH ⊗H)

= μA ◦ ((σ−1 ◦ cH,H) ⊗ u1)) ◦ (((Π
L

H ⊗H) ◦ δH) ⊗H) ◦ δH
= μA ◦ ((σ−1 ◦ cH,H) ⊗ σ) ◦ (H ⊗ (((Π

L

H ◦ μH) ⊗H) ◦ (H ⊗ cH,H)

◦ ((δH ◦ ηH) ⊗H)) ⊗H) ◦ (H ⊗ δH) ◦ δH
= μA ◦ ((σ−1 ◦ cH,H) ⊗ σ) ◦ (H ⊗ ((H ⊗ (((εH ◦ μH) ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)))

◦ ((δH ◦ ηH) ⊗ (δH ◦ ηH) ⊗H)) ⊗H) ◦ (H ⊗ δH) ◦ δH
= μA ◦ ((σ−1 ◦ cH,H) ⊗ σ) ◦ (H ⊗ ((H ⊗ (((εH ◦ μH) ⊗H)

◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH) ⊗H)))

◦ ((δH ◦ ηH) ⊗ (δH ◦ ηH) ⊗H)) ⊗H) ◦ (H ⊗ (cH,H ◦ δH)) ◦ δH
= ((μA ◦ (σ−1 ⊗ σ)) ⊗ (εH ◦ μH)) ◦ (H ⊗ cH,H ⊗ cH,H ⊗H) ◦ (δH ⊗ cH,H ⊗H)

◦ ((δH ◦ ηH) ⊗ ((δH ⊗H) ◦ δH)

= (u1 ⊗ εH) ◦ δH ◦ μH ◦ (ηH ⊗H) = u1,

where the first and the eighth equalities follow by the properties of σ, the second one uses the
definition of u2, the third one follows by (2.14), in the fourth one, we use (3.6) and (2.12), the
fifth one is a consequence of the definition of Π

L

H , the sixth one follows by Definition 2.1(3), the
seventh one uses the cocommutativity of H , and the last one uses the unit-counit properties.

The proof of the converse is the same changing σ by σ−1.

Remark 3.2 The equalities (1)–(3) of Definition 3.2 have a clear meaning in the theory of
weak crossed products introduced in [4, 8]. The full details can be also found in [5, Section 2].
In this point, we give a brief summary adapted to our setting, i.e., there are some changes in
the notation.
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Let (A,ϕA) be a left weak H-module algebra and σ : H ⊗ H → A be a morphism. We
define the morphisms ψA

H : H ⊗ A → A⊗H and σA
H : H ⊗H → A⊗H, by ψA

H = (ϕA ⊗H) ◦
(H ⊗ cH,A) ◦ (δH ⊗A) and σA

H = (σ ⊗ μH) ◦ δH⊗H , respectively.
Then, the morphism ∇A⊗H = (μA ⊗H) ◦ (A⊗ ψA

H) ◦ (A ⊗H ⊗ ηA) is an idempotent, and
we will denote by A×σ H , iA⊗H : A×σ H → A⊗H and pA⊗H : A⊗H → A×σ H the object,
the injection and the projection associated to the factorization of ∇A⊗H , respectively.

Considering the quadruple AH = (A,H,ψA
H , σ

A
H), where (A,ϕA) is a left weak H-module

algebra and σ ∈ RegϕA
(H ⊗H,A), we say that AH satisfies the twisted condition if

(μA ⊗H) ◦ (A⊗ ψA
H) ◦ (σA

H ⊗A) = (μA ⊗H) ◦ (A⊗ σA
H) ◦ (ψA

H ⊗H) ◦ (H ⊗ ψA
H), (3.14)

and the cocycle condition holds if

(μA ⊗H) ◦ (A⊗ σA
H) ◦ (σA

H ⊗H) = (μA ⊗H) ◦ (A⊗ σA
H) ◦ (ψA

H ⊗H) ◦ (H ⊗ σA
H). (3.15)

For the product defined by

μA⊗σH = (μA ⊗H) ◦ (μA ⊗ σA
H) ◦ (A⊗ ψA

H ⊗H), (3.16)

if the twisted and the cocycle conditions hold, we obtain that it is associative and normalized
with respect to ∇A⊗H (i.e., ∇A⊗H ◦ μA⊗σH = μA⊗σH = μA⊗σH ◦ (∇A⊗H ⊗∇A⊗H)). We say
that A⊗σ H = (A⊗H,μA⊗σH) is a weak crossed product if AH satisfies (3.14)–(3.15).

Due to the normality condition, the object A ×σ H is an algebra with product μA×σH =
pA⊗H ◦ μA⊗σH ◦ (iA⊗H ⊗ iA⊗H), and unit ηA×σH = pA⊗H ◦ (ηA ⊗ ηH) (see [16, Propositions
3.7–3.8]). Moreover, ν = ∇A⊗H ◦ (ηA ⊗ ηH) is a preunit for μA⊗σH .

Therefore, if (ϕA, σ) is a crossed system for H over A, we have that A ⊗σ H = (A ⊗
H,μA⊗σH) is a weak crossed product with preunit ν = ∇A⊗H ◦ (ηA ⊗ ηH). Conversely, if the
pair (ϕA, σ) satisfies that A ⊗σ H = (A ⊗H,μA⊗σH) is a weak crossed product with preunit
ν = ∇A⊗H ◦ (ηA ⊗ ηH) and normalized with respect to ∇A⊗H , we obtain that (ϕA, σ) is a
crossed system for H over A (see [5, Corollary 2.20]).

In the following result, we characterize crossed products with an H-module structure ϕA.

Theorem 3.1 Let (A,ϕA) be a left weak H-module algebra and σ ∈ RegϕA
(H ⊗ H,A)

satisfying Definition 3.2(1). The following assertions are equivalent:
(i) (A,ϕA) is a left H-module algebra.
(ii) The morphism σ factorizes through the center of A.

Proof Let (A,ϕA) be a left H-module algebra. We define γσ : A ⊗ H ⊗ H → A as
γσ = μA ◦ ((μA ◦ cA,A) ⊗A) ◦ (A⊗ ((σ ⊗ σ−1) ◦ δH⊗H)). Then,

γσ = μA ◦ (A⊗ u2) (3.17)

because

γσ = μA ◦ ((μA ◦ cA,A) ⊗A) ◦ (A⊗ (((σ ∧ u2) ⊗ σ−1) ◦ δH⊗H))

= μA ◦ ((μA ◦ (A⊗ μA) ◦ (A⊗ (cA,A ◦ (A⊗ u1)))) ⊗A) ◦ (cA,A ⊗H ⊗A)

◦ (A⊗ σA
H ⊗ σ−1) ◦ (A⊗ δH⊗H)
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= μA ◦ ((μA ◦ (A⊗ (ϕA ◦ (ΠL
H ⊗A) ◦ cA,H)) ◦ (cA,A ⊗H)) ⊗A)

◦ (A⊗ σA
H ⊗ σ−1) ◦ (A⊗ δH⊗H)

= μA ◦ ((μA ◦ (A⊗ (A⊗ (ϕA ◦ cA,H ◦ (A⊗ (μH ◦ (H ⊗ λH) ◦ (μH ⊗ μH)

◦ δH⊗H)))))) ⊗A) ◦ (cA,A ⊗H ⊗H ⊗ A) ◦ (A⊗ σ ⊗H ⊗H ⊗A)

◦ (A⊗ δH⊗H ⊗ σ−1) ◦ (A⊗ δH⊗H)

= μA ◦ ((μA ◦ (A⊗ ϕA) ◦ (σA
H ⊗A) ◦ (H ⊗H ⊗ (ϕA ◦ cA,H ◦ (A⊗ λH)))

◦ (H ⊗ cA,H ⊗ μH) ◦ (cA,H ⊗H ⊗H ⊗H) ◦ (A⊗ δH⊗H)) ⊗ σ−1) ◦ (A⊗ δH⊗H)

= μA ◦ ((μA ◦ ((ϕA ◦ (H ⊗ ϕA)) ⊗A) ◦ (H ⊗H ⊗ cA,A)

◦ (((H ⊗H ⊗ σ) ◦ δH⊗H) ⊗A)

◦ (H ⊗H ⊗ (ϕA ◦ cA,H ◦ (A⊗ λH))) ◦ (H ⊗ cA,H ⊗ μH)

◦ (cA,H ⊗H ⊗H ⊗H) ◦ (A⊗ δH⊗H)) ⊗ σ−1) ◦ (A⊗ δH⊗H)

= μA ◦ (((ϕA ◦ (μH ⊗A)) ◦ (H ⊗ cA,H)) ⊗A) ◦ (cA,H ⊗ λH ⊗A)

◦ (A⊗ ((μH ⊗ μH) ◦ δH⊗H) ⊗ (σ ∧ σ−1)) ◦ (A⊗ δH⊗H)

= μA ◦ ((ϕA ◦ cA,H ◦ (A⊗ (ΠL
H ◦ μH))) ⊗ u2) ◦ (A⊗ δH⊗H)

= μA ◦ ((ϕA ◦ (Π
L

H ⊗A) ◦ cA,H) ⊗ u1) ◦ (A⊗ (δH ◦ μH))

= μA ◦ ((μA ◦ cA,A ◦ (u1 ⊗A) ◦ cA,H) ⊗ u1) ◦ (A⊗ (δH ◦ μH))

= μA ◦ (A⊗ u2),

where the first and the eighth equalities follow by Definition 3.1(4)–(5), the second one uses
(3.1), the third one is a consequence of Definition 2.6(4), the fourth one follows by the definition
of ΠL

H , the fifth and the seventh equalities are consequences of Definition 2.6(3)′. The sixth and
the nineth equalities follow by the cocommutativity of H , the tenth one uses Definition 2.6(5),
and the last one uses Definition 2.6(2).

Therefore, σ factorizes through the center of A because

μA ◦ (A⊗ σ)

= μA ◦ (A⊗ (u2 ∧ σ))

= μA ◦ (γσ ⊗ σ) ◦ (A⊗ δH⊗H)

= μA ◦ ((μA ◦ ((μA ◦ cA,A) ⊗A) ◦ (A⊗ ((σ ⊗ σ−1) ◦ δH⊗H))) ⊗ σ) ◦ (A⊗ δH⊗H)

= μA ◦ ((μA ◦ cA,A) ⊗A) ◦ (A⊗ ((σ ⊗ u2) ◦ δH⊗H))

= μA ◦ (A⊗ (ϕA ◦ cA,H ◦ (A⊗ Π
L

H))) ◦ (cA,A ⊗H) ◦ (A⊗ σA
H)

= μA ◦ (A⊗ (ϕA ◦ (ΠL
H ⊗A) ◦ cA,H)) ◦ (cA,A ⊗H) ◦ (A⊗ σA

H)

= μA ◦ (A⊗ (μA ◦ (u1 ⊗A) ◦ cA,H)) ◦ (cA,A ⊗H) ◦ (A⊗ σA
H)

= μA ◦ cA,A ◦ (A⊗ σ),

where the first, the fourth and the last equalities follow by Definition 3.1(4)–(5), the second
one uses (3.17), the third one is a consequence of the definition of γσ, the fifth and the seventh
equalities follow by Definition 2.6(5), and the sixth one is a consequence of the cocommutativity
of H .

Conversely, assume that the morphism σ factorizes through the center of A. Then, using
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Definition 2.6(2)–(3), conditions (4)–(6) in Definition 3.1, the twisted condition and that H is
cocommutative, we get that (A,ϕA) is a left H-module algebra.

Corollary 3.1 Let (A,ϕA) be a left weak H-module algebra. The following assertions are
equivalent:

(i) (A,ϕA) is a left H-module algebra.
(ii) (ϕA, u2) is a crossed system for H over A.

Proof It is straightforward.

Remark 3.3 In the conditions of Corollary 3.1, if (A,ϕA) is a left H-module algebra, we
have that for the crossed system (ϕA, u2) the equality σA

H = (u1 ⊗H) ◦ δH ◦ μH holds. Then,
the associated crossed product defined is μA⊗u2H = ∇A⊗H ◦ (μA ⊗ μH) ◦ (A ⊗ ψA

H ⊗ H) and
therefore μA×u2H = pA⊗H ◦ (μA ⊗ μH) ◦ (A ⊗ ψA

H ⊗H) ◦ (iA⊗H ⊗ iA⊗H). In this case, we say
that the weak crossed product is smash.

On the other hand, for a left weak H-module algebra, if the equality ϕA = ϕA ◦ (ΠL
H ⊗ A)

holds, using Definition 2.6(4), we obtain that

μA×σH = pA⊗H ◦ (μA ⊗H) ◦ (μA ⊗ σA
H) ◦ (A⊗ cH,A ⊗H) ◦ (iA⊗H ⊗ iA⊗H).

In this case, the weak crossed product is called twisted.

Proposition 3.4 Let (ϕA, σ) be a crossed system for H over A. Then, the algebra A×σ H

is a right H-comodule algebra for the coaction ρA×σH = (pA⊗H⊗H)◦(A⊗δH)◦iA⊗H . Moreover,
(A×σ H)H = A.

Proof As a consequence of [5, Proposition 3.2], we obtain that A ×σ H is a right H-
comodule algebra for the coaction ρA×σH = (pA⊗H ⊗H)◦ (A⊗ δH)◦ iA⊗H . Moreover, it is easy
to prove that

� �
�A A×H A×H ⊗H

iA×σH

ρA×σH

(A × H ⊗ ΠL
H) ◦ ρA×σH

is an equalizer diagram, where iA×σH = pA⊗H ◦ (A⊗ ηH).

In the following proposition, we establish the relation between crossed systems and H-cleft
extensions.

Proposition 3.5 Let (ϕA, σ) be a crossed system for H over A. Then A ↪→ A×σ H is an
H-cleft extension.

Proof The morphism f = pA⊗H ◦ (ηA ⊗H) : H → A×σ H is a total integral. Obviously,
f ◦ ηH = ηA×σH . Moreover, using that ∇A⊗H is a morphism of right H-comodules, we get that
f is an integral. We define f−1 = pA⊗H ◦ (σ−1 ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ λH) ⊗H) ◦ δH . We
will show that f−1 is the convolution inverse of f . First note that Definition 2.3(1) holds:

f−1 ∧ f
= pA⊗H ◦ (μA ⊗ σA

H) ◦ (A⊗ ((u1 ⊗H) ◦ δH) ⊗H) ◦ (((σ−1 ⊗H) ◦ (H ⊗ cH,H)

◦ ((δH ◦ λH) ⊗H) ◦ δH) ⊗H) ◦ δH
= pA⊗H ◦ ((μA ◦ (A⊗ (u2 ∧ σ))) ⊗ μH) ◦ (σ−1 ⊗ δH⊗H)
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◦ ((((H ⊗ cH,H) ◦ ((δH ◦ λH) ⊗H)δH) ⊗H) ◦ δH
= pA⊗H ◦ (μA ⊗H) ◦ (σ−1 ⊗ σA

H) ◦ ((((H ⊗ cH,H) ◦ ((δH ◦ λH) ⊗H) ◦ δH) ⊗H) ◦ δH
= pA⊗H ◦ ((u1 ◦ μH) ⊗ μH) ◦ δH⊗H ◦ (λH ⊗H) ◦ δH
= pA⊗H ◦ (u1 ⊗H) ◦ δH ◦ ΠR

H

= pA⊗H ◦ ∇A⊗H ◦ (ηA ⊗ ΠR
H)

= (A×H ⊗ (εH ◦ μH)) ◦ (cH,A×H ⊗H) ◦ (H ⊗ (ρA×σH ◦ ηA×σH)).

In the previous calculations, the first equality follows by the normalized condition for the
product μA⊗σH ; the second one uses that (A,ϕA) is a left weak H-module; the third and fourth
ones hold because σ is in RegϕA

(H ⊗H,A); the fifth one follows by the definition of ΠR
H ; the

sixth one uses ∇A⊗H = ((μA ◦ (A⊗ u1))⊗H) ◦ (A⊗ δH); finally, in the last one we use that f
is a total integral.

The proof of Definition 2.3(2) follows a similar pattern, by the equality

((σ ◦ (H ⊗ μH)) ∧ (σ−1 ◦ (μH ⊗H))) ◦ (H ⊗ λH ⊗H) ◦ (H ⊗ δH) ◦ δH = u1,

which follows by (2.12)–(2.13) as well as σ ∈ RegϕA
(H ⊗H,A) and (3.11).

To finish the proof, we only need to show that f−1 ∧ f ∧ f−1 = f−1. First of all, using that
H is cocommutative, it is easy to see that (f−1 ⊗ λH) ◦ cH,H ◦ δH = ρA×σH ◦ f−1. Using this
equality, the fact that λH ◦ λH = idH (which follows because H is cocommutative) and (2.6),
we have

f−1 ∧ f ∧ f−1 = μA×σH ◦ (f−1 ⊗ ((f ∧ f−1) ◦ λH ◦ λH)) ◦ δH
= μA×σH ◦ (f−1 ⊗ (f ◦ Π

L

H ◦ λH ◦ λH)) ◦ cH,H ◦ δH
= μA×σH ◦ (A×H ⊗ (f ◦ ΠR

H)) ◦ ρA×H ◦ f−1

= μA×σH ◦ (A×H ⊗ (f−1 ∧ f)) ◦ ρA×H ◦ f−1 = f−1.

Then the proof is completed.

Proposition 3.6 Let AH ↪→ A be an H-cleft extension. The morphism

σA := (μA ◦ (f ⊗ f)) ∧ (f−1 ◦ μH) : H ⊗H → A,

where f : H → A is a convolution invertible total integral, factorizes through the equalizer iA.
Moreover, if ϕAH : H ⊗ AH → AH is the left weak H-module structure defined in Proposition
2.4, the factorization of σA is a morphism in RegϕAH

(H ⊗H,AH) satisfying the condition (3)
in Definition 3.2 and with convolution inverse the factorization through the equalizer iA of the
morphism σ−1

A := (f ◦ μH) ∧ (μA ◦ cA,A ◦ (f−1 ⊗ f−1)).

Proof If AH ↪→ A is an H-cleft extension, Corollary 2.1 implies that AH ↪→ A is a weak
H-cleft extension. Then, using [2, Proposition 1.17], we obtain that σA factorizes through the
equalizer iA and, if σAH is this factorization, the equality

σAH = pA ◦ μA ◦ (f ⊗ f) (3.18)

holds.



Crossed Products over Weak Hopf Algebras Related to Cleft Extensions and Cohomology 181

On the other hand, the morphism σ−1
A factorizes through the equalizer iA. Indeed,

ρA ◦ σ−1
A

= μA⊗H ◦ (f ⊗H ⊗ μA⊗H) ◦ (μH ⊗ μH ⊗ (ρA ◦ f−1) ⊗ (ρA ◦ f−1)) ◦ (δH⊗H ⊗ cH,H) ◦ δH⊗H

= (μA ⊗ μH) ◦ (f ⊗ μA⊗H ⊗H) ◦ (H ⊗ cH,A ⊗ cH,A ⊗H)

◦ (μH ⊗H ⊗ [(A⊗ Π
R

H) ◦ ρA ◦ f−1] ⊗ (ρA ◦ f−1)) ◦ (H ⊗ cH,H ⊗ cH,H)

◦ (δH ⊗H ⊗H ⊗H) ◦ δH⊗H

= (μA ⊗H) ◦ (f ⊗ [(A⊗ μH) ◦ (cH,A ⊗ (((εH ◦ μH) ⊗H) ◦ (H ⊗ δH))) ◦ (H ⊗ μA ⊗H ⊗H)

◦ (H ⊗A⊗ cH,A ⊗H) ◦ (H ⊗ (ρA ◦ f−1) ⊗ (ρA ◦ f−1)) ◦ (H ⊗ cH,H) ◦ (δH ⊗H)])

◦ (μH ⊗H ⊗H) ◦ δH⊗H

= (μA ⊗H) ◦ (f ⊗ [(A⊗ μH) ◦ (cH,A ⊗H) ◦ (H ⊗ μA ⊗H) ◦ (H ⊗ f−1 ⊗ (ρA ◦ f−1))

◦ (H ⊗ cH,H) ◦ (δH ⊗H)]) ◦ (μH ⊗H ⊗H) ◦ δH⊗H

= (μA ⊗H) ◦ (f ⊗ [((μA ◦ cA,A ◦ (f−1 ⊗ f−1)) ⊗ ΠL
H) ◦ (H ⊗ cH,H) ◦ ((cH,H ⊗ δH) ⊗H)])

◦ (μH ⊗H ⊗H) ◦ δH⊗H

= (μA ⊗H) ◦ (f ⊗ [(A⊗ μH) ◦ (cH,A ⊗H) ◦ (H ⊗ μA ⊗H) ◦ (H ⊗ f−1 ⊗ (ρA ◦ f−1))

◦ (H ⊗ cH,H) ◦ (δH ⊗H)]) ◦ (μH ⊗H ⊗H) ◦ δH⊗H

= (A⊗ Π
R

H) ◦ ρA ◦ σ−1
A

= (A⊗ ΠL
H) ◦ ρA ◦ σ−1

A .

In the last computations, the first and the fourth equalities follows because A is a right
H-comodule algebra, the second one relies on Theorem 2.1. In the third one, we use (2.11). In
the fifth one, we apply the identity

((μA ◦ cA,A ◦ (f−1 ⊗ f−1)) ⊗ ΠL
H) ◦ (H ⊗ cH,H) ◦ ((cH,H ◦ δH) ⊗H)

= (A⊗ μH) ◦ (cH,A ⊗H) ◦ (H ⊗ μA ⊗H) ◦ (H ⊗ f−1 ⊗ (ρA ◦ f−1))

◦ (H ⊗ cH,H) ◦ (δH ⊗H). (3.19)

Finally, the sixth one is obtained by (2.5) and the idempotent character of Π
R

H , the seventh
follows by repetition of the previous computations but in inverse order, and the last one relies
on (2.4).

Let σ−1
AH

be the factorization of σ−1
A . We will finish the proof by showing that σAH is a

morphism in RegϕAH
(H ⊗ H,AH) with inverse σ−1

AH
. First of all, note that AH ↪→ A is an

H-cleft extension and then, using Proposition 2.2, the morphism f ∧ f−1 factorizes through
the equalizer iA. Now, using that H is a weak Hopf algebra, f is an integral, A is an H-
comodule algebra, AH is a weak H-module algebra and the equality (2.24) we obtain that
iA◦(σAH ∧σ−1

AH
) = iA◦ϕAH ◦(μH⊗ηAH ). Then, using that iA is a monomorphism, σAH ∧σ−1

AH
=

ϕAH ◦ (μH ⊗ ηAH ).
The proof of the equality σ−1

AH
∧ σAH = ϕAH ◦ (μH ◦ (H ⊗ ηAH )) follows a similar pattern,

using (2.9), (2.25), (3.18) and the equality eA ◦ μH ◦ (ΠR
H ⊗ H) = eA ◦ μH , where eA is the

morphism defined in (2.19).
To prove Definition 3.1(5), we compose with the equalizer iA

iA ◦ (σAH ∧ σ−1
AH

∧ σAH ) = iA ◦ (σAH ∧ (ϕAH ◦ (μH ⊗ ηAH ))
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= (μA ◦ (f ⊗ f)) ∧ (f−1 ◦ μH) ∧ ((f ∧ f−1) ◦ μH)

= (μA ◦ (f ⊗ f)) ∧ ((f−1 ∧ f ∧ f−1) ◦ μH) = iA ◦ σAH ,

and then σAH ∧ σ−1
AH

∧ σAH = σAH . In a similar way, using f ∧ f−1 ∧ f = f , we get Definition
3.1(6).

To finish the proof, we only need to show that σAH satisfies the normal condition. Indeed,
it is easy to see that iA ◦ σAH ◦ (ηH ⊗ H) = qA ◦ μA ◦ (ηA ⊗ f) = qA ◦ f = f ∧ f−1 =
iA ◦ ϕAH ◦ (H ⊗ ηAH ) and iA ◦ σAH ◦ (H ⊗ ηH) = qA ◦ f = f ∧ f−1 = iA ◦ ϕAH ◦ (H ⊗ ηAH ).
Therefore, σAH ◦ (ηH ⊗H) = σAH ◦ (H ⊗ ηH) = ϕAH ◦ (H ⊗ ηAH ).

In the next theorem, we prove that each H-cleft extension determines a unique equivalence
class of crossed systems for H over A. First we need a fundamental result in the study of
H-cleft extensions that generalizes [15, Theorem 11].

Theorem 3.2 Let AH ↪→ A be an H-cleft extension with cleaving morphism f . Then, the
pair (ϕAH , σAH ) is a crossed system for H over AH , where ϕAH is the weak H-module structure
defined in Proposition 2.4 and σAH is the morphism obtained in Proposition 3.6. Moreover, the
H-cleft extensions AH ↪→ A and AH ↪→ AH ×σAH

H are equivalent.

Proof First note that in this case ψAH

H = (pA ⊗ H) ◦ ρA ◦ μA ◦ (f ⊗ iA) and σAH

H =
(pA ⊗H) ◦ ρA ◦ μA ◦ (f ⊗ f). Then, as a consequence of [4, Proposition 3.13], we have that the
quadruple (AH , H, ψ

AH

H , σAH

H ) satisfies the twisted and the cocycle conditions. Therefore, the
theory exposed in Remark 3.2 leads to get that (ϕAH , σAH ) is a crossed system for H over AH .
Moreover, by [4, Lemma 3.11], we obtain that ∇AH⊗H = (pA ⊗H) ◦ ρA ◦ μA ◦ (iA ⊗ f).

Taking into account Proposition 3.5, we know that AH ↪→ AH ×σAH
H is an H-cleft ex-

tension. Also, using [4, 3.10], there exists a right H-comodule algebra isomorphism T =
pAH⊗H ◦ (pA ⊗ H) ◦ ρA : A → AH ×σAH

H , such that T−1 = μA ◦ (iA ⊗ f) ◦ iAH⊗H and
T−1 ◦ iAH×σAH

H = μA ◦ (iA ⊗ f) ◦∇AH⊗H ◦ (AH ⊗ ηH) = μA ◦ (iA ⊗ (f ◦ ηH)) = iA. Therefore,
AH ↪→ A and AH ↪→ AH ×σAH

H are equivalent.

Proposition 3.7 Let (ϕA, σ) be a crossed system for H over A. Let A ↪→ A ×σ H be
the H-cleft extension constructed in Proposition 3.5. Then, if (φA, τ) is the crossed system
associated to the H-cleft extension A ↪→ A×σ H, we have that (φA, τ) = (ϕA, σ).

Proof Using Proposition 3.4 and Theorem 3.2, the convolution invertible total integral
f = pA⊗H ◦ (ηA ⊗ H) determines a crossed system (φA, τ), where φA and τ are defined by
φA = pA×σH ◦ μA×σH ◦ (f ⊗ iA×σH) and τ = pA×σH ◦ μA×σH ◦ (f ⊗ f), where pA×σH is
the factorization through the equalizer iA×σH = pA⊗H ◦ (A ⊗ ηH) of the morphism qA×σH =
μA×σH ◦ (A×σ H ⊗ f−1) ◦ ρA×σH .

We will show that the crossed systems (ϕA, σ) and (φA, τ) coincide. First of all note that,
using the properties of the antipode, that H is a cocommutative weak Hopf algebra, as far as
Definition 3.2(2), (3.6) and (3.9), the equality

u1 = μA ◦ ((ϕA ◦ (H ⊗ σ−1)) ⊗ σ) ◦ (H ⊗H ⊗ ((cH,H ⊗H) ◦ (H ⊗ cH,H)))

◦ ((δH⊗H ◦ (H ⊗ λH) ◦ δH) ⊗H) ◦ δH (3.20)

holds. Then we can obtain a simple expression for the morphism qA×σH . Indeed,

qA×σH = μA×σH ◦ (pA⊗H ⊗ f−1) ◦ (A⊗ δH) ◦ iA⊗H



Crossed Products over Weak Hopf Algebras Related to Cleft Extensions and Cohomology 183

= pA⊗H ◦ (μA ⊗H) ◦ (μA ⊗ σ ⊗ μH) ◦ (A⊗ ϕA ⊗ δH⊗H) ◦ (A⊗H ⊗ cH,A ⊗H)

◦ (A⊗ δH ⊗ σ−1 ⊗H) ◦ (A⊗H ⊗H ⊗ cH,H) ◦ (A⊗H ⊗ (δH ◦ λH) ⊗H)

◦ (A⊗H ⊗ δH) ◦ (A⊗ δH) ◦ iA⊗H

= pA⊗H ◦ (μA ⊗ ΠL
H) ◦ (A⊗ μA ⊗H) ◦ (A⊗ ((H ⊗ ϕA) ◦ σ−1) ⊗ σ ⊗H)

◦ (A⊗H ⊗H ⊗ cH,H ⊗H ⊗H)

◦ (A⊗H ⊗ cH,H ⊗ cH,H ⊗H) ◦ (A⊗ δH ⊗ (δH ◦ λH) ⊗H) ◦ (A⊗H ⊗ (cH,H ◦ δH))

◦ (A⊗ δH) ◦ iA⊗H

= pA⊗H ◦ (μA ⊗ ΠL
H) ◦ (A⊗ (μA ◦ ((ϕA ◦ (H ⊗ σ−1)) ⊗ σ) ◦ (H ⊗H ⊗ cH,H ⊗H)

◦ (H ⊗ cH,H ⊗ cH,H) ◦ (δH ⊗ (δH ◦ λH) ⊗H) ◦ (H ⊗ δH) ◦ δH)) ◦ iA⊗H

= pA⊗H ◦ (μA ⊗ ΠL
H) ◦ (A⊗ u1 ⊗H) ◦ (A⊗ δH) ◦ iA⊗H

= pA⊗H ◦ (A⊗ ΠL
H) ◦ ∇A⊗H ◦ iA⊗H

= pA⊗H ◦ (A⊗ ΠL
H) ◦ iA⊗H .

In the following calculations, the first equality follows by the H-comodule structure for
A×σH ; in the second one we use that μA⊗σH ◦ (∇A⊗H ⊗∇A⊗H) = μA⊗σH ; the third one relies
on the antimultiplicativity of the antipode; the fourth one relies on cocommutativity of H ; the
fifth one follows by (3.20); the seventh one is a consequence of the definition of ∇A⊗H ; finally
the last one uses that ∇A⊗H ◦ iA⊗H = iA⊗H .

On the other hand, qA×σH = iA×σH ◦ pA×σH = pA⊗H ◦ (pA×σH ⊗ ηH) and then (A⊗ εH) ◦
iA⊗H ◦ qA×σH = (A ⊗ εH) ◦ ∇A⊗H ◦ (pA×σH ⊗ ηH) = pA×σH . As a consequence, pA×σH =
(A⊗ εH) ◦ iA⊗H because

pA×σH = (A⊗ εH) ◦ ∇A⊗H ◦ (A⊗ ΠL
H) ◦ iA⊗H

= (μA ⊗ εH) ⊗ (A⊗ (ϕA ◦ (ΠL
H ⊗ ηA)) ⊗H) ◦ iA⊗H

= (A⊗ εH) ◦ ∇A⊗H ◦ iA⊗H = (A⊗ εH) ◦ iA⊗H .

Using this equality it is easy to see that (ϕA, σ) = (φA, τ). Indeed,

φA = pA×σH ◦ μA×σH ◦ (f ⊗ iA×σH)

= (μA ⊗ εH) ◦ (ϕA ⊗ σ ⊗ μH) ◦ (H ⊗A⊗ δH⊗H) ◦ (H ⊗ cH,A ⊗H) ◦ (δH ⊗A⊗ ηH)

= μA ◦ (ϕA ⊗ (σ ◦ (H ⊗ ΠR
H) ◦ δH)) ◦ (H ⊗ cH,A) ◦ (δH ⊗A)

= μA ◦ (ϕA ⊗ u1) ◦ (H ⊗ cH,A) ◦ (δH ⊗A) = ϕA,

and τ = pA×σH ◦ μA×σH ◦ (f ⊗ f) = (A⊗ εH) ◦ ∇A⊗H ◦ (σ ⊗ μH) ◦ δH⊗H = σ ∧ u2 = σ.

The following proposition is the weak version of [14, Lemma 2.1].

Proposition 3.8 Let AH ↪→ A be an H-cleft extension with cleaving morphism f . Assume
that g : H → A is another convolution invertible total integral with associated crossed system
(φAH , τAH ). Then the crossed systems (ϕAH , σAH ) and (φAH , τAH ) are equivalent.

Proof The morphism ˜h = f ∧ g−1 factorizes through the equalizer iA. Indeed, as a
consequence of (2.21), the coassociativity of δH and the naturality of c, we have

ρA ◦ ˜h = (ρA ◦ f) ∧ (ρA ◦ g−1)
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= ((f ⊗H) ◦ δH) ∧ ((g−1 ⊗ λH) ◦ cH,H ◦ δH)

= ((μA ◦ (f ⊗ g−1)) ⊗ ΠL
H) ◦ (H ⊗ (cH,H ◦ δH)) ◦ δH

= ((μA ◦ (f ⊗ g−1)) ⊗ (ΠL
H ◦ ΠL

H)) ◦ (H ⊗ (cH,H ◦ δH)) ◦ δH
= (A⊗ ΠL

H) ◦ ρA ◦ ˜h,

and then there exists a morphism h : H → AH , such that ˜h = iA ◦ h. Note that, in the
conditions of this theorem, f ∧ f−1 = g ∧ g−1 and f−1 ∧ f = g−1 ∧ g. Then,

ϕAH ◦ (H ⊗ ηAH ) = φAH ◦ (H ⊗ ηAH ) (3.21)

because iA ◦ϕAH ◦ (H ⊗ ηAH ) = qA ◦ f = f ∧ f−1 and iA ◦φAH ◦ (H ⊗ ηAH ) = q′A ◦ g = g ∧ g−1,
where qA is the morphism defined in Remark 2.2 and q′A is the analogous for g.

On the other hand, using that f and g are convolution invertible total integrals, we have

˜h ◦ ηH = μA ◦ (A⊗ g−1) ◦ ρA ◦ f ◦ ηH = μA ◦ (A⊗ g−1) ◦ ρA ◦ g ◦ ηH = (g ∧ g−1) ◦ ηH = ηA.

Therefore, taking into account that ηA = iA ◦ ηAH , we obtain that h ◦ ηH = ηAH .
The morphism ˜h−1 = g ∧ f−1 admits a factorization through the equalizer iA (the proof is

similar to the one developed for ˜h) and the factorization h−1 is the convolution inverse of h.
As a consequence h is in RegϕAH

(H,AH) ∩ RegφAH
(H,AH). Indeed, first note that

iA ◦ (h ∧ h−1) = ˜h ∧ ˜h−1 = f ∧ g−1 ∧ g ∧ f−1 = f ∧ f−1 ∧ f ∧ f−1

= ϕA ◦ (H ⊗ ηA) = iA ◦ ϕAH ◦ (H ⊗ ηAH )

and using (3.21), h ∧ h−1 = ϕAH ◦ (H ⊗ ηAH ) = φAH ◦ (H ⊗ ηAH ). Similarly, h−1 ∧ h =
ϕAH ◦ (H ⊗ ηAH ) = φAH ◦ (H ⊗ ηAH ). Moreover, iA ◦ (h ∧ h−1 ∧ h) = ˜h ∧ ˜h−1 ∧ ˜h = ˜h = iA ◦ h
and iA ◦ (h−1 ∧ h ∧ h−1) = ˜h−1 ∧ ˜h ∧ ˜h−1 = ˜h−1 = iA ◦ h−1. Then h ∧ h−1 ∧ h = h and
h−1 ∧ h ∧ h−1 = h−1.

The proof of (3.12) follows by the definition of h and φAH . In order to get (3.13), we begin
by showing the equality μA ◦μA⊗A ◦ (f ⊗ (g−1 ∧ g)⊗ (f ∧ g−1)⊗ g) ◦ (δH ⊗ δH) = μA ◦ (f ⊗ f),
which follows because f and g are convolution invertible integrals, A is a right H-comodule
algebra, (2.8) and the equality f−1 ∧ f = g−1 ∧ g. Using this equality and arguments similar
to the ones developed above, we will finish the proof by showing (3.13) as

iA ◦ μAH ◦ (μAH ⊗ h−1) ◦ (μAH ⊗ τAH ⊗ μH) ◦ (h⊗ φAH ⊗ δH⊗H)

◦ (δH ⊗ h⊗H ⊗H) ◦ δH⊗H

= μA ◦ ((μA ◦ (μA ⊗ g−1) ◦ ((f ∧ f−1 ∧ f) ⊗ (f ∧ g−1) ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H))

⊗ (μA ◦ (A⊗ (f−1 ∧ f ∧ f−1)) ◦ ρA ◦ μA ◦ (g ⊗ g))) ◦ δH⊗H

= (μA ◦ μA⊗A ◦ (f ⊗ (g−1 ∧ g) ⊗ (f ∧ g−1) ⊗ g) ◦ (δH ⊗ δH)) ∧ (f−1 ◦ μH)

= (μA ◦ (f ⊗ f)) ∧ (f−1 ◦ μH)

= iA ◦ σAH .

Corollary 3.2 Let AH ↪→ A, AH ↪→ B be two equivalent H-cleft extensions with cleaving
morphisms f and g, respectively. Then the corresponding crossed systems (ϕAH , σAH ) and
(φAH , τAH ) are equivalent.
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Proof If AH ↪→ A and AH ↪→ B are equivalent, there exists an isomorphism of right
H-comodule algebras T : A → B, such that iB = T ◦ iA, and, as a consequence, l = T ◦ f is
a convolution invertible total integral for AH ↪→ B with inverse l−1 = T ◦ f−1. Therefore, as
a consequence of Proposition 3.8, the crossed system (ψAH , ωAH ) associated to AH ↪→ B for l
is equivalent to (φAH , τAH ). Moreover, if pA is the factorization through iA of the morphism
qA = μA ◦ (A ⊗ f−1) ◦ ρA and pB is the factorization through iB of the morphism qB =
μA ◦ (B ⊗ l−1) ◦ ρB. By using (2.27), ψAH = pB ◦ μB ◦ (l ⊗ iB). Then

ψAH = pB ◦ μB ◦ (T ⊗ T ) ◦ (f ⊗ iA) = pB ◦ T ◦ μA ◦ (f ⊗ iA) = pA ◦ μA ◦ (f ⊗ iA) = ϕAH .

On the other hand, by (3.18), ωAH = pB ◦ μB ◦ (l ⊗ l). As a consequence,

ωAH = pB ◦ μB ◦ (T ⊗ T ) ◦ (f ⊗ f) = pB ◦ T ◦ μA ◦ (f ⊗ f) = pA ◦ μA ◦ (f ⊗ f) = σAH .

Therefore (ϕAH , σAH ) and (φAH , τAH ) are equivalent.

Proposition 3.9 If (ϕA, α) and (φA, β) are two equivalent crossed systems, so are the
associated H-cleft extensions A ↪→ A×α H and A ↪→ A×β H.

Proof We will begin to show that this correspondence is well defined. Let h be the morphism
in RegϕA

(H,A)∩RegφA
(H,A) satisfying conditions (3.12)–(3.13). We denote by A ↪→ A×αH

and A ↪→ A×β H the H-cleft extensions defined by (ϕA, α) and (φA, β), respectively. We will
show that T = pA⊗H ◦ (μA ⊗H) ◦ (A⊗ h⊗H) ◦ (A⊗ δH) ◦ iA⊗H is a morphism of H-comodule
algebras, such that T ◦ iA×αH = iA×βH . First of all, note that the idempotent morphisms
defined by the two crossed systems coincide. We denote it by ∇A⊗H . Moreover, using (2.14)
and (3.4), it is easy to prove that T ◦ ηA×αH = ηA×βH . In order to see the multiplicative
condition for T , we need to fix a new notation and get two auxiliary identities. First note
that, as a consequence of Remark 3.2, the crossed systems (ϕA, α) and (φA, β) define two
quadruples (A,H,ψA

H,α = (ϕA ⊗ H) ◦ (H ⊗ cH,A) ◦ (δH ⊗ A), σA
H,α = (α ⊗ μH) ◦ δH⊗H) and

(A,H,ψA
H,β = (φA ⊗H) ◦ (H ⊗ cH,A) ◦ (δH ⊗A), σA

H,β = (β⊗μH) ◦ δH⊗H), respectively, which
induce the corresponding weak crossed products. On the other hand, by using the equivalence
between (ϕA, α) and (φA, β) and that h ∈ RegϕA

(H,A) and β ∈ RegϕA
(H⊗H,A), the equality

μA ◦ (A⊗ h) ◦ σA
H,α = μA ◦ ((μA ◦ (h⊗ φA) ◦ (δH ⊗ h)) ⊗ β) ◦ δH⊗H holds. Taking into account

that ∇A⊗H ◦ ψA
H = ψA

H , it is easy to prove the equality

(∇A⊗H ⊗H) ◦ ((μA ◦ (h⊗ φA) ◦ (δH ⊗A)) ⊗ δH) ◦ (H ⊗ cH,A) ◦ (δH ⊗A)

= (μA ⊗ δH) ◦ (h⊗ ψA
H,β) ◦ (δH ⊗A). (3.22)

In a routine way, we can check that T is a multiplicative morphism.
Using that iA⊗H ◦T = (μA ⊗H)◦ (A⊗h⊗H)◦ (A⊗ δH)◦ iA⊗H , it is easy to see that T is a

morphism of rightH-comodules. Moreover, by (2.14) and (3.4), we have that T ◦iA×αH = iA×βH

and the associated H-cleft extensions A ↪→ A×α H and A ↪→ A×β H are equivalent.

Remark 3.4 In the conditions of the previous result, T is an isomorphism with inverse

T−1 = pA⊗H ◦ (μA ⊗H) ◦ (A⊗ h−1 ⊗H) ◦ (A⊗ δH) ◦ iA⊗H .

Theorem 3.3 Two H-cleft extensions AH ↪→ A, AH ↪→ B are equivalent if and only if so
are their respective associated crossed systems.
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Proof The “if” part is a consequence of Corollary 3.2. Moreover, if AH ↪→ A, AH ↪→ B

are two weak H-cleft extensions with equivalent crossed systems (ϕAH , σAH ) and (φAH , τAH ),
as a consequence of Proposition 3.9, we know that the associated H-cleft extensions AH ↪→
AH ×σAH

H and AH ↪→ AH ×τAH
H are equivalent. Therefore, using Theorem 3.2, we obtain

AH ↪→ A ≈ AH ↪→ AH ×σAH
H ≈ AH ↪→ AH ×τAH

H ≈ AH ↪→ B which proves the theorem.
Now we can give the main result of this section which is a generalization of [14, Theorem

2.7].

Corollary 3.3 Let (A, ρA) be a right H-comodule algebra. There exists a bijective corre-
spondence between the equivalence classes of H-cleft extensions AH ↪→ B and the equivalence
classes of crossed systems for H over AH .

Proof If CS(H,AH) denotes the set of equivalence classes of crossed systems of H over
AH and Cleft(AH) denotes the set of equivalence classes of H-cleft extensions AH ↪→ B,
using Proposition 3.9 and Corollary 3.2 we have two maps F : CS(H,AH) → Cleft(AH) and
G : Cleft(AH) → CS(H,AH) defined by F ([(ϕAH , σAH )]) = [AH ↪→ AH ×σAH

H ] and by
G([AH ↪→ B]) = [(φAH , τAH )], respectively. The map G is the inverse of F , because, by using
Proposition 3.7, (G ◦ F ) ([(ϕAH , σAH )]) = G([AH ↪→ AH ×σAH

H ]) = [(ϕAH , σAH )]. And as a
consequence of Theorem 3.2, (F ◦G)([AH ↪→ B]) = F ([(φAH , τAH )]) = [AH ↪→ AH ×τAH

H ] =
[AH ↪→ B].

4 Crossed Systems and Cohomology

In [5], we developed a cohomology theory of algebras over cocommutative weak Hopf algebras
which generalizes the one given in [23] for Hopf algebras. The main result contained in [5] (see
Theorem 3.11) asserts that if (A,ϕA) is a commutative left H-module algebra, there exists a
bijection between the second cohomology group, denoted by H2

ϕA
(H,A), and the equivalence

classes of weak crossed products A ⊗α H , where α : H ⊗ H → A satisfies the 2-cocycle and
the normal conditions. In this section, for an H-cleft extension AH ↪→ A, we will establish a
bijection between the set of equivalence classes of crossed systems with a fixed weak H-module
algebra structure and the second cohomology group H2

ϕZ(AH )
(H,Z(AH)), where Z(AH) is the

center of the subalgebra of coinvariants AH . Our results generalize to the weak Hopf algebra
setting, the ones proved by Doi for Hopf algebras in [14].

Proposition 4.1 Let AH ↪→ A be an H-cleft extension. We denote by (ϕAH , σAH ) the
corresponding crossed system defined by the convolution invertible total integral f : H → A.
Then (Z(AH), ϕZ(AH )) is a left H-module algebra, where ϕZ(AH ) is the factorization through
the equalizer iZ(AH ) of the morphism ϕAH ◦ (H ⊗ iZ(AH)).

Proof We define ψA : H⊗AH → A as ψA = μA ◦ (A⊗ (μA ◦cA,A))◦ (((f−1⊗f)◦δH)⊗ iA).
In a similar way to Proposition 2.4, it is easy to see that ψA factorizes through the equalizer
iA, and then there exists a morphism ψAH : H ⊗AH → AH , such that iA ◦ ψAH = ψA. On the
other hand, the following equalities hold:

μA ◦ (f−1 ⊗ iA) = μA ◦ (ψA ⊗ f−1) ◦ (H ⊗ cH,AH ) ◦ (δH ⊗AH), (4.1)

μA ◦ cA,A ◦ (f ⊗ iA) = μA ◦ (ψA ⊗ f) ◦ (δH ⊗AH). (4.2)
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Indeed, using Definition 3.1(1), (3) and that u1 factorizes through the center of A (which
follows because if H is cocommutative, (4) and (5) of Definition 2.6 coincide),

μA ◦ (f−1 ⊗ iA) = μA ◦ ((f−1 ∧ u1) ⊗ iA)

= μA ◦ (μA ⊗A) ◦ (f−1 ⊗ iA ⊗ u1)) ◦ (H ⊗ cH,AH ) ◦ (δH ⊗AH)

= μA ◦ (μA ⊗A) ◦ (f−1 ⊗ iA ⊗ (f ∧ f−1)) ◦ (H ⊗ cH,AH ) ◦ (δH ⊗AH)

= μA ◦ (ψA ⊗ f−1) ◦ (H ⊗ cH,AH ) ◦ (δH ⊗AH).

The proof of (4.2) follows a similar pattern.
Now we can prove that ϕAH ◦ (H ⊗ iZ(AH)) factorizes through the center of AH . Indeed,

using (4.1)–(4.2) and the properties of the center of AH , we have

iA ◦ μAH ◦ ((ϕAH ◦ (H ⊗ iZ(AH ))) ⊗AH)

= μA ◦ ((μA ◦ (f ⊗ iA)) ⊗ (μA ◦ (ψA ⊗ f−1) ◦ (H ⊗ cH,AH ) ◦ (δH ⊗AH)) ◦ (H ⊗ cH,AH ⊗AH)

◦ (δH ⊗ iZ(AH) ⊗AH)

= μA ◦ (μA ⊗A) ◦ (f ⊗ (μA ◦ cA,A ◦ ((iA ◦ iZ(AH)) ⊗ (iA ◦ ψAH ))) ⊗ f−1)

◦ (H ⊗ Z(AH) ⊗H ⊗ cH,AH ) ◦ (H ⊗ Z(AH) ⊗ δH ⊗AH)

◦ (H ⊗ cH,Z(AH) ⊗AH) ◦ (δH ⊗ Z(AH) ⊗AH)

= μA ◦ ((μA ◦ cA,A ◦ (f ⊗ iA)) ⊗ (μA ◦ ((iA ◦ iZ(AH)) ⊗ f−1)) ◦ (H ⊗ cZ(AH),AH
⊗H)

◦ (H ⊗ Z(AH) ⊗ cH,AH ) ◦ (H ⊗ cH,Z(AH) ⊗AH) ◦ (δH ⊗ Z(AH) ⊗AH)

= iA ◦ μAH ◦ cAH ,AH ◦ ((ϕAH ◦ (H ⊗ iZ(AH))) ⊗AH).

Then there exists a morphism ϕZ(AH ) : H ⊗ Z(AH) → Z(AH), such that iZ(AH) ◦ ϕZ(AH ) =
ϕAH ◦ (H ⊗ iZ(AH)). Trivially, ϕZ(AH ) satisfies the conditions of Definition 2.6. Moreover,

ϕZ(AH ) ◦ (H ⊗ ϕZ(AH )) = ϕZ(AH ) ◦ (μH ⊗ Z(AH)), (4.3)

because iZ(AH) ◦ ϕZ(AH ) ◦ (H ⊗ ϕZ(AH )) = ϕAH ◦ (μH ⊗ iZ(AH)), and then (Z(AH), ϕZ(AH )) is
a left H-module algebra.

The following technical lemma will be useful for the last theorem of this paper.

Lemma 4.1 Let AH ↪→ A be an H-cleft extension. We denote by ϕAH the weak H-module
algebra structure defined for AH by a convolution invertible total integral f : H → A, and by
ψAH the morphism defined in Proposition 4.1. Then the equality ϕAH ◦(H⊗ψAH )◦(δH⊗AH) =
μAH ◦ ((ϕAH ◦ (H ⊗ ηAH )) ⊗AH) holds.

Proof By composing the left part with the monomorphism iA, we obtain that

iA ◦ ϕAH ◦ (H ⊗ ψAH ) ◦ (δH ⊗AH) = iA ◦ μAH ◦ ((ϕAH ◦ (H ⊗ ηAH )) ⊗AH).

Taking into account that iA is a monomorphism, we get the equality.
Now we show the main result of this section.

Theorem 4.1 Let AH ↪→ A be an H-cleft extension. We denote by (ϕAH , σAH ) the corre-
sponding crossed system defined by the convolution invertible integral f : H → A. Then there
is a bijective correspondence between the second cohomology group H2

ϕZ(AH )
(H,Z(AH)) and the

equivalence classes of crossed systems for H over AH having ϕAH as weak H-module algebra
structure.



188 J. N. A. Álvarez, J. M. F. Vilaboa and R. G. Rodŕıguez

Proof Let [τ ] be in H2
ϕAH

(H,Z(AH)). Using the properties of the center of AH , it is
easy to prove that the morphism σAH ∧ (iZ(AH) ◦ τ) satisfies Definition 3.2(1)–(2). As far as
Definition 3.1(3), note that

(σAH ∧ (iZ(AH ) ◦ τ)) ◦ (ΠL
H ⊗H) ◦ δH

= μAH ◦ ((σAH ◦ (ΠL
H ⊗H) ◦ δH) ⊗ ((iZ(AH ) ◦ τ) ◦ (ΠL

H ⊗H) ◦ δH)) ◦ δH
= u1 ∧ u1 = u1.

Using the equivalence between (3.5) and (3.6), we have that u1 = (σAH ∧(iZ(AH )◦τ))◦(ηH⊗H).
In a similar way, u1 = (σAH ∧ (iZ(AH ) ◦ τ)) ◦ (H ⊗ ηH), and then (ϕAH , σAH ∧ (iZ(AH ) ◦ τ)) is
a crossed system for A over H .

Conversely, let (ϕAH , γ) be a crossed system for H over AH . Then the morphism σ−1
AH

∧ γ
factorizes through the equalizer iZ(AH). Indeed,

μAH ◦ (AH ⊗ σ−1
AH

∧ γ)

= μAH ◦ (AH ⊗ (u2 ∧ u2 ∧ σ−1
AH

∧ γ))

= μAH ◦ (μAH ⊗AH) ◦ (u2 ∧ u2 ⊗AH ⊗ σ−1
AH

∧ γ) ◦ (H ⊗ cAH ,H ⊗H ⊗H)

◦ (cAH ,H ⊗H ⊗H ⊗H) ◦ (AH ⊗ δH⊗H)

= μAH ◦ (μAH ⊗H) ◦ (σ−1
AH

∧ σAH ∧ u2 ⊗AH ⊗ σ−1
AH

∧ γ) ◦ (H ⊗ cAH ,H ⊗H ⊗H)

◦ (cAH ,H ⊗H ⊗H ⊗H) ◦ (AH ⊗ δH⊗H)

= μAH ◦ (μAH ⊗H) ◦ (σ−1
AH

∧ σAH ⊗ (ϕAH ◦ (H ⊗ ψAH ) ◦ ((δH ◦ μH) ⊗AH)) ⊗ σ−1
AH

∧ γ)

◦ (δH⊗H ⊗AH ⊗H ⊗H) ◦ (H ⊗ cAH ,H ⊗H ⊗H) ◦ (cAH ,H ⊗H ⊗H ⊗H) ◦ (AH ⊗ δH⊗H)

= μAH ◦ (μAH ⊗AH) ◦ ((AH ⊗ (μAH ◦ ((ϕAH ◦ (H ⊗ ϕAH )) ⊗AH) ◦ (H ⊗H ⊗ cAH ,AH )

◦ (H ⊗H ⊗ σAH ⊗AH) ◦ (δH⊗H ⊗AH)) ⊗AH)

◦ (σ−1
AH

⊗H ⊗H ⊗ (ϕAH ◦ (μH ⊗AH)) ⊗ σ−1
AH

∧ γ) ◦ (H ⊗H ⊗ δH⊗H ⊗AH ⊗H ⊗H)

◦ (δH⊗H ⊗AH ⊗H ⊗H) ◦ (H ⊗ cAH ,H ⊗H ⊗H)

◦ (cAH ,H ⊗H ⊗H ⊗H) ◦ (AH ⊗ δH⊗H)

= μAH ◦ (μAH ⊗AH) ◦ (AH ⊗ (ϕAH ◦ (H ⊗ ϕAH )) ⊗AH)

◦ (σ−1
AH

⊗H ⊗H ⊗ (ϕAH ◦ (μH ⊗AH)) ⊗ σAH ∧ σ−1
AH

∧ γ)

◦ (H ⊗H ⊗ δH⊗H ⊗AH ⊗H ⊗H) ◦ (δH⊗H ⊗AH ⊗H ⊗H)

◦ (H ⊗ cAH ,H ⊗H ⊗H) ◦ (cAH ,H ⊗H ⊗H ⊗H) ◦ (AH ⊗ δH⊗H)

= μAH ◦ (AH ⊗ (μAH ◦ ((ϕAH ◦ (H ⊗ ϕAH )) ⊗AH) ◦ (H ⊗H ⊗ cAH ,AH ) ◦ (H ⊗H ⊗ γ ⊗AH)

◦ (δH⊗H ⊗AH))) ◦ (AH ⊗H ⊗H ⊗ (ϕAH ◦ (μH ⊗AH))) ◦ (σ−1
AH

⊗ δH⊗H ⊗AH)

◦ (H ⊗H ⊗H ⊗ cAH ,H) ◦ (H ⊗H ⊗ cAH ,H ⊗H) ◦ (H ⊗ cAH ,H ⊗H ⊗H)

◦ (cAH ,H ⊗H ⊗H ⊗H) ◦ (AH ⊗ δH⊗H)

= μAH ◦ (AH ⊗ (μAH ◦ (γ ⊗ (ϕAH ◦ (μH ⊗AH))))) ◦ (δH⊗H ⊗AH))

◦ (AH ⊗H ⊗H ⊗ (ϕAH ◦ (μH ⊗AH))) ◦ (σ−1
AH

⊗ δH⊗H ⊗AH) ◦ (H ⊗H ⊗H ⊗ cAH ,H)

◦ (H ⊗H ⊗ cAH ,H ⊗H) ◦ (H ⊗ cAH ,H ⊗H ⊗H) ◦ (cAH ,H ⊗H ⊗H ⊗H) ◦ (AH ⊗ δH⊗H)

= μAH ◦ (σ−1
AH

∧ γ ∧ u2 ⊗AH) ◦ (H ⊗ cAH ,H) ◦ (cAH ,H ⊗H)

= μAH ◦ (σ−1
AH

∧ γ ⊗AH) ◦ (H ⊗ cAH ,H) ◦ (cAH ,H ⊗H).
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In the above computations, the first and the third equalities follow because σ−1
AH

is in
RegϕAH

(H,AH); the second one holds because u2 factorizes through the center of AH ; in
the fourth one and the nineth ones, we use (4.3); the fifth and eighth one rely on Definition
3.2(1) for σAH and γ, respectively; the sixth one follows by cocommutativity; the seventh one
uses that H is cocommutative and σAH is a morphism in RegϕAH

(H,AH); finally, the last
equality follows by Definition 3.1(4)–(5) for γ.

As a consequence, by using that H is cocommutative, σ−1
AH

∧ γ ∧σAH = σAH ∧σ−1
AH

∧ γ = γ,
and therefore σ−1

AH
∧ γ = γ ∧ σ−1

AH
.

The proof of the condition Definition 3.2(2) follows a similar pattern to the one developed
in [14] and will be omitted. As far as Definition 3.2(3), the proof follows in a similar way to
the one giving for σAH ∧ (iZ(AH) ◦ τ) using Proposition 3.3. Finally, we have to show that the
correspondence is well defined. Let [τ ] and [τ ′] be in H2(H,Z(AH)), such that the crossed
systems (ϕAH , σAH ∧ (iZ(AH) ◦ τ)) and (ϕAH , σ ∧ (iZ(AH) ◦ τ ′)) are equivalent. Let h be the
morphism in RegϕAH

(H,AH) satisfying conditions (3.12)–(3.13). Then h factorizes through
the center of AH . Indeed,

μAH ◦ (h⊗ AH)

= μAH ◦ ((h ∧ u1 ∧ u1) ⊗AH)

= μAH ◦ ((h ∧ u1) ⊗ (μAH ◦ cAH ,AH )) ◦ (H ⊗ u1 ⊗AH) ◦ (δH ⊗AH)

= μAH ◦ (μAH ⊗ u1) ◦ (h⊗ (μAH ◦ ((ϕAH ◦ (H ⊗ ηAH )) ⊗AH))) ⊗H)

◦ (δH ⊗ cH,AH ) ◦ (δH ⊗AH)

= μAH ◦ (μAH ⊗ u1) ◦ (h⊗ (ϕAH ◦ (H ⊗ ϕAH ) ◦ (δH ⊗AH)) ⊗H)

◦ (δH ⊗ cH,AH ) ◦ (δH ⊗AH)

= μAH ◦ ((μAH ◦ (μAH ⊗AH) ◦ (h⊗ ϕAH ⊗ h−1) ◦ (δH ⊗ cH,AH ) ◦ (δH ⊗AH)) ⊗ h)

◦ (H ⊗ ϕAH ⊗H) ◦ (δH ⊗ cH,AH ) ◦ (δH ⊗AH)

= μAH ◦ (ϕAH ⊗ h) ◦ (H ⊗ ϕAH ⊗H) ◦ (δH ⊗ cH,AH ) ◦ (δH ⊗AH)

= μAH ◦ ((μAH ◦ (u1 ⊗AH)) ⊗ h) ◦ (H ⊗ cH,AH ) ◦ (δH ⊗AH)

= μAH ◦ (AH ⊗ (u1 ∧ h)) ◦ cH,AH

= μAH ◦ (AH ⊗ h) ◦ cH,AH .

Using that h factorizes through the center of AH and (3.13), it is easy to see that τ and τ ′

are cohomologous.
Conversely, if τ and τ ′ are cohomologous, using the properties of the center of AH , we get

that the corresponding crossed systems (ϕAH , σAH ∧(iZ(AH) ◦τ)) and (ϕAH , σAH ∧(iZ(AH) ◦τ ′))
are equivalent, and we conclude the proof.
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