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Abstract Let Ω be a bounded domain in R
n with a smooth boundary, and let hp,q be

the space of all harmonic functions with a finite mixed norm. The authors first obtain
an equivalent norm on hp,q, with which the definition of Carleson type measures for hp,q

is obtained. And also, the authors obtain the boundedness of the Bergman projection on
hp,q which turns out the dual space of hp,q. As an application, the authors characterize the
boundedness (and compactness) of Toeplitz operators Tµ on hp,q for those positive finite
Borel measures µ.
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1 Introduction

Let Ω ⊂ R
n be a bounded domain with C∞ boundary. Let λ(x) be a defining function of Ω,

that is, λ is a C∞ real valued function and Ω = {x ∈ R
n : λ(x) < 0} is bounded, |∇λ(x)| �= 0

on the boundary ∂Ω of Ω (see [1]), where ∇ =
(

∂
∂x1

, ∂
∂x2

, · · · , ∂
∂xn

)
. For r > 0 small enough, let

Ωr,λ = {x ∈ R
n : λ(x) < −r}. Ωr,λ is also a C∞ domain with the defining function λ(x)+r and

∂Ωr,λ = {x ∈ R
n : λ(x) = −r}. We denote by dσr,λ the induced surface measure on ∂Ωr,λ. Of

course, there are infinitely many defining functions of Ω and any two different defining functions
yield two different systems of {∂Ωr,λ} and {dσr,λ}. We denote by dm the Lebesgue volume
measure on R

n.
Given a defining function λ, 0 < p < ∞ and r small enough, we write

Mp(f, r, λ) =
{∫

∂Ωr,λ

|f(ζ)|pdσr,λ(ζ)
} 1

p

.

For ε > 0 small and fixed, 0 < p, q < ∞, ‖f‖p,q,λ is defined as

‖f‖p,q,λ =
{∫ ε

0

M q
p (f, r, λ)dr

} 1
q

.

Let h(Ω) be the family of all harmonic functions on Ω. The harmonic mixed norm space hp,q

is defined to be
hp,q(Ω) = {f ∈ h(Ω) : ‖f‖p,q,λ < ∞}.
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The mixed norm space for holomorphic functions on the unit disc (or the unit ball) has been
studied in [2–5] and also by some other authors. As shown in [6], hp,q(Ω) is independent of λ,
and any two different defining functions λ1 and λ2 of Ω yield two equivalent norms ‖ · ‖p,q,λ1

and ‖ · ‖p,q,λ2 . So, we will omit the subscript λ if no confusion occurs, and for example we
simply write ‖f‖p,q for ‖f‖p,q,λ and Ωr for Ωr,λ, respectively.

In what follows, we will use C to stand for positive constants whose value may change from
line to line but does not depend on the functions being considered. Two quantities A and B
are called equivalent (denoted by “A � B”) if there exists some C such that C−1A ≤ B ≤ CA.

Let r(x) = dist(x, ∂Ω) for x ∈ Ω. Then r(x) is continuous on Ω. Write r0 = max{r(x) : x ∈
Ω} which is a finite positive number. For j = 1, 2, · · · and rj = r0

2j , set

Sj = {x ∈ Ω : rj < r(x) ≤ rj−1}.

Then Ω =
∞⋃

j=1

Sj . For fixed positive exponents p and q, we define the mixed norm space Lp,q(Ω)

to be the set of all Lebesgue measurable functions f on Ω for which

‖f‖Lp,q =
{ ∞∑

j=1

(∫
Sj

|f(x)|pdm(x)
) q

p

2j( q
p−1)

} 1
q

< ∞.

It is easy to check that Lp,q(Ω) is a Banach space with the norm ‖ · ‖Lp,q when 1 < p, q < ∞.
In Section 2, we will prove that

hp,q(Ω) = Lp,q(Ω) ∩ h(Ω),

and that hp,q(Ω) is a closed subspace of Lp,q(Ω). Moreover, ‖f‖p,q � ‖f‖Lp,q for f ∈ h(Ω). If
p = q, Lp,q(Ω) is just the space Lp(Ω) with the norm defined by

‖f‖p =
(∫

Ω

|f(x)|pdm(x)
) 1

p

.

Setting t1 = max(p, q), t2 = min(p, q), by the Hölder’s inequality,

1
C
‖f‖t2 ≤ ‖f‖Lp,q ≤ C‖f‖t1 .

And also, when p = q, hp,q(Ω) is the harmonic Bergman space bp(Ω) (see [7]).
Carleson measures for Hardy (and for Bergman) spaces play a very important role in the

one and several complex variables analysis. It is a powerful tool to study the problems such as
H1-BMO duality, Corona problem, and many others. We know that the mixed norm space, as
the generalization of Bergman space, was introduced some decades ago, but unlike the one in
the Bergman space setting, there is nothing in the literature about the Carleson type measures
for mixed norm spaces until now, or even on the unit disc, the simplest case. In Section 2,
we will obtain an equivalent norm on hp,q, which inspires us to introduce the Carleson type
measures for hp,q. Our definition is also suitable for holomorphic mixed norm spaces.

Let R(x, y) be the reproducing kernel of the harmonic Bergman space b2(Ω). Known from
[7], R(x, y) is symmetric and real-valued. And for fixed x ∈ Ω, as a function of y, R(x, y) is
bounded on Ω. Hence, the integral operator P , called the Bergman projection,

Pf(x) =
∫

Ω

R(x, y)f(y)dm(y), x ∈ Ω (1.1)

is well defined on L1(Ω). This means that P is an integral operator that maps L1(Ω) to h(Ω).
More generally, for finite positive Borel measures μ on Ω (being simply written as μ ≥ 0), the
integral

Pμ(x) =
∫

Ω

R(x, y)dμ(y)
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also defines a function harmonic on Ω (see [7–8] for details). The Toeplitz operator with the
symbol μ is defined to be

Tμf(x) =
∫

Ω

R(x, y)f(y)dμ(y) (1.2)

for f ∈ h∞, where h∞ denotes the space of all bounded functions in h(Ω). We will see in
Section 2 that h∞ is dense in hp,q, and therefore Tμ as (1.2) is densely defined on hp,q for each
p and q in (1,∞).

Toeplitz operators acting on holomorphic Bergman spaces were well studied (see for example
[9–10]). In the hamonic Bergman space setting, the operator Tμ was also studied by many
authors. Miao obtained the boundedness, compactness and Schatten classes of this operator on
the harmonic Bergman spaces bp in the unit ball for p > 1 in [11]. Choe, Lee and Na discussed
this operator from bp(Ω) to bq(Ω) for 1 < p, q < ∞ in [12–13]. Recently, Choe et al considered
positive Toeplitz operators of Schatten class and Schatten-Herz class in [14–15], respectively.
Meanwhile, Choe et al discussed the same problems in the setting of a half-space in [8, 16–17].

In Section 3, we obtain the boundedness of the Bergman projection on hp,q, with which
we formulate the dual space of hp,q. In Section 4, we will apply the results of Sections 2–3 to
characterize the boundedness and the compactness of Toeplitz operators Tμ on the harmonic
mixed norm space for those μ ≥ 0. Our results will extend those mentioned above.

2 Carleson Type Measures of hp,q(Ω)

Carleson measures play a very important role in the Hardy and Bergman space theory (see
[12, 18] and the references therein). Because the mixed norm space hp,q(Ω) is an extension of
Bergman spaces, we believe that the “Carleson measure” should be well defined for hp,q(Ω),
and also, this measure should provide a powerful tool for the study on hp,q(Ω). Before giving
our definition, we will exhibit an equivalent norm on the mixed norm space as follows.

Theorem 2.1 Given 1 < p, q < ∞, then for f ∈ h(Ω) there holds

‖f‖q
p,q �

∞∑
j=1

[ ∫
Sj

|f(x)|pdm(x)
] q

p

2j( q
p−1).

Proof Applying Theorems 2–3 in [1] on the domain Ωr, we have some positive constant
ε such that, for f ∈ h(Ω) and 0 < r < t ≤ ε, Mp(f, t) ≤ CrMp(f, r). A careful check of the
implication in [1] shows that the constant Cr depends on the smoothness and the curvature of
∂Ωr. In the present case, Ω is a bounded C∞ domain, and hence Cr depends actually only on
∂Ω. This means that we have some constant C such that

Mp(f, t) ≤ CMp(f, r), when 0 < r < t ≤ ε. (2.1)

Fix J to be the positive integer with 2−Jr0 > ε and 2−(J+1)r0 ≤ ε. Set ΩJ = {x ∈ Ω : r(x) ≥
2−(J+1)r0}. Thus

‖f‖q
p,q ≤ sup

x∈ΩJ

|f(x)|q +
∞∑

j=J+2

∫ rj−1

rj

[ ∫
∂Ωr

|f(ζ)|pdσr(ζ)
] q

p

dr

≤ sup
x∈ΩJ

|f(x)|q + C

∞∑
j=J+2

[Mp(f, rj)(rj−1 − rj)
1
q ]q

≤ sup
x∈ΩJ

|f(x)|q + C
∞∑

j=J+2

[ ∫ rj

rj+1

Mp
p (f, r)r( p

q −1)dr
] q

p
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≤ C

∞∑
j=1

[ ∫ rj

rj+1

Mp
p (f, r)dr

] q
p
( r0

2j

)1− q
p

= C

∞∑
j=1

[ ∫
Sj

|f(x)|pdm(x)
] q

p

2j( q
p−1).

By the same argument, we get

‖f‖q
p,q ≥

∞∑
j=J+2

[Mp(f, rj−1)(rj−1 − rj)
1
q ]q ≥ C

∞∑
j=J+2

[ ∫
Sj

|f(x)|pdm(x)
] q

p

2j( q
p−1).

On the other hand,

J+1∑
j=1

[ ∫
Sj

|f(x)|pdm(x)
] q

p

2j( q
p−1) ≤ C sup

x∈ΩJ

|f(x)|q ≤ C‖f‖q
p,q.

Thus

‖f‖q
p,q �

∞∑
j=1

[ ∫
Sj

|f(x)|pdm(x)
] q

p

2j( q
p−1).

The proof is completed.

Corollary 2.1 For 1 < p, q < ∞, hp,q(Ω) = Lp,q(Ω)∩h(Ω), and hp,q(Ω) is a closed subspace
of Lp,q(Ω). Moreover, ‖f‖p,q � ‖f‖Lp,q for f ∈ h(Ω).

Proof The proof is routine and omitted.

Remark 2.1 The conclusion of Theorem 2.1 is valid for all possible 0 < p, q < ∞. To
prove this, instead of using the estimate (2.1) we apply the claim that there exist some positive
constants c1 < c2 such that for all f ∈ h(Ω) and 0 < r < ε,

M q
p (f, r) ≤ C

1
r

∫ c2r

c1r

M q
p (f, t)dt.

See [6] for the detail.

In view of Theorem 2.1, we give the definition of the Carleson type measure for hp,q(Ω) as
follows.

Definition 2.1 A finite positive Borel measure μ on Ω is called a Carleson type measure
for hp,q if there exists some constant C such that for f ∈ hp,q,{ ∞∑

j=1

[ ∫
Sj

|f(x)|pdμ(x)
] q

p

2j( q
p−1)

} 1
q ≤ C‖f‖p,q;

and also, μ is called a vanishing Carleson type measure for hp,q if

lim
k→0

{ ∞∑
j=1

[ ∫
Sj

|fk(x)|pdμ(x)
] q

p

2j( q
p−1)

} 1
q

= 0

for each bounded sequence {fk}∞k=1 in hp,q(Ω) which converges to 0 uniformly on each compact
subset of Ω.
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When p = q, this definition coincides with the Carleson measures for Bergman spaces in [12].

Our second theorem is about the sharp estimate for the integral mean of the Bergman
kernel R(·, x). To get this theorem, we need the following lemma. For this purpose we set
d(x, y) = r(x) + r(y) + |x − y|.

Lemma 2.1 For any s > n − 1, then there exists C such that for all x ∈ Ω and 0 < r ≤ ε,∫
∂Ωr

1
d(x, y)s

dσ(y) ≤ C

(r(x) + r)s−(n−1)
.

Proof For 0 < a < b, ∫
∂Ωr∩B(x,a)

dσ(y) ≤ Can−1

and ∫
∂Ωr∩{y:a≤|y−x|<b}

1
[r(x) + r + |y − x|]s dσ(y) ≤ C

[r(x) + r + a]s
bn−1.

Hence, with d(x, y) = r(x) + r(y) + |x − y|,∫
∂Ωr

1
d(x, y)s

dσ(y)

=
∫

∂Ωr∩B(x,r(x)+r)

1
d(x, y)s

dσ(y) +
∞∑

j=1

∫
∂Ωr∩{y:2j−1(r(x)+r)≤|y−x|<2j(r(x)+r)

1
d(x, y)s

dσ(y)

≤ C

(r(x) + r)s
(r(x) + r)n−1 +

∞∑
j=1

C

[2j−1(r(x) + r)]s
[2j(r(x) + r)]n−1

≤ C

(r(x) + r)s−(n−1)
.

The proof is completed.

Corollary 2.2 For s > −1, t < 1 with s + t > 0, there exists some C such that∫
Ω

dm(y)
d(x, y)n+sr(y)t

≤ C

r(x)s+t
.

Proof It can easily follow from Lemma 2.1 and the fact that∫
Ω

dm(y)
d(x, y)n+sr(y)t

�
∫ ε0

0

ρ−t

∫
∂Ωρ

1
d(x, y)n+s

dσρ(y)dρ.

The proof is completed.

Remark 2.2 Restricting s, t ≥ 0, this is just Lemma 4.1 in [7], which is the essential
estimate there.

Theorem 2.2 For p > n−1
n , we have that

Mp(R(·, x), r) ≤ C

(r(x) + r)n−n−1
p

,

and the exponent n − n−1
p in the left-hand side is best possible.
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Proof By Theorem 1.1 in [7], we have

|R(y, x)| ≤ C

d(x, y)n
and |R(x, x)| � r(x)−n

for all x, y ∈ Ω. Then, Lemma 2.1 tells us

Mp
p (R(·, x), r) ≤ C

∫
∂Ωr

1
d(y, x)pn

dσr(y) ≤ C

(r(x) + r)pn−(n−1)
.

For any x ∈ Ω and 0 < δ < 1, we set the Euclidean ball Eδ(x) = {y ∈ Ω : |y − x| < δr(x)}.
Now for y ∈ Eδ(x), by [7] again we have

|R(y, x) − R(x, x)| ≤ |y − x|max
{∣∣∣∂R(y, x)

∂y

∣∣∣ : y ∈ Eδ(x)
}

≤ δr(x)max
{ 1

d(x, y)n+1
: y ∈ Eδ(x)

}
≤ δ

r(x)n
.

Then, we can chose some small δ > 0 fixed such that for all y ∈ Eδ(x),

|R(y, x)| ≥ R(x, x) − δ

r(x)n
≥ C

r(x)n
.

Therefore, for x ∈ ∂Ωr,

Mp
p (R(·, x), r) ≥

∫
∂Ωr∩Eδ(x)

|R(y, x)|pdσr(y)

≥ C

∫
∂Ωr∩Eδ(x)

1
r(x)pn

dσr(y)

=
C

r(x)pn−(n−1)
.

This means that the exponent n − n−1
p is best possible. The proof is completed.

To characterize Carleson type measures for hp,q, we need some more lemmas. The first
is about the finite fold covering of Ω, which essentially comes from [19]. Much more general
setting can be seen in [20].

Lemma 2.2 Let δ ∈ (0, 1). Then, there exists a sequence {ak} in Ω satisfying the following
conditions:

(1) Ω =
∞⋃

k=1

E δ
3
(ak).

(2) There exists a positive integer M such that every point in Ω belongs to at most M of
the sets Eδ(ak).

Afterward, {ak} will always refer to the sequence chosen in the lemma above. Note that
ak → ∂Ω as k → ∞.

Lemma 2.3 For δ ∈ (0, 1), there exists some positive integer N = N(δ) such that for
k = 1, 2, · · · , and x ∈ Sk,

Eδ(x) ⊆
k+N⋃

j=k−N

Sj ,

where Sj = ∅ if j ≤ 0.
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Proof Given δ ∈ (0, 1), fix N so that 1− δ > r0
2N . Let x ∈ Sk and y ∈ Eδ(x). Then for any

ζ ∈ ∂Ω, we have

r(y) ≤ |x − y| + |x − ζ| < δr(x) + |x − ζ|.
Taking the infimum over all ζ ∈ ∂Ω, then

r(y) ≤ (δ + 1)r(x) ≤ (δ + 1)
r0

2k−1
<

r0

2k−2
.

Similarly, we get

r(y) ≥ r(x) − |x − y| > (1 − δ)r(x) > (1 − δ)
r0

2k
>

r0

2k+N
.

The proof is completed.

Remark 2.3 It is easy to see that N = 1 if δ is small enough.

Recall that Eδ(x) = {y ∈ Ω : |y − x| < δr(x)} for x ∈ Ω and 0 < δ < 1. Given a positive
Borel measure μ on Ω, we define the averaging function

μ̂δ(x) =
μ(Eδ(x))
m(Eδ(x))

� μ(Eδ(x))
r(x)n

, x ∈ Ω,

and the Berezin transform

μ̃(x) =
∫

Ω

|R(x, y)|2
R(x, x)

dμ(y), x ∈ Ω.

Now, we are in the position to exhibit the characterization of Carleson type measures (and
vanishing Carleson type measures) for mixed norm spaces, which generalizes [12].

Theorem 2.3 Let μ be a positive Borel measure on Ω and let 1 < p, q < ∞. Then μ is a
Carleson type measure for hp,q if and only if sup

x∈Ω
μ̂δ(x) ≤ C for any (or some) fixed δ ∈ (0, 1).

Proof Let μ be a Carleson type measure for hp,q. Notice that, for 1 < p, q < ∞, we have

1 − 1
p

+
1
np

− 1
nq

> 0.

For fixed x ∈ Ω, set

fx(y) =
R(y, x)

R(x, x)1−
1
p + 1

np− 1
nq

, y ∈ Ω. (2.2)

Then fx ∈ h(Ω). So Theorem 2.2 implies

Mp(fx, t) ≤ Cr(x)n− n
p + 1

p− 1
q

(r(x) + t)n−n
p + 1

p

and

‖fx‖q
p,q ≤ C

∫ ε

0

r(x)qn− qn
p + q

p−1

(r(x) + t)nq−nq
p + q

p

dt ≤ C,
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where C is independent of x. There exists some small δ0 > 0 such that |R(x, y)| � 1
r(x)n

whenever x ∈ Ω and y ∈ Eδ0(x). We may assume that x ∈ Sk, and thus Lemma 2.3 yields

[μ̂δ0(x)]
q
p �

[ ∫
Eδ0 (x)

|fx(y)|pr(y)
p
q −1dμ(y)

] q
p

≤ C
k+N∑

j=k−N

[ ∫
Sj

|fx(y)|pdμ(y)
] q

p

2j( q
p−1)

≤ C

∞∑
j=1

[ ∫
Sj

|fx(y)|pdμ(y)
] q

p

2j( q
p−1)

≤ C‖fx‖q
p,q ≤ C.

Then Lemma 3.2 in [12] implies that sup
x∈Ω

μ̂δ(x) ≤ C for any fixed δ ∈ (0, 1).

Conversely, we suppose sup
x∈Ω

μ̂δ(x) ≤ C for some δ. Without loss of generality, we may

assume that δ is small enough so that N = 1 in Lemma 2.3. For j = 1, 2, · · · , set

Kj = {k : E δ
3
(ak) ∩ Sj �= ∅} and Γj =

⋃
k∈Kj

E δ
3
(ak).

For any f ∈ hp,q, by the subharmonicity of |f |p, we know

max
x∈E δ

3
(ak)

|f(x)|pm(E δ
3
(ak)) ≤ C max

x∈E δ
3
(ak)

∫
E δ

3
(x)

|f(y)|pdm(y)

≤ C

∫
Eδ(ak)

|f(y)|pdm(y).

Then, we obtain
∞∑

j=1

[ ∫
Sj

|f(y)|pdμ(y)
] q

p

2j( q
p−1)

≤
∞∑

j=1

[ ∫
Γj

|f(y)|pdμ(y)
] q

p

2j( q
p−1)

≤
∞∑

j=1

[ ∑
Kj

max
y∈E δ

3
(ak)

|f(y)|pμ(E δ
3
(ak))

] q
p

2j( q
p−1)

≤ C

∞∑
j=1

[∑
Kj

max
y∈E δ

3
(ak)

|f(y)|pm(E δ
3
(ak))

] q
p

2j( q
p−1)

≤ C

∞∑
j=1

[∑
Kj

∫
Eδ(ak)

|f(y)|pdm(y)
] q

p

2j( q
p−1)

≤ C

∞∑
j=2

[ ∫
{y∈Ω:rj+2<r(y)≤rj−2}

|f(y)|pdm(y)
] q

p

2j( q
p−1)

≤ C

∞∑
j=1

[ ∫
Sj

|f(y)|pdm(y)
] q

p

2j( q
p−1) � ‖f‖q

p,q.

It turns out that μ is a Carleson type measure for hp,q. The proof is completed.
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Theorem 2.4 Let μ be a positive Borel measure on Ω and 1 < p, q < ∞. Then μ is a
vanishing Carleson measure for hp,q if and only if

lim
x→∂Ω

μ̂δ(x) = 0 (2.3)

for any (or some) fixed δ ∈ (0, 1).

Proof For x ∈ Ω, set the test function fx as (2.2), and then ‖fx‖hp,q ≤ C. And also, since
1

R(x,x) � r(x)n, it is easy to check that fx converges uniformly to 0 on any compact subset
of Ω as x → ∂Ω. If μ is a vanishing Carleson type measure for hp,q, similarly to the proof in
Theorem 2.3, there exists δ0 > 0 such that[

μ̂δ0(x)
] q

p ≤ C

∞∑
j=1

[ ∫
Sj

|fx(y)|pdμ(y)
] q

p

2j( q
p−1) → 0, x → ∂Ω.

This, together with Lemma 3.2 in [12], gives (2.3) for any δ ∈ (0, 1).
Conversely, suppose lim

x→∂Ω
μ̂δ(x) = 0 for some δ ∈ (0, 1). Then, (2.3) holds for any fixed δ

small enough. And for any ε > 0, we have some integer K such that

μ̂r(ak) < ε as k > K.

Noting that lim
j→∞

min{k : k ∈ Kj} = ∞, we have some J such that

min{k : k ∈ Kj} > K whenever j > J.

Now for any bounded sequence {fl} in hp,q, which convergs to 0 uniformly on each compact
subset of Ω as l → ∞, we have

∞∑
j=J+1

[ ∫
Sj

|fl(y)|pdμ(y)
] q

p

2j( q
p−1)

≤
∞∑

j=J+1

[∑
Kj

max
y∈E δ

3
(ak)

|fl(y)|pμ(E δ
3
(ak))

] q
p

2j( q
p−1)

≤ εq
∞∑

j=J+1

[∑
Kj

max
y∈E δ

3
(ak)

|fl(y)|pm(E δ
3
(ak))

] q
p

2j( q
p−1)

≤ Cεq
∞∑

j=J+1

[ ∫
Sj

|fl(y)|pdm(y)
] q

p

2j( q
p−1)

≤ C‖fl‖q
p,qε

q ≤ C1ε
q,

where C1 is independent of ε. On the other hand, for fixed J ,
J⋃

j=1

Sj is a compact subset of Ω,

fl converges to 0 uniformly on it, and thus

lim
l→∞

J∑
j=1

[ ∫
Sj

|fl(y)|pdμ(y)
] q

p

2j( q
p−1) = 0.

Therefore,

lim
l→∞

∞∑
j=1

[ ∫
Sj

|fl(y)|pdμ(y)
] q

p

2j( q
p−1) = 0.

By our definition, μ is a vanishing Carleson type measure for hp,q. The proof is completed.
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3 Projection and Duality

In this section, we will see that the Bergman projection P is bounded on the harmonic
mixed norm space hp,q for 1 < p, q < ∞, with which we will obtain the duality of hp,q.

Recall that, for fixed positive exponents p and q, the mixed norm space Lp,q(Ω) consists of
all Lebesgue measurable functions f on Ω for which

‖f‖Lp,q =
{ ∞∑

j=1

(∫
Sj

|f(x)|pdm(x)
) q

p

2j( q
p−1)

} 1
q

< ∞.

Theorem 3.1 Suppose 1 < p, q < ∞. Then P is a bounded operator from Lp,q to hp,q,
where P is defined as (1.1). Moreover, P (Lp,q) = hp,q.

Proof For 1 < p, q < ∞, then there exists ε > 0 such that p > p
q + ε. First, we prove that

the operator P is bounded on

Lp
α =

{
f measurable on Ω : ‖f‖Lp

α
=

(∫
Ω

|f(x)|pr(x)αdm(x)
) 1

p

< ∞
}

for α = p
q − 1 + ε (or α = p

q − 1 − ε). Fix some s ∈ (
1
q − 1

p + ε
p , min

(
1
p′ ,

1
q + ε

p

))
and set

h(x) = r(x)−s. Then by Theorem 1.1 and Lemma 4.1 in [7], we obtain∫
Ω

|R(x, y)|r(y)−
(

p
q −1+ε

)
h(y)p′

r(y)
p
q −1+εdm(y) ≤ Ch(x)p′

, x ∈ Ω

and ∫
Ω

|R(x, y)|r(y)−
(

p
q −1+ε

)
h(x)pr(x)

p
q −1+εdm(x) ≤ Ch(y)p, y ∈ Ω.

Hence, P is bounded in Lp
p
q −1+ε

by the Schur’s test (see [18]). We can check that P is also

bounded on Lp
p
q −1−ε by choosing the test function h(x) = r(x)−s with

s ∈
(1

q
− 1

p
− ε

p
, min

( 1
p′

,
1
q
− ε

p

))
.

It follows that ∫
Ω

|Pf(x)|pr(x)
p
q −1±εdm(x) ≤ C

∫
Ω

|f(x)|pr(x)
p
q −1±εdm(x)

for all f ∈ Lp
p
q −1±ε. In particular, if supp(f) ⊂ Sj , then∫

Sk

|Pf(x)|pr(x)
p
q −1dm(x) ≤ C2±ε(k−j)

∫
Ω

|f(x)|pr(x)
p
q −1dm(x)

for all k. Let f ∈ Lp,q and write f =
∑
j

fχSj . Assume first that the sum consists of a finite

number of terms. We get

‖(Pf)χSk
‖Lp

p
q
−1

≤
∑

j

‖(P (fχSj))χSk
‖Lp

p
q
−1

≤ C
∑

j

2
±ε(k−j)

p ‖fχSj‖Lp
p
q
−1

� C1

∑
j≤k

2
−ε(k−j)

p ‖fχSj‖Lp
p
q
−1

+ C2

∑
j>k

2
ε(k−j)

p ‖fχSj‖Lp
p
q
−1

.
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Now for two sequences X = {x(j)}+∞
j=−∞ and Y = {y(j)}+∞

j=−∞ as functions on all integers,
their convolution X ∗ Y is defined as the sequence Z = {z(j)}+∞

j=−∞ with

z(j) =
+∞∑

k=−∞
x(k)y(k − j).

Set xj = 2−
ε|j|

p and

yj =

{‖fχSj‖Lp
p
q
−1

, j ≥ 1,

0, j < 1.

Then

‖(Pf)χSk
‖Lp

p
q
−1

≤ CX ∗ Y (k), k ∈ Z.

Note that

‖(Pf)χSk
‖Lp

p
q
−1

� 2−k( 1
q− 1

p )‖(Pf)χSk
‖Lp

and

‖fχSj‖Lp
p
q
−1

� 2−j( 1
q − 1

p )‖fχSj‖Lp .

By Young’s inequality (see [21, p. 53]), we have

‖Pf‖Lp,q �
∥∥∥{

‖(Pf)χSk
‖Lp

p
q
−1

}
k

∥∥∥
lq
≤ C‖X‖l1

∥∥∥{
‖fχSj‖Lp

p
q
−1

}
j

∥∥∥
lq
≤ C‖f‖Lp,q .

From this and the fact that the subspace consisting of all functions f ∈ Lp,q with compact
support is dense in Lp,q, we see that P is bounded from Lp,q to hp,q. For any f ∈ hp,q(Ω), by
hp,q(Ω) ⊂ bt(Ω) with t = min{p, q} > 1 and [7], we have Pf = f , which means P (Lp,q) = hp,q.
The proof is completed.

Corollary 3.1 For 1 < p, q < ∞, h∞ ∩ C(Ω) is dense in hp,q.

Proof Let 1 < p, q < ∞ and fix f ∈ hp,q. For ε > 0, set fε = P (fχε) ∈ hp,q with χε the
characteristic function of Ωε. Then fε ∈ h∞ ∩ C(Ω). Since P is bounded from Lp,q to hp,q, we
have

‖f − fε‖p,q = ‖P (f − fε)‖p,q ≤ C‖f − fε‖Lp,q → 0

as ε → 0. Thus, h∞ ∩ C(Ω) is dense in hp,q. The proof is completed.

To obtain the duality for hp,q, we need the following duality for Lp,q.

Lemma 3.1 Let 1 < p, q < ∞, 1
p + 1

p′ = 1, 1
q + 1

q′ = 1. Then (Lp,q)∗ = Lp′,q′ under the
pairing

〈f, g〉 =
∫

Ω

f(x)g(x)dm(x). (3.1)

More precisely, T ∈ (Lp,q)∗ if and only if there exists a unique function g ∈ Lp′,q′ , such that
for any f ∈ Lp,q, Tf = 〈f, g〉 and ‖T ‖ = ‖g‖Lp′,q′ .
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Proof Let f ∈ Lp,q and g ∈ Lp′,q′ . By using the Hölder’s inequality twice, we know that
|〈f, g〉| is not more than

∞∑
j=1

∫
Sj

|f(x)g(x)|dm(x)

≤
∞∑

j=1

[ ∫
Sj

|f(x)|pr(x)p
(

1
q − 1

p

)
dm(x)

] 1
p
[ ∫

Sj

|g(x)|p′
r(x)p′

(
1
p− 1

q

)
dm(x)

] 1
p′

≤
{ ∞∑

j=1

[ ∫
Sj

|f(x)|pr(x)
p
q −1dm(x)

] q
p
} 1

q ·
{ ∞∑

j=1

[ ∫
Sj

|g(x)|p′
r(x)p′

(
1
p− 1

q

)
dm(x)

] q′
p′ } 1

q′

�
{ ∞∑

j=1

[ ∫
Sj

|f(x)|pdm(x)
] q

p

2j
(

q
p−1

)} 1
q ·

{ ∞∑
j=1

[ ∫
Sj

|g(x)|p′
dm(x)

] q′
p′

2j
(

q′
p′ −1

)} 1
q′

≤ ‖f‖Lp,q‖g‖Lp′,q′ . (3.2)

Hence, for g ∈ Lp′,q′ , T (·) = 〈·, g〉 defines a bounded linear functional T ∈ (Lp,q)∗ with

‖T ‖ ≤ ‖g‖Lp′,q′ . (3.3)

Conversely, suppose T ∈ (Lp,q)∗. By Theorem 6.16 in [22], we know, ∀j, T |Lp(Sj) ∈ (Lp(Sj))∗.
This means that there exist gj ∈ Lp′

(Sj) such that for any f ∈ Lp(Sj),

T (fχSj) =
∫

Sj

f(x)gj(x)dm(x), j = 1, 2, · · · .

Set FK =
K∑

j=1

χSj αj |gj|p′−1sgn gj , where

αj =

⎧⎪⎨⎪⎩2j( q′
p′ −1)

[( ∫
Sj

|gj(x)|p′
dm(x)

) q′
p′ − q

p
] 1

q

, gj �= 0 on Sj ,

0, gj = 0 on Sj ,

sgn gj(x) =

⎧⎨⎩
gj(x)
|gj(x)| , gj(x) �= 0,

0, gj(x) = 0.

Then

‖FK‖q
Lp,q

=
K∑

j=1

αq
j

( ∫
Sj

|gj(x)|p(p′−1)dm(x)
) q

p

2j( q
p−1)

=
K∑

j=1

( ∫
Sj

|gj(x)|p′
dm(x)

) q′
p′

2j( q′
p′ −1)

< ∞. (3.4)

By T ∈ (Lp,q)∗ and the linearity, we obtain

‖T ‖ · ‖FK‖Lp,q ≥ |T (FK)|

=
∣∣∣ K∑

j=1

αjT (χSj |gj |p′−1sgngj)
∣∣∣
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=
∣∣∣ K∑

j=1

αj

∫
Sj

|gj(x)|p′−1sgngj(x)gj(x)dm
∣∣∣

=
K∑

j=1

( ∫
Sj

|gj(x)|p′
dm

)1+ 1
q

(
q′
p′ − q

p

)
2j( q′

p′ −1)

=
K∑

j=1

( ∫
Sj

|gj(x)|p′
dm

) q′
p′

2j( q′
p′ −1)

. (3.5)

The last equality holds because 1 + 1
q

(
q′

p′ − q
p

)
= q′

p′ . By (3.4)–(3.5), we have

K∑
j=1

( ∫
Sj

|gj(x)|p′
dm(x)

) q′
p′

2j( q′
p′ −1) ≤ ‖T ‖

[ K∑
j=1

(∫
Sj

|gj(x)|p′
dm(x)

) q′
p′

2j( q′
p′ −1)

] 1
q

.

Define

GK(x) =
K∑

j=1

χSj(x)gj(x),

and then

‖GK‖Lp′,q′ =
[ K∑

j=1

(∫
Sj

|gj(x)|p′
dm(x)

) q′
p′

2j( q′
p′ −1)

] 1
q′ ≤ ‖T ‖. (3.6)

And for every z ∈ Ω, GK(z) → G(z) as K → ∞. This, together with (3.6), gives

GK → G in Lp′,q′ and ‖G‖Lp′,q′ ≤ ‖T ‖. (3.7)

Using the continuity of T and (3.7),

T (f) = lim
K→∞

K∑
j=1

T (χSjf)

= lim
K→∞

K∑
j=1

∫
Sj

f(x)gj(x)dm(x)

= lim
K→∞

∫
Ω

f(x)
K∑

j=1

χSj(x)gj(x)dm(x)

=
∫

Ω

f(x)G(x)dm(x).

The uniqueness of g is clear, because if g and g′ satisfy (3.1), then the integral of g − g′

over any measurable set E of finite measure is 0 (by taking χE for f), and the σ-finiteness of
m yields that g − g′ = 0 a.e. Moreover, (3.3) and (3.7) yield that ‖T ‖ = ‖g‖Lp′,q′ . The proof
is completed.

Theorem 3.2 Let 1 < p, q < ∞, 1
p + 1

p′ = 1, and 1
q + 1

q′ = 1. Then (hp,q)∗ = hp′,q′ under
the pairing

〈f, g〉 =
∫

Ω

f(x)g(x)dm(x).

More precisely, T ∈ (hp,q)∗ if and only if there is a unique function g ∈ hp′, q′ such that for any
f ∈ hp,q, T f = 〈f, g〉 and ‖T ‖ � ‖g‖p′,q′ .
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Proof For g ∈ hp′,q′ , (3.2) tells us that T (·) = 〈·, g〉 defines a bounded linear functional
T ∈ (hp,q)∗ with ‖T ‖ ≤ ‖g‖p′,q′ .

Conversely, suppose T ∈ (hp,q)∗. By Hahn-Banach theorem, T ∈ (Lp,q)∗. Then we have
some function G ∈ Lp′,q′ such that ‖G‖Lp′,q′ ≤ C‖T ‖ and for all f ∈ hp,q,

T (f) =
∫

Ω

f(x)G(x)dm(x).

Setting g = PG, Theorem 3.1 yields that g ∈ hp′,q′ and

T (f) =
∫

Ω

f(x)G(x)dm(x) =
∫

Ω

(Pf)(x)G(x)dm(x) =
∫

Ω

f(x)g(x)dm(x).

Hence, by Lemma 3.1,
‖g‖p′,q′ ≤ C‖G‖p′,q′ ≤ C‖T ‖.

Thus, ‖T ‖ � ‖g‖p′,q′ . The uniqueness of g comes from Lemma 3.1. The proof is completed.

4 The Toeplitz Operator

In this section, we will characterize the boundedness (and compactness) of Toeplitz operators
Tμ on the mixed norm spaces, provided that μ is a finite positive Borel measure. Before doing
this, we give the following “formal” equality which can be seen in [12].

Lemma 4.1 Let μ ≥ 0. Then

〈Tμf, g〉 =
∫

Ω

f(y)g(y)dμ(y)

for f, g ∈ h∞.

Here is the main result of this section.

Theorem 4.1 Let μ ≥ 0, 1 < p, q < ∞. Then the following statements are equivalent:
(1) Tμ is bounded on hp,q.
(2) μ is a Carleson type measure for hp,q.
(3) μ̃ is bounded on Ω.
(4) μ̂δ is bounded on Ω for any (or some) δ ∈ (0, 1).
(5) The sequence {μ̂r(ak)} is bounded for any (or some) r ∈ (0, 1) and {ak} as in Lemma

2.2.

Proof Combining [12, Theorem 3.5], [13, Proposition 2.3] and Theorem 2.3, we need only
to prove the implications (1)⇒(3) and (2)⇒(1).

(1)⇒(3) Suppose that Tμ is bounded on hp,q. Let fx be the test function as (2.2). Then
fx ∈ h(Ω) and ‖fx‖p,q ≤ C. Hence, Tμfx ∈ hp,q. Assuming that x ∈ Sk, by subharmonicity,
we know

|Tμfx(x)|q ≤ C

r(x)
nq
p +1− q

p

[ ∫
E δ

3
(x)

|Tμfx(y)|pr(y)
p
q −1dm(y)

] q
p

≤ C

r(x)
nq
p +1− q

p

{ k+N∑
j=k−N

[ ∫
Sj

|Tμfx(y)|pdm(y)
] q

p

2j( q
p−1)

}
≤ C

r(x)
nq
p +1− q

p

{ ∞∑
j=1

[ ∫
Sj

|Tμfx(y)|pdm(y)
] q

p

2j( q
p−1)

}
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� C

r(x)
nq
p +1− q

p

‖Tμfx‖q
p,q

≤ C

r(x)
nq
p +1− q

p

‖fx‖q
p,q.

Therefore, by the definitions of μ̃ and Tμ, we have

μ̃(x) � r(x)
n
p + 1

q− 1
p |Tμfx(x)| ≤ C‖fx‖p,q ≤ C.

This gives the statement (3).
(2)⇒(1) Suppose that μ is a Carleson type measure for hp,q. For any f, g ∈ h∞, by Lemma

4.1 and the proof in (3.2), we have

|〈Tμf, g〉| ≤
∞∑

j=1

∫
Sj

|f(x)g(x)|dμ(x)

≤
{ ∞∑

j=1

[ ∫
Sj

|f(x)|pr(x)
p
q −1dμ(x)

] q
p
} 1

q ·
{ ∞∑

j=1

[ ∫
Sj

|g(x)|p′
r(x)p′

(
1
p− 1

q

)
dμ(x)

] q′
p′ } 1

q′

�
{ ∞∑

j=1

[ ∫
Sj

|f(x)|pdμ(x)
] q

p

2
j

(
q
p−1

)} 1
q ·

{ ∞∑
j=1

[ ∫
Sj

|g(x)|p′
dμ(x)

] q′
p′

2
j

(
q′
p′ −1

)} 1
q′

≤ C‖f‖p,q‖g‖p′,q′ , (4.1)

where 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1. The duality argument shows that Tμ is bounded on hp,q,
because h∞ is dense in hp,q for all 1 < p, q < ∞. The proof is completed.

Theorem 4.2 Let μ ≥ 0, 1 < p, q < ∞. Then the following statements are equivalent:
(1) Tμ is compact on hp,q.

(2) μ is a vanishing Carleson type measure for hp,q.

(3) μ̃(x) → 0 as x → ∂Ω.

(4) μ̂δ(x) → 0 as x → ∂Ω for any (or some) δ ∈ (0, 1).
(5) μ̂r(ak) → 0 as k → ∞ for any (or some) r ∈ (0, 1) and {ak} as in Lemma 2.2.

Proof Similarly to Theorem 4.1, we need only to prove (1)⇒(3) and (2)⇒(1) as well.
(1)⇒(3) Taking fx as (2.2) once again, then {fx} ⊆ hp,q is bounded and converges to 0

uniformly on each compact subset of Ω as x → ∂Ω. Suppose that Tμ is compact on hp,q. By
statement (1),

lim
x→∂Ω

‖Tμfx‖p,q = 0.

As in the proof of Theorem 4.1, we have

[μ̃(x)]q ≤ Cr(x)
nq
p +1− q

p |Tμfx(x)|q ≤ C‖Tμfx‖q
p,q → 0

as x → ∂Ω.
(2)⇒(1) Let {fl} be a sequence of functions such that fl → 0 weakly in hp,q as l → ∞.

Since μ is a vanishing Carleson type measure for hp,q, then

lim
l→∞

{ ∞∑
j=1

[ ∫
Sj

|fl(x)|pdμ(x)
] q

p

2j( q
p−1)

} 1
q

= 0.
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By (4.1) and a duality argument, we get

‖Tμfl‖p,q ≤ C
{ ∞∑

j=1

[ ∫
Sj

|fl(x)|pdμ(x)
] q

p

2j( q
p−1)

} 1
q → 0

as l → ∞. Therefore, Tμ : hp,q → hp,q is compact. The proof is completed.
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