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Abstract The authors study the multi-soliton, multi-cuspon solutions to the Camassa-

Holm equation and their interaction. According to the solution formula due to Li in 2004

and 2005, the authors give the proper choice of parameters for multi-soliton and multi-

cuspon solutions, especially for n ≥ 3 case. The numerical method (the so-called local

discontinuous Galerkin (LDG) method) is also used to simulate the solutions and give

the comparison of exact solutions and numerical solutions. The numerical results for

the two-soliton and one-cuspon, one-soliton and two-cuspon, three-soliton, three-cuspon,

three-soliton and one-cuspon, two-soliton and two-cuspon, one-soliton and three-cuspon,

four-soliton and four-cuspon are investigated by the numerical method for the first time,

respectively.
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1 Introduction

The Camassa-Holm equation

ut − uxxt + 2ωux + 3uux = 2uxuxx + uuxxx (1.1)

was proposed in [1–2] as a model for the propagation of the unidirectional gravitational waves

in a shallow water approximation, with u representing the free surface of water over a flat

bed. This equation has attracted a lot of attention over the past decade due to its interesting

mathematical properties, e.g., it is an integrable equation and admits the peakon solution.

In [9] and [10], Li introduced a different approach associated with the Darboux transfor-

mation to construct the explicit expressions for multi-soliton solutions. And in [7], Dai and
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Li developed this explicit expressions and investigated the interactions of one-soliton and one-

cuspon, two-cuspon, two-soliton. (“soliton”— a stable isolated (i.e., solitary) traveling nonlin-

ear wave solution to a set of equations that obeys a superposition-like principle (i.e., solitons

maintain their shapes and pass through one another). “cuspon”—nonstandard solitons which

differ from peakons in that their wave peaks are cusps (a cusp is a point at which two branches

of a curve meet such that the tangent of each branch is equal).) However, they did not obtain

the phase shifts after the interactions among soliton and cuspon. When n,m ≥ 3, the choice of

the parameters for n-soliton or m-cuspon solution is more difficult. In [7], they could not give

the parameters for n,m ≥ 3 case.

The lack of smoothness at the peak of the cuspon introduces high-frequency dispersive errors

into the calculation. It is a challenge to find stable and accurate numerical schemes for solving

this equation. In [11], Xu and Shu developed a class of local discontinuous Galerkin (LDG)

methods for this nonlinear CH equation and proved that their proposed scheme is high-order

accurate, nonlinear stable and flexible for arbitrary h and p adaptivity. It was the first provably

stable finite element method for the Camassa-Holm equation. The numerical simulation for

peakon solutions was investigated in detail in [11]. But they did not provide the numerical

simulation for soliton or cuspon solutions.

In this paper, we study the multi-soliton, multi-cuspon solutions to the Camassa-Holm

equation and their interaction by using the numerical methods which were developed in [11].

According to the solution formula in [9–10], we give the proper choice of parameters for multi-

soliton and multi-cuspon solutions, especially for n ≥ 3 case. We also use numerical methods

(the so-called local discontinuous Galerkin (LDG) method) to simulate the solutions and give the

comparison of exact solutions and numerical solutions. To our best knowledge, those interaction

phenomena for n ≥ 3 case have not been found before.

The discontinuous Galerkin (DG) methods we use in this paper are a class of finite element

methods using completely discontinuous piecewise polynomial space for the numerical solution

and the test functions in the spatial variables. The DG discretization results in an extremely

local, element-based discretization, which is beneficial for parallel computing and maintaining

high-order accuracy on unstructured meshes. In particular, DG methods are well suited for hp-

adaptation, which consists of local mesh refinement and/or the adjustment of the polynomial

order in individual elements. They also have excellent provable nonlinear stability. The LDG

method for the Camassa-Holm equation (1.1) that we design in this paper shares all these nice

properties. More general information about DG methods can be found in [3, 5–6, 8]. Recently,

Xu and Shu also presented the LDG methods for the Hunter-Saxton equation in [12, 14] and

the Degasperis-Procesi equation in [15]. There is a recent review paper on the LDG methods for

high-order time-dependent partial differential equations (see [13]), which provides more details.

The paper is organized as follows. In Section 2, we present the formula of multi-soliton and
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its extension for the Camassa-Holm equation (1.1). We give some new numerical results for

n ≥ 3 case in Section 3 and Section 4. Concluding remarks are given in Section 5. To make the

paper complete, the details of the LDG method in [11] are collected in the Appendix.

2 The Explicit Expression of Multi-soliton for the Camassa-Holm
Equation

In this section, we will present the formula of multi-soliton and its extension for the Camassa-

Holm equation (1.1).

According to [9] and [10], we denote the two fundamental solutions to the KdV spectral

problem with a zero potential as

Φi(x) =
{

cosh(ξi), i = 2k + 1,
sinh(ξi) , i = 2k, (2.1)

ξi = ki

(
y +

√
ωt

2(k2
i − 1

4ω )

)
, (2.2)

ki =

√
1 − 2ω

ci

2
√
ω

. (2.3)

Then the n-soliton solution to the Camassa-Holm equation is given by

u(y, t) = ∂tln
(f1
f2

)
, (2.4)

f1 =
W (Φ1,Φ2, · · · ,Φn, e

y
2
√

ω )
W (Φ1,Φ2, · · · ,Φn)

, (2.5)

f2 =
W (Φ1,Φ2, · · · ,Φn, e

−y
2
√

ω )
W (Φ1,Φ2, · · · ,Φn)

, (2.6)

where W (Φ1,Φ2, · · · ,Φn) is the Wronskian, and the parameter y is related to x through

x = ln
(√

f2
1

f2
2

)
. (2.7)

This approach can be extended to Φ1 = sinh(ξ1), or Φ1 = cosh(ξ1), Φ2 = cosh(ξ2), etc. Through

this extension, we can get m-cuspon solutions and interaction of n-soliton and m-cuspon. For

the above solutions, even when n = 2, a few cases can arise, e.g. [7]. But when n ≥ 3, no

theoretical result has been made so far. And in some choices of Φi, ci · · · , the above formula can

not get multi-soliton, multi-cuspon solutions (in some cases, even not the solution to Camassa-

Holm equation). So how to get an n-soliton and m-cuspon solution becomes an interesting

problem when n+m ≥ 3.

In the following, we will list the parameter choices for different solutions when n+m ≥ 3.

To our best knowledge, this is the first time to give the discussion for the parameters of the

multi-soliton and multi-cuspon solution when n+m ≥ 3.
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(i) The interaction process n = 3

(a) The interaction of three ω-soliton

W (Φ1,Φ2,Φ3) = W (cosh(ξ1), sinh(ξ2), cosh(ξ3)), c3 > c2 > c1 > 0. (2.8)

(b) The interaction of three ω-cuspon

W (Φ1,Φ2,Φ3) = W (sinh(ξ1), cosh(ξ2), sinh(ξ3)), c3 < c2 < c1 < 0. (2.9)

(c) The interaction of one ω-soliton and two ω-cuspon

W (Φ1,Φ2,Φ3) = W (cosh(ξ1), sinh(ξ2), cosh(ξ3)), c3 < 0, c2 < 0, c1 > 0. (2.10)

(d) The interaction of two ω-soliton and one ω-cuspon

W (Φ1,Φ2,Φ3) = W (sinh(ξ1), cosh(ξ2), sinh(ξ3)), c3 > 0, c2 > 0, c1 < 0. (2.11)

(ii) The interaction process n = 4

(a) The interaction of four ω-soliton

W (Φ1,Φ2,Φ3,Φ4) = W (cosh(ξ1), sinh(ξ2), cosh(ξ3), sinh(ξ4)),

c4 > c3 > c2 > c1 > 0. (2.12)

(b) The interaction of four ω-cuspon

W (Φ1,Φ2,Φ3,Φ4) = W (cosh(ξ1), sinh(ξ2), cosh(ξ3), sinh(ξ4)),

c4 < c3 < c2 < c1 < 0. (2.13)

(c) The interaction of one ω-soliton and three ω-cuspon

W (Φ1,Φ2,Φ3,Φ4) = W (cosh(ξ1), sinh(ξ2), sinh(ξ3), sinh(ξ4)),

c1, c2, c4 < 0, c3 > 0, |c4| > |c3| > |c1| > |c2|. (2.14)

(d) The interaction of two ω-soliton and two ω-cuspon

W (Φ1,Φ2,Φ3,Φ4) = W (cosh(ξ1), sinh(ξ2), cosh(ξ3), sinh(ξ4)),

c1, c2 > 0, c3, c4 < 0, |c1| < |c2| < |c3| < |c4|. (2.15)

(e) The interaction of three ω-soliton and one ω-cuspon

W (Φ1,Φ2,Φ3,Φ4) = W (cosh(ξ1), sinh(ξ2), sinh(ξ3), sinh(ξ4)),

c1, c2, c4 > 0, c3 < 0, |c4| > |c3| > |c1| > |c2|. (2.16)

For one ω-soliton, one ω-cuspon and the interaction process n = 2, our numerical results

can solve the solutions very well. Since these results are the same as the results in [10], we omit

these results to save space. We will simulate in detail and report the phenomena of interaction

processes when n = 3 and n = 4.
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3 The Interaction Processes (n = 3)

In this section, we describe the interactions between soliton and cuspon when n = 3. We try

to find the soliton and cuspon solutions in different cases by extension (2.1)–(2.3) and (2.7) for

n = 3, and investigate the properties of the solutions. The computational domain is [−40, 40]

with periodic boundary conditions for the numerical results in this section.

3.1 The interaction of three ω-soliton

We construct the solution by choosing the parameters in (2.8) in the following way:

c1 = 0.3, c2 = 0.5, c3 = 0.7, ω = 0.01.
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Figure 1 The interaction process of three-soliton solution to the CH equation (1.1) with
the initial condition. Periodic boundary condition in [−40, 40]. P 3 elements and a uniform
mesh with 640 cells.
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We use the P 3 element with J = 640 cells in our computation of the LDG method. As shown

in Figure 1, we describe the interaction process of three-soliton at different times. We can see

clearly that for large |t| the three-soliton solution consists of three moves to the right solitons.

Like most cases, the wave with larger amplitude has faster speed. Moreover, note that this

description implicity identifies the peaks before and after the collision based on their speeds (or

amplitude). However, there is another possible interpretation: the rightmost soliton transfers its

energy to the leftmost soliton via the middle soliton without ever overtaking it. This interaction

process is very similar to that multi-soliton of KdV equation, except that the three solitons of

the Camassa-Holm equation have never merged into a single hump when collision happens. The

graph of ∂xu(x, t) is shown in Figure 2. We also note that the function ∂xu(x, t) is a continuous

function of x and t and further u(x, t) > 0.

x

ux

Figure 2 The function ∂xu(x, t) of three-soliton solution at T = −35.

3.2 The interaction of three ω-cuspon

We choose the parameters in (2.9) in the following way:

c1 = −0.3, c2 = −0.5, c3 = −0.7, ω = 0.01.

We use the P 3 element with J = 1280 cells in our computation of the LDG method. Figure 3

shows the interaction process at different times. Due to the singularities of the peak of cuspons

and their interaction process, they are difficult to be investigated by numerical methods (like

classical Finite Element Method, Finite Difference Method). But using local discontinuous

Galerkin method which allows discontinuity at the boundary of each element makes it have

good perform on dealing those cuspons solution. Actually, no work has been done to study in

detail the interaction of three cuspons of the Camassa-Holm equation. We can see that the

interaction process has the character very similar to that of the three-soliton process, except

that the peaks of each wave are cusps which are shown in Figure 4. This property tells us that

the wave is not a standard soliton solution.
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Figure 3 The interaction process of three-cuspon solutions to the CH equation (1.1) with
the initial condition. Periodic boundary condition in [−40, 40]. P 3 elements and a uniform
mesh with 1280 cells.
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Figure 4 The function ∂xu(x, t) of three-cuspon solution at T = −35.
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3.3 The interaction of one ω-soliton and two ω-cuspon

We take the parameters in (2.10) in the following way:

c1 = 0.3, c2 = −0.5, c3 = −0.7, ω = 0.01.

When c3, c2 < 0, c1 > 0, the corresponding solution represents the interaction of one-soliton

and two-cuspon. When t→ ∞, it combines two independent single cuspons and a single soliton.

We use the P 3 polynomials, each element with J = 1600 cells, in our computation of the LDG

method. In Figure 5, we describe the interaction process of one-soliton and two-cuspon at

different times. We can see that the two cuspon waves have larger amplitude than soliton

solution. When the collision happens, all of the three amplitude starts decreasing. At near

t = 0, it seems like that the cuspons “eat up” the smaller soliton and at almost the same time
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Figure 5 The interaction process of one-soliton and two-cuspon solution to the CH equa-
tion (1.1) with the initial condition. Periodic boundary condition in [−40, 40]. P 4 elements
and a uniform mesh with 1600 cells.
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Figure 6 The function ∂xu(x, t) of one-soliton and two-cuspon solution at T = −25.
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Figure 7 The interaction process of two-soliton and one-cuspon solution to the CH equa-
tion (1.1) with the initial condition. Periodic boundary condition in [−40, 40]. P 2 elements
and a uniform mesh with 1280 cells.
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Figure 8 The function ∂xu(x, t) of two-soliton and one-cuspon solution at T = −25.

the faster cuspon catches up the slower cuspon and passes through it. Note that lack of smooth-

ness at the peak of the cuspon and the interaction process cause little numerical oscillation, and

the solution curve cannot be plotted very well. This problem can be solved by using more ele-

ments or higher order polynomials, but that will cost much more time to compute. By checking

∂xu in Figure 6, we can identify the soliton and cuspon solutions.

3.4 The interaction of two ω-soliton and one ω-cuspon

In (2.11), when c3, c2 > 0, c1 < 0, the corresponding solution represents the interaction

of two-soliton and one-cuspon. We put c1 = −0.3, c2 = 0.5, c3 = 0.7 and ω = 0.01. We

use the P 2 element with J = 1280 cells in our computation of the LDG method. In Figure

7, we describe the interaction process of two-soliton and one-cuspon at different times. The

interaction process is very similar to the interaction process of one-soliton and two-cuspon. So

we omit the description of this result.

4 The Interaction Processes (n = 4)

In this section, we describe the interaction between soliton and cuspon when n = 4. In a

similar way to n = 3, we try to find the solutions in different cases by extension (2.1)–(2.3) and

(2.7) for n = 4, and then investigate the properties of the interaction process by LDG methods.

The computational domain is [−40, 40] with periodic boundary conditions for the numerical

results in this section.

4.1 The interaction of four ω-soliton

We take the parameters in (2.12) as c1 = 0.3, c2 = 0.5, c3 = 0.7, c4 = 0.9, ω = 0.01. When

c4 > c3 > c2 > c1 > 0, the corresponding solution is the four-soliton solution. We use the P 4

element with J = 1280 cells in our computation of the LDG method. As shown in Figure 9,

we have plotted the solution profiles for different times which describe the complete interaction
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Figure 9 The interaction process of four-soliton solution to the CH equation (1.1) with
the initial condition. Periodic boundary condition in [−40, 40]. P 4 elements and a uniform
mesh with 1280 cells.

process of four-soliton. We can see clearly that the wave is a combination of four single solitons

when |t| → ∞. Note that at the place where the solitons collide, the faster soliton is shifted

forward while the slower soliton is shifted backward. The graph of ∂xu(x, t) is shown in Figure

10. We also note that the function ∂xu(x, t) is a continuous function of x and t and further

u(x, t) > 0.

4.2 The interaction of four ω-cuspon

When c4 < c3 < c2 < c1 < 0, the corresponding solution is the three-cuspon solution. We

choose the parameters in (2.13) as

c1 = −0.3, c2 = −0.5, c3 = −0.7, c4 = −0.9, ω = 0.01.
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Figure 10 The function ∂xu(x, t) of four-soliton solution at T = −25.
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Figure 11 The interaction process of four-cuspon solution to the CH equation (1.1) with
the initial condition. Periodic boundary condition in [−40, 40]. P 4 elements and a uniform
mesh with 1280 cells.
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Figure 12 The function ∂xu(x, t) of four-cuspon solution at T = −35.

We use the P 4 element with J = 1280 cells in our computation of the LDG method. Figure 11

shows the interaction process at different times. We can see that the interaction process has

the character very similar to that of the three-soliton case, except that the peaks of each wave

are cusps which can be seen by checking the function ∂xu shown in Figure 12.

4.3 The interaction of one ω-soliton and three ω-cuspon

We choose the parameters in (2.14) in the following way:

c1 = −0.5, c2 = −0.3, c3 = 0.7, c4 = −0.9, ω = 0.01.

When c1, c2, c4 < 0, c3 > 0, |c4| > |c3| > |c1| > |c2|, the corresponding solution represents

the interaction of one-soliton and three-cuspon. We use the P 5 element with J = 1280 cells

in our computation of the LDG method. In Figure 13, we represent the interaction process of

one-soliton and three-cuspon. We can see that the only soliton has amplitude at the second

place. When the collision happens, all of the three amplitude starts decreasing. At near t = 0,

it seems like that the largest cuspon “eats up” the smaller soliton and at almost the same time,

the faster cuspon catches up the slower cuspon and passes through it. And different from the

interaction process of one-soliton and two-cuspon we have given in the previous section, the

amplitude of soliton is not the smallest one, so during the collision it also “eats up” a smaller

cuspon, so we only see two peaks at the time near t = 0. Again numerical oscillations appear.

But those oscillations do not affect our observation of the properties of the interaction process.

To plot the solution curve better, we can refine the grids and use a higher order scheme, but

those have not been done because of the time cost.

4.4 The interaction of two ω-soliton and two ω-cuspon

When c1, c2 > 0, c3, c4 < 0, |c1| < |c2| < |c3| < |c4|, the corresponding solution represents

the interaction of two-soliton and two-cuspon. We put c1 = 0.3, c2 = 0.5, c3 = −0.7, c4 = −0.9

and ω = 0.01 in (2.15). We use the P 4 element with J = 1600 cells in our computation of the



238 X. Z. Li, Y. Xu and Y. S. Li

x

u

T

x

u

T

x

u

T

x

u

T

x

u

T

x

u

T

Figure 13 The interaction process of one-soliton and three-cuspon solution to the CH
equation (1.1) with the initial condition. Periodic boundary condition in [−40, 40]. P 5

elements and a uniform mesh with 1280 cells.
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Figure 14 The function ∂xu(x, t) of one-soliton and three-cuspon solution at T = −25.
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LDG method. In Figure 15, we use serval plots at different times to describe the complete

interaction process of two-soliton and two-cuspon. By checking ∂xu in Figure 16, we know that

the two peaks with smaller amplitude represent two solitons, and the larger two are cuspons.

During the collision process, as the soliton-cuspon collision results shown in the previous section,

the larger cuspons have “eaten up” the smaller solitons. So at t = 0, we only see two peaks

appear.

x

u

T

x

u

T

x

u

T

x

u

T

x

u

T

x

u

T

Figure 15 The interaction process of two-soliton and two-cuspon solution to the CH
equation (1.1) with the initial condition. Periodic boundary condition in [−40, 40]. P 4

elements and a uniform mesh with 1600 cells.

4.5 The interaction of three ω-soliton and one ω-cuspon

We choose the parameters in (2.16) in the following way: c1 = 0.5, c2 = 0.3, c3 = −0.7, c4 =

0.9, ω = 0.01. When c1, c2, c4 > 0, c3 < 0, |c4| > |c3| > |c1| > |c2|, the corresponding

solution represents the interaction of three-soliton and one-cuspon. We use the P 4 element
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Figure 16 The function ∂xu(x, t) of two-soliton and two-cuspon solution at T = −25.
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Figure 17 The interaction process of three-soliton and one cuspon solution to the CH
equation (1.1) with the initial condition. Periodic boundary condition in [−40, 40]. P 4

elements and a uniform mesh with 1600 cells.
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with J = 1600 cells in our computation of the LDG method. As shown in Figure 17, we describe

the interaction process of three-soliton and one-cuspon by using six different time plots. The

interaction process is very similar to the result of one-soliton and three-cuspon, and the only

difference is that solitons and cuspons have changed their places.

x

ux

Figure 18 The function ∂xu(x, t) of three-soliton and one cuspon solution at T = −25.

5 Conclusion

In this paper, we have simulated the soliton and cuspon solution to Camassa-Holm equation

by the local discontinuous Galerkin Method. First, we test and verify the theoretical results

given in [7] about the phase shifts after the interactions of two-soliton, a soliton and a cuspon,

two-cuspon. Finally, we find out numerical results of the phases in the interactions of three-

soliton, two-soliton and a cuspon, a cuspon, a soliton and two-cuspon, three-cuspon, four-

soliton, soliton and a cuspon, two-soliton and two-cuspon, a soliton and soliton and three-

cuspon, four-cuspon. Try to find an arbitrary n-soliton and m-cuspon solution is more difficult,

and when n+m grows larger, more numerical errors (or numerical oscillation) will be introduced.

So to get good plots, we have to increase the number of elements and use a higher order scheme,

while each method will dramatically increase the computing cost. For this reason, we only give

results with n + m < 5 in this paper. We expect to get results for arbitrary n and m with

similar properties (i.e., the larger soliton (cuspon) “eats up” the smaller cuspon (soliton), the

larger amplitude with faster speed, · · · ). And also, those numerical simulations will help us

get the theoretical results about the multi-soliton and multi-cuspon solution to Camassa-Holm

equation.
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Appendix The LDG Method for the Camassa-Holm Equation

To make the paper complete, the details of the LDG method for Camassa-Holm in [11] was

presented in this section.

A.1 Notation

We denote the mesh by

Ij = [xj− 1
2
, xj+ 1

2
] for j = 1, · · · , N.

The center of the cell is

xj =
1
2
(xj− 1

2
+ xj+ 1

2
)

and the mesh size is denoted by

hj = xj+ 1
2
− xj− 1

2
with h = max

1≤j≤N
hj

being the maximum mesh size. We assume that the mesh is regular, namely, the ratio between

the maximum and the minimum mesh sizes stays bounded during mesh refinement. We define

the piecewise-polynomial space Vh as the space of polynomials of the degree up to k in each

cell Ij , i.e.,

Vh = {v : v ∈ P k(Ij) for x ∈ Ij , j = 1, · · · , N}.

Note that functions in Vh are allowed to have discontinuities across element interfaces.

The solution of the numerical scheme is denoted by uh, which belongs to the finite element

space Vh. We denote by (uh)+
j+ 1

2
and (uh)−

j+ 1
2

the values of uh at xj+ 1
2
, from the right cell Ij+1,

and from the left cell Ij , respectively. We use the usual notations

[uh] = u+
h − u−h and uh =

1
2
(u+

h + u−h )

to denote the jump and the mean of the function uh at the boundary point of each element

respectively.

A.2 The LDG method

In this section, we define our LDG method for the Camassa-Holm equation (1.1), written

in the following form:

u− uxx = q, (A.1)

qt + f(u)x =
1
2
(u2)xxx − 1

2
((ux)2)x (A.2)

with an initial condition

u(x, 0) = u0(x) (A.3)
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and periodic boundary conditions

u(x, t) = u(x+ L, t), (A.4)

where L is the period in the x direction and

f(u) = 2ωu+
3
2
u2.

Notice that the assumption of periodic boundary conditions is for simplicity only and is not

essential: the method can be easily designed for non-periodic boundary conditions.

To define the local discontinuous Galerkin method, we further rewrite (A.1) as a first order

system

u− rx = q, (A.5)

r − ux = 0.

The LDG method for (A.5), where q is assumed known and we have to solve for u, is formulated

as follows: find uh, rh ∈ Vh such that for all test functions ρ, φ ∈ Vh,∫
Ij

uhρdx+
∫

Ij

rhρxdx− (r̂hρ−)j+ 1
2

+ (r̂hρ+)j− 1
2

=
∫

Ij

qhρdx, (A.6)∫
Ij

rhφdx +
∫

Ij

uhφxdx− (ûhφ
−)j+ 1

2
+ (ûhφ

+)j− 1
2

= 0. (A.7)

The “hat” terms in (A.6)–(A.7) in the cell boundary terms from integration by parts are the

so-called “numerical fluxes”, which are single valued functions defined on the edges and should

be designed based on different guiding principles for different PDEs to ensure stability. For the

standard elliptic equation (A.5), we can take the simple choices such that

r̂h = r−h , ûh = u+
h , (A.8)

where we have omitted the half-integer indices j + 1
2 as all quantities in (A.8) are computed

at the same points (i.e., the interfaces between the cells). We remark that the choice for the

fluxes (A.8) is not unique. We can for example also choose the following numerical flux:

r̂h = r+h , ûh = u−h . (A.9)

For (A.2), we can also rewrite it into a first order system

qt + f(u)x − px +B(r)x = 0,

p− (b(r)u)x = 0, (A.10)

r − ux = 0,

where

B(r) =
1
2
r2, b(r) = B′(r) = r.
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Now we can define a local discontinuous Galerkin method for (A.10), resulting in the following

scheme: find qh, ph, rh ∈ Vh such that for all test functions ϕ, ψ, η ∈ Vh,∫
Ij

(qh)tϕdx−
∫

Ij

(f(uh) − ph +B(rh))ϕxdx

+ ((f̂ − p̂h + ̂B(rh))ϕ−)j+ 1
2
− ((f̂ − p̂h + ̂B(rh))ϕ+)j− 1

2
= 0, (A.11)∫

Ij

phψdx+
∫

Ij

b(rh)uhψxdx− (̂b(rh)ũhψ
−)j+ 1

2
+ (̂b(rh)ũhψ

+)j− 1
2

= 0, (A.12)∫
Ij

rhηdx +
∫

Ij

uhηxdx− (ûhη
−)j+ 1

2
+ (ûhη

+)j− 1
2

= 0. (A.13)

The numerical fluxes in (A.11)–(A.13) are chosen as

p̂h = p−h , ûh = u+
h ,

̂B(rh) = B(r−h ), ̂b(rh) =
B(r+h ) −B(r−h )

r+h − r−h
, ũh = u+

h , (A.14)

where f̂(u−h , u
+
h ) is a monotone flux for solving conservation laws, i.e., it is Lipschitz continuous

in both arguments, consistent (f̂(uh, uh) = f(uh)), non-decreasing in the first argument and

non-increasing in the second argument. Examples of monotone fluxes which are suitable for

discontinuous Galerkin methods can be found in, e.g., [4]. We could, for example, use the simple

Lax-Friedrichs flux

f̂(u−h , u
+
h ) =

1
2
(f(u−h ) + f(u+

h ) − α(u+
h − u−h )), α = max |f ′(uh)|,

where the maximum is taken over a relevant range of uh. This Lax-Friedrichs flux is used in the

numerical experiments in the next section. The definition of the algorithm is now complete.

We remark that the choice for the fluxes (A.14) is not unique. In fact, the crucial part is

taking p̂h and ûh from opposite sides and ̂B(rh) and ũh from opposite sides.

A.3 Algorithm flowchart

In this section, we give details related to the implementation of the method.

Step 1 First, from (A.6)–(A.8), we obtain qh in the following matrix form:

qh = Auh, (A.15)

where qh and uh are the vectors containing the degrees of freedom for qh and uh, respectively.

Step 2 From (A.11)–(A.14), we obtain the LDG discretization of the residual −f(u)x +
1
2 (u2)xxx − 1

2 ((ux)2)x in the following vector form:

(qh)t = res(uh). (A.16)

Step 3 We then combine (A.15) and (A.16) to obtain

A(uh)t = res(uh). (A.17)
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Step 4 We use a time discretization method to solve

(uh)t = A−1res(uh). (A.18)

This step involves a linear solver with the matrix A. We perform an LU decomposition for A

at the beginning and use it for all time steps. Any standard ODE solvers can be used here, for

example, the Runge-Kutta methods.

The LDG matrix A is a sparse block matrix, and hence its multiplication with vectors and

a linear solver involving it as the coefficient matrix can be implemented efficiently.


