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1 Introduction

In this paper, we consider energies depending on two vector fields with different behaviors:
u ∈ W 1,1(Ω; Rd)∩Lp(Ω; Rd), v ∈ Lq(Ω; Rm), Ω being a bounded open set of RN . The functional
I : BV (Ω; Rd) × Lq(Ω; Rm) → R ∪ {+∞} that we consider is defined by

I(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

W (x, u(x),∇u(x))dx +
∫

Ω

ϕ(x, u(x), v(x))dx,

if (u, v) ∈ (W 1,1(Ω; Rd) ∩ Lp(Ω; Rd)) × Lq(Ω; Rm),
+∞, otherwise,

(1.1)

where W : Ω × R
d × Rd×N → R is a continuous function with linear growth from above and

below in the gradient variable, ϕ : Ω × Rd × Rm → R is a Carathéodory function (that is,
ϕ(·, u, v) is measurable for all (u, v) ∈ Rd ×Rm and ϕ(x, ·, ·) is continuous for a.e. x ∈ Ω), with
growth p and q respectively in the variables u and v.

Our results can be considered as a first step towards the analysis of functionals of the type∫
Ω V (x, u, ∇u, v)dx, which generalizes those considered by [10, 14–15], to deal with equilibria

for systems depending on elastic strain and chemical composition. In this context, a multiphase
alloy is represented by the set Ω, the deformation gradient is given by ∇u, and v denotes the
chemical composition of the system.

In [14], V ≡ V (∇u, v) is a cross-quasiconvex function, while in our decoupled model we
also take into account heterogeneities and the deformation without imposing any convexity
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restriction neither on W nor on ϕ. Moreover when ϕ ≡ 0, the functional in (1.1) recovers the
one in [17] without quasiconvexity assumptions.

Additive models like the one we are addressing can also be found in imaging models, like
those considered in [4–6], i.e.,

inf
u,v

{
|Du|(Ω) +

1
2λ

‖φ− u− v‖2
L2

}
, (1.2)

where φ is a given image and λ a scaling factor for the L2 norm of the fidelity term φ− (u+ v).
In order to deal with the minimization of (1.1), since there may be a lack of lower semicon-

tinuity, it is necessary to pass to the relaxed functional defined in BV (Ω; Rd) × Lq(Ω; Rm)

I(u, v) := inf
{

lim inf
n→+∞ I(un, vn) : (un, vn) ∈ BV (Ω; Rd)

× Lq(Ω; Rm) : un → u in L1, vn ⇀ v in Lq
}
, (1.3)

and prove a representation result for I.
It is worthwhile to remark that for q = 1, the functional I may fail to be sequentially lower

semicontinuous. However, as we will observe below, this can be achieved provided that ϕ is
uniform continuous (cf. (1.10)).

We prove the following theorem.

Theorem 1.1 Let p ≥ 1 and q ≥ 1 and let Ω ⊂ RN be a bounded open set. Assume that
W : Ω × Rd × Rd×N → R is a continuous function, satisfying that

(i) ∃ C > 0 : 1
C |ξ| − C ≤W (x, u, ξ) ≤ C(1 + |ξ|), ∀ (x, u, ξ) ∈ Ω × Rd × Rd×N ;

(ii) for every compact subset K of Ω×Rd, there exists a continuous function ωK : [0,+∞) →
R with ωK(0) = 0, such that

|W (x, u, ξ)−W (x′, u′, ξ)| ≤ ωK(|x−x′|+ |u−u′|)(1 + |ξ|), ∀ (x, u, ξ), (x′, u′, ξ) ∈ K ×R
d×N ;

(iii) for every x0 ∈ Ω and for every ε > 0, there exists a δ > 0, such that

|x− x0| < δ ⇒ W (x, u, ξ) −W (x0, u, ξ) ≥ −ε(1 + |ξ|), ∀ (u, ξ) ∈ R
d × R

d×N ;

(iv) there exist α ∈ (0, 1) and C,L > 0, such that

t|ξ| > L ⇒
∣∣∣W∞(x, u, ξ) − W (x, u, tξ)

t

∣∣∣ ≤ C
|ξ|1−α

tα
, ∀ (x, u, ξ) ∈ Ω × R

d × R
d×N , t ∈ R.

Moreover, let ϕ : Ω × R
d × Rm → R be a Carathéodory function, satisfying

(v) ∃ C > 0 : 1
C (|u|p + |v|q)−C ≤ ϕ(x, u, v) ≤ C(1+ |u|p + |v|q), ∀ (x, u, v) ∈ Ω×Rd×Rm.

If I is defined by (1.1) and I is defined by (1.3) then, for every u ∈ BV (Ω; Rd) ∩Lp(Ω; Rd)
and v ∈ Lq(Ω; Rm), the following identity holds:

I(u, v) =
∫

Ω

QW (x, u(x),∇u(x))dx +
∫

Ju

γ(x, u+, u−, νu)dHN−1

+
∫

Ω

(QW )∞
(
x, u(x),

dDcu

d|Dcu|
)
d|Dcu| +

∫
Ω

Cϕ(x, u(x), v(x))dx. (1.4)

Remark 1.1 (i) An example of an integrand W satisfying the assumptions of Theorem 1.1
is given, by W (x, u, F ) := f(x)h(u)g(F ), where f : Ω ⊂ R2 → R and h : R2 → R are continuous
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bounded functions, bounded from below by a strictly positive constant, g : R2×2 → R, where
g(F ) := |F11 −F22|+ |F12 +F21|+min{|F11 +F22|, |F12 −F21|}, is the function in [17, Example
2.18], which is not quasiconvex. For what concerns ϕ we can take ϕ(x, u, v) ≡ f(x)(|u|p+g1(v)),
with f as above and g1 : Rm → R any double well function with the required growth, as for
example g1(v) = (|v| − 1)p.

(ii) In order to describe the right-hand side of (1.4) we recall that for every x ∈ Ω, QW (x, u, ·)
stands for the quasiconvexification ofW (cf. (2.1)), while (QW )∞ denotes the recession function
of QW with respect to the last variable as introduced in Definition 2.2, and γ stands for the
surface integral density, defined in (2.8). Finally, for every (x, u) ∈ Ω × Rd, Cϕ stands for the
convex envelope (or convexification) of ϕ(x, u, ·), namely

Cϕ(x, u, ·) := sup{g : R
m → R : g convex, g(v) ≤ ϕ(x, u, v) ∀ v}. (1.5)

Classical results in Calculus of Variations ensure that, if ϕ takes only finite values then Cϕ
coincides with the bidual of ϕ, ϕ∗∗, whose characterization is given below

ϕ∗∗(x, u, ·) := sup{g : R
m → R : g convex and lower semicontinuous,

g(v) ≤ ϕ(x, u, v) ∀ v}. (1.6)

(iii) We observe that if ϕ ≡ 0 our results extends [17, Theorem 2.16] (cf. also [2, Theorem
5.54]) to nonquasiconvex functions. We stress the fact that our hypotheses are made on the
non-quasiconvex function W and thus we can not immediately apply the results in [17] to QW .

Remark 1.2 (1) We observe that in the Sobolev setting, Theorem 1.1 can be proven without
coercivity assumptions on ϕ, indeed let f : Ω×Rd×Rd×N×Rm → R be a Carathéodory function
satisfying

0 ≤ f(x, u, ξ, v) ≤ C(1 + |u|p + |ξ|p + |v|q)
for a.e. x ∈ Ω, for every (u, ξ, v) ∈ Rd × Rd×N × Rm and for some C > 0. Consider for every
1 ≤ p, q < +∞ the following relaxed localized energy:

F(u, v;A) := inf
{

lim inf
n→∞

∫
A

f(x, un(x),∇un(x), vn(x))dx :

un ⇀ u in W 1,p(A; Rd), vn ⇀ v in Lq(A; Rm)
}
. (1.7)

Then, in [10, Theorem 1.1] (cf. also [9]), it has been proven that, for every u ∈ W 1,p(Ω; Rd),
v ∈ Lq(Ω; Rm) and A ∈ A(Ω),

F(u, v;A) =
∫

A

QCf(x, u(x),∇u(x), v(x))dx,

where QCf stands for the quasiconvex-convex envelope of f with respect to the last two vari-
ables, namely,

QCf(x, u, ξ, v) = inf
{ 1
|D|

∫
D

f(x, u, ξ + ∇ϕ(y), v + η(y))dy :

ϕ ∈W 1,∞
0 (D; Rd), η ∈ L∞(D; Rm),

∫
D

η(y)dy = 0
}
, (1.8)
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where D is any bounded open set. Clearly this equality recovers our setting, since it suffices
to define f(x, u, ξ, v) := W (x, u, ξ) + ϕ(x, u, v) for every (x, u, ξ, v) ∈ Ω × Rd × Rd×N × Rm. In
fact, it is easily seen that if f satisfies the above growth assumptions, then

QCf(x, u, ξ, v) = QW (x, u, ξ) + Cϕ(x, u, v).

(2) We notice that contrary to what one would expect from [15, 17], our density ϕ does not
need to satisfy a property analogous to Theorem 1.1(ii) with respect to (x, u, v), indeed it is
just a Carathéodory function.

(3) We emphasize that the arguments adopted to prove the previous theorem strongly rely
on the fact that the energy densities are decoupled. In particular, in the case q = 1, we
will approximate the functional I by adding an extra term with superlinear growth at ∞ in
the v variable. This will ensure the sequentially weak lower semicontinuity of the relaxed
approximating functional

Iε(u, v) := inf
{

lim inf
n

∫
Ω

W (x, un,∇un)dx+
∫

Ω

(ϕ(x, u, v) + εθ(|v|))dx :

un → u in L1, vn ⇀ v in L1
}
,

allowing us to adopt arguments similar to those exploited in the proof for the case q > 1. These
techniques are well suited for the convex setting but we are not aware if a similar procedure is
possible in the quasiconvex-convex framework.

Having in mind the continuous embedding of BV (Ω; Rd) in L
N

N−1 (Ω; Rd) (assuming Ω ⊂
RN ), we can obtain, in an easier way, the relaxation result as above. Indeed we can prove the
following result.

Theorem 1.2 Let Ω ⊂ RN be a bounded open set, and let 1 ≤ p ≤ N
N−1 and q ≥ 1. Let

W : Ω×Rd ×Rd×N → R be a continuous function satisfying Theorem 1.1(i)/(iv). Moreover let
ϕ : Ω×R

d ×R
m → R be a Carathéodory function satisfying Theorem 1.1(v) in the weaker form

∃ C > 0 :
1
C
|v|q − C ≤ ϕ(x, u, v) ≤ C(1 + |u|p + |v|q), ∀ (x, u, v) ∈ Ω × R

d × R
m. (1.9)

Then, for every (u, v) ∈ BV (Ω; Rd) × Lq(Ω; Rm), (1.4) holds.

Remark 1.3 Theorem 1.2 allows us to consider very general growth conditions also in [10,
Theorem 1.1] when decoupled energies are considered.

The continuous embedding of BV (Ω; Rd) into L
N

N−1 (Ω; Rd) (with Ω ⊂ RN ) allows us to
obtain Theorem 1.2, also replacing (1.9) by the following condition:

∃ C > 0 :
1
C
|v|q − C ≤ ϕ(x, u, v) ≤ C(1 + |u|r + |v|q), ∀ (x, u, v) ∈ Ω × R

d × R
m

and for some r ∈ [
1, N

N−1

]
.

We observe that under assumptions Theorem 1.1(i)/(iv), [17, Theorem 2.16] ensures that
the functional

∫
Ω

QW (x, u,∇u)dx+
∫

Ju

γ(x, u+, u−, νu)dHN−1 +
∫

Ω

(QW )∞
(
x, u,

dDcu

d|Dcu|
)
d|Dcu|



Relaxation of Certain Integral Functionals Depending on Strain and Chemical Composition 495

is lower semicontinuous with respect to the strong-L1 topology. Moreover, [16, Theorem 7.5]
guarantees that ∫

Ω

Cϕ(x, u, v)dx

is sequentially weakly lower semicontinuous with respect to L1
strong × L1

weak-topology provided
that the function Cϕ is convex in the last variable, satisfies suitable growth conditions, as those
in (2.5)–(2.6), and that the function Cϕ(x, ·, ·) is lower semicontinuous. We will observe in
Remark 2.1 below that this latter condition may not be verified just under the assumptions
of Theorems 1.1–1.2. On the other hand, an argument entirely similar to [11, Theorem 9.5]
guarantees that Cϕ(x, ·, ·) is lower semicontinuous (even continuous) by assuming additionally
that

|ϕ(x, u, ξ) − ϕ(x, u′, ξ)| ≤ ω′(|u− u′|)(|ξ| + 1) (1.10)

for a suitable modulus of continuity ω′, i.e., ω′ : R
+ ∪ {0} → R

+ ∪ {0} continuous and such
that ω′(0) = 0.

Consequently, the superadditivity of lim inf implies the sequentially strong-weak lower semi-
continuity of the right-hand side of (1.4) even for q = 1.

2 Notations and General Facts

2.1 Properties of the integral density functions

In this subsection, we recall several notions applied to functions like quasiconvexity, en-
velopes and recession function, etc. We also recall or prove properties of those functions that
will be useful through the paper. Such notions and related properties will apply to the density
functions that will appear in the relaxed functionals that we characterize. We start recalling
the notion of quasiconvex function due to Morrey.

Definition 2.1 A Borel measurable function h : Rd×N → R is said to be quasiconvex if
there exists a bounded open set D of RN , such that

h(ξ) ≤ 1
|D|

∫
D

h(ξ + ∇ϕ(x))dx

for every ξ ∈ R
d×N and for every ϕ ∈W 1,∞

0 (D; Rd).

If h : Rd×N → R is any given Borel measurable function bounded from below, it can be
defined the quasiconvex envelope of h, that is, the largest quasiconvex function below h:

Qh(ξ) := sup{g(ξ) : g ≤ h, g quasiconvex}.

Moreover, as well-known (cf. [11]),

Qh(ξ) := inf
{ 1
|D|

∫
D

h(ξ + ∇ϕ(x))dx : ϕ ∈W 1,∞
0 (D; Rd)

}
(2.1)

for any bounded open set D ⊂ RN .

Proposition 2.1 Let Ω ⊂ RN be a bounded open set and

W : Ω × R
d × R

d×N → [0,+∞)
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be a continuous function. Let QW be the quasiconvexification of W (cf. (2.1)). Then the
validity of Theorem 1.1(i) guarantees that there exists a constant C > 0, such that

1
C
|ξ| − C ≤ QW (x, u, ξ) ≤ C(1 + |ξ|), ∀ (x, u, ξ) ∈ Ω × R

d × R
d×N . (2.2)

The validity of Theorem 1.1(i)–(ii) ensures that for every compact set K ⊂ Ω × Rd, there
exists a continuous function ω′

K : R → [0,+∞), such that ω′
K(0) = 0 and

|QW (x, u, ξ) −QW (x′, u′, ξ)| ≤ ω′
K(|x − x′| + |u− u′|)(1 + |ξ|),

∀ (x, u), (x′, u′) ∈ K, ∀ ξ ∈ R
d×N . (2.3)

Theorem 1.1(i) and (iii) imply that, for every x0 ∈ Ω and ε > 0, there exists a δ > 0, such
that

|x− x0| ≤ δ ⇒ QW (x, u, ξ) −QW (x0, u, ξ) ≥ −ε(1 + |ξ|), ∀ (u, ξ) ∈ R
d × R

d×N . (2.4)

Moreover, if W satisfies conditions (i)–(ii) in Theorem 1.1, QW is a continuous function.

Remark 2.1 Analogous arguments imply that, under Theorem 1.1(v) and Theorem 1.2,
respectively,

∃C > 0 :
1
C

(|u|p + |v|q) − C ≤ Cϕ(x, u, v) ≤ C(1 + |u|p + |v|q),
∀ (x, u, v) ∈ Ω × R

d × R
m (2.5)

and

∃C > 0 :
1
C
|v|q − C ≤ Cϕ(x, u, v) ≤ C(1 + |u|p + |v|q), ∀ (x, u, v) ∈ Ω × R

d × R
m. (2.6)

On the other hand, we emphasize that ϕ is the same as in Theorems 1.1–1.2, namely a
Carathéodory function, this is not enough to guarantee that Cϕ is still a Carathéodory function
(cf. [11, Example 9.6] and [16, Example 7.14]). In particular, Cϕ turns out to be measurable
in x, upper semicontinuous in u, convex and hence continuous in ξ. Furthermore if q > 1, [12,
Lemma 4.3] guarantees that Cϕ(x, ·, ·) is lower semicontinuous.

Proof of Proposition 2.1 By definition of the quasiconvex envelope of W , it is easily
seen that Theorem 1.1(i) implies (2.2) with the same constant appearing in (i).

Next we prove (2.3). Let K be a compact set in Ω × R
d and take (x, u), (x′, u′) ∈ K. Let

ε > 0. Then using condition (2.1), we find ϕε ∈ W 1,∞
0 (Q; Rd), Q being the unitary cube, such

that

QW (x, u, ξ) ≥ −ε+
∫

Q

W (x, u, ξ + ∇ϕε(y))dy.

Now, we observe that, by virtue of the coercivity condition expressed by Theorem 1.1(i) and
(2.2), it follows that

‖ξ + ∇ϕε‖L1 ≤ c(1 + |ξ|).
By Theorem 1.1(ii), for every (x, u), (x′, u′) ∈ K and for every ξ ∈ Rd×N , it implies

|W (x, u, ξ) −W (x′, u′, ξ)| ≤ ωK(|x− x′| + |u− u′|)(1 + |ξ|).
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Then we can write the following chain of inequalities:

QW (x, u, ξ) ≥ −ε+
∫

Q

W (x, u, ξ + ∇ϕε(y))dy

≥ −ε−
∫

Q

λ(y)dy +
∫

Q

W (x′, u′, ξ + ∇ϕε(y))dy,

where λ(y) := |W (x, u, ξ + ∇ϕε(y)) − W (x′, u′, ξ + ∇ϕε(y))|. Therefore, we get, from the
definition of QW (x′, u′, ξ), that

QW (x′, u′, ξ) −QW (x, u, ξ) ≤ ε+ ωK(|x − x′| + |u− u′|)(1 + ‖ξ + ∇ϕε‖L1)

≤ ε+ ωK(|x − x′| + |u− u′|)(1 + c(1 + |ξ|)).

Since ε is arbitrarily chosen, and since we can obtain in a similar way the same inequality with
x in the place of x′, and u in the place of u′, we get (2.3).

In order to prove condition (2.4), we fix x0 ∈ Ω and ε > 0. As before, for every x ∈ Ω and
σ > 0, by (2.1), the coercivity condition expressed by Theorem 1.1(i), and by (2.2), there exist
a constant c > 0 and a function ϕσ ∈W 1,∞

0 (Q; Rd), such that

QW (x, u, ξ) ≥ −σ +
∫

Q

W (x, u, ξ + ∇ϕσ(y))dy

with ‖ξ + ∇ϕσ‖L1 ≤ c(1 + |ξ|).
Thus arguing as above, and exploiting Theorem 1.1(iii), we have the following chain of

inequalities, for |x− x0| < δ with δ as in Theorem 1.1(iii),

QW (x0, u, ξ) ≤
∫

Q

W (x0, u, ξ + ∇ϕσ(y))dy

≤
∫

Q

W (x, u, ξ + ∇ϕσ(y))dy + ε

∫
Q

(1 + |ξ + ∇ϕσ(y)|)dy

≤ QW (x, u, ξ) + σ + ε(1 + c(1 + |ξ|)).
Thus it suffices to let σ go to 0 in order to achieve the statement.

Finally, we prove the continuity of QW . We need to show that, for every ε > 0 and
(x0, u0, ξ0) ∈ Ω × R

d × R
d×N , there exists a δ ≡ δ(ε, x0, u0, ξ0) > 0, such that

|x− x0| + |u− u0| + |ξ − ξ0| ≤ δ ⇒ |QW (x, u, ξ) −QW (x0, u0, ξ0)| ≤ ε. (2.7)

Let ε > 0 be fixed. Since QW is quasiconvex on ξ, QW (x0, u0, ·) is continuous. Thus we
can find δ1 = δ1(ε, x0, u0, ξ0) > 0, such that

|ξ − ξ0| ≤ δ1 ⇒ |QW (x0, u0, ξ) −QW (x0, u0, ξ0)| ≤ ε

2
.

Moreover, by virtue of (2.3), defining K := Bσ(x0, u0) for some σ > 0 such that K ⊂ Ω × R
d,

one has

|ξ − ξ0| ≤ δ1 ⇒ |QW (x, u, ξ) −QW (x0, u0, ξ)| ≤ ω′
K(|x− x0| + |u− u0|)(1 + |ξ0| + δ1).

Since ω′
K is continuous and ω′

K(0) = 0, there exists a δ2 = δ2(ε,K, ξ0) > 0, such that

|x− x0| + |u− u0| ≤ δ2 ⇒ ω′
K(|x − x0| + |u− u0|) ≤ ε

2(1 + |ξ0| + 1)
.
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Consequently, by choosing δ as min{δ1, δ2}, the above inequalities, and the triangular in-
equality give indeed (2.7).

We also recall the definition of the recession function.

Definition 2.2 Let h : Rd×N → [0,+∞). The recession function of h is denoted by h∞ :
Rd×N → [0,+∞), and defined as

h∞(ξ) := lim sup
t→+∞

h(tξ)
t

.

Remark 2.2 (i) Recall that the recession function is a positively one homogeneous function,
that is, g(tξ) = tg(ξ) for every t ≥ 0 and ξ ∈ Rd×N .

(ii) Through this paper, we will work with functions W : Ω × Rd × Rd×N → [0,+∞) and
W∞ is the recession function with respect to the last variable:

W∞(x, u, ξ) := lim sup
t→+∞

W (x, u, tξ)
t

.

We trivially observe that, if W satisfies the growth condition of Theorem 1.1(i), then W∞

satisfies 1
C |ξ| ≤W∞(x, u, ξ) ≤ C|ξ|.

(iii) As showed in [17, Remark 2.2(ii)], if a function h : Rd×N → [0,+∞) is quasiconvex and
satisfies the growth condition h(ξ) ≤ c(1 + |ξ|) for some c > 0, then its recession function is
also quasiconvex.

We now describe the surface energy density γ appearing in the characterization of I. Let
W : Ω × Rd × Rd×N → R. By the notation above, (QW )∞ is the recession function of the
quasiconvex envelope of W . Then γ : Ω × Rn × Rn × SN−1 → R is defined by

γ(x, a, b, ν) = inf
{∫

Qν

(QW )∞(x, φ(y),∇φ(y))dy : φ ∈ A(a, b, ν)
}
, (2.8)

where Qν is the unit cube centered at the origin with faces parallel to ν, ν1, · · · , νN−1, for some
orthonormal basis of RN , {ν1, · · · , νN−1, ν}, and where

A(a, b, ν) :=
{
φ ∈W 1,1(Qν ,R

d) : φ(y) = a if 〈y, ν〉 =
1
2
, φ(y) = b if 〈y, ν〉 = −1

2
,

φ is 1-periodic in the ν1, · · · , νN−1 directions
}
.

We observe that the function γ is the same, whether we consider in the set A(a, b, ν),
W 1,1(Qν ,R

d) functions (as in [17–18]) or W 1,∞(Qν ,R
d) functions (as in [2, p. 312]). Moreover,

if W does not depend on u, W : Ω×R
d×N → R, then γ(x, a, b, ν) = (QW )∞(x, (a− b)⊗ ν) (cf.

[2, p. 313]).
Properties of the function (QW )∞ will be important to get the integral representation of the

relaxed functionals under consideration. In particular, a proof entirely similar to [7, Proposition
3.4] ensures that for every (x, u, ξ) ∈ Ω × Rd × Rd×N , Q(W∞)(x, u, ξ) = (QW )∞(x, u, ξ).

Proposition 2.2 Let W : Ω × Rd × Rd×N → [0,+∞) be a continuous function satisfying
Theorem 1.1(i) and (iv). Then

Q(W∞)(x, u, ξ) = (QW )∞(x, u, ξ) for every (x, u, ξ) ∈ Ω × R
d × R

d×N . (2.9)
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Proof The proof will be achieved by double inequality.
By definitions of the quasiconvex envelope and the recession function, one gets (QW )∞ ≤

W∞ and thus Q(QW )∞ ≤ Q(W∞). Since the recession function of a quasiconvex envelope is
still quasiconvex, under the hypothesis of Theorem 1.1(i) (cf. Remark 2.2(iii)), it follows that
(QW )∞ ≤ Q(W∞).

In order to prove the opposite inequality, we notice that, since by (i), the function W

is bounded from below, we can assume without loss of generality that W ≥ 0. Then fix
(x, u, ξ) ∈ Ω × Rd × Rd×N and, for every t > 1, take ϕt ∈W 1,∞

0 (Q; Rd), such that
∫

Q

W (x, u, tξ + ∇ϕt(y))dy ≤ QW (x, u, tξ) + 1. (2.10)

By (i) and (2.2) we have that
∥∥∇(

1
tϕt

)∥∥
L1(Q)

≤ C for a constant independent of t but just on
ξ.

Defining ψt = 1
tϕt, one has ψt ∈ W 1,∞

0 (Q; Rd) and thus

Q(W∞)(x, u, ξ) ≤
∫

Q

W∞(x, u, ξ + ∇ψt(y))dy.

Let L be the constant appearing in the condition of Theorem 1.1(iv), we split the cube Q
in the set {y ∈ Q : t|ξ +∇ψt(y)| ≤ L} and its complement in Q. Then we apply the condition
(iv) and the growth of W∞ observed in Remark 2.2(ii) to get

Q(W∞)(x, u, ξ) ≤
∫

Q

(
C
|ξ + ∇ψt|1−α

tα
+
W (x, u, tξ + ∇ϕt(y))

t
+ C

L

t

)
dy.

Applying Hölder inequality and (2.10), we get

Q(W∞)(x, u, ξ) ≤ C

tα

(∫
Q

|ξ + ∇ψt|dy
)1−α

+
QW (x, u, tξ) + 1

t
+ C

L

t
,

and the desired inequality follows by the definition of (QW )∞ and using the fact that ∇ψt has
bounded L1 norm, letting t go to +∞.

The property of (QW )∞ stated next ensures that QW together with (QW )∞ satisfy the
condition analogous to Theorem 1.1(iv). To this end, we first observe, as emphasized in [17],
that Theorem 1.1(iv) is equivalent to saying that there exist C > 0 and α ∈ (0, 1), such that

|W∞(x, u, ξ) −W (x, u, ξ)| ≤ C(1 + |ξ|1−α) (2.11)

for every (x, u, ξ) ∈ Ω × Rd × Rd×N . Precisely, we have the following result.

Proposition 2.3 Let W : Ω × Rd × Rd×N → [0,+∞) be a continuous function satisfying
Theorem 1.1(i) and (iv). Then, there exist α ∈ (0, 1) and C′ > 0, such that

|(QW )∞(x, u, ξ) −QW (x, u, ξ)| ≤ C(1 + |ξ|1−α), ∀(x, u, ξ) ∈ Ω × R
d × R

d×N .

Proof This paper will be achieved by double inequality. Let α ∈ (0, 1) be as in Theorem
1.1(iv) (cf. also (2.11)). Let ξ ∈ Rd×N , and Q be the unit cube in RN and let c be a positive
constant varying from line to line. For every ε > 0, by (2.1), find ϕ ∈W 1,∞

0 (Q; Rd), such that

QW (x, u, ξ) >
∫

Q

W (x, u, ξ + ∇ϕ(y))dy − ε.
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By Theorem 1.1(i) and (2.2), there exists a c > 0, such that

‖ξ + ∇ϕ‖L1 ≤ c(1 + |ξ|). (2.12)

Since, by Proposition 2.2, it implies

(QW )∞(x, u, ξ) ≤
∫

Q

W∞(x, u, ξ + ∇ϕ(y))dy,

we have

(QW )∞(x, u, ξ) −QW (x, u, ξ) ≤
∫

Q

(W∞(x, u, ξ + ∇ϕ(y)) −W (x, u, ξ + ∇ϕ(y)))dy + ε.

Applying (2.11), we obtain

(QW )∞(x, u, ξ) −QW (x, u, ξ) ≤
∫

Q

c(1 + |ξ + ∇ϕ(y)|1−α)dy + ε

≤ c
(
1 +

∫
Q

|ξ + ∇ϕ(y)|1−αdy
)

+ ε

≤ c+ c
(∫

Q

|ξ + ∇ϕ(y)|dy
)1−α

+ ε

≤ c+ c2(1 + |ξ|1−α) + ε

≤ C′(1 + |ξ|1−α) + ε,

where we have applied Hölder inequality and (2.12) in the last lines, and we have estimated
the term (1 + |ξ|)1−α by separating the cases |ξ| ≤ 1 and |ξ| > 1 and summing them up. To
conclude this part it suffices to send ε to 0.

In order to prove the opposite inequality, we can argue in the same way. Let ξ ∈ Rd×N . For
every ε > 0, by (2.1) and Proposition 2.2, there exists a ψ ∈W 1,∞

0 (Q; Rd), such that

(QW )∞(x, u, ξ) >
∫

Q

W∞(x, u, ξ + ∇ψ(y))dy − ε.

Clearly, by (2.2), Theorem 1.1(i) and Remark 2.2(ii), there exists a C > 0, such that

‖ξ + ∇ψ‖L1 ≤ C|ξ| + ε. (2.13)

By (2.1), it implies

QW (x, u, ξ) ≤
∫

Q

W (x, u, ξ + ∇ψ(y))dy,

and hence

QW (x, u, ξ) − (QW )∞(x, u, ξ) ≤
∫

Q

(W (x, u, ξ + ∇ψ(y)) −W∞(x, u, ξ + ∇ψ(y)))dy + ε.

Now, Theorem 1.1(iv) in the form (2.11) provides

QW (x, u, ξ) − (QW )∞(x, u, ξ) ≤ C

∫
Q

(1 + |ξ + ∇ψ(y)|1−α)dy + ε

≤ C′(1 + |ξ|1−α) + ε,

where in the last line it has been used Hölder inequality, (2.13) and an argument entirely similar
to the first part of the proof. By sending ε to 0, we conclude the proof.
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2.2 Some results on measure theory and BV functions

Letting Ω be a generic open subset of R
N , we denote by M(Ω) the space of all signed Radon

measures in Ω with bounded total variation. By the Riesz representation theorem, M(Ω) can
be identified to the dual of the separable space C0(Ω) of continuous functions on Ω vanishing
on the boundary ∂Ω. The N -dimensional Lebesgue measure in RN is designated as LN while
HN−1 denotes the (N − 1)-dimensional Hausdorff measure. If μ ∈ M(Ω) and λ ∈ M(Ω) is a
nonnegative Radon measure, we denote by dμ

dλ the Radon-Nikodým derivative of μ with respect
to λ. By a generalization of the Besicovich differentiation theorem (cf. [1, Proposition 2.2]), it
can be proved that there exists a Borel set E ⊂ Ω such that λ(E) = 0 and

dμ
dλ

(x) = lim
ρ→0+

μ(x+ ρC)
λ(x+ ρC)

for all x ∈ Supp μ \ E (2.14)

and any open convex set C containing the origin. (Recall that the set E is independent of C.)

We say that u ∈ L1(Ω; Rd) is a function of bounded variation, and we write u ∈ BV (Ω; Rd),
if all its first distributional derivatives Djui belong to M(Ω) for 1 ≤ i ≤ d and 1 ≤ j ≤ N . We
refer to [2] for a detailed analysis of BV functions. The matrix-valued measure whose entries are
Djui is denoted by Du and |Du| stands for its total variation. By the Lebesgue decomposition
theorem, we can split Du into the sum of two mutually singular measures Dau and Dsu where
Dau is the absolutely continuous part of Du with respect to the Lebesgue measure LN , while
Dsu is the singular part of Du with respect to LN . By ∇u, we denote the Radon-Nikodým
derivative of Dau with respect to the Lebesgue measure, so that we can write

Du = ∇uLN +Dsu.

The set Su of points, where u does not have an approximate limit, is called the approximated
discontinuity set, while Ju ⊆ Su is the so-called jump set of u defined as the set of points x ∈ Ω,
such that there exist u±(x) ∈ Rd (with u+(x) �= u−(x)) and νu(x) ∈ SN−1 satisfying

lim
ε→0

1
εN

∫
{y∈Bε(x):(y−x)·νu(x)>0}

|u(y) − u+(x)|dy = 0

and
lim
ε→0

1
εN

∫
{y∈Bε(x):(y−x)·νu(x)<0}

|u(y) − u−(x)|dy = 0.

It is known that Ju is a countably HN−1-rectifiable Borel set. By Federer-Vol’pert theorem
(cf. [2, Theorem 3.78]), HN−1(Su \ Ju) = 0 for any u ∈ BV (Ω; Rd). The measure Dsu can in
turn be decomposed into the sum of a jump part and a Cantor part defined by Dju := Dsu Ju

and Dcu := Dsu (Ω \ Su). We now recall the decomposition of Du:

Du = ∇uLN + (u+ − u−) ⊗ νuHN−1 Ju +Dcu.

The three measures above are mutually singular. If HN−1(B) < +∞, then |Dcu|(B) = 0 and
there exists a Borel set E such that

LN (E) = 0, |Dcu|(X) = |Dcu|(X ∩E)

for all Borel sets X ⊆ Ω.



502 A. M. Ribeiro and E. Zappale

3 Relaxation

This section is devoted to the proof of the integral representation results dealing with the
decoupled models described in the introduction.

To prove Theorems 1.1–1.2, we will use the characterization for the relaxed functional of
IW : L1(Ω; Rd) → R ∪ {+∞} defined by

IW (u) :=

⎧⎨
⎩

∫
Ω

W (x, u(x),∇u(x))dx, if u ∈W 1,1(Ω; Rd),

+∞, otherwise.
(3.1)

The relaxed functional of IW is defined by

IW (u) := inf
{

lim inf
n

IW (un) : un ∈ BV (Ω; Rd), un → u in L1
}
,

and it was characterized by Fonseca-Müller [17], provided (among other hypotheses) that W is
quasiconvex. In the next lemma, we establish conditions to obtain the representation of IW in
the general case, that is, with W not necessarily quasiconvex.

We will also use the following notation. The functional IQW : L1(Ω; Rd) → R ∪ {+∞} is
defined by

IQW (u) :=

⎧⎨
⎩

∫
Ω

QW (x, u(x),∇u(x))dx, if u ∈W 1,1(Ω; Rd),

+∞, otherwise,
(3.2)

and its relaxed functional is

IQW (u) := inf
{

lim inf
n

IQW (un) : un ∈ BV (Ω; Rd), un → u in L1
}
.

We are now in position to establish the mentioned lemma, and we notice that we make no
assumptions on the quasiconvexified function QW .

Lemma 3.1 Let W : Ω×R
d ×R

d×N → [0,+∞) be a continuous function and consider the
functionals IW and IQW and their corresponding relaxed functionals defined as above. Then, if
W satisfies conditions of Theorem 1.1(i)/(iv), the two relaxed functionals coincide in BV (Ω,Rd)
and moreover

IW (u) = IQW (u) =
∫

Ω

QW (x, u(x),∇u(x))dx +
∫

Ju

γ(x, u+, u−, νu)dHN−1

+
∫

Ω

(QW )∞
(
x, u(x),

dDcu

d|Dcu|
)
d|Dcu|.

Proof First we observe that IW (u) = IQW (u) for every u ∈ BV (Ω; Rd). Indeed, since
QW ≤ W , we have IQW ≤ IW . Next we prove the opposite inequality in the nontrivial case
that IQW (u) < +∞. For fixed δ > 0, we can consider un ∈ W 1,1(Ω; Rd) with un → u strongly
in L1(Ω; Rd), such that

IQW (u) ≥ lim
n

∫
Ω

QW (x, un(x),∇un(x))dx − δ.
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Applying [11, Theorem 9.8], for each n there exists a sequence {un,k} converging to un weakly
in W 1,1(Ω; Rd), such that

∫
Ω

QW (x, un(x),∇un(x))dx = lim
k

∫
Ω

W (x, un,k(x),∇un,k(x))dx.

Consequently,

IQW (u) ≥ lim
n

lim
k

∫
Ω

W (x, un,k(x),∇un,k(x))dx − δ (3.3)

and
lim
n

lim
k

‖un,k − u‖L1 = 0.

Via a diagonal argument, there exists a sequence {un,kn} satisfying un,kn → u in L1(Ω; Rd) and
realizing the double limit in the right-hand side of (3.3). Thus, it implies

IQW (u) ≥ lim
n

∫
Ω

W (x, un,kn(x),∇un,kn(x))dx − δ ≥ IW (u) − δ.

Letting δ go to 0 the conclusion follows.
Finally, we prove the integral representation for IQW and consequently for IW . To this end,

we invoke [17, Theorem 2.16] (cf. also [2, Theorem 5.54]).
By the hypotheses, and by Proposition 2.1 above, QW satisfies conditions (H1)–(H4) in

[17], and the condition (H5) follows from Proposition 2.3. Applying [17, Theorem 2.16], we
conclude the proof.

Let IQW+ϕ : BV (Ω; Rd) × Lq(Ω; Rm) → R ∪ {+∞} be the functional defined by

IQW+ϕ(u, v) :=

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

QW (x, u(x),∇u(x))dx +
∫

Ω

ϕ(x, u(x), v(x))dx,

if (u, v) ∈ (W 1,1(Ω; Rd) ∩ Lp(Ω; Rd)) × Lq(Ω; Rm),
+∞, otherwise,

(3.4)

and its relaxed functional as

IQW+ϕ(u, v) := inf
{

lim inf
n

IQW+ϕ(un, vn) : (un, vn) ∈ BV (Ω; Rd) × Lq(Ω; Rm),

un → u in L1, vn ⇀ v in Lq
}
. (3.5)

We can obtain, as in the first part of the proof of Lemma 3.1, the following result.

Corollary 3.1 Let p ≥ 1, q ≥ 1 and Ω ⊂ RN . Assume W : Ω × Rd × Rd×N → [0,+∞)
and ϕ : Ω×Rd ×Rm → [0,+∞) satisfying Theorem 1.1(i)/(iv) and (v), respectively. Let I and
I be defined by (1.1) and (1.3), respectively. Let IQW+ϕ and IQw+ϕ be as in (3.4) and (3.5),
respectively, then

I(u, v) = IQW+ϕ(u, v)

for every (u, v) ∈ BV (Ω; Rd) × Lq(Ω; Rm).

Remark 3.1 We observe that, in the case 1 ≤ p < +∞, 1 < q < ∞, given W : Ω × R
d ×

Rd×N → R and ϕ : Ω × Rd × Rm → R, Carathéodory functions satisfying Theorem 1.1(i) and
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(v), respectively, then, if one can provide that Cϕ is still Carathéodory, an argument entirely
similar to the first part of Lemma 3.1, implies that

I(u, v) = inf
{

lim inf
n→+∞

∫
Ω

(QW (x, un,∇un) + Cϕ(x, un, vn))dx :

(un, vn) ∈ BV (Ω; Rd) × Lq(Ω; Rm), un → u in L1, vn ⇀ v in Lq
}
,

where I is the functional defined by (1.3), QW and Cϕ are defined in (2.1) and (1.5), respec-
tively. But we emphasize that since, assuming only (v) of Theorem 1.1, there may be a lack of
continuity of Cϕ(x, ·, ·) as observed in Remark 2.1, we focus just on the relaxation of the term∫
Ω
W (x, u,∇u)dx and we prove Lemma 3.1 (cf. also Corollary 3.1) in order to be allowed to

assume W quasiconvex without loosing generality.

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1 The proof is divided in two parts. First we consider the case
q > 1, and then we consider q = 1. In both cases, we first prove a lower bound for the relaxed
energy I, and then we prove that the lower bound obtained is also an upper bound for I.

Preliminarly, we observe that by virtue of Corollary 3.1 and Propositions 2.1–2.3, we can
assume without loss of generality, that W is quasiconvex in the last variable.

Part 1 q > 1.
(1) Lower bound. Let u ∈ BV (Ω; Rd) ∩ Lp(Ω; Rd) and v ∈ Lq(Ω; Rm). We will prove that,

for any sequences un ∈ BV (Ω; Rd) and vn ∈ Lq(Ω; Rm), such that un → u in L1 and vn ⇀ v in
Lq,

lim inf
n→+∞ I(un, vn) ≥

∫
Ω

W (x, u,∇u)dx+
∫

Ju

γ(x, u+, u−, νu)dHN−1

+
∫

Ω

W∞
(
x, u,

dDcu

d|Dcu|(x)
)
d|Dcu| +

∫
Ω

Cϕ(x, u, v)dx.

Let un and vn be two sequences in the conditions described above. Then, by [17, Theorem
2.16],

∫
Ω

W (x, u,∇u)dx+
∫

Ju

γ(x, u+, u−, νu)dHN−1 +
∫

Ω

W∞
(
x, u,

dDcu

d|Dcu|
)
d|Dcu|

≤ lim inf
n→+∞

∫
Ω

W (x, un,∇un)dx. (3.6)

Moreover, since we can assume lim inf
n

∫
Ω
ϕ(x, un, vn)dx < +∞, the bound on ‖un‖Lp provided

by (v), the fact that un → u in L1(Ω) and consequently pointwise, guarantee that un → u

strongly in Lp. Furthermore, vn ⇀ v weakly in Lq and because of the lower semi-continuity of
Cϕ(x, ·, ·) (cf. [12, Lemma 4.3]), it implies (cf. [16, Theorem 7.5] or [13])

∫
Ω

Cϕ(x, u, v)dx ≤ lim inf
n→+∞

∫
Ω

Cϕ(x, un, vn)dx ≤ lim inf
n→+∞

∫
Ω

ϕ(x, un, vn)dx. (3.7)

Consequently, the superadditivity of the lim inf, gives the desired lower bound.
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(2) Upper bound. Let u ∈ BV (Ω; Rd) ∩ Lp(Ω; Rd) and v ∈ Lq(Ω; Rm). We will prove that

I(u, v) ≤
∫

Ω

W (x, u,∇u)dx+
∫

Ju

γ(x, u+, u−, νu)dHN−1

+
∫

Ω

W∞
(
x, u,

dDcu

d|Dcu|
)
d|Dcu| +

∫
Ω

Cϕ(x, u, v)dx, (3.8)

constructing convenient sequences un ∈ BV (Ω; Rd) such that un → u in L1, and vn ∈ Lq(Ω,Rm)
such that vn ⇀ v in Lq.

We can assume, without loss of generality, that∫
Ω

W (x, u,∇u)dx+
∫

Ju

γ(x, u+, u−, νu)dHN−1

+
∫

Ω

W∞
(
x, u,

dDcu

d|Dcu|
)
d|Dcu| +

∫
Ω

Cϕ(x, u, v)dx < +∞. (3.9)

In particular, from (v), it follows that u ∈ Lp(Ω; Rd).
Moreover, we suppose, without loss of generality, that W ≥ 0 and ϕ ≥ 0. We will consider

two cases.

Case 1 u ∈ L∞(Ω; Rd).
Fix M ∈ N. We will prove that, for some constant c (independent of M),

I(u, v) ≤
∫

Ω

W (x, u,∇u)dx+
∫

Ju

γ(x, u+, u−, νu)dHN−1

+
∫

Ω

W∞
(
x, u,

dDcu

d|Dcu|
)
d|Dcu| +

∫
Ω

Cϕ(x, u, v)dx +
c

M
.

Then we get the desired inequality by letting M go to +∞.
We proceed in three steps.
Step 1 Construction of a convenient sequence converging to u in L1(Ω; Rd).
Let {un} be a sequence in W 1,1(Ω; Rd), such that un → u in L1 and

lim
∫

Ω

W (x, un,∇un)dx =
∫

Ω

W (x, u,∇u)dx+
∫

Ju

γ(x, u+, u−, νu)dHN−1

+
∫

Ω

W∞
(
x, u,

dDcu

d|Dcu|
)
d|Dcu|.

This holds by [17, Theorem 2.16]. Next we will truncate the sequence un.
Fix k such that ek − 1 > 2‖u‖L∞. Then, (3.9) together with the coercivity condition of

W on ξ (cf. (i)), and the fact that ϕ ≥ 0, imply that sup ‖∇un‖L1 is bounded by a constant
independent of the sequence un. Thus

M−1∑
i=0

∫
{x∈Ω: k+i≤ln(1+|un|)<k+i+1}

(1 + |∇un|)dx =
∫
{x∈Ω: k≤ln(1+|un|)<k+M}

(1 + |∇un|)dx

≤ |Ω| + sup
n

‖∇un‖L1 ,

and so, for each n ∈ N, we can find i = i(n) ∈ {0, · · · ,M − 1}, such that

∫
{x∈Ω: k+i≤ln(1+|un|)<k+i+1}

(1 + |∇un(x)|)dx ≤
|Ω| + sup

n
‖∇un‖L1

M
. (3.10)
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For each n, and accordingly to the previous choice of i(n), consider τn : R
+
0 → [0, 1], such that

τn ∈ C1(R+
0 ), |τ ′n| ≤ 1,

τn(t) = 1, if 0 ≤ t < k + i(n) and τn(t) = 0, if t ≥ k + i(n) + 1.

We can now define the truncated sequence. Let gn(z) := τn(ln(1 + |z|)) z, and un(x) = gn(un).
Since in a neighborhood of 0 the function τn(ln(1 + | · |)) is identically 1, gn is a Lipschitz, C1

function with

∇gn(z) =

⎧⎨
⎩
τn(ln(1 + |z|)) I + τ ′n(ln(1 + |z|)) 1

1 + |z|
z ⊗ z

|z| , if z �= 0,

I, if z = 0

and |∇gn(z)| ≤ c. So, by [2, Theorem 3.96], un ∈ W 1,1(Ω; Rd), ∇un = ∇gn(un)∇unLN and
|∇un| ≤ c|∇un| which is bounded in L1 as observed above. Moreover ‖un‖L∞ ≤ ek+i(n)+1−1 ≤
ek+M − 1 and un → u in L1. Indeed, if u ≡ 0, then ‖un‖L1 ≤ ‖un‖L1 → 0, otherwise, we have

‖un − u‖L1(Ω) =
∫
{x∈Ω: 0≤ln(1+|un|)<k+i(n)}

|un(x) − u(x)|dx

+
∫
{x∈Ω: k+i(n)≤ln(1+|un|)<k+i(n)+1}

|un(x) − u(x)|dx

+
∫
{x∈Ω: ln(1+|un|)≥k+i(n)+1}

|u(x)|dx

≤ ‖un − u‖L1(Ω) +
∫
{x∈Ω: k+i(n)≤ln(1+|un|)<k+i(n)+1}

|un(x) − un(x)|dx

+ ‖un − u‖L1(Ω) + ‖u‖L∞(Ω)|{x ∈ Ω : ln(1 + |un|) ≥ k + i(n) + 1}|
≤ 2‖un − u‖L1(Ω) +

∫
{x∈Ω: k+i(n)≤ln(1+|un|)<k+i(n)+1}

|un(x)|dx

+ ‖u‖L∞(Ω) |{x ∈ Ω : ln(1 + |un|) ≥ k + i(n) + 1}|,

where the last terms converging to zero because un → u in L1 and because of the following
estimates:∫

{x∈Ω: k+i(n)≤ln(1+|un|)<k+i(n)+1}
|un(x)|dx ≤

∫
{x∈Ω: k+i(n)≤ln(1+|un|)<k+i(n)+1}

(ek+M − 1)dx

≤ (ek+M − 1)|{x ∈ Ω : |un| ≥ ek+i(n) − 1}|
≤ (ek+M − 1)|{x ∈ Ω : |un − u| ≥ ‖u‖L∞(Ω)}|

≤ (ek+M − 1)
‖un − u‖L1(Ω)

‖u‖L∞(Ω)
,

|{x ∈ Ω : ln (1 + |un|) ≥ k + i(n) + 1}| = |{x ∈ Ω : |un| ≥ ek+i(n)+1 − 1}|
≤ |{x ∈ Ω : |un − u| ≥ ‖u‖L∞(Ω)}|

≤ ‖un − u‖L1(Ω)

‖u‖L∞(Ω)
.

So, we have, in particular, that un converges to u in L1 and un clearly belongs to Lp(Ω; Rd).

Step 2 Construction of a convenient sequence {vn} weakly converging to v in Lq.
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We have, by (v), [16, Theorem 6.68, Remark 6.69(ii)], for any w ∈ L1(Ω; Rd),
∫

Ω

Cϕ(x,w, v)dx = inf
{

lim inf
n→+∞

∫
Ω

ϕ(x,w, vn)dx : {vn} ⊂ Lq(Ω; Rm), vn ⇀ v in Lq
}
,

whenever the second term is finite.
Since q > 1 and thus Lq′

(Ω; Rm) is separable, we can consider a sequence {ψl} of functions,
dense in Lq′

(Ω; Rm).
Then, for each n ∈ N let vn

j ∈ Lq(Ω; Rm) be such that
∫

Ω

Cϕ(x, un, v)dx = lim
j→+∞

∫
Ω

ϕ(x, un, v
n
j )dx

and
lim

j→+∞

∫
Ω

(vn
j − v)ψldx = 0, ∀l ∈ N.

We then extract a diagonalizing sequence vn in the following way: for each n ∈ N, consider
j(n) increasing and verifying

∣∣∣
∫

Ω

(ϕ(x, un, v
n
j(n)) − Cϕ(x, un, v))dx

∣∣∣ ≤ 1
n
,

∣∣∣
∫

Ω

(vn
j(n) − v)ψldx

∣∣∣ ≤ 1
n
, l = 1, · · · , n.

Define then vn = vn
j(n). We have that vn is bounded in the Lq norm:

∫
Ω

|vn|qdx ≤ C

∫
Ω

ϕ(x, un, vn)dx ≤ C

n
+ C

∫
Ω

Cϕ(x, un, v)dx ≤ C + C

∫
Ω

ϕ(x, un, v)dx,

where the last term is bounded because un is a bounded sequence in L∞ and because of the
growth condition (v) on ϕ.

Moreover, the density of ψl in Lq′
ensures that vn ⇀ v in Lq. Indeed, let ψ ∈ Lq(Ω; Rm)

and let δ > 0. Consider l ∈ N such that ‖ψl − ψ‖Lq′ ≤ δ. Then, for sufficiently large n,
∣∣∣
∫

Ω

(vn−v)ψdx
∣∣∣ ≤

∣∣∣
∫

Ω

(vn−v)(ψ−ψl)dx
∣∣∣+

∣∣∣
∫

Ω

(vn−v)ψldx
∣∣∣ ≤ ‖vn−v‖Lq‖ψl−ψ‖Lq′ +δ ≤ cδ+δ.

Step 3 Upper bound for I.
Start remarking that

lim sup
n→+∞

∫
Ω

ϕ(x, un, vn)dx ≤
∫

Ω

Cϕ(x, u, v)dx.

Indeed,

lim sup
n→+∞

∫
Ω

ϕ(x, un, vn)dx = lim sup
n→+∞

∫
Ω

(ϕ(x, un, vn) − Cϕ(x, un, v) + Cϕ(x, un, v))dx

≤ lim sup
n→+∞

( 1
n

+
∫

Ω

Cϕ(x, un, v)dx
)
.

As observed in Remark 2.1, Cϕ(x, ·, v) is upper semi-continuous. By the pointwise convergence
of un towards u (up to a subsequence), we have

lim sup
n→+∞

Cϕ(x, un, v) ≤ Cϕ(x, u, v).
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Moreover, the fact that un is bounded in L∞ and the hypothesis (v) allows to apply the
“inverted” Fatou’s lemma and get the desired inequality.

Now we have∫
Ω

W (x, un,∇un)dx

=
∫
{x∈Ω: 0≤ln(1+|un|)<k+i(n)}

W (x, un,∇un)dx

+
∫
{x∈Ω: k+i(n)≤ln(1+|un|)<k+i(n)+1}

W (x, un,∇un)dx

+
∫
{x∈Ω: ln(1+|un|)≥k+i(n)+1}

W (x, 0, 0)dx

≤
∫

Ω

W (x, un,∇un)dx+
∫
{x∈Ω: k+i(n)≤ln(1+|un|)<k+i(n)+1}

C(1 + |∇un|)dx

+ C|{x ∈ Ω : ln(1 + |un|) ≥ k + i(n) + 1}|,
where it has been used the growth condition (i). Using the expression of un, by [2, Theorem
3.96], we have |∇un| ≤ c|∇un|, and so, using (3.10), we get

lim sup
n→+∞

∫
{x∈Ω: k+i(n)≤ln(1+|un|)<k+i(n)+1}

C(1 + |∇un|)dx ≤ c
|Ω| + sup ‖∇un‖L1

M
=

c

M

(note that c is independent of n and of the sequence un, and it does not represent always the
same constant).

Moreover, since |{x ∈ Ω : ln(1 + |un|) ≥ k + i(n) + 1}| → 0 as n→ +∞ (as already seen in
the case where ‖u‖L∞ �= 0), we get

lim sup
n→+∞

∫
Ω

W (x, un,∇un)dx ≤ lim
n→+∞

∫
Ω

W (x, un,∇un)dx +
c

M
.

Note that if u = 0 we can still get |{x ∈ Ω : ln(1 + |un|) ≥ k + i(n) + 1}| → 0:

|{x ∈ Ω : ln(1 + |un|) ≥ k + i(n) + 1}| ≤ |{x ∈ Ω : |un| ≥ ek+1 − 1}| ≤ ‖un‖L1

ek+1 − 1
→ 0,

since un → 0 in L1.
Finally, we get, as desired,

I(u, v) ≤ lim inf
n→+∞

∫
Ω

W (x, un,∇un)dx+
∫

Ω

ϕ(x, un, vn)dx

≤ lim sup
n→+∞

∫
Ω

W (x, un,∇un)dx+ lim sup
n→+∞

∫
Ω

ϕ(x, un, vn)dx

≤
∫

Ω

W (x, u,∇u)dx+
∫

Ju

γ(x, u+, u−, νu)dHN−1 +
∫

Ω

W∞
(
x, u,

dDcu

d|Dcu|
)
d|Dcu|

+
c

M
+

∫
Ω

Cϕ(x, u, v)dx.

Case 2 Arbitrary u ∈ BV (Ω; Rd) ∩ Lp(Ω; Rd).
To achieve the upper bound on this case, we will reduce it to case 1 by means of a truncature

argument developed in [17, Theorem 2.16, Step 4], in turn inspired by [3, Theorem 4.9]. We
reproduce the same argument as in [17] for the readers’ convenience.
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Let φn ∈ C1
0 (Rd; Rd) be such that

φn(y) = y, if y ∈ Bn(0), ‖∇φn‖L∞ ≤ 1,

and fix u ∈ BV (Ω; Rd) ∩ Lp(Ω; Rd).
As proven in [3, Theorem 4.9], directly from the definitions and properties for the approxi-

mate discontinuity set and the triplets (u+, u−, νu) (cf. Subection 2.2), it implies that

Jφn(u) ⊂ Ju,

(φn(u)+, φn(u)−, νφn(u)) = (φn(u+), φn(u−), νu), in Jφn(u).

Moreover, one has

|Dφn(u)|(B) ≤ |D(u)|(B) for every Borel set B ⊂ Ω. (3.11)

Consequently,
φn(u) ∈ BV (Ω; Rd) ∩ L∞(Ω; Rd).

Since φn(u) → u in L1, by the lower semicontinuity of I (since q > 1) and by case 1, we get

I(u, v) ≤ lim inf
n→+∞

[ ∫
Ω

W (x, φn(u),∇φn(u))dx +
∫

Jφn(u)

γ(x, φn(u)+, φn(u)−, νφn(u))dHN−1

+
∫

Ω

W∞
(
x, φn(u),

dDc(φn(u))
d|Dc(φn(u))|

)
d|Dcφn(u)| +

∫
Ω

Cϕ(x, φn(u), v)dx
]
.

By the upper semicontinuity of γ in all of its arguments as stated in [17, Lemma 2.15(c)] and
by the fact that γ(x, a, b, ν) ≤ C|a − b| for every (x, a, b, ν) ∈ Ω × Rd × Rd × SN−1 (cf. [17,
Lemma 2.15(d)]) and the properties of φn, we have

γ(x, φn(u+), φn(u−), νu) ≤ C|u+ − u−|,

and so, by Fatou’s lemma, we obtain

lim sup
n→+∞

∫
Jφn(u)

γ(x, φn(u)+, φn(u)−, νu)dHN−1 ≤
∫

Ju

γ(x, u+, u−, νu)dHN−1.

Moreover, we have

lim sup
n→+∞

∫
Ω

Cϕ(x, φn(u), v)dx =
∫

Ω

Cϕ(x, u, v)dx. (3.12)

Indeed, as already observed in step 2, Cϕ(x, ·, v) is upper semicontinuous and φn(u) is pointwise
converging to u and thus we can apply the inverted Fatou’s lemma.

For what concerns the other terms, setting Ωn := {x ∈ Ω \ Ju : |u(x)| ≤ n}, we have

lim sup
n→+∞

∫
Ω

W (x, φn(u),∇φn(u))dx

= lim sup
n→+∞

[ ∫
Ωn

W (x, φn(u),∇φn(u))dx+
∫

(Ω\Ωn)\Ju

W (x, φn(u),∇φn(u))dx
]

≤
∫

Ω

W (x, u,∇u)dx+ lim sup
n→+∞

C[|Ω \ Ωn| + |Dφn(u)|((Ω \ Ωn) \ Ju)].
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On the other hand, by (3.11), we deduce that

lim sup
n→+∞

|Dφn(u)|((Ω \ Ωn) \ Ju) ≤ lim sup
n→+∞

|Du|(Ω \ (Ωn ∪ Ju)) = 0,

and so
lim sup
n→+∞

∫
Ω

W (x, φn(u),∇φn(u))dx ≤
∫

Ω

W (x, u,∇u)dx.

Similarly,

lim sup
n→+∞

∫
Ω

W∞
(
x, φn(u),

dDcφn(u)
d|Dcφn(u)|

)
d|Dcφn(u)|

= lim sup
n→+∞

∫
Ωn

W∞
(
x, φn(u),

dDcφn(u)
d|Dcφn(u)|

)
d|Dcφn(u)|

+ lim sup
n→+∞

∫
(Ω\Ωn)\Ju

W∞
(
x, φn(u),

dDcφn(u)
d|Dcφn(u)|

)
d|Dcφn(u)|

≤
∫

Ω

W∞
(
x, u,

dDcu

d|Dcu|
)
d|Dcu| + C lim sup

n→+∞
[|Dφn(u)|((Ω \ Ωn) \ Ju)]

=
∫

Ω

W∞
(
x, u,

dDcu

d|Dcu|
)
d|Dcu|.

This finishes the proof.

Part 2 q = 1.
(1) Lower bound. Let u ∈ BV (Ω; Rd) ∩ Lp(Ω; Rd), v ∈ L1(Ω; Rm), un ∈ BV (Ω; Rd) and

vn ∈ L1(Ω; Rm) such that un → u strongly in L1 and vn ⇀ v in L1. Then by Lemma 3.1
exactly as in the case q > 1, (3.6) continues to hold. Moreover, [8, Theorem 1.1] ensures that

∫
Ω

Cϕ(x, u, v)dx ≤ lim inf
n→+∞

∫
Ω

ϕ(x, un, vn)dx.

Again the lower bound follows from the superadditivity of the lim inf.
(2) Upper bound. Let u ∈ BV (Ω; Rd) ∩ Lp(Ω; Rd) and v ∈ L1(Ω; Rm). We aim to prove

(3.8), constructing convenient sequences un ∈ BV (Ω; Rd) and vn ∈ L1(Ω; Rm) with un → u in
L1 and vn ⇀ v in L1.

Case 1 As in the case q > 1, we first assume that u ∈ L∞(Ω; Rd) and develop our proof
in three steps.

Step 1 This step 1 is identical to the step 1 of case 1 in part 1 proven for q > 1.
Step 2 For what concerns this step, we preliminarly consider a continuous increasing

function θ : [0,+∞) → [0,+∞) such that

lim
t→+∞

θ(t)
t

= +∞. (3.13)

Then consider a decreasing sequence ε→ 0 and take the functional Iε : BV (Ω; Rd)×L1(Ω; Rm)
→ R ∪ {+∞}, defined as

Iε(u, v) := I(u, v) + ε

∫
Ω

θ(|v|)dx. (3.14)

Let C(ϕ(x, u, ·) + εθ(| · |)) be the convexification of ϕ(x, u, ·) + εθ(| · |) as in (1.5).
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By [16, Theorem 6.68, Remark 6.69], we have that for every w ∈ L1(Ω; Rm),
∫

Ω

C(ϕ(x,w, v) + εθ(|v|))dx = inf
{

lim inf
n→+∞

∫
Ω

(ϕ(x,w, vn) + εθ(|vn|))dx : vn ⇀ v in L1
}
,

whenever the second term is finite. Moreover, the left-hand side coincides with the sequentially
weakly-L1 lower semicontinuous envelope. Consequently, for every n ∈ N, let un be the sequence
constructed in the step 1 of case 1 in part 1, and let vn

j ∈ L1(Ω; Rm) be such that vn
j ⇀

v in L1 as j → +∞ and
∫

Ω

C(ϕ(x, un, v) + εθ(|v|))dx = lim
j→+∞

∫
Ω

(ϕ(x, un, v
n
j ) + εθ(|vn

j |))dx.

The proof now develops as in [16, Proposition 3.18]. The growth condition (v) and the fact
that un is bounded in L∞ and thus in L1, imply that there exists a constant M such that

sup
n,j∈N

∫
Ω

θ(|vn
j |)dx ≤M. (3.15)

We observe that the growth conditions on θ guarantee that sup
n,j∈N

‖vn
j ‖L1(Ω) ≤ C(M). Moreover,

the separability of C0(Ω) allows us to consider a dense sequence of functions {ψl}.
Next, in the way similar to the argument used in the analogous step for q > 1, for every

ε > 0, we construct a diagonalizing sequence vn as follows. For each n ∈ N, consider j(n)
increasing, such that

∣∣∣
∫

Ω

(ϕ(x, un, v
n
j(n)) + εθ(|vn

j(n)|) − C(ϕ(x, un, v) + εθ(|v|)))dx
∣∣∣ ≤ 1

n
,

∣∣∣
∫

Ω

(vn
j(n) − v)ψldx

∣∣∣ ≤ 1
n
, l = 1, · · · , n.

Define vn := vn
j(n). The bounds on θ, the fact that un is bounded in L1 and the separability of

C0(Ω) guarantee that vn


⇀ v in M(Ω), and moreover, (3.15), Dunford-Pettis’ theorem imply

that the convergence of vn towards v is weak-L1.
Step 3 Arguing as in the first part of the step 3 of case 1 in part 1 for q > 1, we can prove

that
lim sup
n→+∞

∫
Ω

(ϕ(x, un, vn) + εθ(|vn|))dx ≤
∫

Ω

C(ϕ(x, u, v) + εθ(|v|))dx.

Next we define

Iε(u, v) := inf
{

lim inf
n→+∞ Iε(un, vn) : (un, vn) ∈ BV (Ω; Rd) × L1(Ω; Rm),

un → u in L1, vn ⇀ v in L1
}
. (3.16)

The same argument in the last part of the step 3 of case 1 in part 1 for q > 1, allows to prove
that

Iε(u, v)≤
∫

Ω

W (x, u,∇u)dx+
∫

Ju

γ(x, u+, u−, νu)dHN−1

+
∫

Ω

W∞
(
x, u,

dDcu

d|Dcu|
)
d|Dcu| +

∫
Ω

C(ϕ(x, u, v) + εθ(|v|))dx (3.17)
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for every u ∈ BV (Ω; Rd) ∩ L∞(Ω; Rd) and v ∈ L1(Ω; Rm). On the other hand, we observe
that the sequence Iε(u, v) is increasing in ε and I ≤ Iε for every ε. Moreover, by virtue of the
increasing behavior in ε of ϕ + εθ, invoking [16, Proposition 4.100], it results that for every
(x, u) ∈ Ω × Rd, we have

inf
ε
C(ϕ(x, u, v) + εθ(|v|)) = lim

ε→0
C(ϕ(x, u, v) + εθ(|v|)) = Cϕ(x, u, v).

Thus applying Lebesgue monotone convergence theorem, we have

I(u, v) ≤ lim
ε→0

Iε(u, v)

= lim
ε→0

( ∫
Ω

W (x, u,∇u)dx+
∫

Ju

γ(x, u+, u−, νu)dHN−1

+
∫

Ω

W∞
(
x, u,

dDcu

d|Dcu|
)
d|Dcu| +

∫
Ω

C(ϕ(x, u, v) + εθ(|v|))dx
)

=
∫

Ω

W (x, u,∇u)dx+
∫

Ju

γ(x, u+, u−, νu)dHN−1

+
∫

Ω

W∞
(
x, u,

dDcu

d|Dcu|
)
d|Dcu| +

∫
Ω

Cϕ(x, u, v)dx (3.18)

for every (u, v) ∈ (BV (Ω; Rd) ∩ L∞(Ω; Rd)) × L1(Ω; Rm).

Case 2 Now we consider u ∈ BV (Ω; Rd) ∩ Lp(Ω; Rd) and v ∈ L1(Ω; Rm).
To achieve the upper bound, we can preliminarly observe that, a proof entirely similar to

[16, Proposition 3.18], guarantees that for every ε > 0, the functional Iε(u, v), defined in (3.16)
is sequentially weakly lower semicontinuous with respect to the topology L1(Ω; Rd)strong ×
L1(Ω; Rm)weak. Thus, arguing exactly as in the case 2 in part 1 for q > 1, we have that

Iε(u, v)≤
∫

Ω

W (x, u,∇u)dx+
∫

Ju

γ(x, u+, u−, νu)dHN−1 +
∫

Ω

W∞
(
x, u,

dDcu

d|Dcu|
)
d|Dcu|

+
∫

Ω

C(ϕ(x, u, v) + εθ(|v|))dx. (3.19)

Finally, the monotonicity argument for ε invoked in the step 3 of case 1 in part 2 for
q = 1 can be recalled also in this context leading to the same inequality in (3.18) for every
u ∈ BV (Ω; Rd)∩Lp(Ω; Rd) and for every v ∈ L1(Ω; Rm), and this concludes the proof of (3.8).

Now we present the proof of Theorem 1.2, which is much easier than the latter one, since,
by virtue of the continuous embedding of BV (Ω; Rd) in L

N
N−1 (Ω; Rd), it does not involve any

truncature argument.

Proof of Theorem 1.2 We omit the details of the proof since it develops in the same way
as that of Theorem 1.1. First we invoke Corollary 3.1 and assume without loss of generality
that W is quasiconvex in the last variable. Then we prove a lower bound for the relaxed energy,
and finally we show that the lower bound is also an upper bound. As in Theorem 1.1, we may
consider two separate cases: q > 1 and q = 1.

(1) Lower bound for the cases q = 1 and q > 1. The proof of the lower bound is identical
to that of Theorem 1.1.

(2) Upper bound.
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(i) The case of q > 1. Let u ∈ BV (Ω; Rd) and v ∈ Lq(Ω; Rm). We can assume
∫

Ω

W (x, u,∇u)dx+
∫

Ju

γ(x, u+, u−, νu)dHN−1

+
∫

Ω

W∞
(
x, u,

dDcu

d|Dcu|
)
d|Dcu| +

∫
Ω

Cϕ(x, u, v)dx < +∞. (3.20)

Without loss of generality, we assume also that W and ϕ ≥ 0. Applying [17, Theorem 2.16],
we can get a sequence {un} in W 1,1(Ω; Rd) such that un → u in L1 and

lim
∫

Ω

W (x, un,∇un)dx =
∫

Ω

W (x, u,∇u)dx+
∫

Ju

γ(x, u+, u−, νu)dHN−1

+
∫

Ω

W∞
(
x, u,

dDcu

d|Dcu|
)
d|Dcu|.

We observe that, by the coercivity condition on W and by (3.20), ∇un is bounded in L1.
Moreover, the continuous embedding of BV (Ω; Rd) in L

N
N−1 (Ω; Rd), implies that un is bounded

in L
N

N−1 (Ω; Rd) and thus in Lp(Ω; Rd) since we are assuming 1 ≤ p ≤ N
N−1 .

Then, as in the proof of Theorem 1.1 (see the step 2 of case 1 in part 1 for q > 1), we
can construct a recovery sequence vn using the relaxation theorem in [16, Theorem 6.68] and
the same diagonalizing argument. We emphasize that there is no need to make a preliminary
truncature of the recovery sequence un. Indeed, to ensure that vn is bounded in Lq(Ω; Rm)
(required to obtain the weak convergence of vn towards v in Lq), it suffices to use the growth
condition of ϕ and the fact that un is bounded in Lp.

Therefore, it is possible to get vn ⇀ v in Lq and such that

lim sup
n→+∞

∫
Ω

ϕ(x, un, vn)dx ≤
∫

Ω

Cϕ(x, u, v)dx.

The upper bound then follows by the sub-additivity of the lim sup.
(ii) The case of q = 1. In analogy with the case of q > 1, there is no need of truncature

because of the continuous embedding of BV in L
N

N−1 . As for Theorem 1.1, it suffices to
approximate the functional I by Iε in (3.14) and consequently it is enough to use, for the
correspective relaxed functional, the diagonalization argument adopted in Theorem 1.1 (see the
step 2 of case 1 in part 2 for q = 1) via an application of Dunford-Pettis’ theorem. Finally
the monotonicity behavior in ε of Iε, the approximation of the energy densities allowed by [16,
Proposition 4.100] and the Lebegue monotone convergence theorem conclude the proof.
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