
Chin. Ann. Math.
33B(1), 2012, 33–60
DOI: 10.1007/s11401-011-0693-9

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2012

On Exact Controllability of Networks of Nonlinear
Elastic Strings in 3-Dimensional Space∗

Günter R. LEUGERING1 E. J. P. Georg SCHMIDT2

Abstract This paper concerns a system of nonlinear wave equations describing the vibra-
tions of a 3-dimensional network of elastic strings. The authors derive the equations and
appropriate nodal conditions, determine equilibrium solutions, and, by using the methods
of quasilinear hyperbolic systems, prove that for tree networks the natural initial, bound-
ary value problem has classical solutions existing in neighborhoods of the “stretched”
equilibrium solutions. Then the local controllability of such networks near such equilib-
rium configurations in a certain specified time interval is proved. Finally, it is proved that,
given two different equilibrium states satisfying certain conditions, it is possible to control
the network from states in a small enough neighborhood of one equilibrium to any state in
a suitable neighborhood of the second equilibrium over a sufficiently large time interval.
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1 Introduction

We consider networks of elastic strings in R
3, following ideas introduced and developed suc-

cessively in [6, 13] (which also introduced networks of beams) and Chapter 2 of the monograph
in [5] (which went on to treat much more general multi-link structures). In those publications,
the strings were modeled as parametrized curves, and, while nonlinear equations for the position
vectors along the curve were derived, the main emphasis was on network equations obtained
by linearization about equilibrium configurations in which all the strings are stretched, with
displacements which necessarily also are vectors in R

3. The latter were studied in detail and
existence theorems for the linearized system were proved along with exact controllability results
in the case of tree networks controlled at the extremities. In both [13] and [5], the nonlinear
equations were derived from Hamilton’s principle based on a quadratic potential energy corre-
sponding to Hooke’s law with the remark that the potential function could be generalized. No
results on those nonlinear systems were obtained in those references. In [15], some results were
obtained on the existence of equilibria in situations where gravitational forces were included
in the model. In [14], local well-posedness and controllability results were proved for a single
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nonlinear string governed by the nonlinear system. This was done by using results on quasilin-
ear hyperbolic systems. In [4], Li and Gu proved well-posedness and exact controllability for
a model of a planar tree network of strings governed by quasilinear wave equations governing
scalar (necessarily transverse) displacements of the strings. In this paper, we prove analogous
results in R

3 where the displacements of the strings from “stretched” equilibrium configura-
tions are necessary in 3-dimensional space. This covers a much wider range of realistic physical
situations, and so we consider this a major step towards application in mechanics and material
sciences. We stay with the concept of semi-global classical solutions developed by Li [7]. For a
similar model of nonlinear strings, see [9–11].

The paper is organized as follows. In Section 2, we derive the model of the string network
to be studied. In Section 3, we provide some results on the existence of “stretched equilibria”.
In Section 4, we show the existence of semi-global classical solutions to the network equations
for tree networks near a stretched equilibrium. In Section 5, we first prove a local exact
controllability result around an equilibrium for a star-like network, where all but simple nodes
are under control. Here we use the arguments of [4]. Further, we prove a global-local exact
controllability result, where neighborhoods of two different equilibria can be exactly controlled
for such a situation. In Section 6, we comment briefly on how these controllability results can
be extended to tree networks.

We end this introduction with some comments on notation. Vectors, or vector valued
functions, will be indicated in boldface. For a vector v in a Euclidean space, we let |v| denote
the Euclidean length. We denote the Frechét derivative of a function f with respect to a scalar
or vector argument ξ by Dξ. We shall also often write fs for the partial derivative of f with
respect to a scalar variable s and Df for the Frechét derivative of f with respect to its complete
argument.

We let Cn([0, L]; W ) denote the space of n times continuously differentiable functions f(x)
from the interval [0, L] to an open subset W of a Euclidean space with corresponding norms

‖f‖0 = ‖f‖ := sup
x∈[0,L]

|f(x)|, ‖f‖n := max{‖f‖, ‖fx‖, · · · , ‖Dn
x f‖}.

Similar notation will be used for spaces of functions of variables (x, t) ∈ [0, L] × [0, T ] or of
t ∈ [0, T ] and the associated norms.

2 Modeling of Networks of Nonlinear Elastic Strings

In this section, we describe a nonlinear model for networks of elastic strings. We suppose
that there are n strings indexed by i ∈ I = {1, · · · , n}. We let the i-th string be parameterized
by its rest arc length x with x ∈ [0, Li], Li of course being the natural length of that string.
The position at time t of the point corresponding to the parameter x will be denoted by the
vector Ri(x, t). We shall let R denote {Ri}i∈I . The positions of the endpoints, which we refer
to as nodes, are given by functions Nj(t) with j ∈ J = {1, · · · , m}. At multiple nodes where
several strings meet there is a common location Nj . Simple nodes are those corresponding to
the endpoints of only one string. We let Ij = {i ∈ I : Nj is an end point of the i-th string},
JM be the subset of J corresponding to multiple nodes while J S contains the indices of simple
nodes. We assume that there are simple nodes so that J S is not empty. For j ∈ J S , we have
Ij = {ij}. For i ∈ Ij , we let xij := 0 if Ri(0, t) = Nj(t), or xij := Li if Ri(Li, t) = Nj(t). For
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purposes of integration by parts, we also introduce εij to equal 1 or −1 depending on whether
xij is equal to Li or 0. Then εijRi

x is the outward pointing derivative at the boundary point
xij of the interval [0, Li].

Let ρi be the constant density of that string. Then the kinetic energy of a single string,
labeled by i, at time t is given by

Ki(Ri( · , t)) :=
1
2

∫ Li

0

ρi|Ri
t(x, t)|2 dx. (2.1)

We shall assume that the potential energy of the same string is of the form

V i(Ri( · , t)) :=
∫ Li

0

[V i(|Ri
x(x, t)|) + ρigR(x, t)i · e] dx, (2.2)

where
(1) V i(s) is a twice continuously differentiable, convex real valued function defined on an

open subinterval Ii = (ai, bi) of the positive real axis, with ai < 1 < bi, satisfying V i
ss(s) > 0

and V i(1) = V i
s (1) = 0;

(2) e is the vertical unit vector and g is the gravitational constant.
As for the total kinetic energy and total potential energy, we define

K(R( · , t)) :=
∑
i∈I

Ki(Ri) =
∑
i∈I

1
2

∫ Li

0

ρi|Ri
t(x, t)|2 dx (2.3)

and

V(R( · , t)) :=
∑
i∈I

V i(Ri) =
∑
i∈I

∫ Li

0

[V i(|Ri
x(x, t)|) + ρigR(x, t)i · e] dx, (2.4)

respectively.

Remark 2.1 The two terms in the potential energy correspond to potential energy due
respectively to extension or compression, as measured by |Ri

x(x)|, and to gravity. The generic
hypotheses on V i are quite broad and in the nature of minimum physically plausible assump-
tions. At points where |Ri

x(x)| = 1, there is neither compression nor extension, and hence
there should be no contribution to the first term in the potential energy while at points where
there is compression or extension there is a positive contribution. This leads to the condition
that V i(s) takes minimum value 0 at 1. Certainly, the potential energy should increase with
increasing extension (|Ri

x(x)| > 1 and increasing) or compression (|Ri
x(x)| < 1 and decreasing).

The convexity assumption seems appropriate at least over a small interval of values of |Ri
x(x)|.

In [5–6, 13], these functions took the form V i(s) = hi(s−1)2

2 for s ∈ I = (0,∞). See also Remark
2.4.

Remark 2.2 While the function V i may extend naturally to a bigger domain the interval
Ii can be regarded as the domain for which the potential energy is physically realistic.

Definition 2.1 The string is respectively stretched, limp or compressed at x depending on
whether |Ri

x(x)| > 1, = 1 or < 1. We say that the string is stretched if |Ri
x(x)| > 1 for all

x ∈ [0, Li] and compressed if |Ri
x(x)| < 1 for all x ∈ [0, Li].
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Physically, one expects significantly different phenomena in these three situations and tran-
sitions between them are certainly complicated.

We now apply Hamilton’s principle to the Lagrangian functional defined for fixed T > 0 by

L(R) :=
∫ T

0

∑
i∈I

∫ Li

0

[1
2
ρi|Ri

t(x, t)|2 − V i(|Ri
x(x, t)|) − ρigRi(x, t) · e

]
dxdt. (2.5)

This requires L to be stationary at R, where the domain of L consists of those R whose
component functions Ri are in

Oi := {Ri ∈ C2([0, Li] × [0, T ]; R3) : |Ri
x(x, t)| ∈ Ii for (x, t) ∈ [0, Li] × [0, T ]}, (2.6)

which satisfy the given initial conditions

Ri( · , 0) = R0,i and Ri
t( · , 0) = R1,i, (2.7)

as well as prescribed Dirichlet boundary conditions at simple nodes

Rij (xijj , t) = Uj(t) for j ∈ J S and for t ∈ [0, T ], (2.8)

and the continuity condition at multiple nodes

Ri1(xi1j , t) = Ri2(xi2j , t) for j ∈ JM , i1, i2 ∈ Ij and for t ∈ [0, T ]. (2.9)

Now, one can consider a perturbation Ri(x, t) + λri(x, t) for each i ∈ I, where ri(x, t) ∈
C2([0, Li]× [0, T ]; R3), satisfying homogeneous initial conditions, vanishing at the simple nodes
and satisfying the continuity condition at multiple nodes. Because the intervals Ii = (ai, bi)
are open, the perturbations belong to the domain of L for small enough values of λ.

A necessary condition for L to be stationary at R is

DλL(R + λr)|λ=0

=
∫ T

0

∑
i∈I

∫ Li

0

[
ρiRi

t(x, t) · ri
t(x, t) − V i

s (|Ri
x|)

Ri
x

|Ri
x|

(x, t) · ri
x(x, t) − ρigri · e

]
dxdt

= 0.

First, we choose perturbations with compact support in (0, Li)× (0, T ). One can then integrate
by parts and obtain in the usual way the following nonlinear partial differential equation:

ρiRi
tt(x, t) = Gi(Ri

x(x, t))x − ρige for each i ∈ I (2.10)

with Gi : R
3 �→ R

3 defined by

Gi(v) := V i
s (|v|) v

|v| . (2.11)

Next, for j ∈ J M , we choose perturbations with ri = 0 for i /∈ Ij and with support in a small
neighborhood of xij for i ∈ Ij . Because of the continuity condition at the multiple node, we
are led to the multiple node condition∑

i∈Ij

εijGi(Ri
x(xij , t)) = 0 for each j ∈ J M . (2.12)
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We refer to this as a “balance of forces” or Kirchoff condition.
To summarize, the motion of the string network is governed by the quasilinear vector valued

equations (2.10), coupled by the multiple node conditions (2.9) and (2.12), subject to the initial
conditions (2.7) and the Dirichlet boundary conditions (2.8) at the simple nodes. The solutions
are also constrained by the requirement that ai < |Ri

x(x, t)| < bi.

Remark 2.3 There are other conditions which could be imposed instead of the Dirichlet
conditions acting on all simple nodes.

(1) Some simple nodes could be left free which would lead to a Neumann condition

Gi(Ri
x(xij , t)) = 0 or |Ri(xij , t)| = 1.

(2) Some multiple nodes could have their positions prescribed

Ri(xij , t) = Uj(t) for all i ∈ Ij ,

in which case the multiple node condition (2.12) falls aside.
(3) One could also impose forces at certain simple or multiple node (as is done in [5, p.

14]) which leads to a nonlinear Neumann condition∑
i∈Ij

εijGi(Ri
x(xij , t)) = Fj(t).

Remark 2.4 With the choice of V i(s) = hi(s−1)2

2 , one obtains the equations

ρiRi
tt(x, t) = hi

[
Ri

x − Ri
x

|Ri
x|
]

x
(x, t) − ρige.

In [5–6, 13], the emphasis was on the equations obtained by linearization about stretched
equilibria. The system of linearized equations decouple into wave equations for the transversal
and tangential displacements of the string corresponding to different wave velocities interacting
at the multiple nodes. The requirement that the equilibria be stretched is essential to ensure
that the equations are in fact wave equations.

3 Equilibrium Solutions on the Network

The equilibria Re = {Re,i}i∈I of the network are solutions of the following stationary
(time-independent) version of (2.7), (2.9)–(2.10) and (2.12):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[Gi(Ri
x(x))]x = ρige for i ∈ I,

Rij (xijj) = Uj for j ∈ J S ,

Ri1(xi1j) = Ri2(xi2j) for j ∈ J M , i1, i2 ∈ Ij ,∑
i∈Ij

εijGi(Ri
x(xij)) = 0 for each j ∈ JM .

(3.1)

This is a coupled system of quasilinear elliptic equations with the additional complication of the
requirement ai < |Ri

x(x)| < bi. We need to pay particular attention to the stretched equilibria
for which 1 < |Ri

x(x, t)| < bi for all x ∈ [0, Li].
Ideally, one would be able to characterize those boundary data

{
U1, · · · ,Un

}
for which

such stretched solutions exist. This seems hopeless at this degree of generality although partial
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results are possible. For the case of a single string this is done in [14, Theorem 1] which in
particular guarantees that given two stretched equilibrium configurations of a single string there
is a curve of such equilibria joining them.

We first show how the argument in [14] can be adapted to characterize stretched equilibria
in the case of star networks with one multiple node corresponding to the parameter value 0 of
the n strings.

We need to solve the main equation in (3.1) for Ri
x(x), and then integrate to get Ri(x) by

taking into account the nodal conditions at the center node. One integration gives

Gi(Ri
x(x)) = Vi + ρigxe, where Vi = Gi(Ri

x(0)). (3.2)

In order to solve this for Ri
x(x), we need to solve for v in equations of the form

Gi(v) = mi(|v|) v
|v| = w, (3.3)

where mi(s) := V i
s (s) is a strictly increasing function of s ∈ Ii = (ai, bi). We denote the

range of mi by J i = (ci, di) and its inverse function by (mi)−1. We note ci < 0 < di, and let
J i

+ := (0, di) and J i
− := (ci, 0). We note that 0 ∈ J i corresponds to 1 ∈ Ii, and v ∈ Ii satisfies

|v| > 1 or |v| < 1 depending on whether mi(v) ∈ J i
+ or mi(v) ∈ J i−.

If |w| ∈ J i
+, (3.3) has a unique solution with |v| > 1 given by

v = (mi)−1(|w|) w
|w| . (3.4)

If −|w| ∈ J i
−, (3.3) has a unique solution with |v| < 1 given by

v = −(mi)−1(−|w|) w
|w| . (3.5)

If w = 0, the solution set to (3.3) consists of all v with |v| = 1.
When |w| ∈ J i

+ and −|w−| ∈ J i
−, equation (3.3) has two solutions v± with |v+| > 1 and

|v−| < 1. If neither |w| nor −|w| lies in J i, (3.3) has no solution.
It follows from (3.2) that |Ri

x(x)| = 1 (the condition for the string to be limp at x) can
hold at only one point and only if Vi = −αρige with α ∈ [0, Li]. For other choices of Vi, the
right-hand side of (3.2) never vanishes and consequently |Ri

x(x)| �= 1 for x ∈ [0, Li]. If we then
require Ri

x(x) to be continuous, the corresponding equilibria are either stretched or compressed.
The nowhere compressed equilibria of strings, which can be limp at one point, arise naturally,

but we need to concentrate on stretched equilibria, which are stretched at every point along
the string. As we shall see later, we can rewrite the equations close to stretched equilibria as
strictly hyperbolic quasilinear systems. We shall for the moment consider both situations.

We remark that in [14], it is shown that when |Ri
x(x)| > 1 for all x ∈ [0, Li], the string lies

along a convex curve in a vertical plane. If on the other hand, |Ri
x(x)| = 1 for some x ∈ [0, Li],

the string lies along a vertical line with one “limp” point. If that point corresponds to an
interior point the string has a “kink” and bends back vertically on itself.

This occurs, for example, when Ri(0) = Ri(Li). Alternatively, if that point occurs at x = Li

(corresponding to Vi = −Liρige), we have the situation of a “dangling string” suspended at
Ri(0). If the limp point corresponds to x = 0 (corresponding to Vi = 0), we again have
a dangling string now suspended at Ri(Li). If the limp end is located at a multiple node,
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it contributes no force at the node. These are all physically plausible although somewhat
exceptional situations.

Equation (3.2) has a nowhere compressed stretched solution for a particular value of i if and
only if

|Vi + ρigxe| ∈ J i
+ ∪ {0} = [0, di) for all x ∈ [0, Li],

which occurs when

Vi ∈ S̃i
+ := {v ∈ R

3 : |v| < di, |v + ρigLie| < di}.

The equation (3.2) has a stretched solution if in addition v + ρigxe �= 0 for all x ∈ [0, Li], i.e.,
if

Vi ∈ Si
+ := S̃i

+ \ {−ρigxe : x ∈ [0, Li]}.
To visualize these conditions note that {Vi + ρigxe | x ∈ [0, Li]} is a vertical segment of length
ρigLi in R

3 emanating from Vi.
The sets S̃i

+ and Si
+ are nonempty if and only if

ρigLi < 2di. (3.6)

S̃i
+ is an open and convex subset of R

3, while Si
+ is open and connected.

From (3.4), by assuming that Vi ∈ Si
+, the previous considerations lead to the following

formula for stretched equilibria:

Ri
x(x) = (mi)−1(|Vi + ρigxe|) Vi + ρigxe

|Vi + ρigxe|
and

Ri(x̂) = Ri(0) +
∫ x̂

0

(mi)−1(|Vi + ρigxe|) Vi + ρigxe
|Vi + ρigxe| dx. (3.7)

The discussion up to now relates only to equilibrium solutions on a single string leaving
aside the question of the node conditions.

We now impose the node conditions for the star network. The continuity condition at
the center node requires a common value U0 for all Ri(0), which together with the Dirichlet
conditions at simple nodes leads to the following requirements on the Vi’s:

Ui − U0 =
∫ Li

0

(mi)−1(|Vi + ρigxe|) Vi + ρigxe
|Vi + ρigxe|dx. (3.8)

Moreover, the Kirchhoff condition at the center node becomes∑
i∈I

Vi = 0.

For nowhere compressed solutions, we need

Vi ∈ S̃i
+ for all i ∈ I and

∑
i∈I

Vi = 0, (3.9)

while for stretched solutions, we need

Vi ∈ Si
+ for all i ∈ I and

∑
i∈I

Vi = 0. (3.10)
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We denote by S̃+ and S+ the set of n-tuples {Vi}i∈I satisfying respectively the above conditions
(3.9) or (3.10). Note that both sets are open subsets of the subspace{

{Vi}i∈I ⊂
∏
i∈I

R
3 ≡ re3n :

∑
i∈I

Vi = 0
}
, (3.11)

and that S̃+ is a convex set. A necessary condition for S+ and hence S̃+ to be nonempty is
that there is at least one index i ∈ I, such that Si

+ contains vectors for which Vi · e > 0, since
otherwise it would not be possible to satisfy the Kirchhoff condition with Vi �= 0. This occurs
for index i if and only if

ρigLi < di, (3.12)

to be contrasted with our previous condition ρigLi < 2di for an individual Si
+ to be nonempty.

A sufficient condition, easily seen not to be necessary, for S+ to be nonempty is that (3.12)
holds for all i. One shows this by firstly choosing nonzero vectors Vi satisfying the Kirchoff
condition without regard to the length of the vectors, and by then scaling them down by a
common factor α small enough to ensure that each αVi ∈ Si

+.
Being convex, S̃+ is arcwise connected. S+ is also arcwise connected, a fact which is essential

for some of our results on controllability. To see this, consider {Vi}i∈I and {Wi}i∈I belonging
to S+. Consider the curve of convex combinations

{Vi(λ)}i∈I with V i(λ) := (1 − λ)Vi + λWi

parametrized by λ ∈ [0, 1]. Its range is of course the convex hull co(Vi,Wi) of Vi and Wi.
In the case that for all i ∈ I this does not intersect with the vertical segment {−ρigxe : x ∈
[0, Li]} = co(0,−ρigLie), the convex combinations remain in S+ and join {Vi}i∈I to {Wi}i∈I .
In the case that for some i’s Vi(λ) intersect the vertical segment, we use a perturbation argu-
ment. We shall strategically choose {vi}i∈I , and then introduce

Ṽi(λ) = Vi(λ) + εvi.

We must have ∑
i∈I

vi = 0.

We also require that vi are not in the span of e for those i for which co(Vi,Wi) intersects
co(0,−ρigLie). We note that

co(Ṽi,W̃i) = co(Vi,Wi) + εvi,

where of course Ṽi = vi + εvi and W̃i = Wi + εvi. For ε sufficiently small, we then have
that the curve {Ṽi(λ)}i ∈ I remains in S+. Now, again requiring ε to be sufficiently small,
Ṽi and W̃i lie in convex neighborhoods within S+ of Vi and Wi, respectively. Hence, we can
concatenate linear segments obtained by convex combinations leading from Vi to Ṽi, from Ṽi

to W̃i, and finally from W̃i to Wi. This completes the proof of the connectedness of S̃+ and
S+.

We have therefore proved the following theorem.
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Theorem 3.1 For the star network as described above, there exists a noncompressed so-
lution to the equilibrium system (3.1) subject to requirement 1 ≤ |Ri

x(x)| < di if and only if
one can find U0 ∈ R

3 and {Vi}i∈I ∈ S̃+ such that (3.8) holds. It has a stretched solution
(satisfying 1 < |Ri

x(x)| < di) if {Vi}i∈I ∈ S+. S̃+ and S+ are both open, the former is convex
and the latter is arcwise connected.

Remark 3.1 For any {Vi}i∈I ∈ S and any U0, one can find Dirichlet data U1, · · · ,Un

corresponding to a stretched equilibrium configuration of the star configuration of string. It is
enough to consider U0 = 0, because other equilibria with multiple nodes at different locations
can be obtained by simple translation Ui �→ U0 + Ui.

Remark 3.2 One can characterize the Dirichlet data U1, · · · ,Un at the simple nodes, which
correspond to stretched equilibria as lying in the image A+ of the map Φ(U0,V1, · · · ,Vn)
defined on S+ by using the formula (3.8). A somewhat intricate calculation, adapting an
argument given in [14], shows that one can use the open mapping theorem to conclude that
A+ is open and then also connected. However, there is no transparent criterion to determine
which Dirichlet data belongs to A+.

Remark 3.3 It is physically natural to require the length of the string to be short enough
to satisfy conditions such as (3.3) and (3.6). A long piece of “flimsy” string could sag under its
own weight to the extent that it is stretched beyond the range covered by the dynamical law,
i.e., with |Ri

x(x)| /∈ Ii for some range of x.

We can obtain a similar result for tree networks, in which there are no closed circuits. We
single out one of the simple nodes, which we can suppose to be indexed by 1 ∈ J and to
correspond to parameter value x = 0. Every other node can then be joined to N1 by a minimal
succession of strings. By a possible switch of parameter x �→ Li − x, one can ensure that at
each multiple node all the parameter values of the strings meeting that node are either 0 or Li

depending on whether the number of strings leading from Nj to N1 is even or odd. This simple
remark will be the key to our proof of existence theorems later and will simplify the notation
below.

To generalize Theorem 3.1 to tree networks, we introduce vectors Vij corresponding to
j ∈ J and i ∈ Ij , which represent possible values of Gi(Ri

x(xij)) where Ri(x) satisfy the
equilibrium equations. These vectors have to satisfy⎧⎨⎩

∑
i∈Ij

Vij = 0 for j ∈ J , i ∈ Ij ,

Vij − Vik = εikgρiLie when i ∈ Ij ∩ Ik.
(3.13)

Obviously, the condition i ∈ Ij ∩ Ik identifies Nj and Nk as the nodes at the ends of the i-th
string. We can now also adapt the definitions of S̃+ and S+ in a consistent way to tree networks
as follows:

S̃+ := {{Vij}j∈J ,i∈Ij : (3.13) is satisfied and |Vij | < di}, (3.14)

S+ := {{Vij}j∈J ,i∈Ij ∈ S̃+ : 0 /∈ co(Vij ,Vik) when i ∈ Ij ∩ Ik}. (3.15)

Given {Vij}j∈J ,i∈Ij , we then obtain the following formulas for equilibrium solutions:

Ri
x(x) = Vij + gρixe = Vik − gρi[Li − x]e,
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when xij = 0 and the corresponding formula with j and k reversed when xik = 0. Given the
location of one of the nodes, the root node N1, one can successively obtain formulas for all of
the Ri(x) by integration along the lines of (3.7). In particular, one is led to formulas for the
Dirichlet data Uj corresponding to the location of simple nodes Nj . To write these down, we
suppose that Nj is joined to N1 by the minimal succession of p strings indexed successively by{
i1, i2, · · · , ip

}
with i1 = 1 and Ij = {ip} (or ip = ij). One gets

Uj = U1 +
p∑

l=1

∫ L
il

0

(mil

)−1(|Vil

+ ρilgxe|) Vil

+ ρilgxe
|Vil + ρilgxe| dx, (3.16)

where Uil is set to be equal to Vilj where Nj corresponds to parameter value 0 for the ip-th
string.

With additional arguments, entirely analogous to those for star networks, we can complete
the proof of the following theorem.

Theorem 3.2 For the tree network as described above, there exists a noncompressed solution
to the equilibrium system (3.1) subject to requirement 1 ≤ |Ri

x(x)| < di if and only if one
can find {Vij}j∈J ,i∈Ij ∈ S̃+ such that (3.16) holds. It has a stretched solution (satisfying
1 < |Ri

x(x)| < di) if {Vi}i∈I ∈ S+. S̃+ and S+ are both open, the former is convex and the
latter is arcwise connected.

Remark 3.4 The proof of the arcwise connectedness of S+ can also be adapted to showing
that S+ is dense in S̃+.

Remark 3.5 In the absence of gravity, setting g = 0 versions of Theorems 3.1 and 3.2
continue to hold with minor simplifications and adjustments to the notation.

Under the additional strong assumptions that the potential functions V i(x) have infinite
intervals (ai,∞) as domains, and satisfy a certain growth condition, one can in fact prove
the existence of nowhere compressed equilibria for networks corresponding to any prescribed
locations {Uj}j∈J S of the simple nodes. In this situation, S̃+ is characterized exclusively by
the requirement (3.13). Moreover, since S+ is dense in S̃+, nowhere compressed equilibria
can be approximated arbitrarily closely by stretched equilibria. Existence is proved by using a
variational argument, slightly adapted from [15]. The idea is to prove the existence of stationary
points for the potential energy functional appearing in the derivation of our string model

V(R) :=
∑
i∈I

∫ Li

0

[V i(|Ri
x(x)|) + ρigRi(x) · e] dx, (3.17)

(recalling that R = {Ri}i∈I) defined on the Hilbert space

H :=
{
R ∈

∏
i∈I

W 1(0, Li) : Ri(xij) coincide for all i ∈ Ij , for each j ∈ JM
}
.

Here W 1(0, L) denotes the Sobolev space of square integrable functions with square integrable
distribution derivative on (0, L).

Theorem 3.3 Suppose that the functions V i(s) are defined in the infinite intervals (ai,∞)
and that they satisfy the growth conditions

lim inf
s→∞ V i(s) > 0 or V i(s) > αs2 + βs + γ with α > 0. (3.18)
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Then there exists a unique Re ∈ H which minimizes the function V(R) subject to the boundary
conditions

Rij (xijj) = Uj for j ∈ J S . (3.19)

These functions satisfy the equilibrium system (3.1). Each string is stretched except possibly at
one point.

Proof We note that the functional V(R) is not convex, because V i(|Ri
x(x)|) is not a convex

function of Ri. We convexify the functional by introducing

V i
c (s) :=

{
V i(s), when 1 ≤ s,

0, when 0 ≤ s ≤ 1
(3.20)

and

Vc(R) :=
∑
i∈I

∫ Li

0

[V i
c (|Ri

x(x)|) + ρigRi(x) · e] dx. (3.21)

The new functional has the following properties:
( i ) Vc(R) is convex on H ;
( ii ) Vc(R) ≤ V(R) for all R ∈ H ;
(iii) Vc(R) = V(R), when each |Ri

x(x)| ≥ 1 for all x in [0, Li].
Properties (ii) and (iii) are obvious; (i) holds because Vc(s) can be written as the composition

of a convex, monotone increasing function with convex function and is therefore convex. Because
of these properties, one can obtain a minimizer for V(R) by obtaining a minimizer R for Vc(R)
and showing that the minimizer necessarily satisfies |Ri(x)| ≥ 1 for each i and x in [0, Li].

To prove the existence of a minimizer for Vc, we let

H0 := {R ∈ H : Rij (xij j) = 0 for each j ∈ J S}.

Since J S �= ∅, one can show by a standard argument that the norms defined by

‖R‖2
H0

:=
∑
i∈I

∫ Li

0

|Ri
x(x)|2 dx and ‖R‖2

H :=
∑
i∈I

∫ Li

0

[|Ri(x)|2 + |Ri
x(x)|2] dx

are equivalent on H0. Letting R̂ be any fixed element of H satisfying (3.20), we rewrite the
minimization problem for Vc as

to minimize Vc(R̂ + R0) subject to R0 ∈ H0.

As a function of R0, Vc(R̂ + R0) is convex and continuous. It is also coercive, since as a
consequence of (3.14), one can easily verify that

Vc(R̂ + R0) ≥ A‖R0‖2
H0

+ B‖R0‖H0 + C with A > 0.

It follows from a standard theorem in convex analysis (see [3, p. 35]) that Vc(R̂ + R0) has a
minimizer R0.

We now set R = R̂+ R0 to obtain the minimizer of Vc(R) subject to (3.19). We show that
this is also a minimizer for V(R) by proving that |Ri

x(x)| ≥ 1 almost everywhere for each i ∈ I.
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Suppose that this fails to hold for some i = k. Then there exists a subset S of (0, Lk) having
positive measure along with a constant r such that |Rk

x(x)| ≤ r < 1 for x ∈ S. This leads to a
contradiction, since we can modify R to achieve Vc(R) < Vc(R). To do this, we set Ri = Ri

for i �= k and define

Rk(x) := Rk(x)) − δe
∫ x

0

[χS∩[0,x0](y) − χS∩[x0,Lk](y)]dy,

where x0 is chosen so that S ∩ [0, x0] and S ∩ [x0, Lk] have the same measure. χA(x) is the
characteristic function of A and δ < 1 − r. Consequently,

|Rk
x(x)| = |Rk

x(x) − δ[χS∩[0,x0](x) − χS∩[x0,Lk](x)]| < 1 for a.e. x ∈ S.

Moreover, Rk(0) = Rk(0) and Rk(Lk) = Rk(Lk) so that R satisfies the conditions (3.19) and
the multiple node conditions in the definition of H . Then Vk

c (|Rk
x(x)|) = Vk

c (|Rk
x(x)|), since

Rk
x(x) differs from Rk

x(x) only in S. Finally, since Rk(x) · e < Rk(x · e) on a subinterval of
[0, Lk], we are led to the contradiction

Vc(R) < Vc(R).

This completes the proof of the existence of a minimizer for V(R).
Next, we prove the uniqueness of the minimizer. We do this by showing that the set C of

minimizers of Vc contains only one element. Since C is a nonempty convex subset, and by what
was proved above, we have

C ⊂ {R ∈ H : |Ri
x| ≥ 1 a.e. for all i ∈ I}. (3.22)

Since V(R) = Vc(R) for R ∈ C and Vc(R) ≤ V(R) for all R ∈ H , it follows that C is also the
set of minimizers for V . Let R and R̃ be two elements in C and λ ∈ [0, 1]. Then

Vc(λR + (1 − λ)R̃) = λVc(R) + (1 − λ)Vc(R̃).

Disregarding the linear terms in Vc, one gets∑
i∈I

∫ Li

0

V i
c (|λRi

x(x) + (1 − λ)R̃
i

x(x)|) dx

=
∑
i∈I

∫ Li

0

[λV i
c (|Ri

x(x)|) + (1 − λ)V i
c (|R̃i

x(x)|)] dx. (3.23)

Since, by convexity,

V i
c (|λRi

x(x) + (1 − λ)R̃
i

x(x)|) ≤ λV i
c (|Ri

x(x)|) + (1 − λ)V i
c (|R̃i

x(x)|),

one can conclude from (3.23) that

V i
c (|λRi

x(x) + (1 − λ)R̃
i

x(x)|) = λV i
c (|R1

x(x)|) + (1 − λ)V i
c (|R̃i

x(x)|).

Recalling the definition of V 1
c and using (3.22) in conjunction with the fact that Vi(s) is strictly

convex for s ≥ 1, one sees that necessarily

|λRi
x(x) + (1 − λ)R̃

i

x(x)| = λ|Ri
x(x)| + (1 − λ)|R̃i

x(x)|.
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Hence, it follows from properties of the Euclidean norm that R̃
i

x(x) = Ri
x(x). Since R̃ and

R both satisfy (3.19) as well as the continuity conditions at multiple nodes embodied in the

definition of H , we conclude that R̃
i
(x) = Ri(x) and this uniqueness is proved.

To show that R is in fact an equilibrium solution to the network equations (3.1) is standard
starting from the Frechét derivative of V(R) at R and using the variations of R as test functions
to be chosen in various ways.

Remark 3.6 In the case that the V i(s) are defined in bounded open intervals (ai, bi), the
existence assertion of the previous theorem is no longer valid. However, one can adapt the
argument to prove that noncompressed equilibria corresponding to given boundary data Uj , if
they exist, are unique. One can as before introduce the functional V(R) and its convexifica-
tion Vc(R) on a convex subset of H . Noncompressed equilibria are then stationary points of
both functionals, and hence minimize the convex functional Vc(R) subject to the simple node
conditions and do the same for V(R). The uniqueness proof then goes through.

Remark 3.7 The condition (3.18) is satisfied for our canonical example V i(s) = 1
2hi(s−1)2.

The condition could also be relaxed to V i(s) > αsp + βs + γ with α > 0 and p > 1.

Remark 3.8 The above proof does not in fact require the absence of closed circuits in the
network, so the theorem is valid for general networks having some simple nodes.

Remark 3.9 In the proof of Theorem 3.3, the gravitational term is essential, since this is
what ensures that the minimizers correspond to nowhere compressed equilibria.

4 Existence of Solutions Near Stretched Equilibria on Tree Networks

We continue to restrict our attention to tree networks with prescribed positions for the
simple nodes. As pointed out before, we can reparametrize individual strings to ensure that
at each multiple node all the parameter values are either 0 or Li depending on whether the
number of strings leading to that node from the simple node N1 is even or odd.

We consider the equations (2.10) accompanied by initial conditions (2.7), boundary condi-
tions (2.8) at the simple nodes as well as the multiple node conditions (2.9) and (2.12).

One can only hope to find solutions Ri(x, t) in C2([0, Li] × [0, T ]; R3) if⎧⎪⎨⎪⎩
Uj(t) ∈ C2([0, T ]; R3) for j ∈ J S ,

R0,i(x) ∈ C2([0, Li]; R3) for i ∈ I,

R1,i(x) ∈ C1([0, Li]; R3) for i ∈ I,

(4.1)

and if these functions satisfy the following C2 compatibility conditions:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R0,i(xij) coincide for each j ∈ J M and i ∈ Ij ,

R1,i(xij) coincide for each j ∈ J M and i ∈ Ij ,∑
i∈Ij

εijGi(R0,i
x (xij)) = 0 for each j ∈ J M ,∑

i∈Ij

εijGi
v(R0,i

x (xij))R1,i
x (xij) = 0 for each j ∈ J M ,

(4.2)
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as well as ⎧⎪⎨⎪⎩
Uj(0) = Rij ,0(xij) for j ∈ J S ,

Uj
t (0) = Rij ,1(xij) for j ∈ J S ,

Uj
tt(0) = (ρij )−1[Gij (Rij ,0

x )]x|x=xij for j ∈ J S ,

(4.3)

where Ij = {ij} for j ∈ J S . After specifying the initial data R0,i × R1,i ∈ C2([0, Li]; R3) ×
C1([0, Li]; R3) for all i subject to the conditions (4.2), the control data U j(t) at simple nodes
can be uniquely represented by

Uj(t) = uj(t) + Rij ,0(xij) + tRij ,1(xij) +
t2

2
(ρij )

−1[Gij (Rij ,0
x )]x|x=xij , (4.4)

where uj(t) belongs to

C2
0 ([0, T ]; R3) := {u(t) ∈ C2([0, T ]; R3) | u(0) = ut(0) = utt(0) = 0}.

We are left with the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρiRi
tt(x, t) = [Gi(Ri

x(x, t))]x − ρige for i ∈ I,

Ri(x, 0) = R0,i(x), Ri
t(x, 0) = R1,i(x) for i ∈ I,

Rij (xij , t) = uj(t) + R0,ij (xij) + tR1,i(xij)

+
t2

2
(ρij )−1[Gij (R0,ij

x )]x|x=xij for j ∈ J S ,

Ri(xij , t) coincide for each j ∈ JM and i ∈ Ij ,∑
i∈Ij

Gi(Ri
x(xij , t)) = 0 for j ∈ J M

(4.5)

required to hold for x ∈ [0, Li] and t ∈ [0, T ], respectively.
We shall prove a local existence theorem close to a specified stretched equilibrium Re =

{Re,i}i∈I . We shall in fact first show that the above system is equivalent to a coupled set of
quasilinear hyperbolic systems corresponding to each of the strings, and then apply an existence
theorem for such systems. As an intermediate step, we introduce perturbations away from the
given equilibrium by setting

ri(x, t) := Ri(x, t) − Re,i(x). (4.6)

Noting that the Re,i do not depend on t, the system (4.5) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρiri
tt(x, t) = [Gi(Re,i

x (x) + ri
x(x, t))]x − ρige for i ∈ I,

ri(x, 0) = r0,i(x), ri
t(x, 0) = r1,i(x) for i ∈ I,

rij (xijj , t) = uj(t) + r0,ij (xijj) + tr1,ij (xijj)

+
t2

2
(ρij )−1[Gij (Re,ij

x + r0,ij
x )]x|x=xijj for j ∈ J S ,

ri(xi, t) coincide for each j ∈ J M and i ∈ Ij ,∑
i∈Ij

Gi(Re,i
x (xij) + ri

x(xij , t)) = 0 for j ∈ J M ,

(4.7)

where we have set r0,i := R0,i −Re,i and r1,i := R1,i. Note that this initial data has to satisfy
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the compatibility conditions⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r0,i(xij) coincide for each j ∈ JM and i ∈ Ij ,

r1,i(xij) coincide for each j ∈ JM and i ∈ Ij ,∑
i∈Ij

εijGi(Re,i
x (xij) + r0,i

x (xij)) = 0 for each j ∈ JM ,∑
i∈Ij

εijGi
v(Re,i

x (xij) + r0,i
x (xij))r1,i

x (xij) = 0 for each j ∈ JM .

(4.8)

We transform the system (4.7) to an equivalent initial boundary value problem for a coupled
system of first order quasilinear hyperbolic systems valued function wi = (wi

1,w
i
2) := (ri

x, ri
t)

of x and t. It is easily seen that equations in (4.7) can be rewritten as

wi
t + f i(x,wi)x = −(0, ge)

with (x, t) ∈ [0, Li] × [0, T ], where

f i(x,w) = −(wi
2, ρi

−1[Gi(Re,i
x (x) + wi

1(x, t))]).

This, in turn, can be rewritten in the form of a quasilinear hyperbolic system

wi
t + Ai(x,wi)wi

x = gi(x,wi), (4.9)

with

Ai(x,wi) = Ai(x,wi
1) := −

(
0 I

ρ−1
i Gi

v(Re,i
x (x) + wi

1(x, t)) 0

)
(4.10)

and

gi(x,wi) = gi(x,wi
1) := (0, ρ−1

i Gi
v(Re,i

x (x) + wi
1)R

e,i
xx − ge). (4.11)

We note that

gi(x,0) = (0, ρ−1
i Gi

v(Re,i
x (x) = 0)Re,i

xx − ge)

= (0, ρ−1 [G(Re
x)x − ρge]) = (0,0). (4.12)

Rewriting system (4.7), we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wi
t + Ai(x,wi)wi

x = gi(x,wi) for i ∈ I,

wi(x, 0) = w0,i(x) = (r0,i
x (x), r1,i(x)) for i ∈ I,

wij

2 (xijj , t)=vj(t)=uj
t (t)+w0,ij

2 (xijj)
+t ρ−1

ij
[Gij (Re,ij

x +w0,ij

1 )]x|x=xijj for j ∈ J S ,

wi
2(xij , t) coincide for each j ∈ J M and i ∈ Ij ,∑

i∈Ij

Gi(Re,i
x (xij) + wi

1(xij , t)) = 0 for j ∈ J M .

(4.13)

Note that w0,i(x) ∈ C1([0, L]; R3) × C1([0, L]; R3). C1-compatibility conditions between the
boundary and initial data are built into the boundary data vj(t), and if the initial data in
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the system (4.5) satisfy the C2-compatibility conditions at multiple nodes, the initial data in
system (4.13) satisfy the following C1-conditions at multiple nodes:⎧⎪⎪⎪⎨⎪⎪⎪⎩

w0,i
2 (xij) coincide for each j ∈ JM and i ∈ Ij ,∑

i∈Ij

εijGi(Re,i
x (xij) + w0,i

1 (xij)) = 0 for each j ∈ JM ,∑
i∈Ij

εijGi
v(R̃0,i

x (xij) + w0,i
1 (xij))w

0,i
2x (xij) = 0 for each j ∈ JM .

(4.14)

From the preceding considerations, it follows trivially that if r =
{
ri
}

i∈I is a twice contin-
uously differentiable solution to (4.7), w = {wi}i∈I is continuously differentiable and satisfies
(4.13). Conversely, if w is a continuously differentiable solution to the latter system, one can
recover the solutions r to (4.7). One has ∂xwi

2 = ∂twi
1, implying the existence of a twice

differentiable ri ∈ C2 with ri
x = wi

1 and ri
t = wi

2. In fact, one can easily check, condition by
condition and taking into account the compatibility conditions, that the functions

ri(x, t) = r0,i(x) +
∫ t

0

wi
2(x, s)ds,

then satisfy all the requirements of (4.7).

Theorem 4.1 Consider a tree network as described in the beginning of this section. Let
Re be a given stretched equilibrium. For a specified value of T > 0, there exist constants c0 and
cT , such that if the initial data

w0,i = (w0,i
1 ,w0,i

2 ) ∈ C1([0, Li] × [0, T ]; R3) × C1([0, Li] × [0, T ]; R3)

and the boundary data
vj(t) ∈ C1

0 ([0, T ]; R3)

given in (4.13) satisfy the C1-compatibility conditions (4.14) and satisfy

max{‖w0,i
1 ‖1, ‖w0,i

2 ‖1, ‖vj‖1}i∈I,j∈JS < c0,

there exists a unique solution

w ∈
∏
i∈I

C1([0, Li] × [0, T ]; R3) × C1([0, Li] × [0, T ]; R3)

to (4.13), depending continuously on the data in the sense that for each i ∈ I,

‖wi
1‖1 + ‖wi

2‖1 ≤ cT max{‖w0,i
1 ‖1, ‖w0,i

2 ‖1, ‖vj‖1}i∈I,j∈JS .

Proof We shall begin with the assumption that the lengths Li are all the same and equal
to L. When this is not the case, one can perform a rescaling by introducing on each string a
new parameter y := L

Li
x, so that each string is parametrized over the same interval [0, L]. We

then set R̃i(y, t) := Ri(Li

L y). Then L
Li

R̃i
x(y, t) = Ri

x(Li

L y), and it is similar for other functions
of x which occur in our equations. Moreover, the values yij := L

Li
xij of course now take on the

values 0 or L. The system (4.13) can then be rewritten in terms of the variable y ∈ [0, L] for
all i with some added purely notational complexity.
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With this initial assumption the 6-dimensional hyperbolic systems (4.14) occurring in the
system (4.13) can now be assembled into a system in 6n unknowns on the domain [0, L]× [0, T ]:

wt + A(x,w)wx = g(x,w) (4.15)

by setting {
A := diag(A1, A2, · · · , An), w = (w1,w2, · · · ,wn),
g(x,w) := (g1(x,w1),g2(x,w2), · · · ,gn(x,wn)).

(4.16)

We shall see later that this is a hyperbolic system near the equilibrium. We note that

A(x,w) = A(x,w1), where w1 = (w1
1,w

2
1, · · · ,wn

1 ).

The associated initial conditions are simply

w(x, 0) = (w0,1(x), · · · ,w0,2(x), · · · ,w0,n(x)) ∈ C1([0, L]; re6n). (4.17)

The boundary conditions at the simple nodes take the form

wij

2 (xijj , t) = uj
t (t) + w0,ij

2 (xijj) + t ρ−1
ij

[Gij (Re,ij
x + w0,ij

1 )]x|x=xijj for j ∈ J S . (4.18)

The multiple node conditions become⎧⎨⎩wi
2(xij , t) coincide for each j ∈ J M and i ∈ Ij ,∑

i∈Ij

Gi(Re,i
x (xij) + wi

1(xij , t)) = 0 for j ∈ J M . (4.19)

These can also be considered as boundary conditions, since at the multiple node indexed by j

the xij are either all 0 or all L.
We shall prove that the boundary conditions both at simple nodes and corresponding to

multiple nodes are of the type allowing solutions to hyperbolic systems.
We need to analyse the structure of the system. Let P i = P i(x,wi

1) denote the matrix of
the linear transformation ρ−1

i Gi
v(Re,i

x (x)+wi
1(x, t)), so that Ai has the block matrix structure

Ai =
(

0 I
P i(x,wi

1) 0

)
. (4.20)

Starting from the definition (2.11), one finds

Gi
v(V)v = V i

ss(|V|)V · v
|V|2 V +

V i
s (|V|)
|V|

[
v − V · v

|V|2 V
]
.

The linear transformation Gi
v(V) therefore has eigenvalues V i

ss(|V|) and V i
s (|V|)
|V| corresponding

respectively to the eigenspaces spanned by V and its 2-dimensional orthogonal complement.
These eigenvalues are both positive if |V| > 1. An orthonormal basis of eigenvectors of Gi

v(V),
depending smoothly on V in the set theoretic complement of a specified 1-dimensional subspace
of R

3, can be chosen as follows:

V
|V| ,

M iV
|M iV| ,

V
|V| ×

M iV
|M iV| ,
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where M i is a fixed, invertible, skew-symmetric 3 × 3 matrix with the specified subspace as
nullspace, and the third vector is obtained by taking the cross product of the previous vectors.
We restrict our attention to small perturbations of stretched equilibria, so that |Re,i

x (x)| >

1, and by continuity, |Re,i
x (x) + wi

1(x, t)| > 1 for sufficiently small wi
1. If Re,i(x) does not

correspond to a string in vertical position, so that Re,i
x (x) is never aligned with e, we pick M i

to have the vertical subspace spanned by e as nullspace. If on the other hand, the equilibrium
position is vertical, we choose M i to have a subspace spanned by a vector orthogonal to e as
nullspace. In either case, sufficiently small perturbations Re,i + wi

1 cannot lie in the nullspace
of M i. Let Qi(x,wi

1) denote the orthogonal matrix having the vectors constructed above with
V = Re,i

x (x) + wi
1 as columns. Then the symmetric matrix P i(x,wi

1) can be diagonalized as
follows:

P i(x,wi
1) = Qi(x,wi

1)[D
i(x,wi

1)]
2Qi(x,wi

1)
T, (4.21)

where Di(x,wi
1) = diag(μi

1(x,wi
1), μ

i
2(x,wi

1), μ
i
3(x,wi

1)) is diagonal with positive diagonal en-
tries given by ⎧⎪⎨⎪⎩

[μi
1(x,wi

1)]
2 = ρ−1

i V i
ss(|Re,i

x (x) + wi
1|),

[μi
2(x,wi

1)]
2 = [μi

3(x,wi
1)]

2 =
ρ−1

i V i
s (|Re,i

x (x) + w1|)
|Re,i

x (x) + w1|
.

(4.22)

The following easily proved lemma on partitioned matrices will be applied to each of the 6 × 6
matrices Ai, which appear along the diagonal of the matrix A(x, w1) in (4.16).

Lemma 4.1 Let A be a 2p × 2p matrix partitioned into p × p matrices:

A =
(

0 I
P 0

)
(4.23)

with P symmetric and positive definite, having eigenvalues μ2
1, · · · , μ2

p with each μi > 0. Let D
denote the p× p diagonal matrix having the μi’s along the diagonal, and P = QD2QT where Q

is orthogonal. Then the matrix A has eigenvalues ±μ1,±μ2, · · · ,±μp and is diagonalizable as
follows:

A = S

(
D 0
0 −D

)
S−1 (4.24)

with

S =
(

Q Q
QD −QD

)
, S−1 =

1
2

(
QT D−1QT

QT −D−1QT

)
.

Applying this to each of the diagonal blocks Ai(x,wi
1), we conclude that

A(x,w1) = S(x,w1)D(x,w1)S(x,w1)−1, (4.25)

where ⎧⎪⎨⎪⎩
D(x,w1) = diag(D̂1(x,w1

1), D̂2(x,w2
1), · · · , D̂n(x,wn

1 )),
S(x,w1) = diag(S1(x,w1

1), S
2(x,w2

1), · · · , Sn(x,wn
1 )),

S(x,w1)−1 = diag(S1(x,w1
1)−1, S2(x,w2

1)−1, · · · , Sn(x,wn
1 )−1)

(4.26)
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with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D̂i(x,wi
1) =

(
Di(x,wi

1) 0
0 −Di(x,wi

1)

)
,

Si(x,wi
1) =

(
Qi(x,wi

1) Qi(x,wi
1)

Qi(x,wi
1)D

i(x,wi
1) −Qi(x,wi

1)D
i(x,wi

1)

)
,

Si(x,wi
1)

−1 =
1
2

(
Qi(x,wi

1)
T Di(x,wi

1)
−1Qi(x,wi

1)
T

Qi(x,wi
1)

T −Di(x,wi
1)

−1Qi(x,wi
1)

T

)
.

(4.27)

We note that the eigenvalues of the diagonalisable 6n × 6n matrix A(x,w1), namely ±μi
k

with i ∈ I and k = 1, 2, 3, are all nonzero for w sufficiently small, with half of them positive and
half negative. Thus we have a quasilinear hyperbolic system in 1-dimensional space variable
for which boundary value problems have received considerable attention. We shall rely on [16],
which treats the situation where A and g can depend on x, t and w. That paper draws heavily
on the proofs of previous results, for example in [8] where the coefficients depend only on w.

Premultiplying the system (4.15) by S(x,w1)−1, we get

S(x,w1)−1wt + S(x,w1)−1A(x,w1)wx = S(x,w1)−1g(x,w). (4.28)

We denote the k-th row of S(x,w1)−1 by lk(x,w1). This is a left eigenvector of A(x,w1)
corresponding to the k-th eigenvalue λk(x,w1) occurring along the diagonal of D, one gets the
equations

lk(x,w1) [wt + λk(x,w1)wx] = S(x,w1)−1g(x,w), (4.29)

which is exactly of the form of the equations studied in [16].
To study the boundary conditions, we have to rely heavily on the block structure of our

matrices. It is useful to introduce ξ(x,w) = S(x,w1)−1w. As in [14], one can use the implicit
function theorem to show that this change of variables is invertible near w = 0. With a minor
abuse of notation, we also write ξ(x, t) = ξ(x,w(x, t)). The k-th component of ξ is simply
lk(x,w1)w, an expression commonly used in the formulation of boundary conditions. We have

S(x,w1)−1wt + D(x,w1)S(x,w1)−1wx = S(x,w1)−1g(x,w), (4.30)

or, for each i ∈ I,

Si(x,wi
1)

−1wi
t + D̂i(x,wi

1)S
i(x,wi

1)
−1wi

x = Si(x,wi
1)

−1gi(x,w). (4.31)

Corresponding to the block structure, we write ξ=(ξ1, ξ2, · · · , ξn) with ξi =Si(x,wi
1)

−1wi.
Taking into account (4.27), we define the modes ξ± = (ξ1

±, · · · , ξn
±), where

ξi
+ :=

1
2
[Qi(x,wi

1)
Twi

1 + M i(x,wi
1)w

i
2)],

ξi
− :=

1
2
[Qi(x,wi

1)
Twi

1 − M i(x,wi
1)w

i
2)]

(4.32)

with M i(x,wi
1) = Di(x,wi

1)
−1Qi(x,wi

1)
T. These modes correspond respectively to the positive

and the negative eigenvalues of Ai.
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To apply the results of [16], one needs to show that boundary conditions at 0 and L can
respectively be rewritten in the form

ξ+(0, t) = G0(t, ξ−(0, t)) + H0(t) and ξ−(L, t) = GL(t, ξ+(L, t)) + HL(t), (4.33)

where G0(t,0) = 0 and GL(t,0) = 0. These conditions determine the “incoming modes” in
terms of the “outgoing modes” as well as boundary data.

We consider the situation at 0, that at L being entirely analogous. The endpoint of the i-th
string at 0 either is at a simple node Nj with j ∈ J S and i = ij or meets a multiple node Nj

with j ∈ J M and i ∈ J j .
In the former case, we have the boundary condition

wi
2(0, t) = vj(t) = uj

t (t) + w0,i
2 (0) + t ρ−1

i [Gi(Re,i
x + w0,i

1 )]x|x=0. (4.34)

At x = 0, we get from (4.32) that

ξi
+(0, t) + ξi

−(0, t) = Qi(0,wi
1(0, t))Twi

1(0, t),

ξi
+(0, t) − ξi

−(0, t) = M i(0,wi
1(0, t))wi

2(0, t).
(4.35)

Since
Dw1 [Q

i(0,w1)Tw1]|w1=0 = Q(0,0)T,

it follows from the first of the previous identities and the implicit function theorem that, near
x = 0, wi

1 = φi(ξi
+ − ξi

−). Substituting this back into the second identity, we get at x = 0,

Φi(ξi
+, ξi

−,wi
2) := ξi

+ − ξi
− − M i(0,φ(ξ+ + ξ−))w2 = 0.

Since
Φi(0,0,0) = 0, Dξi

+
Φi(0,0,0) = I,

a second application of the implicit function theorem gives

ξi
+ = Gi

0(ξ
i
−,wi

2)

with Gi
0 a differentiable function defined near 0×0 and vanishing at that point. Hence, in this

situation, we get the boundary condition

ξi
+(0, t) = Gi

0(ξ
i
−(0, t), ûj(t)), (4.36)

which can be rewritten in the form (4.33) by introducing Hi
0(t) = Gi

0(0, ûj(t)) and then replac-
ing Gi

0(ξ
i
−(0, t), ûj(t)) by Gi

0(ξ
i
−(0, t), ûj(t)) − Hi

0(t).
In the alternative case where the endpoint of the i-th string at x = 0 meets a multiple node

Nj , one needs to rewrite the multiple node conditions (4.19) appropriately. We proceed with
the following 3 steps, making repeated use of the implicit function theorem.

Step 1 For each i ∈ J j , we show that the mapping (wi
1,w

i
2) �→ (ξi

+, ξi
−) given by (4.32)

with y = 0 can be inverted near (0,0) to give

wi
1 = φi(ξi

+, ξi
−), wi

2 = ψi(ξi
+, ξi

−). (4.37)

Step 2 We then show that wi
2 = ψi(ξi

+, ξi
−) can be solved for

ξi
+ = ξi

+(wi
2, ξ

i
−) = ξi

+(wi1
2 , ξi

−), (4.38)
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where ij is any fixed index in J j , and that, once wi
2 has been suitably determined, all the ξi

+

at x = 0 have the form required for boundary conditions at 0.
Step 3 We determine wi

2 by first setting

wi
1 = wi

1(w
i1
2 , ξi

−) = φi(ξi
+(wi

2, ξ
i
−), ξi

−), (4.39)

and then substituting these into the remaining node condition to get the following condition,
which we show can be used to determine wi1

2 , thus complete the argument∑
i∈Ij

Gi(Re,i
x (0) + wi

1(w
i1
2 (0, t), ξi

−(0, t))) = 0. (4.40)

At this point, it is clear that wi1
2 (0, t) is determined as a function of all the incoming modes

ξi
−(0, t) at the multiple node so that, substituting back into ξi

+(wi1
2 , ξi

−), we get that

ξi
+(0, t) = Gi

0({ξl
−(0, t)}l∈Ij) for i ∈ Ij . (4.41)

To accomplish Step 1, we note that the Jacobian of the mapping (wi
1,w

i
2) �→ (ξi

+, ξi
−) at

(0,0) is
1
2

(
Qi

0
T

M i
0

Qi
0
T −M i

0

)
,

where the subscript “0” indicates that the matrices are evaluated at (0,0). This matrix is
invertible. Recalling that M i = Di−1

Qi, one easily verifies that its inverse is(
Qi

0 Qi
0

Qi
0D

i
0 Qi

0D
i
0

)
.

The inverse mapping theorem implies that one can invert the mapping to get (4.37) with

Dξi
+
φi = Dξi

−
φi = Qi

0 and Dξi
+
ψi = −Dξi

−
ψi = Qi

0D
i
0 (4.42)

at (0,0).
Moving to Step 2, we consider the relation

F(ξi
+, ξi

−,wi
2) := ψi(ξi

+, ξi
−) − wi

2 = 0,

and note that
Dξi

+
F = −Dξi

−
F = Qi

0D
i
0 = M i

0

−1
and Dwi

2
F = I

at (0,0,0). By the implicit function theorem, one can therefore solve for ξi
+ in the form (4.38)

with

Dξi
−
ξi
+ = I and D

w
i1
2
ξi

+ = M i
0 (4.43)

at (0).
Finally, we implement Step 3. We need to solve (4.38) locally for wi1

2 . Let

H(wi1
2 , {ξi

−}i∈Ij) :=
∑
i∈Ij

Gi(Re,i
x (0) + wi

1(w
i1
2 , ξi

−)).



54 Günter R. Leugering and E. J. P. Georg Schmidt

We know that H(0, {0}i∈Ij) = 0. So, to solve for wi1
2 as a function of {ξi

−}i∈Ij , we need to
prove that D

w
i1
2
H(0, {0}i∈Ij) is invertible. Evaluating the derivative, we get

D
w

i1
2

H(0, {0}i∈Ij) =
∑
i∈Ij

DvGi(Re,i
x (0)t)Dξi

+
φi(0,0)D

w
i1
2

ξi
+(0,0)

=
∑
i∈Ij

P i
0Q

i
0M

i
0 =

∑
i∈Ij

Qi
0D

i
0

2
Qi

0

T
Qi

0M
i
0 =

∑
i∈Ij

Qi
0D

i
0Q

i
0

T
, (4.44)

which is positive definite and therefore invertible.
This completes the proof of all the details needed to apply the existence theorems presented

in [16] in our context, and thus the proof of Theorem 4.1 is completed.

In view of the discussion prior to the statement and proof of Theorem 4.1, the following
existence theorem for the original second order system (4.5) is also valid.

Theorem 4.2 Consider a tree network as described in the beginning of this section. Let
Re be a given stretched equilibrium. For a specified value of T > 0, there exist constants c0

and cT such that for initial data

R0,i(x) ∈ C2([0, Li]; R3) and R1,i(x) ∈ C1([0, Li]; R3) for i ∈ I
which respect the compatibility conditions (4.2) and boundary data

uj(t) ∈ C2
0 ([0, T ]; R3) for j ∈ J S

satisfying
max{‖R0,i − Re,i‖2, ‖R1,i‖1, ‖uj‖2}i∈I,j∈JS < c0,

there exists a unique twice continuously differentiable solution

R ∈
∏
i∈I

C2([0, Li] × [0, T ])

to (4.5) depending continuously on the data in the sense that for each i ∈ I,

‖Ri‖2 ≤ cT max{‖R0,i − Re,i‖2, ‖R1,i‖1, ‖uj‖2}i∈I,j∈JS .

Remark 4.1 Because of this theorem, it is natural to introduce the “state space”

Hs =
{
{(R0i,R1i)}i∈I ∈

∏
i∈I

C2([0, Li]; R3) × C1([0, Li]; R3) : (4.2) holds
}
. (4.45)

5 Controllability on a Star-Graph

We consider a star-like network with n strings stretched from zero— the common nodal
point— to the ends at x = Li. We exert controls at the ends for the strings labeled i = 2, · · · , n,
i.e., we keep fixed Dirichlet conditions for the first string and control the displacements of all of
the other connected strings. We have the following regularity and C2-compatibility conditions:⎧⎪⎨⎪⎩

Uj(t) ∈ C2([0, T ]; R3) for j = 2, · · · , n,

R0,i(x) ∈ C2([0, Li]; R3) for i = 1, · · · , n,

R1,i(x) ∈ C1([0, Li]; R3) for i = 1, · · · , n,

(5.1)
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R0,i(0) coincide for each i = 1, · · · , n,

R1,i(0) coincide for each i = 1, · · · , n,∑
i=1,··· ,n

Gi(R0,i
x (0) = 0,∑

i=1,··· ,n
Gi

v(R0,i
x (0)R1,i

x (0) = 0,

(5.2)

as well as ⎧⎪⎨⎪⎩
Uj(0) = Rj,0(Lj), j = 2, · · · , n,

Uj
t (0) = Rij ,1(Lj), j = 2, · · · , n,

Uj
tt(0) = (ρj)−1[Gj(Rj,0

x )]x|x=0, j = 2, · · · , n.

(5.3)

Controllability of the star-like network of nonlinear elastic strings will be considered in the
energy space Hs which for the star configuration becomes

Hs =
{
{(R0i,R1i)}i∈I ∈

∏
i∈I

C2([0, Li]; R3) × C1([0, Li]; R3) : (5.2) holds
}
. (5.4)

In this section, we prove the following theorem concerning the exact controllability in finite
time of the motion of a star-like string network from the neighborhood of one equilibrium at
time 0 to a neighborhood of another equilibrium at time T . In order to make this more precise,
we recall that the eigenvalues of the matrices Ai given by (4.20) are ±μi

j(x,wi
1), j = 1, 2, 3

given by (4.22). Indeed,⎧⎪⎪⎪⎨⎪⎪⎪⎩
μi

1(x,wi
1) =

√
ρ−1

i V i
ss(|Re,i

x (x) + wi
1|) ,

μi
2(x,wi

1) = μi
3(x,wi

1) =

√
ρ−1

i V i
s (|Re,i

x (x) + w1|)
|Re,i

x (x) + w1|
.

(5.5)

In terms of the original variables, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
μi

1(x, ri
x) =

√
ρ−1

i V i
ss(|Re,i

x (x) + ri
x|) ,

μi
2(x, ri

x) = μi
3(x, ri

x) =

√
ρ−1

i V i
s (|Re,i

x (x) + ri
x|)

|Re,i
x (x) + ri

x|
.

(5.6)

In particular, under the assumed condition of stretched equilibria, the roots (5.5) are strictly
positive at wi

1 = 0, i ∈ I. We may then define a lower bound on the traveling time for signals
entering the boundary points up to their arrival at the same boundary point.

T > 2 T0 := max
j=1,2,3

max
x∈[0,L1]

2L1

μ1
j (x, 0)

+ max
i=2,··· ,n

max
j=1,2,3

max
x∈[0,Li]

2Li

μi
j(x, 0)

. (5.7)

Under our assumptions, we can guarantee the existence of an ε0 > 0 such that

T > 2 T1 := max
j=1,2,3

max
x∈[0,L1]

‖r1
x‖<ε0

2L1

μ1
j(x, r1

x)
+ max

i=2,··· ,n
max

j=1,2,3
max

x∈[0,Li]

‖ri
x‖<ε0

2Li

μi
j(x, ri

x)
. (5.8)

We also define the maximal traveling time for the strings labeled i = 2, · · · , n as follows:

T2 := max
i=2,··· ,n

max
j=1,2,3

max
x∈[0,Li]

‖ri
x‖<ε0

Li

μi
j(x, ri

x)
. (5.9)
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Theorem 5.1 Let Re,i be a stretched equilibrium solution to the system (2.7)–(2.10) and
(2.12) according to (3.1). Let T > 2T0. Then there exist neighborhoods U0 and U1 of (Re

0,0) in
Hs, such that given

{(R0i,R1i)} ∈ U0 and {(R̂0i, R̂1i)} ∈ U1,

one can find controls uj(t) ∈ C2
0 ([0, T ]; R3), such that the corresponding solution R to (4.5)

satisfies
Ri(·, T ) = R̂0i and Ri

t(·, T ) = R̂1i.

Having established this local exact controllability result, we can proceed to the following
global-local exact controllability result.

Theorem 5.2 Let the assumptions of Theorem 5.1 hold. Given two stretched equilibrium
solutions Re

0(x) and Re
1(x) to the system (2.7)–(2.10) and (2.12) according to (3.1), there are

neighborhoods U0, U1 of (Re
0,0), (Re

1,0), respectively, in the state space Hs such that, for T

sufficiently large, each solution to (4.5) in the sense of Theorem 5.1 with initial conditions in
U0 can be steered to any state in U1 in the given time via admissible controls.

We shall achieve this goal in a couple of steps. We first prove the local-exact controllability
result Theorem 5.1. In the second step, we use the connectedness of S+, and hence, of the set
of equilibrium points. We can find a compact λ-parametrized path Re

λ of equilibrium solutions
connecting Re

0 and Re
1 and a corresponding path (Re

λ,0) in state space. Then by using a
monodromy argument, we can cover this path by sufficiently small neighborhoods, such that
initial and final states in these local neighborhoods can be connected via admissible controls.
In this way, we can start close to the equilibrium state (Re

0,0) and terminate at a state close to
(Re

1,0) via finitely many intermediate states located in the neighborhoods connecting (Re
0,0)

and (Re
1,0). Thus we achieve a global-local exact controllability result for the fully nonlinear

network of vibrating strings.

Proof of Theorem 5.1 We follow the spirit of the proof of Theorem 3.1 in [4]. The
principal idea in boundary exact controllability of 1-hyperbolic systems, which has been used
already by Littman [12], is to solve forward problems with the given initial data, backward
problems with the given final data and a Cauchy from “the left and the right”. In particular,
for the latter, it is convenient to interchange the spatial and time variables x and t, and then
solve Cauchy problems from the left and the right, once the given boundary conditions have
been extended to Cauchy-data there.

As we assume stretched equilibria, Gi
v(Re,i

x (x)) is uniformly positive definite and so is
Gi

v(Re,i
x (x) + ri

x(x, t)) uniformly with respect to (x, t) for ε1 sufficiently small. The state
equation for ri in quasilinear form can be written as

ρiri
tt(x, t) = Gv(Re,i

x + ri
x(x, t))ri

xx(x, t) − ρige.

Therefore,

ri
xx(x, t) = ρi[Gv(Re,i

x (x) + ri
x(x, t))]−1ri

tt(x, t) + ρig[Gv(Re,i
x (x) + ri

x(x, t))]−1e.

In terms of the variables wi = (wi
1,w

i
2) = (ri

x, ri
t) this reads as

wi
1x(x, t) = ρi[Gv(Re,i

x (x) + wi
1(x, t))]−1wi

2t(x, t) + ρig[Gv(Re,i
x (x) + wi

1(x, t))]−1e.
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Thus, if one has Cauchy-data (ri(x, t), ri
x(x, t)) at a boundary point x = Li or in terms of wi

Cauchy-data (wi
1,w

i
2)(Li, t), and “boundary data” ri(x, 0), ri(x, T ), x ∈ [0, Li], one can solve

the wave equation “from x = Li to x = 0”. A similar statement holds for the first order system
involving wi.

We describe the idea of the proof. There are five steps.
Step 1 In the first step, we proceed forward from t = 0 to t = T1. We solve the initial

boundary value problem with controls at x = Li.
For each string i ∈ I, we define the set Ri

I := {(x, t) ∈ [0, Li]× [0, T1]}, and for the network,

we set RI :=
n⋃

i=1

Ri
I. The first string is fixed at x = L1. We may, for the sake of convenience,

assume that we impose a homogenous Dirichlet condition there. This, however, specifies the
corresponding compatibility conditions. We impose nonhomogeneous Dirichlet conditions at
x = Li, i = 2, · · · , n, i.e., ri(Li, t) = f i(t), i = 2, · · · , n, where f i( · ) are small in C2(0, T1; R3).
We also have sufficiently small initial data (ri(x, 0), ri

t(x, 0)) = (φi(x),ψi(x)) for all strings.
We apply Theorem 4.2 and obtain a unique solution on RI.

We can now take traces of (r1(L1, t), r1
x(L1, t)) = (a1(t), a2(t)) (here a1(t) = 0) at the

boundary of the first string along {L1}× [0, T1] and for (ri(0, t), ri
x(0, t)) = (bi

1(t),b
i
2(t)) for all

strings at {0}× [0, T1]. It is clear that (bi
1(t),bi

2(t)) satisfy the nodal conditions at the common
node. Moreover, all data are small in the appropriate spaces.

Step 2 We perform the same procedure, but now reversing the time and progress from the
final time T to T − T1. More precisely, we introduce the individual domains Ri

II := {(x, t) ∈
[0, Li] × [T − T1, T ]}, i = 1, · · · , n and the global one RII =

n⋃
i=1

Ri
II. By the same argument,

a unique semi-global small solution (ri
II, r

i
II,x) to the network problem exists, and we can take

traces (r1
II(L1, t), r1

II,x(L1, t)) = (a1(t), a2(t)) at {L1} × [T − T1, T ] for the first string (again

a1(t) = 0) and (ri
II(0, t), ri

II,x(0, t)) = (b
i

1(t),b
i

2(t)) at {Li} × [T − T1, T ] for the strings labeled
i = 1, · · · , n.

In order to prepare Step 3, we extend the Cauchy-data at {{L1}×[0, T1]}∪{{L1}×[T−T1, T ]}
in the C2-sense to {L1}× [0, T ] as (ã1(t), ã2(t)). After that, we can use these Cauchy-data along
{L1} × [0, T ] as “initial conditions”.

Step 3 We change the order of x and t as explained at the beginning of the proof. The
Cauchy-data just constructed can be taken as “initial conditions” for the first string “starting”
at x = L1 with “boundary conditions” at t = 0 and t = T taken from the original initial
data. Applying Theorem 4.2 to that situation, we can evaluate the solution (r1(x, t), r1

x(x, t))
at {0} × [0, T ]. On the set {(x, t) ∈ [0, L1], 0 ≤ t ≤ T2 + (T1−T2)x

L1
}, this solution r1 is identical

to r1
I . Therefore, at t = 0, we have

r1(x, 0) = φ1(x), r1
t (x, 0) = ψ1(x), x ∈ [0, L1].

At x = 0, we have

r1(0, t) = b1
1(t), r1

x(0, t) = b1
2(t), t ∈ [0, T2].

The analogous uniqueness argument applies for the backward solution of Step 2, such that the
final conditions are

r1(x, T ) = Φ1(x), r1
t (x, T ) = Ψ1(x), x ∈ [0, L1],
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while the evaluation at x = 0 provides the Cauchy-data

r1(0, t) = b
1

1(t), r1
x(0, t) = b

1

2(t), t ∈ [T − T2, T ].

Step 4 We now extend the Cauchy-data (b1
1(t),b1

2(t)), t ∈ [0, T2], together with (b
1

2(t),
b

1

2(t)), t ∈ [T − T2, T ], to Cauchy-data (b̃1
1(t), b̃

1
2(t)), t ∈ [0, T ], such that corresponding solu-

tions satisfy the nodal conditions.
Step 5 We now have Cauchy-data on {0} × [0, T ], such that the nodal conditions are

satisfied. Therefore, we can use these as compatible initial conditions for the strings labeled
i = 2, · · · , n after interchanging x and t. Thus, on the domains Ri

IV := {(x, t) ∈ [0, Li]× [0, T ]},
we solve the initial boundary value problems with Cauchy-data

ri(0, t) = b̃i
1, ri

x(0, t) = b̃i
2, t ∈ [0, T ],

and boundary conditions

ri(x, 0) = φi(x), ri(x, T ) = Φi(x), x ∈ [0, Li].

By construction, the solutions are small in the sense described above. A similar uniqueness
argument applies to the region {(x, t) | x ∈ [0, Li], 0 ≤ t ≤ T2(1 − x

Li
)} to the effect that

ri(x, 0) = φi(x), ri
t(x, 0) = ψi(x), x ∈ [0, Li].

The analogous argument on the “upper” domain leads to

ri(x, T ) = Φi(x), ri
t(x, T ) = Ψi(x), x ∈ [0, Li].

This gives the solution to the problem stated.

Proof of Theorem 5.2 We now prove Theorem 5.2 for the star-graph. As stated in the
theorem, we assume two different equilibria Re

0,R
e
1 described above. These equilibria come

from different fixed boundary conditions at the simple nodes. According to Section 4, there is
continuous path Re

λ with finite length connecting the two equilibria and hence a path (Re
λ,0)

joining the states (Re
0,0) and (Re

1,0). Thus, given the smallness bounds needed in order to
apply Theorem 5.1, we can cover the path with finitely many, say m, such neighborhoods, the
centers of which are located at an equilibrium (Re

k
m

,0) on the path. The controllability times

T k, k = 1, · · · , m are individually calculated according to the data in these neighborhoods
according to Theorem 5.1. Starting in the neighborhood of (Re

0,0), we can reach all states
(Ri(x, T 0),Ri

t(x, T 0)), i = 1, · · · , n in that neighborhood, which, in turn, has a nonempty
intersection with the next neighborhood. Therefore, the state reached in the first step can be
steered in time T 1 to any state (Ri(x, T 1),Ri

t(x, T 1)), i = 1, · · · , n in the second neighborhood.
This argument can be now applied m-times until we arrive in the neighborhood of (Re

1,0). The

total control time can be estimated below by
m∑

k=1

T k.

6 Exact Controllability of Tree-Networks

Our controllability Theorems 5.1 and 5.2 for star networks have their exact counterparts for
general tree networks.
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Theorem 6.1 Let Re,i be a stretched equilibrium solution to the system (2.7)–(2.10) and
(2.12) according to (3.1). Let

T > 2T0 with T0 = max
{ p∑

l=1

Lil

μil

0

: {i1, i2, · · · , ip} ∈ P
}
, (6.1)

where

μi
0 = min

j=1,2,3
min

x∈[0,L1]
μi

j(x, 0) (6.2)

with μi
j as in (4.22), and where P denotes the set of index sequences {i1, i2, · · · , ip} correspond-

ing to successions of strings joining N1 to a simple node Nj.
Then there exist neighborhoods U0 and U1 of (Re

0,0) in Hs, such that given

{(R0i,R1i)} ∈ U0 and {(R̂0i, R̂1i)} ∈ U1,

one can find controls uj(t) ∈ C2
0 ([0, T ]; R3) such that the corresponding solution R to (4.5)

satisfies
Ri( · , T ) = R̂0i and Ri

t( · , T ) = R̂1i.

Consequently we can also prove the theorem below.

Theorem 6.2 Given two stretched equilibrium solutions Re
0(x) and Re

1(x) to the system
(2.7)–(2.10) and (2.12) according to (3.1), there are neighborhoods U0, U1 of (Re

0,0), (Re
1,0),

respectively, in the state space Hs, such that, for T sufficiently large, each solution to (4.5) in
the sense of Theorem 4.2 with initial conditions in U0 can be steered to any state in U1 in the
given time via admissible controls.

We make only a few comments concerning the proofs. Concerning the proof of Theorem 6.1,
we note that exact controllability results for partial differential equations on tree-like graphs
are typically proved by using a peeling technique. See for instance [5]. This technique consists
in going from the leaves of the tree to the root. In other words, one starts at the simple nodes
and reduces the tree by cutting off the root layer by layer until one reaches the edge with fixed
Dirichlet conditions. The argument given in [4], in a sense, starts at the root, and is related
to the classical idea, going back to Russell, in which the controls are taken as appropriate
traces at the control-boundary point for the solutions satisfying overdetermined initial-, final-,
and boundary- as well as multiple nodal conditions. In this way, one works from the given
boundary conditions at the root by interchanging x and t, and produces Cauchy-data at the
end of this edge which have to be compatible with the multiple-node conditions. This procedure
provides Cauchy-data at the next (now multiple) node. Applying the same argument to each
branch initiated at this node, we continue until we arrive at the simple nodes, where we take the
controls as traces of the corresponding solutions. We, thus, obtain exact local controllability of
tree-like networks of nonlinear strings around a stretched equilibrium.

Once Theorem 6.1 has been proved, the proof of Theorem 6.2 is exactly the same as for star
configurations. The monodromy argument depends on the pathwise connectivity of the set of
stretched equilibria which follows from Theorem 3.2 concerning the equilibria on tree networks.
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